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We argue that recently observed superconductivity-induced blue shift of the plasma frequencydvpl in
Bi2Sr2CaCu2O8+d [Molegraaf et al., Science 295, 2239 (2002)] is related to the change in the integrated
dynamical structure factor associated with the development of the spin resonance belowTc. We show that the
magnitude ofdvpl is consistent with the small integrated spectral weight of the resonance, and its temperature
dependences closely follow that of the spin-resonance peak. We also discuss the differential optical integral for
the conductivity.
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The importance of the resonance spin mode for the phys-
ics of the cuprates continue to be the subject of intensive
debate. In a generic superconductor, the pairing of fermions
drastically reduces the damping of collective spin degrees of
freedom at energies below 2D. For ad-wave superconductor,
the residual interaction between spin fluctuations and fermi-
ons gives rise to the additional effect—the development of
the exciton mode below 2D (see, e.g., Ref. 1, and references
therein). This mode exists for bosonic momenta nearsp ,pd
and is commonly called the “spin resonance.” It has been
observed in three different families of high-Tc
superconductors.2–5 This mode is not a “glue” to supercon-
ductivity as it emerges only in the superconducting state
(more precisely, below the pseudogap temperature), but it
affects electronic properties of the cuprates in the supercon-
ducting state.

Much of recent works on the effect of the spin resonance
on electrons was concentrated on whether the interaction
with the resonance is capable to explain experimentally de-
tectedlow-energyfeatures in the fermionic spectral function,
tunneling density of states, and optical conductivity.1,6 An
example of this behavior is the peak-dip-hump structure of
the spectral function.7

The subject of the present communication is the analysis
of the possible role of the spin resonance in the observed
changes between normal and superconducting state in the
optical data at high frequencies,v,0.5–1 eV.8 Recently,
Molegraaf et al. reported the results of their ellipsometry
measurements on optimally doped and underdoped
Bi2Sr2CaCu2O8+d with Tc=88 and 66 K, respectively.9 They
observed that in the normal state the in-plane plasma fre-
quency increases with decreasingT, roughly asT2, however
below Tc it increases faster, and the actual value ofvplsT
=0d is larger than the extrapolation from the normal state.
The effect is small: at optimal dopingdvpl,10 cm−1 is 10−3

of the plasma frequencyvpl<1 eV, but detectable by the
ellipsometry technique. They and others10,11 also found that
superconductivity affects the temperature dependence of the
optical integralIsVd="2e0

Vssvddv at V,1 eV.
In this paper, we focus on the changes ofvpl and IsVd

between normal and superconducting states, leaving aside
the mechanism of the temperature dependence in the normal
state. We argue that the superconductivity-induced shifts of

the plasma frequency and the optical integral can be ex-
plained by the interaction with the spin-resonance mode. We
argue thatdvpl anddIsVd scale with the integrated magnetic
spectral weight, and the small values ofdvpl anddIsVd are
consistent with the fact that only 1–2% of the magnetic
spectral weight is transferred into resonance. We emphasize
that this effect is absent in phonon superconductors where
the spectral function of the pairing boson does not change
below Tc.

Conventional wisdom holds that atv,1 eV, which well
exceed the magnetic bandwidth, interaction with spin fluc-
tuations is not the dominant mechanism for the fermionic
self-energySsvd. We argue, however, thatdvpl scales with
dSsvd=Sscsvd−Snsvd, and the latter comes from frequen-
cies comparable to the superconducting gap and can be cap-
tured within the low-energy, spin-fluctuation theory. We will
see, however, that at highv, a fermion with energy 1 eV
interacts with the whole band of magnetic fluctuations. As a
result, dSsvd scales with the integrated magnetic spectral
weight transfer into the resonance.

Our reasoning is the following. At plasma frequency, the
real part of the dielectric functionesvd changes sign. The
dielectric function obeysesvd=es`d+4pissvd /v, where
ssvd is the optical conductivity. By Kubo formula,ssvd
=fsvpl

0 d2/ s4pdgRefPsvd / s−ivdg where, Psvd is the fully
renormalized current-current polarization operator and
svpl

0 d2=4pne2/m is the bare plasma frequency. The plasma
frequency is then the solution of

vpl =
vpl

0

Îes`d
ÎRePsvpld. s1d

To zero-order approximation, Psvpld=1, i.e., vpl

=vpl
0 /Îes`d. However, at any finite frequency 1−RePsvd is

still finite, and hencevpl is sensitive to the change of the
polarization operator upon entering the superconducting
state. This change ofvpl is small as superconductivity mostly
affects the form ofPsvd at frequencies comparable to the
superconducting gapD,0.04vpl.

