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BCS-BEC crossover at finite temperature in the broken-symmetry phase
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The BCS-BEC crossover is studied in a systematic way in the broken-symmetry phase between zero tem-
perature and the critical temperature. This study bridges two regimes where quantum and thermal fluctuations
are, respectively, important. The theory is implemented on physical grounds, by adopting a fermionic self-
energy in the broken-symmetry phase that represents fermions coupled to superconducting fluctuations in weak
coupling and to bosons described by the Bogoliubov theory in strong coupling. This extension of the theory
beyond mean field proves important at finite temperature, to connect with the results in the normal phase. The
order parameter, the chemical potential, and the single-particle spectral function are calculated numerically for
a wide range of coupling and temperature. This enables us to assess the quantitative importance of supercon-
ducting fluctuations in the broken-symmetry phase over the whole BCS-BEC crossover. Our results are rel-
evant to the possible realizations of this crossover with high-temperature cuprate superconductors and with
ultracold fermionic atoms in a trap.
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. INTRODUCTION densed in a Bose-Einste{goherent ground staté:?!3 For
In the BCS to Bose-Einstein condensatiqiBEC) this reason, the BCS mean field has often been considered to
crossovel10 largely overlapping Cooper pairs smoothly be a reliable approximation for studying the vv_hole BCS-
evolve into nonoverlapping composite bosons as the fermi.'-?’EC crossover ar=0. At f|n.|te temperature, the Increasing
onic attraction is progressively increased. These two physicallPortance in strong coupling of the thermal excitation of
situations(Cooper pairs vs composite bosprsrrespond to ~ collective modes(corresponding to noncondensed bogons
the weak- and strong-coupling limits of the theory, while in WS first pointed out by Nozieres and Schmitt-RinBy

the interesting intermediate-coupling regime neither the fer!heir approach, the expected result that the superconducting

mionic nor the bosonic properties are fully realized. UnderCritical temperature should approach the Bose-Einstein tem-

. . eratureTge in strong coupling was obtaingdoming from
wgzlf- c;rr](éunggﬁnfosd tIri]r:a tgizzrsy \I/ihiflttja"gt (i:r?trét:rﬂ:aedoila?enct:f; bove ) via a (first-orde) inclusion of thet-matrix self-
) ) g-coupiing ’ energy in the fermionic single-particle Green'’s function. The
pling an interpolation scheme resultas for all crossover

o . . same type of-matrix approximatioralso with the inclusion,
approaches These physical ideas are implemented, in Prachy some authors, of self-consistepdyas then been widely

tice,_ by aIIOV\_/ing for a strong decrease of_ the chemical POadopted to study the BCS-BEC crossover abbyeboth for
tential at a given temperature when passing from the weaksqntinuunt and lattice model&-17
to the strong-coupling limit. Despite its conceptual importance, a systematic study of
The BCS-BEC crossover can be considered both belowhe BCS-BEC crossover in the temperature rangeTe< T,
(broken-symmetry phag@nd abovgnormal phasgthe su- s still lacking. A diagrammatic theory for the BCS-BEC
perconducting critical temperature. In particular, in the nor-crossover that extends beldly the self-consistent-matrix
mal phase preformed pairs exist in the strong-coupling limitapproximation was proposed some time ago by Hausstann.
up to a temperatur@ corresponding to the breaking of the The ensuing coupled equations for the order parameter and
pairs, while coherence among the pairs is established wherthemical potential were, however, solved explicitly only at
the temperature is lowered below the superconducting critiT,,'® leaving therefore unsolved the problem of the study of
cal temperaturd ;. This framework could be relevant to the the whole temperature region beldw. The work by Levin
evolution of the properties of high-temperature cuprate suand co-workers? on the other hand, even though based on a
perconductors from the overdopédieak-coupling to the  “preformed-pair scenario,” has focused mainly on the weak-
underdoped (strong-coupling regions of their phase to-intermediate coupling region, where the fermionic chemi-
diagram*! The BCS-BEC crossover can be also explicitly cal potential remains inside the single-particle band. An ex-
realized with ultracold fermionic atoms in a trap, by varying tension of the self-consistetimatrix approximation to the
their mutual effective attractive interaction via a Fano-superconducting phase for a two-dimensional lattice model
Feshbach resonanée. was considered in Ref. 20. In that paper, however, the shift
The BCS-BEC crossover has been studied extensively iof the chemical potential associated with the increasing cou-
the past, either ai=0 or for T=T.. At T=0, the solution of pling strength was ignored, by keeping it fixed at the nonin-
the two coupled BCSmean-field equations for the order teracting valué! The results of Ref. 20 are thus not appro-
parameteA and the chemical potentiagd has been shown to priate to address the BCS-BEC crossover, for which the
cross over smoothly from a BCS weak-coupling superconrenormalization of the chemical potenti@hat evolves from
ductor with largely overlapping Cooper pairs to a strong-the Fermi energy in weak coupling to half the binding energy
coupling superconductor where tightly bound pairs are conef a pair in strong couplingplays a crucial rolé-3 Addi-
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tional studies have made use of a fermion-boson m&del, sophisticated bosonic theory, overcoming the apparent limi-
especially in the context of trapped Fermi ga&es. tations of the Bogoliubov theory. In practice, however, it
The purpose of the present paper is to study the BCS-BEGhould be considered already a nontrivial achievement of the
crossover in the superconducting phase over the whole tenpresent approach the fact that the bosonic Bogoliubov ap-
perature range frori=0 to T=T,, thus filling a noticeable  proximation can be reproduced from an originally fermionic
gap in the literature. We will consider a three-dimensionakheory. For these reasons, and also because it is actually the
continuum model_, for which _the fermlonlc attraction can beintermediate—couplingcrossove) region that is of the most
modeled by a point-contact interaction. As noted in Refs. Sy yqical interest, in the following we shall consider the Bo-

and 10, with this model the structure of the diagrammaticy,iyhoy approximation as a reasonable limiting form of our
theory for the single-particle fermionic self-energy S'mp"f'esfermionic theory

considerably, since only limited sets of diagrammatic struc- = » o't is alwavs the case for the BCS-BEC crossover ap-
tures survive the regularization of the contact potential in . Y . . P
terms of the fermionic two-body scattering lencap, 1024 proach, implementation of. the theory developgd in the
The dimensionless interaction paramefeas)-* [where the present paper rests on solving two coupleq equations for the
Fermi wave vectork: is related to the density vian qrder paramete;.\ and the chemical potgntlal. The equa-
tions here considered fdr and u generalize the usual equa-

=k2/(37?)] then ranges from s in weak coupling to 4 in : . . .
strong coupling. The crossover region of interest is, howevet{'ons already considered at the mean-field vy includ-

restricted in practice byke|ag))t=1. ing fluctuation corrections. Our equations reproduce the

For this model, a systematic theoretical study of the evo&xpected physi_cs in the strong—cqupling "mitt at Iea;t at the
lution of the single-particle spectral function in the normal !€Ve! of approximation here considered. Their solution pro-
phase from the BCS to BEC limits has been presente(‘!'des us with the values df andu as functions o_f coupling
recently?s As in Ref. 3, in Ref. 25 the coupling of a fermi- strer?gth(kFaF)_‘l and temperaturd, thus extending results
onic single-particle excitation to@osonig superconducting Obtained previously at the mean-field level. In particular, the
fluctuation mode was also taken into account byttheatrix ~ order parameter is now found to vanish at a temperature
self-energy. This approximation embodies the physics of 4close tg T, evenin the* strong-coupling limit, while it would
dilute Fermi gas in the weak-coupling limit and reduces to dhad vanished close @ at the mean-field levef:
description of independent composite bosons in the strong- The analytic continuation of the fermionic self-energy to
coupling limit. In this way, single-particle spectra were ob- the real frequency axis is further performed to obtain the
tained in Ref. 25 as functions of coupling strength and temsingle-particle spectral functioA(k, ), that we study in a
perature. systematic way as a function of wave veckgrfrequencyw,

