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different pairing symmetries when charge and spin fluctuations coexist
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In order to explore how superconductivity arises when charge fluctuations and spin fluctuations coexist, we
have obtained a phase diagram against the off-site repsimmd band fillingn for the extended, repulsive
Hubbard model on the square lattice with the fluctuation exchange approximation. We have found the existence
of (i) a transition between,, and d,>_,2 pairing symmetries(ii) f-pairing in between thel._,» and CDW
phases for intermediate 05h<< 1.0 and largé/, and(iii ) for anisotropic cases the pairing symmetry changing,
in agreement with a previously proposed “generic phase diagrand~aé—s whenV (hence the charge
fluctuation$ are increased. All these are consequences of the structure in the charge and spin susceptibilities,
which have peaks habitating a@dmmon or segregategubsitions ink space.
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[. INTRODUCTION become more intense as we increase the range of the inter-
) _ ) ) action. The problem becomes especially intriguing when
_ Itis gradually becoming clearer that, while spin fluctua- charge and spin fluctuations coexist, since they may induce
tions are usually considered for electron mechanisms ofyantum phase transitions among different pairing symme-
high-Tc superconductivity, charge fluctuations may possiblyyries.
play essential roles in some of the unconventional supercon- This is exactly our motivation here to study the effect of
ductors. Among these are organic metals suctf-8BEDT  strong charge fluctuations by adopting the extended Hubbard
-TTF),X (Ref. 1 or (BEDT-TTF)3Cl,2H,0 (Ref. 2 that ex-  model, as a simplest one in which we can control the rela-
hibit superconductivity sitting adjacent to the charge densititive magnitude of the charge fluctuation by varying the
wave(CDW) in the phase diagram. This suggests that chargeff-site Coulomb repulsio. The extended Hubbard model
fluctuations can mediate pairing as well, just as the spinhas been studied, primarily for specific charge densities
fluctuation-mediated pairiffigcan appear adjacent to the spin n, e.g., half-filling or quarter filling, by means of quantum
density wave(SDW) phase as in the cuprates and some ofvionte Carlo method, weak coupling theor§, mean-field
the organic superconductors like(BEDT-TTF),X. approximation'>!! second-order perturbatidd, random
Studies for the pairing mediated by charge fluctuationgphase approximatioh, fluctuation exchange (FLEX)
have been rather scant. Scalap@t@l. have shown, with the approximation® slave-boson techniqué,bosonization and
random phase approximation, titht_,» pairing gives way to  renormalization group>® However, the phase diagram of
dy, in a three-dimensional cubic lattice when charge fluctuathe two-dimensional extended Hubbard model against n and
tions become large with the introduction of the off-site V has yet to be obtained.
interaction? However, systematic studies are yet to come for Here we have determined the symmetry of the dominant
the charge fluctuations, in contrast to the spin-fluctuation mepairing in theV-n space for the extended Hubbard model by
diated superconductivity for which favorable situations forfocusing on the case of isotropic or anisotropic square lattice,
its occurrence has been extensively discus$ed. since many of unconventional superconductors are two-
There is in fact one proposal in the context of the spin-dimensional(2D) or quasi-one-dimension&lD). We adopt
triplet superconductivity in a quasi-one-dimensiofidD) or-  the FLEX developed by Bickerst al,'’-?Owhich is a renor-
ganic metal TMTSF),PF;: Three of the present authors have malized perturbation scheme to study pairing instabilities
proposed a “generic phase diagram” in which the dominanihen exchange of spin and charge fluctuations are consid-
pairing symmetry changes ds- f — s as the charge fluctua- ered as dominant diagrams. Although this is an approxima-
tion becomes strongérThe physical background is as fol- tion, we can explore the tendencies for pairing when the
lows: triplet pairing is very hard to be realized to start with, system parameters are varied.
for the reasons identified in Ref. 6, where the primary one is  We find that(i) there exists a phase transition betweigpn
the strength of the pairing interaction for triplets being onlyandd,z_,> pairing symmetriesii) triplet f-pairing appears in
1/3 of that for singlets. The situation can be reverted wherbetween thed,..,» and CDW phases for intermediate
charge fluctuations are dominant as discussed in Kuebki 0.5<n<1.0 and largeV, and(iii) for anisotropic cases the
al.,” but the charge fluctuation was treated phenomenologipairing symmetry changes, in agreement with the generic
cally there, so a microscopic study is highly desirable.phase diagramasd— f—swhenV (hence the charge fluc-
Namely, while spin fluctuations dominate over charge fluc-tuationg are increased. Origin of all these has been identified
tuations when the electron-electron interaction is shortas the structure in the charge and spin susceptibilities, which
ranged(as in the Hubbard modglcharge fluctuations should can have peaks habitating at segregated positiokspace.
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t x for triplet pairing. HereAr (=0, X, +Y) is null or nearest-
y Vy neighbor vectors,