At high frequencies,v,1 eV, normal and anomalous fer-
mionic self-energiesSsk ,vd<Ssvd and Fsk ,vd are both
small compared tov, and to the leading order in the self-
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energy, the current-current correlator both in the normal and
superconducting states is given by

PsVd =E
0

V dv

V + Ssvd + SsV − vd
. s2d

Vertex corrections to this formula are not dangerous as the
scattering of an electron off spin excitation changes the di-
rection of electron’s velocity by almost 90°.6 For such pro-
cesses transport time does not differ much from a single-
particle lifetime.

Substituting Eq. (2) into (1) we find that the
superconductivity-induced change in the plasma frequency at
T=0 is related to the difference between superconducting
and normal fermionic self-energiesdSsvd=Sscsvd−Snsvd as

dvpl

vpl
= −

1

2Pn8svpld

3 ReE
0

vpl

dv
dSsvd + dSsvpl − vd

fvpl + vZv + svpl − vdZvpl−vg2 , s3d

wheredvpl=vpl
sc−vpl

n , Pn8svd is the real part of the polariza-
tion operator in the normal state, andZv=1+Snsvd /v is the
inverse quasiparticle residue in the normal state. By all ac-
counts, atv,vpl, Ssvd!v, i.e., Zv<1. Hence, once the
integral in(3) is dominated by frequencies where eitherv or
vpl−v are nearvpl (as we later verify), the precise form of
the fermionic Zsvd does not matter, anddvpl /vpl

<dSsvpld / s2vpld.
The computation ofdvpl therefore reduces to the compu-

tation of the self-energy difference between normal and su-
perconducting states. We present the result fordSsvd now
and discuss its derivation and approximations later. We found
that, within the spin-fluctuation scenario, there are two dis-
tinct frequency regimes depending, roughly, on whether or

not v exceeds the magnetic bandwidth. At small frequencies,
the Eliashberg approximation is valid, anddSsvd is positive
(see Fig. 2). In this regime, internal fermions and bosons in
the self-energy diagram have comparable energies, i.e., a fer-
mion is interacting only with spin fluctuations very nearQ. If
this behavior was valid up tov,vpl, dvpl would be nega-
tive, in disagreement with the data. However, we found that
at v. s1–2dv̄, where v̄ (defined below) is comparable to
magnetic bandwidth, Eliashberg approximation becomes in-
valid, and an “anti-Eliashberg” approximation has to be used.
In this approximation,all spin fluctuations contribute to the
self-energy, and we obtained that the change of the fermionic
self-energy is proportional to the integrated change of the
dynamical spin structure factor,

dSsvd < −
3g2

Zvv
E dVd2q

8p3 o
i

dSisq,VdFsqd, s4d

whereg is the spin-fermion coupling constant estimated to
be g,0.7 eV,1,6 and dSisq ,Vd=Si

scsq ,Vd−Si
nsq ,Vd is the

change of the dynamical structure factorSsq ,
Vd=x9sq ,Vdf1+cothsv /2Tdg in even si =1d and oddsi =2d
channels. The factorFsqd decreases away fromQ but can be
safely approximated byFsqd=1 in the narrow momentum
range where the resonance is experimentally detectable. The
experimentally measured integrated magnetic spectral weight
nearsp ,pd is larger in the superconducting state,3,4 hence at
high frequenciesS8svd is smallerin a superconductor. Using
this dSsvd we find thatdvpl is positive, in agreement with
Ref. 9.

The momentum and frequency integral in the r.h.s. of(4)
yields BSsS+1d /3=B/4, whereB is the percentage of the
spectral weight redistributed belowTc. Only the odd channel
contributes todSsq ,Vd and 1–2% of the spectral weight
from this channel is redistributed,3 i.e.,B,0.005–0.01. Sub-
stitutingdSsvd<−3g2B/ s4vZvd into the expression fordvpl

and approximatingZv by 1 we obtaindvpl /vpl,s1–2d
310−3, in near perfect agreement with the experimental re-
sult 1.3310−3. We emphasize that the agreement is entirely
due to the fact that the integrated weight of the resonance is
very small; if it was not, the blue shift of the plasma fre-
quency would be much larger. To verify the prefactor, we
went beyond estimates and evaluated the full integral in(3)
using the normal state expression forZv:6 Zv<1

FIG. 1. The temperature dependence of the superconductivity-
induced change of the plasma frequency in Bi2212(Ref. 9) vs the
change in the resonance peak intensity for YBCO(Ref. 4). We
normalized both quantities to 1 atT=0. For vpl, the normal state
value belowTc was obtained by extrapolating theT2 dependence
from the normal state(Ref. 9). Upper panel: optimally doped
YBCO; lower panel: two underdoped samples.

FIG. 2. The results of Eliashberg calculations for couplingl
=1. Left panel: self-energy. Right panel: the optical integraldIsvd
(including the condensate piece). For l=2, dIsvd changes sign at a
largerv,2v̄.
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+siv̄ /vd1/2, wherev̄,0.35g. We obtained almost the same
result fordvpl as above, with the extra prefactor 0.97<1.