In the present paper, thematrix approximation for the ~coupling strengthkeaz)™, and temperaturd. In this con-
self-energy is suitably extended beldWy. In particular, the text, two sum rulegspecific to the broken-symmetry phase
samesuperconducting fluctuations, that in Refs. 3 and 25are obtained, which provide compelling checks on the nu-
were coupled to fermionic independent-particle excitationgnerical calculations. In addition, the numerical calculations
aboveT,, are now coupled to fermionic BCS-like single- are tested against analytior semianalyti¢ approximations
particle excitations below,. In the strong-coupling limit, it ~obtained in the strong-coupling limit. The study of a dynami-
turns out that these superconducting fluctuations merge in @l quantity such aé(k, w) enables us to attempt a compari-
nontrivial way® into a state of condensed composite bosonson with the experimental angle-resolved photoemission
described by the Bogoliubov theory, and evolve consistentlpectroscpfARPES and tunneling spectra for cuprate su-
into a state of independent composite bosons abigv@s  perconductors below, for which a large amount of data
the Bogoliubov theory for pointlike bosons déésIn this  exists showing peculiar features for different doping levels
way, a direct connection is established between the structuréd temperatures. As in Ref. 25 abaolg this comparison
of the single-particle fermionic self-energy abcmed below  concerns the experimental data about Mepoints in the
T., as they embody the same kind of bosonic mode whictBrillouin zone of cuprates especially, where pairing effects
itself evolves with temperature. are supposed to be stronger than along the nodal lines.

A comment on the validity of the Bogoliubov theory at ~ Our main results are as follows. As far as thermodynamic
finite temperature(and, in particular, close to the Bose- quantities are concerned, we will show that fluctuation cor-
Einstein transition temperatufigg) might be relevant at this rections over and above mean field are especially important
point. A consistent theory for dilute condensed Bose gas at finite temperaturel <T, when approaching the strong-
was developed long ago in terms of @mal) gas coupling limit. At zero temperature, fluctuation corrections to
parametef®2° of which the Bogoliubov theof) is only an  thermodynamic quantities turn out to be of some relevance
approximate form valid at low enough temperatuesm-  only in the intermediate-coupling region. This supports the
pared withTgg). That theory also correctly describes the di- expectatiod that the BCS mean field at zero temperature
lute Bose gas in the normal pha®eyhereas the Bogoliubov should describe the BCS-BEC crossover rather well essen-
theory(when extrapolated above the critical temperatoee tially for all couplings. Regarding instead dynamical quanti-
covers the independent-boson fogaibeit in a nonmono- ties such a®\(k, w), our calculation based on a “preformed-
tonic way, with a discontinuous jump affecting the bosonicpair scenario” reveals two distinct spectral features.fet0.
condensaf®). It would therefore be desirable to identifgt ~ These features, which have different temperature and doping
least in principleé a fermionic theory that, in the strong- dependences, together give rise to a peak-dip-hump structure
coupling limit of the fermionic attraction, maps onto a more which is actively debated for the ARPES spectra of cuprate
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superconductors. Our results differ from those previously ob- a-k -k gk ¢k q-k gk
tained by other calculatiofh$also based on a “preformed- ’L & Chatals e
pair scenario,” where a single feature was instead obtained it | I'@ = o+ +.-- (a)
the spectral function fow<<0. An explanation of this dis- & i L, ﬁ,ln lﬁk-*—>—*+k—,ln

crepancy between the two calculations will be provided. It
will also turn out from our calculation that the coherent part
of Ak, w) for <0 essentially follows a BCS-like behavior q-k
as far as its wave-vector dependence is concerned, albe ‘

with a gap value which contains an important contribution — 1 ¢

from fluctuations at finite temperature. The same BCS-like iii 1! (b) (@) (©)
behavior is not found, however, by our calculation for the itiiit, I I
dependence of the spectral weight of the coherent peak ol
temperature and coupling. This evidences a dichotomy in the
behavior ofA(k, ), according to which of its dependences
one is after. Such a dichotomy is clearly observed in experi-
ments on cuprate superconductors, in good qualitative agree
ment with the results obtained by our calculatiéh# de-
tailed quantitative comparison of our results with the
experimental data on cuprates would, however, require a
more refined theoretical model, as to include the quasi-two- FIG. 1. (a) Particle-particle ladder in the broken-symmetry
dimensional lattice structure, tliewave character of the su- phase. Conventions for four momenta and Nambu indices are speci-
perconducting gap, and also a fermionic attraction that defied. Dots delimiting the potentigbroken ling representr; Pauli
pends effectively on dopingand possibly on temperatyre matrices. Only combinations with =I{ andlg=1; occur owing to
Future work on this subject should address these additiondhe regularization we have adopted for the potengtal Fermionic
issues. self-energy diagram associated with the expresgl@nin the nor-

The present theory could be improved in several ways. Irmal phase(c) Fermionic self-energy diagram associated with the
the present approach, the effective interaction between thexpressiongl3) and(14) in the broken-symmetry phas@) BCS
composite bosons is treated within the Born approximationcontribution(15) to the self-energy.

For a dilute system of composite bosons one knows how to

improve on this result, as shown in Ref. i€ke also Ref. (three-dimensionalcontinuum system of fermions mutually

33). In addition, the Bogoliubov description for the compos-jneracting via an attractive point-contact potential, with an

ite bosons could be also improved, for instance, by extending \aye order parameter. We shall place special emphasis on

LO theszcg)g)po”slte bo§ons thke POPI(.)V tre_z;tm?nrt] for pomthkqhe strong-coupling limit of the theory, where composite
osons.”Finally, on the weak-coupling side of the Crossovery, ., torm as bound fermion pairs. We extend in this way

the BCS theory could be modified by including the contribu- .
tions shown by Gor’kov and Melik-Barkhudarvo yield a beloyv L an analogous treatment for the self-energy, .made
previously in the normal phase to calculate the single-

finite renormalization of the critical temperature and of the ticl tral functiof®
gap functionevenin the extreme weak-coupling limit. Work Particie spectral functior. o
Knowledge of the detailed form of the attractive interac-

along these lines is in progress. L . ;
The plan of the paper is as follows. In Sec. Il we discusgion iS not generally required when studying the BCS-BEC

our choice for the fermionic self-energy in the superconductcrossover. Accordingly, one may consider the simple form
ing phase, from which the order parameteand the chemi-  vod(r) of a “contact” potential, where, is a negative con-
cal potentialu are obtained as functions of temperature andstant. This choice entails a suitable regularization in terms,
coupling strength, and the spectral functititk ,») also re-  e.g., of a cutofk, in wave-vector space. In three dimensions,
sults. Analytic results are presented in the strong-couplinghis is achieved via the scattering lengghof the associated
limit, where the order parameter is shown to be connectefermionic two-body problem, by choosing as follows®

with the bosonic condensate density of the Bogoliubov

theory. In addition, the analytic continuation of our expres-

sions for the fermionic self-energy and spectral function is _ _212 _ w 1
carried out in detail. In Sec. lll we present our numerical vo= mky ma;kg' )
calculations, and discuss the results for the single-particle

spectral function in the context of the available experimental

data for high-temperature cuprate superconductors. Sectian being the fermion mass. With this choice, the classification
IV gives our conclusions. In the Appendix two sum rules areof the (fermionic) many-body diagrams is considerably sim-
derived for the superconducting phase, which are used aslified not only in the normal pha&&but also in the broken-
checks of the numerical results. symmetry phasé since only specific diagrammatic sub-

structures survive when the limky— c (and thusvy— 0) is
II. DIAGRAMMATIC THEORY FOR THE BCS-BEC eventually taken.

CROSSOVER IN THE SUPERCONDUCTING PHASE In particular, the particle-particle ladder depicted in Fig.