X5p=Y/(l +Vm¥):

Xch= X/ (1 +Vgx)

—T T T T— are the spin and charge susceptibilities, respectively, where
is the irreducible susceptibility,

FIG. 1. A tetragonal lattice with hopping integrgl along the — A _I ik (AT—Ar )~ (7 ,
x-axis andt, along they, along with the nearest-neighbor Coulomb X(G;Ar;ArY) = NE, € Gk +a)GK), (5
repulsionV, along thex-axis andV, along they. k
andVy4(V,) is the coupling between densignagnetig fluc-
Il. FORMULATION tuations,
Let us start with the extended Hubbard Hamiltonian, Va(d; Ar;Ar')
U +4[V, codqy) +V,codqy)], Ar=Ar"'=0,
nn nn
1 = -V, Ar=Ar'= =X
H:—Zztijcitrcj(r"‘uz nmniﬁ—E Zvijnianj(r’a h , .
i o i 2i,j oo’ —Vy, Ar=Ar"=zy
(1) (6)
in the standard notation on a tetragonal lattice depicted in -U, Ar=Ar'=0,
Fig. 1. For the(isotropio square lattice the unit of energy is V(0 Ar;Ar)=y=V,, Ar=Ar'=£X (7)
f_kin to be the nearest-neighlipr 1.0, and lattice constant -V, Ar=Ar'= %9,
To determine the dominant gap function, we solve Eliashwhere q=(q,€,) with €,=2n#T being the Matsubara fre-
berg’s equation with the FLEX approximation, guencies for bosons. We have found thatdteependence of

V,, and V4 does not in fact affecl’s and I'; significantly.
T Accordingly the peak position of.y, is almost the same as
Ap(K) = —— >, T(kK)G(K)G(- k') p(K'), 2) that for VyxcnV4 term in the expression fdr.
N K’ V4(0;Ar;Ar’), Vi(0;Ar;Ar’), appearing in the last lines
in Egs.(3) and(4), respectively, are constant terms involving
where ¢ is the gap functionG is Green’s function, anél is Y andV,

the pairing interaction wittk = (k, w,). The eigenvalue\, a ( 2U, Ar=Ar’=0,
measure of the pairing, becomes unityTatTc. For the cal- v Ar=Ar’ = +%
culation we take arN=32X 32 lattice, the temperaturé X B T
=0.02, and the Matsubara frequency for fermion®2N; Vo(q;Ar;Ar') =9 Vye™, Ar=—-Ar'= £X (8)
- 1) 7T< w,<(2N.— 1)@ T with N,=1024. Vy,  Ar=Ar'= +y
Esirgenet all3?122have extended the FLEX method to v Ziq Ar=—Ar' = +
general lattice Hamiltonians including the extended Hubbard (VY& Ar=-Aar =2y
model. Following them we introduce the pairing interaction, R
Vi, Ar=Ar’'= £X
_ +ig - _ ’— S
Pkk)= 3 {SVinxagVindk= K 3 Ar s Ar)glearst ar’) V(qarary =] 8T ATTTATE R )
Ar,Ar’ Vy, Ar=Ar'= =y
x| — ! — Y
— 3 VaxenVal(k—k'; Ar; Ar/)glkarar") TVyE, Ar=-Art= sy,
1\, (M A Ar i(k,Ar,_k,,Ar)} When the off-site interactio¥ is introduced all the ver-
+2Vs(0:Ar;Ar')e ' () tices(V,, Vg Vs Vi) as well as the susceptibilities become
(Z+1) X (Z+1) matrices for the lattice coordination number
for singlet pairing, and Z(=4 for the square lattige
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FIG. 2. Phase diagram againétandn with U/t=4 for the 2D

extended Hubbard model. FIG. 3. The maximum eigenvalug, of Eliashberg’s equation

for the spin-singlet(solid line) and triplet (dotted channel as a
function of V for n=0.7 with the dominant orbital symmetry indi-
cated. The CDW phase is identified from the divergence in the
charge susceptibility.

