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We investigate the effect of electronic correlations on the coupling of electrons to Holstein phonons in the
one-band Hubbard model. We calculate the static electron-phonon vertex within the linear response of
Kotliar-Ruckenstein slave bosons in the paramagnetic saddle-point approximation. Within this approach the
on-site Coulomb interactionU strongly suppresses the coupling to Holstein phonons at low temperatures.
Moreover, the vertex function doesnot show particularly strong forward scattering. Going to larger tempera-
tures kT, t we find that after an initial decrease withU, the electron-phonon coupling starts toincrease
with U, confirming a recent result of Cerruti, Cappelluti, and Pietronero. We show that this behavior is
related to an unusual reentrant behavior from a phase separated to a paramagnetic state upondecreasingthe
temperature.
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I. INTRODUCTION

The relevance of phonons for high-temperature supercon-
ductivity has been debated since the discovery of the high-Tc
cuprates. Superconductivity-induced changes in phonon fre-
quencies which were observed in Raman1 and inelastic
neutron2 scattering indicated dimensionless electron-phonon
coupling strengths of the order of 10−2. They thus pointed to
a rather weak electron-phonon interaction in the cuprates.
The rather large isotope effect onTc in underdoped
superconductors,3 on the other hand, showed that the
electron-phonon interaction cannot be neglected in a realistic
theory for high-Tc superconductors. Recently, strong
renormalization effects of the electrons near the Fermi
surface, observed in angle-resolved photoemission spectros-
copy (ARPES) in several cuprates, have been at least
partially ascribed to phonons.4,5 In agreement with this,
ARPES measurements in underdoped La2−xSrxCuO4
revealed fine structure in the electron self-energy which
has been associated with phonons.6 Very spectacular are the
recent discoveries of large oxygen isotope effects in the in-
plane magnetic field penetration depth in several cuprates7

and in the optical conductivity in YBa2Cu3O6.9.
8 These ef-

fects clearly show that lattice properties may severely influ-
ence high-Tc superconductivity. One should, however, also
note that the presence of these effects does not necessarily
imply that the high-Tc superconductivity is caused by
phonons.

The theoretical assessment of the role played by phonons
in the cuprates involves two traditionally different topics.
The first one concerns the magnitude of the bare electron-
phonon coupling—i.e., the coupling in the absence of
electronic correlations. In some approximation this bare
coupling may be identified with the couplings deduced
from band structure calculations in the local density approxi-
mation. Existing calculations9,10 show that the strength
of the bare electron-phonon coupling is weak or at most
moderate and, in any case, too small to account for the
observedTc’s within conventional Eliashberg theory or the
observed kink feature in the electronic dispersion near the

Fermi surface. The second topic to be addressed is the
influence of strong electronic correlations on the above
“bare” electron-phonon coupling and whether they enhance
or suppress the bare couplings. Recent quantum Monte Carlo
simulations of the Hubbard-Holstein model suggest that the
electron-phonon coupling shows forward scattering and no
substantial suppression at largeU and small dopings,11 simi-
lar as in the 1/N expansion for thet-J model.12 On the other
hand, it has been pointed out13 that at small dopings the
Kotliar-Ruckenstein (KR) slave-boson approach14 might
yield results quite different from the 1/N expansion. Taking
correlation effects into account by means of exact diagonal-
ization it has also been shown that the softening of the half-
breathing phonon mode due to doping can be understood
within the t-J model.15 Nevertheless, the basic question
whether electronic correlations enhance or suppress bare
electron-phonon couplings has not yet been answered in a
satisfactory way. Below we study the influence of strong
electronic correlations on the electron-phonon coupling us-
ing the KR approach. The quantity of interest is the static
vertex functionG which acts as a momentum-dependent,
multiplicative renormalization factor for the bare electron-
phonon coupling.