In this section, we discuss the choice of the fermionicl(a) survives the regularization of the potenfiallt is ob-
single-particle self-energy in the superconducting phase for tained by the matrix inversion

L I
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(Fn(Q) I'12(q) ) _ <X11(‘ ) xi2q) ) e =02(0)Ne(T), 9

Fai(a) Taxa) X120 x11(a) wherev,(0)=4rma-/m is the residual bosonic interactioH
X De@xaa(- @) - x (@2t (2 and po(T):AZ(T)mZaF/(BTr) is the condens_ate density. The

. . relation(9) has already been formally obtained at {B£S)
with the notation mean-field levef® albeit with an unspecified dependence of
q no(T) on temperature. Within our fluctuation theory, the tem-

m p ture dependence af(T) will coincide in strong cou-

LU G G pera p g

Amap (2 )3l 2 P+ AGn(-p) pling with the expression given by the Bogoliubov theory
] (see Sec. Il D In particular, at zero temperature and at the

- x11(q) =

m

- W (3) lowest order in the residual bosonic interactfémy, reduces
P

to the bosonic densityng=n/2 and wug is given by
2k3ag/ (3m).
Note further that the above result fo§(0) can be cast in
X120) = J 3 Eglz(p +q)Go1(—p). (4)  the bosonic formv,(0) =4mag/mg with ag=2ar. The present
(2m)°B theory thus describes the effective interaction between the

composite bosons within the Born approximation, while im-
proved theorie$-33for ag would give smaller values for the
ratio ag/ag. These improvements will not be considered in
the present paper.

Apart from the overall factor —8/(nfag) (and a sign
difference in the off-diagonal componé®)t the expressions

In these expressiong=(q,{},) andp=(p,w,), whereq and

p are wave vectors, anf,=27v/B (v intege) and w,
=(2n+1)7/ B (n intege) are bosonic and fermionic Matsub-
ara frequencies, respectivelwith 8=(kgT)™%, kg being the
Boltzmann constaift

&) +iw, (6) and(7) coincide with the normal and anomalous noncon-
Gu(p,wp) = - 2, 5 == Gos— p,— wp), densate bosonic Green’s functions within the Bogoliubov
E(p)“+ n approximatiori® respectively. These expressions will be spe-

cifically exploited in Sec. Il D, where the strong-coupling
A limit of the fermionic self-energy will be analyzed in detail.
Gau(p,wp) = m = G12P, @) (5) In the normal phase, on the other hand, the BCS single-
P particle Green’s functions are replaced by the bare single-
are the BCS single-particle Green’s functions in Nambu no#article propagatogy(p) =[iw,—£(p)]™, while for arbitrary
tation, with &(p)=p?/(2m)-u and E(p)= \g(p)2+A2 foran  coupling the particle-particle ladder acquires the form

isotropic (s-wave) order parameted. [Hereafter, we shall d
take the order parameter to be real with no loss of general-T'(q) = - + P 3
ity. ] Amap (2m)

The e.xpre.sspn(SS) and(4) for Xu@ a.nd_Xlz(q). consid- tanH Bé(p)/2] + tant Be(p - q)/2] m | |2
erably simplify in the strong-coupling limitthat is, when 7 N Z9)-i0] -
Bu— — andA < |u|). In this limit, one then obtains for the €p) +&p-a)-iQ, P
matrix elementg?2):526 (10)

81 +iQ), +q¥(4m) In particular, in the strong-coupling limit the expressidg)
M@ =Tol-0) = P S0 (@) reduces to
ag Eg(q) - (iQ,)

d Fole) = -~ 1
an oY= mlagiQ, - g% (4m)’

— _ 8w B which coincides [apart again from the overall factor
T1A@) =Tan(@) = mfag Eg(q)? - (iQ,)?’ ™ -8/ (mPag)] with the free-boson Green’s function.

The above quantities constitute the essential ingredients
where of our theory for the fermionic self-energy and related quan-
3 5 tities in the broken-symmetry phase. As shown in Ref. 26,
Ex(q) = \/(q_ + MB) _ Mé (8) they also serve to establishm@appingbetween the fermionic

2 and bosonic diagrammatic structures in the broken-symmetry

) ] ) phase, in a similar fashion to what was done in the normal
has the form of the Bogoliubov dispersion relafidfimg phase??

=2m being the bosonic massug=A?/(4|u|)=2u+¢, the
bosonic chemical potential, ama:(ma,z:)‘l the bound-state
energy of the associated fermionic two-body proflefhe
above relation between the fermionic and bosonic chemical In a recent studd of the single-particle spectral function
potentials holds providegiz< ¢, (see also Sec. Il P Note in the normal phase based on the BCS-BEC crossover ap-
that ug can be cast in the Bogoliubov form proach, the fermionic self-energy was taken in the form

A. Choice of the self-energy
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1
So(k) = - B—VEQ To(@Go(q -k, (12)

whereV is the quantization volume arid=(k, wg) is again a
four-vector notation with wave vectdr and fermionic Mat-

subara frequencw; (s integep. In this expressionl'y(q) is
given by Eq.(10) for arbitrary coupling an@jy(k) is the bare

PHYSICAL REVIEW B 70, 094508(2004)

even though it does not contain particle-particle rutigehis
additional self-energy diagram is the ordinary BCS contribu-
tion depicted in Fig. ), with the associated expression

Sk =357k = - A, (15)

while the correspondingHartree-Fock diagonal elements
vanish with the regularization we have adopted. Relating the

single-particle propagator. The self-energy diagram correexpression15) to the diagram of Fig. () rests on the va-

sponding to the expressiqf?) is depicted in Fig. (b). The

lidity of the BCS gap equatiofiEq. (20) below], for arbi-

fermionic single-particle excitations are effectively coupledtrary values of the chemical potential. For this, as well as for

to a(bosonig superconducting fluctuation mode, which re-

an additional reasolisee Sec. Il ) we shall consistently

duces to a free composite boson in the strong-coupling limitconsider that equation to hold for the order paramater

Physically, the choicg12) for the self-energy entails the
presence of a pairing interaction aboVg which can have
significant influence on the single-partigias well as other

properties.

The choice(15) alone would be appropriate to describe
the system in the weak-couplif®CS) limit, where the su-
perconducting fluctuation contributiori$3) and (14) repre-
sent only small corrections. In the intermediate- and strong-

In the present paper, we choose the self-energy in theoupling regions, on the other hand, both contributions

broken-symmetry phase beldly, with the aim of recovering
the expressionl2) when approaching. from below and the

(13)«15) might become equally significaritiepending on
the temperature range beloly). We thus consider both con-

Bogoliubov approximation for the composite bosons in thetributionssimultaneoushand write the fermionic self-energy

strong-coupling limit. To this end, we adopt thenplestap-
proximations to describe fermionas well asbosonic exci-

tations in the broken-symmetry phase, which reduce to bar Za(k) Zga(K)
fermionic and free bosonic excitations in the normal phase,\2(k) Z,.(k)
respectively. These are the BCS single-particle Green'’s func-

in the matrix form

S5(K)

) _ ( L) + 3855K) )
“\S5() +28%5(k) '

354K)
(16)

tions (5) (in the place of the bare single-particle propagator

Gp) and the particle-particle ladd€R) (in the place of its
normal-phase counterpall). By this token, the fermionic
self-energy(12) are replaced by the following’2 2 matrix:

1
ShK) ==35(-kK) == —2 T1(@)Gu(q-k), (13
BVS

1
SE(K) =35K = - =2 T (@)Gq-k), (14
BVS

where the labeL refers to the particle-particle ladder. The

corresponding self-energy diagram is depicted in Fig).®
The choiceq13) and(14) for the self-energy is made on

physical grounds. A formaldb initio” derivation of these

expressions can also be done in terms of “conserving ap-
proximations” in the Baym-Kadanoff sense, that hold even in

the broken-symmetry phag®.In such a formal derivation,

however, the single-particle Green'’s functions entering Egs.

