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In order to explore how superconductivity arises when charge fluctuations and spin fluctuations coexist, we
have obtained a phase diagram against the off-site repulsionV and band fillingn for the extended, repulsive
Hubbard model on the square lattice with the fluctuation exchange approximation. We have found the existence
of (i) a transition betweendxy and dx2−y2 pairing symmetries,(ii ) f-pairing in between thedx2−y2 and CDW
phases for intermediate 0.5,n,1.0 and largeV, and(iii ) for anisotropic cases the pairing symmetry changing,
in agreement with a previously proposed “generic phase diagram,” asd→ f →s when V (hence the charge
fluctuations) are increased. All these are consequences of the structure in the charge and spin susceptibilities,
which have peaks habitating atcommon or segregatedpositions ink space.

DOI: 10.1103/PhysRevB.70.094523 PACS number(s): 74.20.Mn

I. INTRODUCTION

It is gradually becoming clearer that, while spin fluctua-
tions are usually considered for electron mechanisms of
high-Tc superconductivity, charge fluctuations may possibly
play essential roles in some of the unconventional supercon-
ductors. Among these are organic metals such asu-sBEDT
-TTFd2X (Ref. 1) or sBEDT-TTFd3Cl22H2O (Ref. 2) that ex-
hibit superconductivity sitting adjacent to the charge density
wave(CDW) in the phase diagram. This suggests that charge
fluctuations can mediate pairing as well, just as the spin-
fluctuation-mediated pairing3 can appear adjacent to the spin
density wave(SDW) phase as in the cuprates and some of
the organic superconductors likek-sBEDT-TTFd2X.

Studies for the pairing mediated by charge fluctuations
have been rather scant. Scalapinoet al.have shown, with the
random phase approximation, thatdx2−y2 pairing gives way to
dxy in a three-dimensional cubic lattice when charge fluctua-
tions become large with the introduction of the off-site
interaction.4 However, systematic studies are yet to come for
the charge fluctuations, in contrast to the spin-fluctuation me-
diated superconductivity for which favorable situations for
its occurrence has been extensively discussed.5,6

There is in fact one proposal in the context of the spin-
triplet superconductivity in a quasi-one-dimensional(1D) or-
ganic metalsTMTSFd2PF6: Three of the present authors have
proposed a “generic phase diagram” in which the dominant
pairing symmetry changes asd→ f →s as the charge fluctua-
tion becomes stronger.7 The physical background is as fol-
lows: triplet pairing is very hard to be realized to start with,
for the reasons identified in Ref. 6, where the primary one is
the strength of the pairing interaction for triplets being only
1/3 of that for singlets. The situation can be reverted when
charge fluctuations are dominant as discussed in Kurokiet
al.,7 but the charge fluctuation was treated phenomenologi-
cally there, so a microscopic study is highly desirable.
Namely, while spin fluctuations dominate over charge fluc-
tuations when the electron-electron interaction is short-
ranged(as in the Hubbard model), charge fluctuations should

become more intense as we increase the range of the inter-
action. The problem becomes especially intriguing when
charge and spin fluctuations coexist, since they may induce
quantum phase transitions among different pairing symme-
tries.

This is exactly our motivation here to study the effect of
strong charge fluctuations by adopting the extended Hubbard
model, as a simplest one in which we can control the rela-
tive magnitude of the charge fluctuation by varying the
off-site Coulomb repulsionV. The extended Hubbard model
has been studied, primarily for specific charge densities
n, e.g., half-filling or quarter filling, by means of quantum
Monte Carlo method,8 weak coupling theory,9 mean-field
approximation,10,11 second-order perturbation,12 random
phase approximation,4 fluctuation exchange (FLEX)
approximation,13 slave-boson technique,14 bosonization and
renormalization group.15,16 However, the phase diagram of
the two-dimensional extended Hubbard model against n and
V has yet to be obtained.

Here we have determined the symmetry of the dominant
pairing in theV-n space for the extended Hubbard model by
focusing on the case of isotropic or anisotropic square lattice,
since many of unconventional superconductors are two-
dimensional(2D) or quasi-one-dimensional(1D). We adopt
the FLEX developed by Bickerset al.,17–20which is a renor-
malized perturbation scheme to study pairing instabilities
when exchange of spin and charge fluctuations are consid-
ered as dominant diagrams. Although this is an approxima-
tion, we can explore the tendencies for pairing when the
system parameters are varied.