II. METHOD

We consider the one-band Hubbard model on a square
lattice with nearest- and next-nearest-neighbor hoppingt and
t8, respectively:

H = − t o
ki,jl,s

cjs
† cis − t8 o

kki,jll,s
cjs

† cis + Uo
i

ni↑ni↓. s1d

For the noninteracting system the dispersion relation is

«k = − 2tfcosskxd + cosskydg − 4t8 cosskxdcosskyd, s2d

and the density of states has a logarithmic Van Hove
singularity at 4t8. For this model we want to study the
influence of electronic correlations on the coupling of
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electrons to an external fieldVi. The bare coupling has the
form

H8 = o
i,s

nisVi . s3d

Writing Vi =gui, H8 describes also the interaction of electrons
and atomic displacementsui with coupling constantg. An
on-site coupling of this type has been found to be the stron-
gest for a CuO2 plane.15

The linear change in the one-particle Green’s function
Gspd due toVq is

dGspd
dVq

= GspdGsp,qdGsp + qd, s4d

with the charge- or electron-phonon vertex

Gsp,qd = −
dG−1spd

dVq
. s5d

The components of the three-dimensional vectorsp and
q consist of a frequency and a two-dimensional momentum.
For the calculation of the vertex we use the slave-boson
technique of Kotliar and Ruckenstein.14 The basic idea
of our approach16 is to calculate linear responses by linear-
izing the saddle-point equations for the perturbed system
about the homogeneous saddle-point solution. We consider
only paramagnetic solutions. Then there are three slave-
bosonse, p, and d describing empty, singly, and doubly
occupied sites and two Lagrange parametersls1d and
ls2d enforcing consistency between slave fermions and
slave bosons. The linear response to a chargelike perturba-
tion of a given wave vector can be determined by solving
the 535 system of linear equations. With the notation of
Ref. 16 the static charge susceptibility for wave vectorq is
then given by

xsqd =
dnq

dVq
= 4Sp

dp

dVq
+ d

dd

dVq
D s6d

and the static electron-phonon vertex function(Fig. 1) for an
electron with incoming momentump and an external phonon
of wave vectorq by

Gsp,qd = 1 +
dls2d

dVq
+ zs«p + «p+qd

dz

dVq
, s7d

with

dz

dVq
=

]z

]e

de

dVq
+

]z

]p

dp

dVq
+

]z

]d

dd

dVq
, s8d

Vq the static external field, andz given by the Kotliar-
Ruckenstein choice

z=
se+ ddp

Î1 − p2 − d2Î1 − e2 − p2
. s9d

The first term in Eq.(7) is due to the explicit dependence of
G−1 on V; the remaining terms are obtained by taking the
derivative of the self-energy with respect toV and reflect the
changes in the boson variables in response to the external
perturbation.G does not depend on frequencies because we
assumed zero frequency inq and because the saddle-point
self-energy is frequency-independent.

In the limit U→` our approach reduces to method(II ) of
Ref. 13, and we have checked that for largeU we recover the
results given in their Fig. 1.

III. CHECKS

While it was shown that the slave-boson linear-response
method gives very good results for the charge susceptibility
(see, e.g., Fig. 1 of Ref. 16 for a comparison with exact
diagonalization), it is not cleara priori how well it will work
for the charge vertexGsp ,qd. As a check we have calculated
the static vertex for a small system using exact diagonaliza-
tion. The result for the scattering of an electron from a state
just below to a state just above the Fermi surface is shown in
Fig. 2. Considering the fact that in exact diagonalization the
number of particles is fixed, while the slave-boson calcula-
tions are performed in the grand canonical ensemble, the
agreement between both methods is remarkably good. This
indicates that the slave-boson approach should work well at
zero temperature.