(13) and (14) [also through the particle-particle laddg)]

would be required to be self-consistently determined with the_GiJ
sameself-energy insertions. In our approach, we take instea
the single-particle Green'’s functions to be of the BCS form

(5). The order parameteh and chemical potentiak are
obtained, however, via two coupled equatioins be dis-
cussed in Sec. Il Cthat include the self-energy insertions
(13) and (14). In this way, we will recover the Bogoliubov
form (6) and (7) for the particle-particle ladder not only at
zero temperature but also at finite temperatyeesl, in par-
ticular, close to the Bose-Einstein transition temperature
The choicg13) and(14) for the self-energy is not exhaus-

In the following, however, we shall neglezt, in compari-
son to2E5S 1t will, in fact, be proved in Sec. Il D that, in
strong coupling}, is subleading with respect to bolRfs™
and 3%,. Inclusion of 3%, is thus not required to properly
recover the Bogoliubov description for the composite bosons
in the strong-coupling limit.

To summarize, the fermionic single-particle Green'’s func-
tions are obtained in terms of the bare single-particle propa-
gatorGy(k) and of the self-energgl3) and(15) via the Dys-

on’s equation in matrix form
(Gii(k) G;é(k)):(go<k>-l 0 )
Go(k) G(k) 0 -Go-KT

_(%(k) 355K

3505k S5k

If only the BCS contribution(15) to the self-energy were

). a7

retained, the fermionic single-particle Green’s functions
(k)(i,j=1,2 would reduce to the BCS fornb). Upon

gncluding, in addition, the fluctuation contributi¢h3) to the

self-energy, modified single-particle Green'’s functions result,
which we are going to study as functions of coupling
strength and temperature.

B. Comparison with the Popov approximation for dilute
superfluid fermions

The choice of the self-energyt3) and(15) resembles the
approximation for the self-energy introduced by Pofidur

tive. In the broken-symmetry phase there, in fact, exists asuperfluid fermions in the dilute limitkg|ag|<1 (with
additional self-energy contribution that survives the regularag <0). There is, however, an important difference between

ization (1) of the interaction potential in the limiky,— oo,

the Popov fermionic approximation and our theory. We in-
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clude in Eq.(13) the full T';; obtained by the matrix inver-
sion of Eq.(2); Popov instead neglectg,, therein and ap-
proximatel';; by 1/x4;, thus removing the feedback of the
Bogoliubov-Anderson mode on the diagonal fermionic self-
energy>,;. Retaining this mode is essential when dealing
with the BCS-BEC crossover, to describe the composite
bosons in the strong-coupling limit by the Bogoliubov ap-
proximation, as discussed in Sec. Il A. Approaching the
weak-coupling limit, on the other hand, the presence of the
Bogoliubov-Anderson mode becomes progressively irrel- FIG. 2. Self-energy shift, (in units of ) vs temperaturd
evant and the self-energies coincide in the two theories. As @nits of T.) and coupling(krag) ™.

check on this point, we have verified that, in the weak-

coupling limit and at zero temperatur®;; obtained by our >14(k) can no longer be approximated by a constant.
theory(using the numerical procedures discussed in Sec. lll |t turns out that the temperature dependenceXgfis
reduces to 4agn/(2m), which is the expression obtained rather weak in the above coupling range. A plotXy vs
also with the Popov approximatithin the absence of the T/T_ and (ksag)* is shown in Fig. 2. Here, the critical tem-
Bogoliubov-Anderson mode. peratureT, is obtained by applying the Thouless criterion
There is another difference between the Popov fermionigrom the normal phase as was done in Ref(t% procedure
approximation and our theory as formulated in Sec. Il A,to obtainT, will be used in the rest of the papem this plot,
which concerns the off-diagonal fermionic self-enel®y.  the constant shift S, is obtained as3y=ReXF[|K|
Our expressiori15) for %, was obtained from the diagram =2m(u-2,), w=0], in analogy to what was also done in
of Fig. 1(d), where the single particle line represents thepet o5 HereSR (k,w) is the analytic continuation to the

off-diagonal BCS Green'’s function of E¢) with no inser- ; 3
tion of the diagonal self-energ¥;. Within the Popov ap- :jei:élj;es%téeizcé :cXITI(IDEf the Matsubara self-enelgy(k, )

proximation, on the other hand,,, is defined formally by
the same diagram of Fig.(d), but with the single-particle
line being fully self-consisten{and thus includingX,,).
SinceX; turns out to approach a constant valigin the
weak-coupling limit(as discussed aboyenclusion ofX;; ) N
=3, can be simply made by a shift of the chemical potential ~Thermodynamic quantities, such as the order parandeter
(such thatu— u—3.0). This shift affects, however, the value and the chemical potential, are obtained directly in terms
Of the gap functiom in a non-neg”gible Way even in the of the Matsubara .Slngle-partlcle G_I’een’sifunc_tlons, W|th0ut
extreme weak-coupling limit. Neglecting this shift, in fact, the need of resorting to the analytic continuation to th_e real
results in a reduction by a factet’® of the BCS asymptotic frequency axis. Quite generally, the order parameteis
expression (8e-/e?)exdm/(2keag)] for A [where e defined in _terms of the “anomalous” Green’s function
=kZ/(2m)]. Inclusion of the shiftS, is thus important to G2k, @) via A=ve(y;(r) (1)) [see Eq(A12)], where the
recover the BCS value fak in the (extreme weak-coupling  Strengthvg of the contact potential is kept to comply with a

C. Coupled equations for the order parameter
and the chemical potential

limit. standard definition of BCS theo?9.One obtains

The need to include the constant shify on the weak- dk 1
coupling side of the crossover was also discussed in Ref. 25 A=-v, —3—2 Gk, ). (18)
while studying the spectral functioA(k,) in the normal (2m)° B~5

phase with the inclusion of pairing fluctuations. In that con-
text, inclusion of the shif&, proved necessary to have the
pseudogap depression Afk , w) centered aboub=0. Inclu-
sion of the shift3; in the broken-symmetry phagat least
when approaching the critical temperature from belasv dk 1 :
thus also necessary to connect the spectral fundign w) n=2 (27)352 es’Gyy(K, wg), 19
with continuity in the weak-coupling side of the crossover. s

Combining the above needs farand A(k,w), we have where »=0". The two equation$18) and(19) are coupled,
introduced the constant shifi, for all temperatures below since the Green’s functions depend on bdthand u. The
T., by replacingu with -3, in the BCS Green'’s functions results of their numerical solution will be presented in the
(5) entering the convolutione3) and(4). The same replace- next section for various temperatures and couplings.
ment is made in the gap equatipBg. (20) below]. In the In the following treatment, we shall deal with the two
Dyson’s equation(17), however,u is left unchanged since equationg(18) and(19) on a different footing. Specifically,
the constant shift, is already contained iB;4(k) as soon as we will enter in the density equatiqid9) the expression for
its k dependence is irrelevant. Accordingly, we have includedhe normal Green’s function obtained from Ed.7), that
this constant shift in the calculation of both thermodynamicincludes both BCSand fluctuation contributiongsee Eq.
and dynamical quantities in the weak-coupling side for(35) below]. We will use instead in the gap equati¢i8) the
(keap)t=<-0.5, and neglected it for larger couplings when BCS anomalous functioit5), that includes only the BCS