We find that(i) there exists a phase transition betweendxy
anddx2−y2 pairing symmetries,(ii ) triplet f-pairing appears in
between thedx2−y2 and CDW phases for intermediate
0.5,n,1.0 and largeV, and (iii ) for anisotropic cases the
pairing symmetry changes, in agreement with the generic
phase diagram,7 asd→ f →s whenV (hence the charge fluc-
tuations) are increased. Origin of all these has been identified
as the structure in the charge and spin susceptibilities, which
can have peaks habitating at segregated positions ink space.
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II. FORMULATION

Let us start with the extended Hubbard Hamiltonian,
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i,j

nn

o
s

tijcis
† cjs + Uo

i

ni↑ni↓ +
1

2o
i,j

nn

o
ss8

Vijnisnjs8,

s1d

in the standard notation on a tetragonal lattice depicted in
Fig. 1. For the(isotropic) square lattice the unit of energy is
taken to be the nearest-neighbortij =1.0, and lattice constant
a=1.

To determine the dominant gap function, we solve Éliash-
berg’s equation with the FLEX approximation,

lfskd = −
T

N
o
k8

Gsk,k8dGsk8dGs− k8dfsk8d, s2d

wheref is the gap function,G is Green’s function, andG is
the pairing interaction withk ;sk,vnd. The eigenvaluel, a
measure of the pairing, becomes unity atT=TC. For the cal-
culation we take anN=32332 lattice, the temperatureT
=0.02, and the Matsubara frequency for fermions −s2Nc

−1dpTøvnø s2Nc−1dpT with Nc=1024.
Esirgenet al.13,21,22 have extended the FLEX method to

general lattice Hamiltonians including the extended Hubbard
model. Following them we introduce the pairing interaction,

Gssk,k8d = o
Dr ,Dr8

h 3
2fVmxspVmgsk − k8;Dr ;Dr 8deisk·Dr+k8·Dr8d

− 1
2fVdxchVdgsk − k8;Dr ;Dr 8deisk·Dr+k8·Dr8d

+ 1
2Vss0;Dr ;Dr 8deisk·Dr8−k8·Dr dj , s3d

for singlet pairing, and

Gtsk,k8d = o
Dr ,Dr8

h− 1
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− 1
2fVdxchVdgsk − k8;Dr ;Dr 8deisk·Dr+k8·Dr8d

+ 1
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for triplet pairing. HereDr s=0, ± x̂ , ± ŷd is null or nearest-
neighbor vectors,

xsp= x̄/s1 + Vmx̄d,

xch = x̄/s1 + Vdx̄d

are the spin and charge susceptibilities, respectively, wherex̄
is the irreducible susceptibility,

x̄sq;Dr ;Dr 8d = −
T

N
o
k8

eik8·sDr−Dr8dGsk8 + qdGsk8d, s5d

andVdsVmd is the coupling between density(magnetic) fluc-
tuations,

Vdsq;Dr ;Dr 8d

= 5U + 4fVx cossqxd + Vy cossqydg, Dr = Dr 8 = 0 ,

− Vx, Dr = Dr 8 = ± x̂

− Vy, Dr = Dr 8 = ± ŷ
6
s6d

Vmsq;Dr ;Dr 8d = 5− U, Dr = Dr 8 = 0,

− Vx, Dr = Dr 8 = ± x̂

− Vy, Dr = Dr 8 = ± ŷ,
6 s7d

where q;sq,end with en=2npT being the Matsubara fre-
quencies for bosons. We have found that theq dependence of
Vm and Vd does not in fact affectGs and Gt significantly.
Accordingly the peak position ofxch is almost the same as
that for VdxchVd term in the expression forG.

Vss0;Dr ;Dr 8d, Vts0;Dr ;Dr 8d, appearing in the last lines
in Eqs.(3) and(4), respectively, are constant terms involving
U andV,

Vssq;Dr ;Dr 8d =5
2U, Dr = Dr 8 = 0,

Vx, Dr = Dr 8 = ± x̂

Vxe
±iqx, Dr = − Dr 8 = ± x̂
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6 s8d

Vtsq;Dr ;Dr 8d =5
Vx, Dr = Dr 8 = ± x̂

− Vxe
±iqx, Dr = − Dr 8 = ± x̂

Vy, Dr = Dr 8 = ± ŷ

− Vye
±iqy, Dr = − Dr 8 = ± ŷ.

6 s9d

When the off-site interactionV is introduced all the ver-
tices (Vm, Vd, Vs, Vt) as well as the susceptibilities become
sZ+1d3 sZ+1d matrices for the lattice coordination number
Zs=4 for the square latticed.

FIG. 1. A tetragonal lattice with hopping integraltx along the
x-axis andty along they, along with the nearest-neighbor Coulomb
repulsionVx along thex-axis andVy along they.
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III. RESULT

A. Square lattice

Let us first display the obtained phase diagram againstV
and the band fillingn for the square lattice in Fig. 2. The
phase diagram is drawn by assuming that the pairing insta-
bility that has the largestl in Éliashberg’s equation, calcu-
lated atT=0.02 here, has the highest transition temperature,
because, with the present complexity of the model, it is dif-
ficult to extend the FLEX calculation to lower temperatures.
While the value ofl for T=0.02 is still much smaller than
unity (see below), it is expected that the order in which
the values ofl for various phases appear do not change for
T→0. The density waves(CDW or SDW) are identified as
the region where the respective(charge or spin) susceptibil-
ity diverges(at T.0.02 in the present calculation). The area
of the CDW and SDW phases may expand at lower tempera-
tures, but the phase diagram is not expected to change sig-
nificantly.