To find out how well the slave bosons work at finite
temperatures we compare to the quantum Monte Carlo
(QMC) calculations of Ref. 11. Figure 4 of that work shows
the effective electron-phonon couplinggsp ,qd, as defined
in their Eq. (7), for the Hubbard model on an 838 lattice
with filling n=0.88, calculated at the lowest fermionic
Matsubara frequency, for an inverse temperature ofb=2.
For comparison, we show in Fig. 3 the results of our
slave-boson calculations for the same model atv=0 and a
slightly different filling n=0.875. The electrons have been
put to the isoenergy line«p=0 (noninteracting Fermi surface
for half-filling). As follows from Eq. (7), the vertex in
the slave-boson linear response is then independent ofp.
Thus both plots in Fig. 4 of Ref. 11 can be compared to the
curves shown above, disregarding slight differences in the
fillings and in that the QMC calculations of Ref. 11 has
not been done atv=0. It is remarkable that the two quite
different calculations yield very similar results. In particular,
we find that after an initial decrease the coupling for forward

FIG. 1. Electron-phonon vertex within the linear response: The
thick solid lines are the dressed propagators of the Hubbard model
(1). The wavy line denotes the phonon—considered as a static ex-
ternal field as inHel-ph.
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scattering(small q) starts toincreasefor U*8. This seems
to indicate that the slave-boson method also works well at
finite temperatures. Moreover, Eq.(7) naturally explains why
the QMC results for different electron momentap, shown in
Fig. 4 of Ref. 11, are so similar.

IV. ELECTRON-PHONON VERTEX

After comparing the results of the slave-boson linear re-
sponse calculations to more accurate methods, which
are, however, limited to small systems(exact diagonaliza-
tion) or finite temperatures(quantum Monte Carlo), we
now turn to very large systems at very low temperatures.
First we calculate the electron-phonon vertex for electrons
on the Fermi surface, where in Eq.(7) «p and «p+q are

both replaced by the Fermi energy of the noninteracting sys-
tem. As a result, the vertex becomes independent of the
electron momentump and in the following will therefore be
denoted simply byGsqd. Figure 4 shows the vertex for
momentum transferq along high-symmetry lines in the
Brillouin zone for the Hubbard model at essentially zero
temperature. The effect of next-nearest-neighbor hopping is
illustrated by comparing calculations fort8=0 and
t8=−0.35t. We find that in both cases the on-site Coulomb
interaction strongly reduces the electron-phonon coupling.
The reduction is monotonic with increasingU and for large
values eventually reaches limU→`Gsqd. This behavior is
not completely unexpected as the charge response should be
strongly suppressed by an on-site Coulomb interaction. It is,
however, in striking difference to the behavior at higher
temperature(Fig. 3). Also, while Gsqd shows a broad peak
around q=0, we do not find a particularly pronounced
forward scattering. In fact, the electron-phonon vertex is of-
ten strongest close toq=sp ,0d. This is different from what
was found within an 1/N expansion.12 The 1/N expansion
relies on the smallness of 1/dN; i.e., it breaks down at
small dopingsd=1−n. This can be seen from the fact that
the charge-charge correlation function remains in leading
order finite ford→0 though the exact correlation function
vanishes in this limit. The Kotliar-Ruckenstein method,
on the other hand, reproduces this limit correctly in leading
order which makes it plausible that in this case the charge
vertex is smaller than in the 1/N expansion, especially at
smaller dopings.13 Which of the two methods is more reli-
able, in particular, near optimal doping, is not clear and can
probably only be judged by comparison with exact numerical
methods.

V. EFFECTIVE COUPLING CONSTANTS

To assess the importance of the electron-phonon coupling
for superconductivity we calculate the renormalization
factor

FIG. 2. Electron-phonon vertexGsp ,qd for the scattering of an
electron with p=sp /2 ,0d by a static phonon of wave vector
q=s0,p /2d (see inset, where the points denote the allowedp vec-
tors and the solid line the Fermi line) for t8=0 on a 434 lattice
with periodic boundary conditions and five up and five down elec-
trons. The solid line gives the result of a Lanczos(with fixed num-
ber of electrons), the dashed line of a slave-boson calculation for
the same lattice. The energy unit ist.