By the same token, the chemical potenjiatan be obtained
in terms of the “normal” Green’s functioB,,(k , ws) via the
particle densityn
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self-energy(15). In this way, the gap equatiofi8) reduces q°
to the form 2me + g~ Eg(q)
2 2
vp(q) =ug(q) - 1= (22
m [ _d [tanf[,BE(k)/Z] "o o B B 2E;5(q)
Amap (2m)?® 2E(K) k2| are the standard bosonic factors of the Bogoliubov

o o transformatior?®
where the regularization of the contact potential in terms of | the numerators of the expressions within brackets in
the scattering lengtar has been introduced. This equation gq. (21), the Bose functions are peaked at abqat0 and
has the sama‘nrme}l structure of the BCS gap equat_ion, al- vary over a scalg?/(2mg) ~T<|u|. Similarly, the factors
fchough the ngmerlcal values of th_e chemical potential en_teraé(q) andsz(q) are also peaked at aboyt0 and vary over
ing Eq. (20) Cjn‘fer from those obtained by the BCS density scalen?/(2mg) = g <|u|. The denominators in the expres-

&8on (21), on the other hand, vary over the much larger scale
|u|. For these reasons, we can further approximate the ex-
pression(21) as follows:

tors(2) in the broken-symmetry phase ageplessas shown
explicitly by the Bogoliubov-type expressio®) and(7) in

the strong-coupling limit. In general, in fact, there is ao
priori guarantee that a givgieconserving approximation for
fermions would result into a “gapless” approximafiiior
the composite bosons in the strong-coupling limit of the fer-
mionic attraction. Including fluctuation corrections to the Where

BCS density equation as in E(L9), on the other hand, re- dq
sults in the emergence of important effects in the strong- né(T):f (2m)
coupling limit of the theory, as discussed next. &

8w 1
MPag iws+ £(K)

Sk, wg) = na(T), (23

{u(a)b[Eg(a)] - v(a)b[- Eg(@)]}

(24)

D. Analytic results in the strong-coupling limit identifies the bosonic noncondensate density according to

. ) .

We proceed to show that the original fermionic theory, as3090liubov theory’? Note that in the normal phagevhen
defined by the Dyson’s equatiqi7), maps onto the Bogo- "€ condensate density(T) of Eq. (9) vanisheg the non-
liubov theory for the composite bosons which form ascondensate densit24) becomes the full bosonic density
bound-fermion pairs in the strong-coupling limit. To this end, "s=N/2, and Eq.(23) reduces to the expression obtained in
we shall exploit the conditiong|u|>1 and A <|u|(x<0) Ref. 10 directly from the form(12) of the fermionic self-
(which definethe strong-coupling limjtin the (Matsubara ~ €N€r9y: . L .
expressiong13) and(14) for S\(p), thus also verifying that 1€ off-diagonal self-energ},(k) can be analyzed in a
2&2 can be neglected. similar way. Since its magnltu_de is sgpposed to be_ the largest

These expressions are calculated by performing the wavét ZE10 temperature, we estimate it correspondinglykfor
vector and frequency convolutions with the approximate ex=0 @ndws=0 as follows:

pressiong6) and(7) for the particle-particle ladder and the st k=0 0 87 ugA dk’ 1
H H _ H ’ - = , . = == ; ;
Eégfssmns@) for the BCS single-particle Green’s func 12 s mae 2 (2m)3E(k)Eg(K')
Upon neglecting contributions that are subleading under % 1 o5
the above conditions, we obtain in this way for the diagonal [E(k") +Eg(k")] (25)

part of the self-energy ) . .
At leading order, we can neglect bothand g in the inte-

8 dq { ué(q)b[EB(q)] grl_apkd, V\)/hege[ trzmle(e|ne|£(5;]y scd{}dhdominates. We tlhus olbtain
3| ; ) 12k=0)=A[A“/ (2| in the strong-coupling limit
mag ) (2m>Liws+ B - k) - Eg(a) [where the relationug=A?/(4|u|)—see below—has been
vE(a)b[- Eg(@)] used. This represents a subleading contribution in the small
- iws+ E(q-k)+Eg(q) |’ dimensionless parametar |u| with respect to both the BCS
contribution2555(k)=-A and the diagonal fluctuation con-
In this expressionE(k) is the BCS dispersion of Eq$5),  tribution 34,(K). It can accordingly be neglected.

E&l(k, (l)s) =

(21)

Eg(q) is the Bogoliubov dispersion relatior8), b(x) Within the above approximations, the inverds) of the
=[exp(Bx)—1]"! is the Bose distribution, and fermionic single-particle Green'’s function reduces to
|
AS
_ _ iwg— &K) ————— A
(Gﬁ(k) Gé(k)) [ e a0 o
Gl Gk \ ot i) - 6
° iws— &(K)
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with the notation

8
A2 = ——n/(T).
= a b

(27)
From Eq.(26) we get the desired expression &y;(k , ) in
the strong-coupling limit

1

AP+ A5
oo (k) = 280
SRy
where we have discarded a term of ordér|u| with respect

Gk, wg) =

(28)

PHYSICAL REVIEW B70, 094508(2004)

These results imply that in the strong-coupling limit the
original fermionic theory recovers the Bogoliubov theory for
the composite bosons, not only at zero temperature but also
at any temperaturen the broken-symmetry phase. Accord-
ingly, the noncondensate density(T) is given by the ex-
pression(24), the bosonic factors3(q) andu3(q) are given
by Eq.(22), and the dispersion relatidfs(q) is given by Eq.
(8). In the strong-coupling limit, the present fermionic theory
thus inherits all virtues and shortcomings of the Bogoliubov
theory for a weakly interacting Bose g&sThe present fer-
mionic theory at arbitrary coupling then provides an interpo-
lation procedure between the Bogoliubov theory for the com-

to |u|. Note that Eq(28) has the same formal structure of the POSite bosons and the weak-coupling BCS theory plus

corresponding BCS expressia®), with the replacement

jnd _ /— . . .
E(k) — E(k)=\&K)?+(A%+A2%). We rewrite it accordingly
as

TA(k 22k
Gk = — &, oK) (29

iws—E(K) o+ E(K)
with the modified BCS coherence factagd(k)=1-0%(k)

=[1-&Kk)/EK)]/2.
Before making use of the asymptotic expressi@f) in

the density equatio(9), it is convenient to manipulate suit-

ably the gap equatio(0) in the strong-coupling limit. Ex-
panding 1E(k) therein as{1-A?/[2&(k)]}/ k) and evalu-
ating the resulting elementary integrals, one obtains

AZ
—— =2(\2|uleg— 2|ul). (30)
4u

Setting further 2Z=-€+ug, oOne gets the relation

A?/(4|u|)=ug quoted already after Eq&8) and (25).
Let us now consider the density equatid®). With the
BCS-like form(29) one immediately obtains

-

dk _
2m?"

2(k) (31

that holds forT < ¢, at temperatures well below the disso-
ciation threshold of the composite bosons. Similarly to what

was done to get the gap equati@0), in Eq. (31) one ex-
pands 1E(k) as{1-(A2+A3)/[2&(Kk)]H &k) and evaluates
the resulting elementary integrals, to obtain

m?a
4; (AZ+AD).

(32

Recalling the definition(27) for Ag, as well as the expres-
sions(30) and(9) for the order parameter, which we rewrite

in the form

8w

Az = m2aF Ng

(T (33

in analogy to Eq(27), the result32) eventually becomes
n=2[ng(T) +ng(T)] (34)

that holds asymptotically fof < e.

pairing fluctuations. Both these analytic limits will constitute
important checks on the numerical calculations reported in
Sec. lll. Note that inclusion of the off-diagonal fluctuation
contribution 25,(k) to the self-energy is not required to re-
cover the Bogoliubov theory in strong coupling. For this rea-
son, we will not considek},(k) altogether in the numerical
calculations presented in Sec. lll, as anticipated in (E@).

The above analytic results enable us to infer the main
features of the temperature dependence of the order param-
eter in the strong-coupling limit. In particular, the low-
temperature behaviany(T)=ny(0)—mg(kgT)?/(12c) [where
c=1/ngv,(0)/mg is the sound velocifywithin the Bogoliubov
approximation, implies thak(T) decreases from(0) with a
T? behavior, in the place of the exponential behavior ob-
tained within the BCS theory(with an s-wave order
parametexC In addition, in the present theory the order pa-
rameter vanishes over the scale of the Bose-Einstein transi-
tion temperaturd zg, while in the BCS theory it would van-
ish over the scale of the bound-state enekgy of the
composite bosons.

