PHYSICAL REVIEW B 70, 094510(2004)

Renormalization of the electron-phonon coupling in the one-band Hubbard model
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We investigate the effect of electronic correlations on the coupling of electrons to Holstein phonons in the
one-band Hubbard model. We calculate the static electron-phonon vertex within the linear response of
Kotliar-Ruckenstein slave bosons in the paramagnetic saddle-point approximation. Within this approach the
on-site Coulomb interactiot strongly suppresses the coupling to Holstein phonons at low temperatures.
Moreover, the vertex function doemt show particularly strong forward scattering. Going to larger tempera-
tureskT~t we find that after an initial decrease with, the electron-phonon coupling starts itecrease
with U, confirming a recent result of Cerruti, Cappelluti, and Pietronero. We show that this behavior is
related to an unusual reentrant behavior from a phase separated to a paramagnetic sta¢éerepsimgthe

temperature.
DOI: 10.1103/PhysRevB.70.094510 PACS nuni®er74.25.Kc, 71.10.Fd, 74.72h
I. INTRODUCTION Fermi surface. The second topic to be addressed is the

The relevance of phonons for high-temperature supercorinﬂuence of strong electron@c correlations on the above
ductivity has been debated since the discovery of the fiigh- “Pare” electron-phonon coupling and whether they enhance
cuprates. Superconductivity-induced changes in phonon frel suppress the bare couplings. Recent quantum Monte Carlo
quencies which were observed in Rarhaand inelastic simulations of the Hubbard-Holstein model suggest that the
neutror} scattering indicated dimensionless electron-phonorglectron-phonon coupling shows forward scattering and no
coupling strengths of the order of 0 They thus pointed to  substantial suppression at largeand small doping$? simi-

a rather weak electron-phonon interaction in the cupratedar as in the 1N expansion for the¢-J model? On the other
The rather large isotope effect off, in underdoped hand, it has been pointed éditthat at small dopings the
superconductor, on the other hand, showed that the Kotliar-Ruckenstein (KR) slave-boson approath might
electron-phonon interaction cannot be neglected in a realistigield results quite different from the I expansion. Taking
theory for highT, superconductors. Recently, strong correlation effects into account by means of exact diagonal-
renormalization effects of the electrons near the Fermization it has also been shown that the softening of the half-
surface, observed in angle-resolved photoemission spectrogreathing phonon mode due to doping can be understood
copy (ARPES in several cuprates, have been at leaswithin the t-J model’® Nevertheless, the basic question
partially ascribed to phonor$ In agreement with this, whether electronic correlations enhance or suppress bare
ARPES measurements in underdoped ,l8r,CuQ, electron-phonon couplings has not yet been answered in a
revealed fine structure in the electron self-energy whictsatisfactory way. Below we study the influence of strong
has been associated with phonéndery spectacular are the electronic correlations on the electron-phonon coupling us-
recent discoveries of large oxygen isotope effects in the ining the KR approach. The quantity of interest is the static
plane magnetic field penetration depth in several cuptateyertex function” which acts as a momentum-dependent,
and in the optical conductivity in YB&u;Og o2 These ef-  multiplicative renormalization factor for the bare electron-
fects clearly show that lattice properties may severely influfhonon coupling.

ence high¥, superconductivity. One should, however, also

note that the presence of these effects does not necessarily

imply that the high¥, superconductivity is caused by Il. METHOD

phonons. .