FIG. 3. Effective electron-phonon coupling fort8=0 on an
838 lattice with filling n=0.875(28+28 electrons) as calculated in
slave-boson linear response at an inverse temperature ofb=2 and
for electron momenta on the line«p=0.

FIG. 4. Electron-photon vertexGsqd for scattering electrons
on the Fermi surface. Calculations are fort8=0 (top) and
t8=−0.35t (bottom), an inverse temperatureb=500/t, and different
fillings n.
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La =

E
FS

dp

uvpuEFS

dp8

uvp8u
gaspdGsp,p8 − pdgasp8d

z2E
FS

dp

uvpuEFS

dp8

uvp8u
ga

2spd

for the symmetry channels

gsspd = 1,

gs*spd = cosspxd + cosspyd,

gpx
spd = sinspxd,

gdx2−y2spd = cosspxd − cosspyd,

gdxy
spd = sinspxdsinspyd.

La is equal to the ratiola /la
s0d, wherela andla

s0d denote the
dimensionless electron-phonon coupling constants in the in-
teracting and noninteracting cases, respectively. To judge the
importance of forward scattering we also calculate the renor-
malization factor for transport:

Ltr =

E
FS

dp

uvpuEFS

dp8

uvp8u
Gsp,p8 − pduvspd − vsp8du2

2z2E
FS

dp

uvpuEFS

dp8

uvp8u
uvspdu2

.

The results are shown in Fig. 5. Calculations were performed
for lattices of increasing size at decreasing temperatures, per-
forming thep integrals over the whole Brillouin zone and
weighting with a minus sign the derivative of the Fermi-
Dirac distribution −f8s«pd=bfs«pdf1− fs«pdg, which becomes
a d function for T=0. Convergence of theT→0 extrapola-

tion has been checked by comparingLs andLs* , which only
for T=0 are equal. Error bars for the extrapolation are plot-
ted, but are usually smaller than the size of the plotting sym-
bols.

We find that forU&10 the s-wave couplings decrease
almost exponentially withU. For the special case of the
Hubbard model with nearest-neighbor hopping onlyst8=0d
we haveLs

* =Ls, sincegs* is constant on the Fermi surface.
Moreover, Ltr<Ls, reflecting that there is no pronounced
forward scattering; only for largerU doesLtr become some-
what smaller thanLs. But by then both coupling constants
are already very small. The higher-symmetry channels are
even weaker. SinceGsqd;1 for U=0, they vanish for
U=0 by symmetry, then go through a maximum around
U=2, only to decay almost exponentially. We can thus
conclude that within Kotliar-Ruckenstein slave-boson
theory, restricting the system to be paramagnetic, the contri-
bution of Holstein phonons to superconductivity should
be very small.

VI. PHASE SEPARATION

We now come back to the surprising upturn of the
electron-phonon vertex forU*8 shown in Fig. 3 and also
found in the QMC calculations of Ref. 11. CalculatingGsqd
at kT, t, we indeed find a drastically different behavior than
for T→0: Instead of monotonically decreasing withU, the
coupling starts toincreaseand develops a very strong for-
ward scattering peak. An example is shown in Fig. 6. The
calculated curves should be compared to the uppermost
panel on the right of Fig. 4. Looking at the charge response
function xsqd in the paramagnetic phase we find that this
behavior is a precursor of a phase-separation instability—a
divergence ofxsq=0d. This has also been pointed out in Ref.
17. Calculating the phase diagram, we find a very peculiar
reentrant behavior around the phase separated region for fi-
nite U as shown in Fig. 7: When cooling down the system
phase separates, but at low enough temperature it reverts
back to the paramagnetic phase.

The occurrence of phase separation can be studied in a
simple way directly from the grand canonical potential for

FIG. 5. Renormalization constantsLa for t8=0 and different
symmetry channels and forLtr relevant for transport.