Ill. RESULT

A. Square lattice

Let us first display the obtained phase diagram against
and the band fillingn for the square lattice in Fig. 2. The (SDW) ordering, they are as indicated by the peék®und
phase diagram is drawn by assuming that the pairing instd=7, ) in the charge(spin) susceptibilities, which are dis-
bility that has the largest in Eliashberg’s equation, calcu- played below.
lated atT=0.02 here, has the highest transition temperature, A salient feature for superconducting phases in Fig. 2 is
because, with the present complexity of the model, it is dif-that a spin-triplef-phase appears just below the CDW phase
ficult to extend the FLEX calculation to lower temperatures.for an intermediate region afi and V. The behavior ofA
While the value ofx for T=0.02 is still much smaller than whenV is varied with a fixech=0.7 is depicted in Fig. 3!
unity (see below, it is expected that the order in which Figure 4 shows the gap function kspace for thef-wave,
the values of\ for various phases appear do not change fowhich should be called, more precisely in the group the-
T—0. The density waveCDW or SDW) are identified as oretical representation. This has only one nodal line passing
the region where the respectiyeharge or spipsusceptibil- I' point, but may be calledf in that the gap function
ity diverges(at T>0.02 in the present calculatipiThe area  (~sin(k,) +sin(k,) + consfsin(2k,) +sin(2k )]) changes sign
of the CDW and SDW phases may expand at lower temperaas +—+—+— along the Fermi surfac®.
tures, but the phase diagram is not expected to change sig- _ o
nificantly. B. Physical orlglq: Common vs segregated peaks

Figure 2 is thus obtained, with the on-site Coulomb repul- In Xsp and xen
sion fixed atU=4 hereafter, and we immediately note that We can keep track of the origin of the spin-triplet insta-
CDW, SDW, singlet superconductivigsC), and triplet SC  bility by looking at the structurépeak intensities and peak
all appear on théV,n) plane. The phase diagram is reminis- positions ink space of the charge(x.,) and spin(ys, sus-
cent of that for one-dimensional extended Hubbard modeteptibilities (static with Matsubara frequency¥@ Fig. 5.
obtained with the Tomonaga-Luttinger thedfyHowever, an
essential difference is that or V has to be negativéattrac- die—y2
tive) to realize SC phases in one dimension, while we are . _ Y
talking about the case when bothandV are repulsive in
2D. Another comment is that in our calculation we cannot h d
treat the Mott insulator, which should appear ratclose
enough to the half-fillingn=1). ky o

Before elaborating on the superconducting phases, let u:
make a remark on density waves. Intuitively, CDW should
appear for strong enough, while we should have SDW for
the band filling close enough to the half-filling. The bound- -7k
ary between CDW and SDW for— 1 is seen in the present kox ]g
result to fall upon a line representing=1, which agrees &
with a mean-field picture: In the CDW state where electrons  FiG. 4. Thef-wave irreducible representatiofi;) gap function
doubly-occupy every other sites, each electron feels on avep k spaceright pane) for n=0.7 andv=1.3, as compared with the
age an on-site energy/2 per electron, while in the SDW  d,,_2 (left) for n=0.7,V=0.5. Nodal lines are represented by dotted
state each electron, singly-occupied, feels an off-site repulines, while the Fermi surface by the solid curve on which the sign
sionV/2xZ=2V, so the SDW/CDW boundary corresponds of the gap function is indicated. The arrow indicates a typical scat-
to V=U/48 As for the wave vectors describing the CDW tering process mediated by spin fluctuations.

kyO
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FIG. 5. (Color) (Top) The maximum eigenvalue of the charge
(solid curve and spin(dotted susceptibilities as a function &f for
n=0.7. (Bottom) Color-coded plots of the chargéeft) and spin
(right) susceptibilities in thek,,k,) space forv=1.3 andn=0.7.
The susceptibilitie§~ (energy™] in units in whicht=1.

The peak intensity of., is seen to exceed that gf,asV is
increased. If we turn to the structure krspace,x, and xsp,
have similar peak positions. If we go back to E¢3). and
(4), the spin-fluctuation mediated pairing interactitime first
line on the right-hand sideand the charge-fluctuation medi-
ated one(the secongact destructivelywith opposite signs
for the two terms in Eq(3)) for singlet pairing, whereas they
act constructivelyfor triplet pairing(same signs in Eq4)).
So we can expect the realization of triplet pairiiigy| > [T'y)
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FIG. 7. The Fermi surface fan=0.6, V=1.6 with d,, pairing
(right), and forn=0.7,V=1.3 with thef pairing (left). The black
(gray) arrows indicate typical scattering processes mediated by
charge(spin) fluctuations.

does, but the peak positions gf;, aredistinctfrom those of
Xsp Namely, whilex., has peaks at four points arou,
=(xm,+m), xsp has peaks that are shifted towaf@,
=(+,0) and (0, +7). Now, as a basic property of Eliash-
berg’'s Eqg.(2) with Eqg. (3) plugged, to realize a larg&
requires thati) the gap functionp must change sigtacross
the typical pair-scattering momentum transfgy,) to turn
the originally repulsive spin-fluctuation-mediated interaction
(i.e., theVy,xspVin term with a positive coefficient, 3/2 in Eq.
(3)) into an effective attraction in the gap equation, wiiig¢
¢ must not change sigacross the pair-scattering momen-
tum transferQ.,) to make the originally attractive charge-
fluctuation-mediated interactiotthe Vgx.nVy term with a
negative coefficient, —1A2remain attractive.