Note finally that the fermionic quasi-particle dispersion

~E(k), entering the expressiof29) of the diagonal Green's
function in the strong-coupling limit, contains the sum
+Aj instead of the single term? of the BCS dispersion
E(k).

E. Spectral function and sum rules

We pass now to identify the form of the spectral function
A(k,w) associated with the approximate choice of the Mat-
subara self-energy of Eql7). To this end, we need to per-
form the analytic continuation in the complex frequency
plane, thus determining the retarded fermionic single-particle
Green’s functions from their Matsubara counterparts. The ap-
proach developed in this subsection holds specifically for the
approximate choice for the self-energy of EG7). It thus
differs from the general analysis presented in the Appendix
which holds for the exact Green'’s functions, irrespective of
any specific approximation.

In general, the process of analytic continuation to the real
frequency axis from the numerical Matsubara Green’s func-
tions proves altogether nontrivial, as it requires in practice
recourse to approximate numerical methods such as, e.g., the
method of Padé approximarisWe then prefer to rely on a
procedure whereby the analytic continuation to the real fre-
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quency axis is achieved by avoiding numerical extrapola- d
k0 = [ 05 mra,0+ g - k)

tions from the Matsubara Green'’s functions. 3
o . 2
The fermionic normal and anomalous Matsubara single-

particle Green’s functions are obtained at any given coupling X {f[E(g—-k)]+b[w+E(q-k)]}
from matrix inversion of Eq(17): + vg_k Im F?][q,w —E(q - K) [~ E(q-K)]
+blw-E(q-k)]}), 41
Gulk,09 = | g £K) - 1s(k,0) womEazon) 0
wheref(x)=[exp(8x) + 1] is the Fermi distribution while
A2 1 andvi are the BCS coherence factors. To obtain the expres-
- , (35 ; ; ;
iws+ £&(K) = SooK, o) sion (41), a s_pectral representation has been also introduced
for I';; entering Eq(13), by writing
. +o0 R ’
GlZ(k’wS) - A{[st g(k) Ell(k!ws)] Fll(quy) - _ lf do’ Im Fll(qil:) ) . (42)
X [iwg+ &(K) = ook, 0] - A% (36) T 1, -
Consider first the normal Green’s functi@@6), which we  Here, the spectral function'f(q,w) is defined by
rewrite in the compact form I'14(q,iQ,— w+in), which is obtained from the definitions
(2)«4) with the replacement},— w+i# afterthe sum over
1 the internal frequencw, has been performed therein. Even
Gulk, 05 = iws— E(K) — oK, Q) (37) in the absence of an explicit Lehmann representatiot'for
° e in fact, it can be shown that the spectral representgd@n
with the short-hand notation holds provided the functiot'y;(q,i€2,— 2) of the complex
variablez is analytic off the real axis. The crucial point is to
A2 verify that the denominator in Eq2) with the replacement
011K, 09 = Z5(K, ) + . (88) iQ,—znever vanishes off the real axis. This property can be
g+ £(k) = 2ok, 09 explicitly verified in the strong-coupling limit, as discussed

below. For arbitrary coupling, we have checked it with the
help of numerical calculations. For the validity of the expres-
sion (42), it is also required thaf';4(q,2z) vanishes forlz|

— oo, This property can be proved directly from E¢@)—(4),
according to whicH'11(q,2) has the asymptotic expression

To perform the analytic continuation of this expression, we
look for a functionoy4(k,z) of the complex frequency
which satisfies the following requirements at any gikeri)
It is analytic off the real axis(ii) it reduces too;(k, w)
given by Eq.(38) whenz takes the discrete valués on the

imaginary axis(iii) its imaginary part is negativgositive) -1

for Im z>0 (Im z<0), and (iv) it vanishes wherlz| — I'i1(0,2) = % > (43
along any straight line parallel to the real axis with #m m__m -z+—-2u

#0. 4dmag 4w 4m

Once the functiorr;(k,2) is obtained, the expression and thus vanishes fdel— . OnceS,(k,2) has been ex-

1 plicitly constructed according to the above prescriptions,
GR(k,w) = . . (399 224(k,2) is obtained as %1;(k,-2) in accordance with Eq.
w+in—§&K) - ouk,0+in) (13).

(7 being a positive infinitesimakepresents thestarded(R) From the spectral representatio#0) for X;,(k,2), it can
single-particle Green's functioffor real w) associated with € further shown thak ;(k,2) vanishes whefz| — = along
the Matsubara Green’s functioi87), since it satisfies the any straight line parallel to the real axis with ¥ 0. It can
requirements of the Baym-Mermin theor&for the analytic ~ @/S0 be shown that Iii;y(k,2) <0[Im 2,(k,2) >0] when
continuation from the Matsubara Green’s function. The firstm z>0(Im z<0). This property follows from the spectral
step of the above program is to find the analytic continuatiorfépresentation ok,,(k,z), providedh(k,w) =0 in Eq. (40).

of 311(k, w9 [andS.,,(k , wJ)] off the real axis in the complex For arbitrary coupling, we have verified thak , w) =0 with
zplane. To this end, it is convenient to expréss(k , ) via  the help of numerical calculations. In the strong-coupling

the spectral form limit, this condition can be explicitly proved, as discussed
below.
** 4o’ h(K,e') From these properties &44(k,2) [and 2,,(k,2)] it can
Snuked=] —— . (40)  then be verified that the function
o T lg— w
AZ
With the replacementws—z, the spectral representation o11(k,2) =2p5(k,2) + 2 EK) + Sugk=2)" (44)

(40) defines an analytic functio®4(k ,2) off the real axis. In
the case of interest witl,(k,ws) given by Eq.(13), the satisfies the requirement®—(iv) stated after Eq(38). With
function h(k , w) of Eq. (40) reads the replacement— w+iz, Eq. (39) follows eventually on
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the real frequency axis for the retarded Green’s functiorbe droppeda priori by the presence of the small facmzﬁ'_k

GRK,w). in the strong-coupling limit, because for realthe corre-
For later convenience, we introduce the following nota-sponding energy denominators may vanish. Retaining prop-
tion on the real frequency axis erly these two additional terms indeed affects in a qualitative
R _ way the spectral functiolA(k,w) in the strong-coupling
2k, 0) =Zpk,0+in) (45 jimit, as discussed in Sec. IlI.
such thatS 4(k,~w—i7) =3 (k,-w)" and With the expression obtained by the analytic continuation
iws— z of Eq. (48), one can prove explicitly thal,(k,2z) is
ok, w) = ok, 0+i7) analytic off the real axis and vanishes lige* along any
A2 straight line parallel to the real axis with Im# 0, and that
=3R(k,w) + - = - sgrilm 344(k,2)]=-sgrlm z]. In this way, the properties of
w+in+&k) +25(-k - ) the function>,(k ,2), required to obtain the retarded Green’s

(46)  function (39) on the real axis, are explicitly verified in the

i R . strong-coupling limit.
From Eq.(40) th Is also clear thRat InEy(K, w)=-h(k, ), Once the retarded Green’s function has been obtained in
and that Re&7(k,w) and ImX7,(k,w) are related by a

the form(39) according to the above prescriptions, its imagi-

Kramers-Kronig transform. , nary part defines the spectral function
As anticipated, the properties of the functidn,(k,z), o
required above to obtain the retarded Green’s functig) Ak, o) == (1/m)Im G"(K, ). (49

on the real axis, can be explicitly verified in the strong-
coupling limit without recourse to numerical calculations. In
this case, the approximate expresgiéncan be used for;;.
This can be cast in the forii#2), with

which will be calculated numerically in Sec. Ill for a wide
range of temperatures and couplings. In the Appendix, it is
shown at a formal level thaA(k,w) satisfies the sum rule
(A6). This sum rule will be considered an important test for

o 872 | , the numerical calculations of Sec. Ill. To this end, it is nec-
Im I'4(q, @) = - Za {vé(@ oo+ Eg(a)] essary to prove that the sum rul&6) holds even for our
F approximate theory based on the Dyson’s equation.
- ud(q) dw- EB(q)]}. (47 To prove the sum ruléA6) for the approximate theory, it