Figure 2 is thus obtained, with the on-site Coulomb repul-
sion fixed atU=4 hereafter, and we immediately note that
CDW, SDW, singlet superconductivity(SC), and triplet SC
all appear on thesV,nd plane. The phase diagram is reminis-
cent of that for one-dimensional extended Hubbard model
obtained with the Tomonaga-Luttinger theory.23 However, an
essential difference is thatU or V has to be negative(attrac-
tive) to realize SC phases in one dimension, while we are
talking about the case when bothU and V are repulsive in
2D. Another comment is that in our calculation we cannot
treat the Mott insulator, which should appear atn close
enough to the half-fillingsn=1d.

Before elaborating on the superconducting phases, let us
make a remark on density waves. Intuitively, CDW should
appear for strong enoughV, while we should have SDW for
the band filling close enough to the half-filling. The bound-
ary between CDW and SDW forn→1 is seen in the present
result to fall upon a line representingV=1, which agrees
with a mean-field picture: In the CDW state where electrons
doubly-occupy every other sites, each electron feels on aver-
age an on-site energyU /2 per electron, while in the SDW
state each electron, singly-occupied, feels an off-site repul-
sion V/23Z=2V, so the SDW/CDW boundary corresponds
to V=U /4.8 As for the wave vectors describing the CDW

(SDW) ordering, they are as indicated by the peaks(around
sp ,pd) in the charge(spin) susceptibilities, which are dis-
played below.

A salient feature for superconducting phases in Fig. 2 is
that a spin-tripletf-phase appears just below the CDW phase
for an intermediate region ofn and V. The behavior ofl
whenV is varied with a fixedn=0.7 is depicted in Fig. 3.24

Figure 4 shows the gap function ink space for thef-wave,
which should be called, more precisely,G5

− in the group the-
oretical representation. This has only one nodal line passing
G point, but may be calledf in that the gap function
s,sinskxd+sinskyd+constfsins2kxd+sins2kydgd changes sign
as121212 along the Fermi surface.25

B. Physical origin: Common vs segregated peaks
in xsp and xch

We can keep track of the origin of the spin-triplet insta-
bility by looking at the structure(peak intensities and peak
positions ink space) of the chargesxchd and spinsxspd sus-
ceptibilities (static with Matsubara frequency=0) in Fig. 5.

FIG. 2. Phase diagram againstV andn with U / t=4 for the 2D
extended Hubbard model.

FIG. 3. The maximum eigenvalue,l, of Éliashberg’s equation
for the spin-singlet(solid line) and triplet (dotted) channel as a
function of V for n=0.7 with the dominant orbital symmetry indi-
cated. The CDW phase is identified from the divergence in the
charge susceptibility.

FIG. 4. Thef-wave(irreducible representationG5
−) gap function

in k space(right panel) for n=0.7 andV=1.3, as compared with the
dx2−y2 (left) for n=0.7,V=0.5. Nodal lines are represented by dotted
lines, while the Fermi surface by the solid curve on which the sign
of the gap function is indicated. The arrow indicates a typical scat-
tering process mediated by spin fluctuations.
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The peak intensity ofxch is seen to exceed that ofxsp asV is
increased. If we turn to the structure ink space,xch andxsp
have similar peak positions. If we go back to Eqs.(3) and
(4), the spin-fluctuation mediated pairing interaction(the first
line on the right-hand side) and the charge-fluctuation medi-
ated one(the second) act destructively(with opposite signs
for the two terms in Eq.(3)) for singlet pairing, whereas they
act constructivelyfor triplet pairing (same signs in Eq.(4)).
So we can expect the realization of triplet pairingsuGtu. uGsud
for large enough charge-fluctuation mediated pairing interac-
tions (i.e., for large enoughV) provided xch and xsp have
common peak positions.

Physically, xsp= x̄ / s1−Ux̄d while xch= x̄ / s1+Ux̄d when
V=0, so the nesting of the Fermi surface(which dominates
x̄) determines the peaks ofxsp (but not those ofxch). WhenV
is switched on,xsp= x̄ / s1+Vmx̄d and xch= x̄ / s1+Vdx̄d may
have common peak positions, which is what is happening
here.