In Fig. 1 we plot the temperature dependence ofdvplsTd
below Tc together with the temperature dependence of the
resonance peak intensity.4 The data for the fully integrated
intensity are available for fewer temperatures and show
roughly the sameT dependence.4 We see thatdvpl and the
resonance peak follow each other, as it should be according
to Eq. (4).

We next turn to the conductivity. Molegraafet al.9 and
Santander-Syroet al.10 reported that in optimally doped
Bi2212, the optical spectral weight, with the condensate con-
tribution included, integrated up to a frequency of
10 000 cm−1 (above which one-band description fails), in-
creases belowTc. Molegraafet al. interpreted their result as
the evidence that the one-band description of superconduc-
tivity is not sufficient, and interband transitions also contrib-
ute to the pairing. Boriset al.,11 on the other hand, argued,
based on their data, that the normal state optical integral
becomes larger than the optical integral in the superconduct-
ing state above few hundred meV. A similar conclusion fol-
lows from recent measurements by Homeset al.12 The dis-
crepancy between the experimental results is at least partly
related to the difficulty of extrapolating the normal state con-
ductivity to T=0. Santander-Syroet al.10 argued their con-
clusions depend on the extrapolation procedure.10

Our results are consistent with Refs. 11 and 12. We found
in our calculations that at optimal doping, the full optical
integral dIsVd= IscsVd− InsVd is positive at smallV, but
changes sign atV,300–500 meV, and is negative atV
ù1 eV. In other words, the actual value of the optical inte-
gral IsV,1 eVd in the superconducting state atT!Tc is
smaller thanIsVd, extrapolated from the normal state.

Our reasoning is based on the fact that in one-band model,
the f-sum rule must be satisfied, i.e.,IsV=`d=0. Hence,
dIsVd=−"2eV

`dssvddv. Suppose thatV, v̄, i.e., it is at the
crossover between Eliashberg and anti-Eliashberg regimes.
The integral overv.V in the optical integral is over the
range where Eq.(4) is valid. Since at high frequencies,
Imf1/Zsvdg<−Im Ssvd /v is negative, the high-frequency
conductivityssvd,1/v2tsvd~S9svd is larger in the super-
conducting state than in the normal state,extrapolated to T
=0. Hence,dssvd is positive, the integral of it is also posi-
tive, and hencedIsV, v̄d is negative. Obviously,IsVd will
remain negative for allV within the range of anti-Eliashberg
approximation.

This reasoning implies that the optical integral should
change sign already within Eliashberg approximation. To
verify this, we computed the optical integraldIsVd at V
øv̄ within Eliashberg theory.13,14 We present the results in
Fig. 2. We indeed obtained thatdIsVd changes sign at some
frequencyVøv̄, and is negative at higher frequencies. The
frequency wheredIsVd changes sign increases with under-
doping, in agreement with Ref. 10(see caption of Fig. 2), but
theoretically it still remainsOsv̄d even in strongly under-
doped materials.14 Note that this does not contradict the idea
that that superconductivity is driven by the decrease of the
kinetic energy,15 as within the Eliashberg approach, the de-
crease of the kinetic energy also comes from frequencies
,v̄.16

Our results therefore indicate that atT=0, the full optical
integral changes sign already at frequencies for which
Eliashberg approximation is valid, and then gradually de-
creases with increasingV. We remind in this regard that at
weak coupling, the optical integraldIsVd changes the sign at
Vø2D and is negative at larger frequencies. Our results in-
dicate that the behavior ofdIsVd does not change drastically
between weak and strong couplings—the frequency where
dIsVd changes sign increases with coupling strength, but still
remains smaller than the fermionic bandwidth. This behavior
is similar to that in a dirty BCS superconductor.17 There,
dIsVd changes sign below 2D in the clean limit, and atVt
<0.66 in the dirty limit. At larger frequencies,dIsVd is nega-
tive and gradually decreases asV increases.

The accuracy of our numerical Eliashberg calculations is
not sufficient to compare the contributions todIsVd from
Eliashberg and anti-Eliashberg regimes. As a rough estimate,
we computed anti-Eliashbereg contribution todIsVd by sub-
stituting Eqs.(2) and(4) into the Kubo formula. We obtained
dIsVd<s2–4d310−3seVd2 for V,1 eV. Assuming that the
(negative) Eliashberg contribution is of the same order, we
obtain udI u ,10−3seVd2 for V,1 eV, in agreement with
Refs. 9 and 10.