. , , . is sufficient that the approxima®,,(k,z) [from which the
Entering the expressiof?7) into Eq.(41) and the resulting o4 ded Green's functio39) results whenz=w+i7] be-

expression into Eq(40), one obtains fok,(k, wg) the UM payes ag-1 for large |2 This property is verified by our
of four terms theory, as shown above. As a consequence,

8m d e *
21k, wg) = = d J de(k,w):—llmlf deR(k,w)]

mfag J (2m)3

-0 -

b[Eg(a)] + f[E(q - k)]
x{ué(Q)U§_k EB(Z) “E(q-K) - i = 1|m|:— § dow Gll(k,Z)i| =1, (50
C

o
b[E +f[-E(q-k
g_k [Es(@)]+ fl-E(g - Il where the contou€ is a half circle in the upper-half com-
Ep(q) + E(q k) ~iws plex plane with center in the origin, large radiisich that
b[- Ex(q)] + f[E(q - k)] th_e a[()jproxti_matiorGll(k ,2)~ 7z Lis valid], and counterclock-
E TE(A—K) +i wise direction.
5(@) + E(@—k) +iw Finally, the analytic continuation of the anomalous Mat-
+02(q)0? b[- Eg(q)] + f[-E(q - k)] subara single-particle Green’s functi¢®6) can be obtained
vsld)Vg—« Es(q) - E(q - K) + i by following the same procedure adopted for the normal
Green'’s function(35). One writes for the retarded anomalous

+Uu3(q)v

+ UE(Q)UE—k

(48) Green’s function
Since in strong coupling E(k)]— 0, u?— 1, andv— 0, the FR(K ) = Al + 77— £(K) = SR (K
second and fourth term within braces on the right-hand side (ko) =Aflw+in= k) - 2ak.0)] X
of the Matsubara expressi@48) may be dropped. The sim- X [w+in+&K)+3F(-k,—w)]- A%
plified expression(21) then results from Eq(48). In the (52)

strong-coupling limit, one would then be tempted to perform

the analytic continuatioiw,— z directly from the expression in the place of Eqs(39) and (46). In this case, the analytic
(21). Care must, however, be exerted on this point since th@roperties of%;(k,z)(i=1,2) discussed above imply that
processes of taking the strong-coupling limit and performingGi2(k,2) ~-A/z* asymptotically for largez. As a conse-
the analytic continuation may not commute. By performingquence, the imaginary part &f(k, w)

the analytic continuationws— z directly in Eq.(48) one, in _ R

fact, obtains two additional terms with respect to the analytic Bk, ) = = (1/m)ImF (K, ) (52
continuation of Eq(21). These two additional terms cannot satisfies the two following sum rules:
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o lated explicitly. ForQCl<|QV|<QCZ, the frequency sum is
f dwB(k,w) =0 (53) approximated with great accuracy by the corresponding nu-
merical integral, owing to the slow dependencd of on ().
and Finally, the tail of the frequency sum fdd, <|Q,| [where
. the asymptotic expressio3) yields I';;(iQ,)™?] is
_ evaluated analytically. Typically). is taken of the order of
f_w doB(k, o) =~ A. (54) the largest among the energy sca{lle§,A,|,u| ,g%/(2m), and
. _ _ k?/(2m); Q. is then taken at least ten timék . It turns out
These sum rules can be verified by introducing the conour that it is most convenient to apply this procedure to the fre-
as in Eq.(50). Note again that these sum rul@shich are  guency sum in Eq(13) after the integration over the two
proved on general grounds in the Appendix for the exachngylar variables of the wave vectgrhas been performed
anomalous retarded single-particle GRreen’s fungtiofiow  anaivtically; the remaining radial wave-vector integration is
here from our approximate form d¥"(k,w) only on the  {hen performed numerically, with a cutoff much larger than
basis of the properties of analyticity. Verifying numerically the wave-vector scaldk|, 2mA, and |/,
the sum rulegs0), (53), and(54) at any coupling and tem-  Fina|ly, the frequency sum in the particle number equation
perature will, in practice, constitute an important check on19) js evaluated by adding and subtracting the BCS Green’s
the validity of the above procedure for the analytic continu-fynction G, on the right-hand side of that equation, in order
ation. An additional numerical check on the validity of the {5 speed up the numerical convergence. Matsubara frequen-
whole procedure at intermediate-to-weak coupling will becjes are here summed numerically up to a cutoff frequency,
provided by the merging of the results, obtained by calculatheyond which the sum is approximated by the corresponding
ing the spectral functioA(k, @) when approaching. from  numerical integral. The radial part of the wave-vector inte-
below, with the results previously obtained in the normalgral in Eq.(19) is also calculated numerically up to a cutoff

—00

phasé® when approaching. from above. scale beyond which a power-law decay sets in, so that the
contribution from the tail can be calculated analytically. With
IIl. NUMERICAL RESULTS AND DISCUSSION the above numerical prescriptions, we have obtained the be-

havior of A and u vs temperature and coupling reported in
In this section we present the numerical results based oRigs. 3—6.
the formal theory developed in Sec. Il. Specifically, in Sec. Specifically, Fig. 3 shows the order parametevs tem-
Il A we present the results obtained by solving the coupledperature for different couplingg(krag)'=-0.5,0.5,1.2,
equationg19) and(20) for the order parameter and chemical from top to bottonj, in the window —1kear)™*< +1, where
potential. Section Il B deals instead with the numerical cal-the crossover from weak to strong coupling is exhausted.
culation of the spectral functio@9) in the broken-symmetry Comparison is made with the corresponding curves obtained
phase, over the whole coupling range from weak to strong.within mean field (dashed lines when the BCS Green’s
function G4, enters Eq(26) in the place of the dressed, ;.
A. Order parameter and chemical potential In the_;e plots, the temperature ig normalizgd With.respect to
i i . the critical temperatur&, for the given coupling. This com-
Before presenting the numerical results fomand u, itis  parison shows that fluctuation corrections on top of mean
Worth Out”ning brleﬂy the numel’ical procedure we haVefie|d get progressive'y important at given Coup"ng as the
adopted. At given temperature and coupling, the couplegemperature is raised towafld. Close toT,, fluctuation cor-
equationg19) and(20) for the unknowns\ andy are solved  rections become even more important upon approaching the
via the Newton’s method. This requires knowledge of thestrong-coupling limit. Near zero temperature, on the other
self-energy215(k , w) of Eq. (13), with I';4(q) obtained from  hand, fluctuation corrections become negligible when ap-
Egs. (2+4). (As anticipated, in the numerical calculations proaching strong coupling. This confirms the expectation
we neglecy, in comparison t& 5>, since inclusion oBY,  that, near zero temperature, the BCS mean field should be
is not required to recover the Bogoliubov results in therather accurate both in the weak- and strong-coupling lifnits.
strong-coupling limit, as shown in Sec. II)D. Note from Fig. 3 thatA jumps discontinuously close to
To this end, the frequency sums in E@8) and(4) are  the critical temperature when fluctuations are included on top
evaluated analytically, while the remaining wave-vector inte-of the mean field. This jump becomes more evident as the
gral is calculated numerically by the Gauss-Legendrezoupling is increased. It reflects an analogous behavior of the
method. In particular, the radial wave-vector integral extendcondensate density near the critical temperature as obtained
ing up to infinity is partitioned into an inner and an outer py the Bogoliubov theory for pointlike bosofs.In the
region, with the transformatiofp|— 1/|p| exploited in the  present theory this jump is carried over to the composite
outer region. bosons, even at fermionic couplingss in the middle panel
The bosonic frequency sum in E@L3) requires special of Fig. 3) when the composite bosons are not yet fully de-
case because of its slow convergence and the lack of ageloped. When the fermionic coupling increases beyond the
intrinsic energy cutoff within our continuum model. We have values reported in Fig. 3, however, the residual interaction
accordingly partitioned this frequency sum into three re-hetween the composite bosons decreases further and the
gions, separated by the frequency scdlgs and ()., (with  jump becomes progressively smaller. More refined theories
0<Q,, <Q). For[Q,[<Q, the frequency sum is calcu- for pointlike bosongsee, e.g., Ref. 42emove the jump of
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FIG. 4. Chemical potentigk (in units of eg) vs temperaturéin
14 f (kFalF)-1:0-5’ units of T,), for the same values of the couplingeag)™ as in
Fig. 3.
1.2t
1=~ cally in absolute value from weak to strong couplitas
4 pgf AN expected on physical groundshe relative importance of the
< 06 - \\ fluctuation corrections to the order parameter at zero tem-
04 | \ perature(over and above mean figldeaches a maximum in
02 | \ the intermediate-coupling region, never exceeding about
) \\ 30%. This results confirms again that the BCS mean field is
0 o 1 o2 3 4 5 6 a reasonable approximation to the ground state for all cou-
T, plings. _ _
Figure 6 shows the chemical potentjalat zero tempera-
ture vs the coupling parametéi-a-) L. The results obtained
e - (kear) =12 by the inclu_sion of fluctu_ationefull lines) are compared Wit_h
12l ~ the mean fielddashed lines Even for this thermodynamic
] o quantity the fluctuation corrections to the mean-field results
. N appear to be not too important at zero temperature.
g 08 \ Note, finally, that the values fok and x obtained from
06 ¢ \\ our theory aff=0 with the coupling valuékeag)™*=0 are in
0.4 | \ remarkable agreement with a recent quantum Monte Carlo
0.2 | \ calculatiort® performed for the same coupling. Our calcula-
A tion yields, in fact,A/e-=0.53 andu/e-=0.445, to be com-