The theoretical assessment of the role played by phonons we can|der the one-band Hubbard.model on a square
in the cuprates involves two traditionally different topics. "f‘tt'ce with nea.rest- and next-nearest-neighbor hopparyl
The first one concerns the magnitude of the bare electror-’ respectively:
phonon_coupling—_i.e., the coupling in_the_ abse_nce of H=-t> ¢ Cy—t’ S o Cio+UE non. (1)
electronic correlations. In some approximation this bare (v 1o Cine lo i
coupling may be identified with the couplings deduced
from band structure calculations in the local density approxifor the noninteracting system the dispersion relation is
mation. Existing calculatiofs$® show that the strength _ ,
of the bare ele?:tron-phonon coupling is weak or at gmost 2=~ 2 costky + codky)] - 4t” cogkycodky), (2
moderate and, in any case, too small to account for thand the density of states has a logarithmic Van Hove
observedT.'s within conventional Eliashberg theory or the singularity at 4'. For this model we want to study the
observed kink feature in the electronic dispersion near thanfluence of electronic correlations on the coupling of
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Ruckenstein choice
FIG. 1. Electron-phonon vertex within the linear response: The
thick solid lines are the dressed propagators of the Hubbard model 5= (e+d)p 9)
(1). The wavy line denotes the phonon—considered as a static ex- V1-p?-d?1-e2-p?
ternal field as inHejpy

The first term in Eq(7) is due to the explicit dependence of
G™! on V; the remaining terms are obtained by taking the
derivative of the self-energy with respect\foand reflect the
changes in the boson variables in response to the external
L perturbationI’ does not depend on frequencies because we
H _E MigVi- 3 assumed zero frequency and because the saddle-point
he self-energy is frequency-independent.

In the limit U — o our approach reduces to meth@b of
Ref. 13, and we have checked that for latggve recover the
results given in their Fig. 1.

electrons to an external fiel,. The bare coupling has the
form

Writing V,=gu;, H' describes also the interaction of electrons
and atomic displacementg with coupling constang. An
on-site coupling of this type has been found to be the stron
gest for a CuQ@ plane®®

The linear change in the one-particle Green’s function IIl. CHECKS

G(p) due toV, is o .
While it was shown that the slave-boson linear-response

5G(p) method gives very good results for the charge susceptibility
V=G(p)F(p,q)G(p+q), (4) (see, e.g., Fig. 1 of Ref. 16 for a comparison with exact
q diagonalizatiop, it is not cleara priori how well it will work

for the charge vertek'(p,q). As a check we have calculated
the static vertex for a small system using exact diagonaliza-
5GY(p) tion. The result for the scattering of an electron from a state
- (5) just below to a state just above the Fermi surface is shown in
oVq Fig. 2. Considering the fact that in exact diagonalization the
) ) number of particles is fixed, while the slave-boson calcula-
The components of the three-dimensional vectpr&nd  tions are performed in the grand canonical ensemble, the
q consist of a frequency and a two-dimensional momentumggreement between both methods is remarkably good. This
For the calculation of the vertex we use the slave-bosof,gicates that the slave-boson approach should work well at
technique of Kotliar and Ruckenstefifi.The basic idea ,qrq temperature.
of our approacH is to calculate linear responses by linear- 14 find out how well the slave bosons work at finite
izing the saddle-point equations for the perturbed SyStenﬂemperatures we compare to the quantum Monte Carlo
about the homogeneous saddle-point solution. We consid%QMC) calculations of Ref. 11. Figure 4 of that work shows
only paramagnetic squti_ons. Then the_re are three slavgne effective electron-phonon couplirgp,q), as defined
bosonse, p, and d describing empty, singly, and doubly j, heir Eq.(7), for the Hubbard model on an88 lattice
OCZCUp'Ed sites and two Lagrange parametal@_ and  \ith filing n=0.88, calculated at the lowest fermionic
A? enforcing consistency between slave fermions anQatsubara frequency, for an inverse temperature3ef2.
slave bosons. The linear response to a chargelike perturbgy, comparison, we show in Fig. 3 the results of our
tion of a given wave vector can be determined by Solvingg|aye-hoson calculations for the same modebatd and a
the 5X5 system of linear equations. With the notation of 5jighy different filling n=0.875. The electrons have been
Ref. 16 the static charge susceptibility for wave vedds 1t g the isoenergy line,=0 (noninteracting Fermi surface

with the charge- or electron-phonon vertex

I'(p,g) =

then given by for half-filing). As follows from Eq.(7), the vertex in
the slave-boson linear response is then independemt. of
¥(@) = ong :4(pﬁ +d5—d) (6) Thus both plots in Fig. 4 of Ref. 11 can be compared to the
Ny Ny 0V curves shown above, disregarding slight differences in the

fillings and in that the QMC calculations of Ref. 11 has
and the static electron-phonon vertex functigig. 1) foran  not been done ab=0. It is remarkable that the two quite
electron with incoming momentumand an external phonon different calculations yield very similar results. In particular,
of wave vectorg by we find that after an initial decrease the coupling for forward