FIG. 6. Electron-phonon vertexGsqd for scattering on the Fermi
surface. Calculations are fort8=0, filling n=0.80, and an inverse
temperatureb=1.
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the paramagnetic phase: The densityn is then given by mi-
nus the derivative of the grand canonical potential density
with respect to the chemical potentialm:

n = 2E
−`

` dersed

ebsz2e−m̃d + 1
, s10d

wherersed denotes the density of states of the noninteracting
system. We consider the limitU→`, wherez2 is given by
s1−nd / s1−n/2d and m̃ by m+E/ s1−n/2d2/2. HereE is the
average kinetic energy given by Eq.(10) with an additional
factor e in the integrand. For fixedn, Eq. (10) can be solved
first as a function ofm̃ and then ofm. Figure 8 shows nu-
merical results formsnd for the dispersion of Eq.(2) with
t8=0 at six different temperatures. For large temperature
msnd is a monotonically increasing function and the system is
stable. ForkT&2t the slope ofmsnd becomes negative close
to half-filling, indicating phase separation. For a finite but
largeU, m increases steeply with increasingn for n.1. Tak-
ing the limit U→` this part of the curve collapses onto the
entire positive vertical axis atn=1. In the phase-separated
region three different densities belong then to one value of
the chemical potential. The usual Maxwell construction can
then be applied showing that one component in the phase-
separated region is always half-filled. Calculating the slope
of msnd at n=1 we find

lim
n↗1

dm

dn
=

2

b
s1 − r2b2d, s11d

where r2 is the second moment of the density of states,
which in the present case is equal to 4t2. Thus, for the square
lattice with t8=0 there is phase separation forkT,2t and,
unlike the case of finiteU, there is no reentrance of the
homogeneous phase. The numerically determined curves in
Figs. 7 and 8 are compatible with this exact value.

Since in our calculations we only allow for a paramag-
netic phase, other phases might mask the phase separation.
Also, since slave bosons may have problems at high

temperatures,14 it is not clear if the Hubbard model really
shows such a reentrant behavior. Nevertheless, we find a
qualitatively similar behavior in the limitU→` in the
gauge- invariant 1/N expansion(i.e., a theory without Bose
condensation).

Phase separation at finiteT has also been proposed in
Refs. 18–20. Moreover, the good agreement with the quan-
tum Monte Carlo calculations of Ref. 11 suggests that our
approach might indeed capture the relevant physics. It would
therefore be interesting to test the phase diagram shown in
Fig. 7 with QMC: A calculation for, e.g.,b=1 and U
=4, . . . ,8—i.e., at temperatures and values ofU, where
QMC has little problems—should show clear signs of phase
separation. Of course, these calculations should be done at
v=0 as the extrapolation from finite Matsubara frequencies
might be difficult close to an instability.

VII. CONCLUSIONS

In conclusion, we have studied the influence of strong
electronic correlations on the electron-phonon interaction
for the Hubbard-Holstein model using the Kotliar-
Ruckenstein slave-boson method. For high temperatures the
boundaries of the phase-separated state were determined in
the T-U plane for different dopings and the increase of the
static vertexG near the boundaries was studied, confirming
and extending recent results of Ref. 17. At low temperatures
and moderate or small dopings we found thatG does not
exhibit pronounced forward scattering behavior and thatG
reduces dramatically the electron-phonon coupling. It seems
that exact numerical calculations are necessary to judge the
reliability of the 1/N and the Kotliar-Ruckenstein ap-
proaches.
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FIG. 8. Dependence of the bare chemical potentialm on n for
t8=0 and U=`. Phase separation occurs if the slope ofmsnd is
negative. Note that in the limitU→` the msnd curve for n.1
collapses onto the entire positive vertical axis atn=1 so that the
usual Maxwell construction can be applied.

FIG. 7. Phase separation in the Hubbard model witht8=0: the
lines enclose the region where the paramagnetic slave-boson
saddle-point solution is unstable against phase separation. For
t8 / t.0 the region of phase separation tends to increase; fort8 / t,0
it tends to decrease, in particular, for large doping.
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