We can see in Fig. 7 thal,, pairing does satisfy the
above condition. Fon closer to half-filling, by contrastys,
becomes dominant witQg,= (7, ) (an arrow in Fig. 4,

for large enough charge-fluctuation mediated pairing interacso d,2-y2 is favored as usual. So the picture obtained here is

tions (i.e., for large enoughV) provided x., and xs, have
common peak positions.

Physically, xsp=x/(1-Uyx) while xqp=x/(1+Uy) when
V=0, so the nesting of the Fermi surfagghich dominates
) determines the peaks ®fp (butnotthose ofy.,). WhenV
is switched on,ys,=x/(1+Vimy) and xcn=x/(1+Vgx) may

that the pairing symmetry can change, even within the spin-
singlet channel, when common peaks betwggnand x.,
change intosegregatedoeaks(as n and/orV are changed
This is contrasted with the above case of trigletor which

a transition between singlet and tripled«< f)) can occur
with the common peaks betwegg, and x., throughout. For

have common peak positions, which is what is happeningt=0.5, Merinoet al and Kobayashet al?® have recently

here.

How the situation is altered for smaller for which d,,
pairing turns out to be dominant? In Fig. 6, which shows
and xs, for n=0.6 withV=1.6, ., has a larger peak thap,

Xch Xsp

m.W
®
1
=
11
2n

0 2 0
FIG. 6. (Color) A plot similar to Fig. 5, forn=0.6 with
V=1.6.

kx kx

derived similar results using the slave-boson technique and
RPA, respectively, which are consistent with the present re-
sult.

C. Quasi-one-dimensional lattice

Let us finally discuss the anisotropiguasi-1D case.
While the original proposal made in Ref. 7 for the triplet
“f-wave” pairing in(TMTSF),X (where the symmetry refers
to the warped Fermi surface; see Fig. 8 belaw for a
quarter-filled case, the competition between the charge and
spin fluctuations should become more stringent near half-
filling, where U introduces R spin fluctuations whilé/ en-
hances R- charge fluctuations. Thus the triplet pairing
should dominate over singlet beyond some value o¥.
Note that the triplet gap function has to beather thanp,
since, withI'(Q) negative(attractive, the gap has to have
the same sign across the nesting veQolWhenV becomes
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1=0.02, 1x=1.0, y=0.2, n=0.9, U=4.0 although this assumption does not qualitatively alter the re-
sult. Figure 8 plots\ as a function ofv, for n=0.9, along

08 CDW with the forms ofd, f, ands gap functions. We can see that
d Fls the dominant pairing changes ds- f—s with V, in an ex-

e act agreement with Ref. 7.

0.4 .
singlet IV. CONCLUSION

0.2 ﬁ\/

_____________ triplet . We have obtained the phase diagram for the 2D extended
05 — e 3 o Hubbard model with the FLEX approximation. We have
Vi found thatf-wave pairing is favored for intermediateand
largeV. In the more dilute regimén~ 0.5) the peak position
V=22 (f) Vx=2.4 (s) of xcn and xsp is separated, and,>_,2 pairing gives way to
- /"‘4 + + dy,- These are the consequences of how each pairing symme-
try can exploit charge and spin fluctuations, and we end up
/ _ with a picture that the pairing symmetry can change, even
within the spin-singlet channétl,>_ 2« d,,), when common
peaks betweens, and x., change into segregated pedks
-t + + n and/orV are changed which is contrasted with the case of
ng ke common peaks throughout with a transition tripletd. In
the anisotropio(quasi-one-dimensionatase, the dominant
FIG. 8. Result for a quasi-1D system with=1.0,t,=0.2 for ~ pairing gap function changes abk—f—s with V, which
n=0.9. (Top) A plot similar to Fig. 3.(Bottom) The dominant gap ~agrees with the phenomenological thebry.
function (with nodal lines represented by dotted linésr V,=1.0 In a broad context it should be interesting to examine how
(d wave), V,=2.2(f), andV4=2.4(s), along with the Fermi surface V (hence the charge fluctuation mediated interagtican
(solid curves on which an arrow represents the nesting vector.  dominate the pairing symmetry in unconventional supercon-
) _ . ductors, although the nature of the pairing may be sensitively
even largerI'(Q) turns negativeattractivg, so that the sin-  4ffected by the underlying band structure of each material.
glet s with no nodes on the Fermi surface will take over.

In order to show that this predic.tion is indeed rgalized, we ACKNOWLEDGMENTS
have performed a FLEX calculation on a quasi-1D lattice
with t,=1.0,t,=0.2. To represent the quasi-1D system we We would like to thank Masao Ogata for illuminating
have here assumed that the off-site repulsion only acts beliscussions. Numerical calculations were performed at the
tween nearest neighbors alorgthe conductive direction ~ supercomputer center, ISSP.
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