094510-2



RENORMALIZATION OF THE ELECTRON-PHONON. PHYSICAL REVIEW B 70, 094510(2004)

Tr ! T T T T 0.35
\ 0.3
Lanczos —=—
L SBresp - 0.25
08 . | o
= o1
06 r 04k
T 0.05 2
s .
= 04 | ©n () (0.0) (x0) (n) ©.0) =0 P
. 0%
0.25
* 0.2
0.2 q
e o @ 0.15
©0.0) (w,0) g o
0 : I ) : * 0os |
0 2 4 6 8 10 12 o b
v -0.05
(%) (0.0) (n,0) (=70 ©.0) o) )

FIG. 2. Electron-phonon verteX(p,q) for the scattering of an
electron with p=(w/2,0) by a static phonon of wave vector FIG. 4. Electron-photon verteX'(q) for scattering electrons
q=(0,7/2) (see inset, where the points denote the allowecec-  on the Fermi surface. Calculations are for=0 (top) and
tors and the solid line the Fermi lindor t'=0 on a 4x4 lattice ~ t'=-0.3% (bottom), an inverse temperatuyg=500#, and different
with periodic boundary conditions and five up and five down elec-fillings n.
trons. The solid line gives the result of a Lanczedth fixed num-
ber of electrong the dashed line of a slave-boson calculation for poth replaced by the Fermi energy of the noninteracting sys-
the same lattice. The energy unittis tem. As a result, the vertex becomes independent of the
electron momenturp and in the following will therefore be
scattering(small q) starts toincreasefor U=8. This seems denoted simply byl'(q). Figure 4 shows the vertex for
to indicate that the slave-boson method also works well amomentum transfelg along high-symmetry lines in the
finite temperatures. Moreover, K@) naturally explains why  Brillouin zone for the Hubbard model at essentially zero
the QMC results for different electron momemtashown in  temperature. The effect of next-nearest-neighbor hopping is
Fig. 4 of Ref. 11, are so similar. illustrated by comparing calculations fot’=0 and
t"=-0.35. We find that in both cases the on-site Coulomb
interaction strongly reduces the electron-phonon coupling.
The reduction is monotonic with increasigand for large
After comparing the results of the slave-boson linear revalues eventually reaches §m.I'(q). This behavior is
sponse calculations to more accurate methods, whicAot completely unexpected as the charge response should be
are, however, limited to small systenjexact diagonaliza- strongly suppressed by an on-site Coulomb interaction. It is,
tion) or finite temperaturegquantum Monte Carlp we however, in striking difference to the behavior at higher
now turn to very large systems at very low temperaturestemperaturgFig. 3). Also, while I'(q) shows a broad peak
First we calculate the electron-phonon vertex for electronground q=0, we do not find a particularly pronounced
on the Fermi surface, where in E7) &, and g.q are forward scattering. In fact, the electron-phonon vertex is of-
ten strongest close tg=(,0). This is different from what

IV. ELECTRON-PHONON VERTEX

0.8 : : : : : : : was found within an 1IN expansion? The 1/N expansion

07 | el ) —e— ] relies on _the smallness_ of @N; i.e., it breaks down at

' Q=(nm) - small dopingsé=1-n. This can be seen from the fact that
__ 08 1 the charge-charge correlation function remains in leading
2 o5l order finite for 6— 0 though the exact correlation function
-~ vanishes in this limit. The Kotliar-Ruckenstein method,
wo04r on the other hand, reproduces this limit correctly in leading
T o3t order which makes it plausible that in this case the charge
I o2 | vertex is smaller than in the N expansion, especially at