We now describe the calculation of the self-energy, Eq.
(4), in some detail. We assume that the fermionic self-energy
predominantly comes from the fermion-fermion interaction
in the spin channel and can be viewed as being mediated by
spin collective modes with momenta nearsp ,pd. The imagi-
nary part of the fermionic self-energy is given by

S9sk,vd =
3

8p3 E g̃2x9sq,VdG9sk + q,v + Vd

3Stanh
v − V

2T
+ coth

V

2T
DdVd2q, s5d

whereg̃ is the fully renormalized vertex,xsq ,Vd is the full
dynamical propagator of the collective mode, andGsk
+q ,v+Vd is the full fermionic Green’s function.

In the Eliashberg approximation, vertex corrections can
be neglected(i.e., g̃=g), andGsk +q ,v+Vd can be approxi-
mated by free-fermion propagator. The reasoning is that low-
energy spin fluctuations are overdamped in the normal state
and are slow modes compared to electrons. Hence, an effec-
tive Migdal theorem is valid.6 By the same reason, the mo-
mentum integration in Eq.(5) can be factorized—the inte-
gration transverse to the Fermi surface involves only fast
fermions, while the integration along the Fermi surface is
over slow bosonic momenta. Within this computational pro-
cedure, one finds thatS9 jumps atD+vres that is the key
element of the peak-dip-hump behavior.1,6

This approximation is, however, valid only as long as ex-
ternal fermionic frequencyv is smaller than a typical fre-
quency at which the momentum integral ofdx9sVd con-
verges.

At strong coupling, this scale is the effective bosonic
bandwidth v̄ defined such that in the normal state,Ssvd
becomes less thanv at v.v̄, i.e., spin-fluctuation scattering
becomes ineffective. When spin-fermion couplingg is less
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than the fermionic bandwidthW, v̄,0.35ḡ, in the opposite
limit v̄,W2/g,J.6 At larger frequencies,v.v̄, G9sk
+q ,v+Vd< ImsvZvd−1 at k<kF, and it can be taken out of
the integral. To the same accuracy, theT-dependent factor in
(5) is approximated by 1+cothsV /2Td. We then obtain

ImfdSsvdg = − 3g2 ImF 1

Zvv
G E dVd2q

8p3 o
i

dSisq,VdFsqd,

s6d

where Fsqd subject to FsQd=1 decreases atuQ−q u
=OsuQ u d and reflects the fact that the spin-fermion model is
only valid for bosonic momenta nearsp ,pd. As the Kramers-
Kronig transform of(6) is infrared convergent, the full self-
energy is given by(4).

We see therefore that at high frequenciesv@v̄, the cor-
rect computational procedure fordSsvd is opposite to the
Eliashberg approximation—instead of factorizing the mo-
mentum integral, one can neglect the momentum dependence
in the Green’s function and perform the full 2D momentum
integration over the bosonic momenta. We explicitly verified
that in this anti-Eliashberg approximation, vertex corrections
are again small, this time inv̄ /v, such thatg̃=g in Eq. (5).

Obviously, there should be a crossover between Eliash-
berg and anti-Eliashberg approximations as frequency in-
creases. To understand where it is located, we evaluated
dS9svd explicitly, using the normal and superconducting
forms of the dynamical spin susceptibility obtained earlier,6

and compared the full result with the two approximate forms.

The results are presented in Fig. 3. We see that forvøv̄,
Eliashberg approximation is much closer to the full result.
However, for v. s1–2dv̄<250–500 meV the Eliashberg
approximation is well off, while the anti-Eliashberg approxi-
mation is rather close to the full expression. This justifies our
use of Eq.(5) for optical properties above 500 meV. Indeed,
using the one-band model at these energies we assume that
there is a frequency range abovev̄, where anti-Eliashberg
approximation is valid, but interband transitions still can be
neglected. The applicability of this approximation has to be
verified only by comparing the results of one-band analysis
with the data, as we did.

To summarize, in this paper we considered the
superconductivity-induced blue shift of the plasma frequency
and the change of the optical integral. We argued that both
can be explained within the magnetic scenario for the cu-
prates. We found thatdvpl and the differential optical inte-
gral dIsVd scale with the change of the integrated magnetic
spectral weightdSsq ,Vd. The relative magnitudes ofdvpl

and dIsVd are small,,10−3, as the integrateddSsq ,Vd ac-
counts for only a small fraction of the total spectral weight.
We found thatdvpl is positive, and thatdIsVd changes sign
below 0.5 eV and is negative at larger frequencies.
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FIG. 3. Left panel: the difference in the elec-
tronic self-energy between normal and supercon-
ducting states calculated explicitly and using
Eliashberg and anti-Eliashberg approximations.
The frequency is measured in units ofv̄
,0.35g,250 meV. Clearly, the anti-Eliashberg
approximation is much better at large frequen-
cies. Right panel: the low-frequency region,
where the Eliashberg approximation is valid.
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