How the situation is altered for smallern for which dxy
pairing turns out to be dominant? In Fig. 6, which showsxch
andxsp for n=0.6 withV=1.6,xch has a larger peak thanxsp

does, but the peak positions ofxch aredistinct from those of
xsp. Namely, whilexch has peaks at four points aroundQch
.s±p , ±pd, xsp has peaks that are shifted towardQsp

=s±p ,0d and s0, ±pd. Now, as a basic property of Éliash-
berg’s Eq. (2) with Eq. (3) plugged, to realize a largel
requires that(i) the gap functionf must change sign(across
the typical pair-scattering momentum transferQsp) to turn
the originally repulsive spin-fluctuation-mediated interaction
(i.e., theVmxspVm term with a positive coefficient, 3 /2 in Eq.
(3)) into an effective attraction in the gap equation, while(ii )
f must not change sign(across the pair-scattering momen-
tum transferQch) to make the originally attractive charge-
fluctuation-mediated interaction(the VdxchVd term with a
negative coefficient, −1/2) remain attractive.

We can see in Fig. 7 thatdxy pairing does satisfy the
above condition. Forn closer to half-filling, by contrast,xsp
becomes dominant withQsp.s±p , ±pd (an arrow in Fig. 4),
so dx2−y2 is favored as usual. So the picture obtained here is
that the pairing symmetry can change, even within the spin-
singlet channel, when common peaks betweenxsp and xch
change intosegregatedpeaks(as n and/orV are changed).
This is contrasted with the above case of tripletf, for which
a transition between singlet and tripletsd↔ fd) can occur
with the common peaks betweenxsp andxch throughout. For
n=0.5, Merinoet al.14 and Kobayashiet al.26 have recently
derived similar results using the slave-boson technique and
RPA, respectively, which are consistent with the present re-
sult.

C. Quasi-one-dimensional lattice

Let us finally discuss the anisotropic(quasi-1D) case.
While the original proposal made in Ref. 7 for the triplet
“ f-wave” pairing insTMTSFd2X (where the symmetry refers
to the warped Fermi surface; see Fig. 8 below) is for a
quarter-filled case, the competition between the charge and
spin fluctuations should become more stringent near half-
filling, whereU introduces 2kF spin fluctuations whileV en-
hances 2kF charge fluctuations. Thus the triplet pairing
should dominate over singletd beyond some value ofV.
Note that the triplet gap function has to bef rather thanp,
since, withGtsQd negative(attractive), the gap has to have
the same sign across the nesting vectorQ. WhenV becomes

FIG. 5. (Color) (Top) The maximum eigenvalue of the charge
(solid curve) and spin(dotted) susceptibilities as a function ofV for
n=0.7. (Bottom) Color-coded plots of the charge(left) and spin
(right) susceptibilities in theskx,kyd space forV=1.3 andn=0.7.
The susceptibilitiesf,senergyd−1g in units in whicht=1.

FIG. 6. (Color) A plot similar to Fig. 5, for n=0.6 with
V=1.6.

FIG. 7. The Fermi surface forn=0.6, V=1.6 with dxy pairing
(right), and forn=0.7, V=1.3 with the f pairing (left). The black
(gray) arrows indicate typical scattering processes mediated by
charge(spin) fluctuations.
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even larger,GssQd turns negative(attractive), so that the sin-
glet s with no nodes on the Fermi surface will take over.

In order to show that this prediction is indeed realized, we
have performed a FLEX calculation on a quasi-1D lattice
with tx=1.0, ty=0.2. To represent the quasi-1D system we
have here assumed that the off-site repulsion only acts be-
tween nearest neighbors alongx (the conductive direction),

although this assumption does not qualitatively alter the re-
sult. Figure 8 plotsl as a function ofVx for n=0.9, along
with the forms ofd, f, ands gap functions. We can see that
the dominant pairing changes asd→ f →s with V, in an ex-
act agreement with Ref. 7.

IV. CONCLUSION

We have obtained the phase diagram for the 2D extended
Hubbard model with the FLEX approximation. We have
found thatf-wave pairing is favored for intermediaten and
largeV. In the more dilute regimesn,0.5d the peak position
of xch and xsp is separated, anddx2−y2 pairing gives way to
dxy. These are the consequences of how each pairing symme-
try can exploit charge and spin fluctuations, and we end up
with a picture that the pairing symmetry can change, even
within the spin-singlet channelsdx2−y2↔dxyd, when common
peaks betweenxsp andxch change into segregated peaks(as
n and/orV are changed), which is contrasted with the case of
common peaks throughout with a transition tripletf ↔d. In
the anisotropic(quasi-one-dimensional) case, the dominant
pairing gap function changes asd→ f →s with V, which
agrees with the phenomenological theory.7

In a broad context it should be interesting to examine how
V (hence the charge fluctuation mediated interaction) can
dominate the pairing symmetry in unconventional supercon-
ductors, although the nature of the pairing may be sensitively
affected by the underlying band structure of each material.
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