' smaller dopings$® Which of the two methods is more reli-

01 f S able, in particular, near optimal doping, is not clear and can

0 - - . ; - L T probably only be judged by comparison with exact numerical

2 3 4 5 6 7 8 9 10 methods.
U

) ) V. EFFECTIVE COUPLING CONSTANTS
FIG. 3. Effective electron-phonon coupling faf=0 on an

8 8 lattice with filling n=0.875(28+28 electronsas calculated in To assess the importance of the electron-phonon coupling
slave-boson linear response at an inverse temperatyée=afand  for superconductivity we calculate the renormalization
for electron momenta on the ling,=0. factor
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FIG. 5. Renormalization constants, for t'=0 and different
symmetry channels and faY;, relevant for transport.

d dp’
f Tl i 9.(P)L(p,p" = P)gu(p”)
Fs|Vp| FS|Vp"

“ d dp’
Z f B S
FS |Vp| FS |Vp’|
for the symmetry channels
9sp) =1,

s (p) = cogpy) + cogpy),
9p,(P) = sin(py),
9a,2_ 2(P) = COYPpy) — cOgpy),

9a,,(P) = sin(pysin(py).

A, is equal to the ratiaa/)\(f), where\, and)\f) denote the
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FIG. 6. Electron-phonon vertdx(q) for scattering on the Fermi
surface. Calculations are faf=0, filling n=0.80, and an inverse
temperatureB=1.

tion has been checked by comparivgand A4, which only

for T=0 are equal. Error bars for the extrapolation are plot-
ted, but are usually smaller than the size of the plotting sym-
bols.

We find that forU=<10 the sswave couplings decrease
almost exponentially withJ. For the special case of the
Hubbard model with nearest-neighbor hopping oftly=0)
we haveAngs, sincegg is constant on the Fermi surface.
Moreover, A, = A, reflecting that there is no pronounced
forward scattering; only for larged doesA,, become some-
what smaller tham\s. But by then both coupling constants
are already very small. The higher-symmetry channels are
even weaker. Sincd’(q)=1 for U=0, they vanish for
U=0 by symmetry, then go through a maximum around
U=2, only to decay almost exponentially. We can thus
conclude that within Kotliar-Ruckenstein slave-boson
theory, restricting the system to be paramagnetic, the contri-
bution of Holstein phonons to superconductivity should
be very small.

VI. PHASE SEPARATION

We now come back to the surprising upturn of the
electron-phonon vertex fod =8 shown in Fig. 3 and also
found in the QMC calculations of Ref. 11. Calculatifigq)

dimensionless electron-phonon coupling constants in the ingt kT~t, we indeed find a drastically different behavior than
teracting and noninteracting cases, respectively. To judge th@r T, 0: Instead of monotonically decreasing with the
importance of forward scattering we also calculate the renoreoupling starts tancreaseand develops a very strong for-

malization factor for transport:

d dp’
f P2 b - p)v(p) - vip)?
B rs Vol Jrs Vo

tr—

d dp’
2| E2 [ 2P

v(p)[?
FS |Vp| FS |Vp’|

ward scattering peak. An example is shown in Fig. 6. The
calculated curves should be compared to the uppermost
panel on the right of Fig. 4. Looking at the charge response
function x(q) in the paramagnetic phase we find that this
behavior is a precursor of a phase-separation instability—a
divergence ofy(q=0). This has also been pointed out in Ref.
17. Calculating the phase diagram, we find a very peculiar

The results are shown in Fig. 5. Calculations were performedeentrant behavior around the phase separated region for fi-
for lattices of increasing size at decreasing temperatures, penite U as shown in Fig. 7: When cooling down the system
forming thep integrals over the whole Brillouin zone and phase separates, but at low enough temperature it reverts
weighting with a minus sign the derivative of the Fermi- back to the paramagnetic phase.

Dirac distribution +'(e,) = B8f(e,)[1-f(gp) ], which becomes

a ¢ function for T=0. Convergence of th& — 0 extrapola-

The occurrence of phase separation can be studied in a
simple way directly from the grand canonical potential for

094510-4



RENORMALIZATION OF THE ELECTRON-PHONON. PHYSICAL REVIEW B 70, 094510(2004)

KT/t
o

U/t

FIG. 7. Phase separation in the Hubbard model with0: the

! I I I |

lines enclose the region where the paramagnetic slave-boson _40.4 0.5 0.6 0.7 0.8 0.9 1.0
saddle-point solution is unstable against phase separation. For n

t’/t>0 the region of phase separation tends to increasé; for 0
it tends to decrease, in particular, for large doping.

FIG. 8. Dependence of the bare chemical potentiain n for
t'=0 andU=%. Phase separation occurs if the slopeudh) is

. _ . . . negative. Note that in the limity —»« the u(n) curve forn>1
the paramagnetic phase: The densitis then given by mi-  ¢gjiapses onto the entire positive vertical axisnatl so that the
nus the derivative of the grand canonical potential density,syal Maxwell construction can be applied.

with respect to the chemical potentjal

temperature$? it is not clear if the Hubbard model really

— *  dep(e) 10 shows such a reentrant behavior. Nevertheless, we find a
n= &P Pew 41’ (10 qualitatively similar behavior in the limitJ—« in the

gauge- invariant IM expansion(i.e., a theory without Bose
wherep(e) denotes the density of states of the noninteractinggondensation . o ]
system. We consider the limi — o, whereZ? is given by Phase separation at finife has also been proposed in
(1-n)/(1-n/2) and% by u+E/(1-n/2)2/2. HereE is the Refs. 18-20. Moreover, the good agreement with the quan-
average kinetic energy given by EQ.0) with an additional tum Monte Qarlp calculations of Ref. 11 suggests that our
factor € in the integrand. For fixed, Eq.(10) can be solved approach mlg'ht '”de‘?d capture the relevant _phy3|cs. It WOUI.d
first as a function ofg énd then O,f,u I.:igure 8 Shows Nnu- therefore be interesting to test the phase diagram shown in

n,1erical re_sultg foru(n) for the dispersion of Eq(2) with E'ff 7 ,\évﬁ]i_e?M;' tém%ﬂfggiﬁg)sn afg(rj, \?a?ugs_ leicge?e
t :O_at Six dn‘fer_ent tgmpera;ures. Fgr large temperaturQ?MC has little problems—should show clear signs of phase
w(n) is a monotonically increasing function and the system isseparation. Of course, these calculations should be done at
stable. FokT= 2t the slope ofu(n) becomes negative close =0 as the extrapolation from finite Matsubara frequencies
to half-filling, indicating phase separation. For a finite butmight be difficult close to an instability.
largeU, u increases steeply with increasingor n> 1. Tak-
ing the limit U— c this part of the curve collapses onto the VIl. CONCLUSIONS
entire positive vertical axis at=1. In the phase-separated In conclusion, we have studied the influence of strong
region three different densities belong then to one value oélectronic correlations on the electron-phonon interaction
the chemical potential. The usual Maxwell construction carfor the Hubbard-Holstein model using the Kotliar-
then be applied showing that one component in the phasdruckenstein slave-boson method. For high temperatures the
separated region is always half-filled. Calculating the slopéoundaries of the phase-separated state were determined in
of u(n) atn=1 we find the T-U plane for different dopings and the increase of the
static vertexI" near the boundaries was studied, confirming
. 2 > and extending recent results of Ref. 17. At low temperatures
"md_‘ ~(1=p2h), (11) and moderate or small dopings we found tlhatloes not
n-1dn B . - .
exhibit pronounced forward scattering behavior and that
where p, is the second moment of the density of statesreduces dramatically the electron-phonon coupling. It seems
which in the present case is equal t8.4hus, for the square that exact numerical calculations are necessary to judge the
lattice witht’=0 there is phase separation flof<2t and, reliability of the 1N and the Kotliar-Ruckenstein ap-
unlike the case of finiteJ, there is no reentrance of the proaches.
homogeneous phase. The numerically determined curves in
Figs. 7 and 8 are compatible with this exact value. ACKNOWLEDGMENTS
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