FIG. 3. Order parametek (in units of eg) vs temperaturgin
units of Ty) for different values of the couplingkrar) L. Results
obtained by the inclusion of fluctuatioriull lines) are compared
with mean-field resultgsdashed lines

pared with the valuea/e-=0.54 andu/e-=0.44+0.01 of
Ref. 43.(In contrast, the BCS mean field yieldd ez=0.69
and u/ e=0.59.

In summary, the above results have shown that, for ther-
modynamic quantities lik&\ and u, fluctuation corrections
to mean-field values in the broken-symmetry phase are im-
portant only as far as the temperature dependence is con-

the bosonic condensate density, which thus should be consi@erned, while at zero temperature the mean-field results are

ered as an artifact of the Bogoliubov approximation. Apartreliable.

from this jump, note that when the temperature is decreased 5
below T, the order parametex grows more rapidly with the
inclusion of fluctuations than within the mean field.

Figure 4 shows the chemical potentjalvs temperature
for the same coupling values of Fig. 3. Note that in weak
coupling the chemical potential decreases slightly upon mov-
ing deep in the superconducting phase frogto T=0, in
agreement with the BCS behavior. In strong coupling the
opposite occurs, reflecting the behavior of the bosonic
chemical potentialg=2u+ €, within the Bogoliubov theory.

It should be, however, mentioned that with improved bosonic
approximationg? the bosonic chemical potential would
rather decrease upon entering the condensed phase.

Figure 5 shows the order paramefeat zero temperature
(full line) and the corresponding mean-field val(gashed

A(T=0)/er
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B. Spectral function

For a generic value of the coupling, calculation of the
imaginary part of the retarded self-energy B (k,w) 2
=-h(k,w) [with h(k,w) given by Eq.(41)] requires us to &
obtain the imaginary part of the particle-particle lad@&; G P (b)
on the real-frequency axis, as determined by the formal re- S 1= -
placement iQ),—w+in in the Matsubara expressions
(2—(4). After performing the frequency sum therein, the
wave-vector integrals of Eq$3) and (4) for the functions
Xij(@,iQ,— w+inl(i,j)=1,2] are evaluated numerically, 0
by exploiting the properties of the delta function for the 0 1 2 3
imaginary part and keeping a finite albeit small valuen6f a/ke
=108V u?+A?) for the real part.

Direct numerical calculation of the imaginary part of the
particle-particle ladder fails, however, when this part has the
structure of a delta function for real at givenq. This occurs (kea )-1=0 5 /
when the determinant in the denominator of E?).vanishes 47 FeF ' 1
for real w. To deal with this delta function, let us first con- s
sider the casel'=0 for which three cases can be distin- & 97
guished, according to(i) a<0 and u>0 (weak-to- T - (c)
intermediate coupling (ii) a=>0 and w>0 (intermediate 8 2¢ 1
coupling, (iii) ag>0 andu <0 (intermediate-to-strong cou-
pling). The curvesw(q) where the(analytic continuation of 1t
the) determinant in the denominator of E@) vanishes are
shown (full lines) for these three cases in Figs@~7(c), 0
respectively. In these figures we also show the boundaries 0 1 2 3
(dashed lines delimiting the particle-particle continuum, alke
where the imaginary part of the particle-particle ladder is
nonvanishing and reguldin the sense that it does not have  FIG. 7. Dispersionw(q) of the pole of ', (q, ) at T=0 (full
the structure of a delta functipnAt finite temperature, the lines) and boundary of the particle-particle continuuashed
sharp boundary of the particle-particle continuum smearénes) for three characteristic couplings.
out, owing to the presence of Fermi functions after perform-
ing the sum over the Matsubara frequencies in Egsand  with smooth Lorentzian functions instead of tidunction
(4). The Fermi functions produce, in fact, a finitalbeit  peaks*
exponentially small with temperatyreénaginary part of the As a further consistency check on our numerical calcula-
particle-particle ladder also below tl@asheglboundaries of tions, we have sistematically verified that the three sum rules
Fig. 7, resulting in a Landau-type damping of the (50), (53), and(54) are satisfied within numerical accuracy,
Bogoliubov-Anderson modes(q). In addition, the finite for all temperatures and couplings we have considered.
imaginary part broadens th&function structure centered at The imaginary and real parts of the retarded self-energy
the curvesw(q) of Fig. 7, turning it into a Lorentzian func- of(k,®) obtained from Eq(46) are shown, respectively, in
tion. In practice, our numerical calculation takes advantagé-igs. 8 and 9 as functions of frequency at different tempera-
of this broadening occurring at finite temperature, and dealtures and for different couplinggbout the crossover region
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FIG. 8. Imaginary part of the self-energ;}fl for |k|:kM, VS FIG. 9. Real part of the self-ener@p;ie1 for |k\:kﬂy vs frequency
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values(kgag)"t=-0.5(a), 0.1 (b), and 0.5(c). (keag)1=-0.5 (@), 0.1 (b), and 0.5(c).

[which is responsible for the pseudogap suppression in
A(k,w) at T.] would produce a narrow peak structure in
about =0 upon Ilowering T, since

of interesj. The magnitude of the wave vecthris taken in
Figs. 8 and 9 at a special valgdenoted byk,,), which is

identified from the behavior of the ensuing spectral functionA(K,’, )
A(k,w) when performing a scanning over the wave vectorRe 25 (k,, ) -3 vanishes whildim 3% (k,,, w)| becomes

(see Fig. 12 beloy Accordingly,k, is chosen to minimize progressively smaller. The presence of the second term on
the gap in the spectral function, in agreement with a standarthe right-hand side of Eq46), however, gives rise to a nar-
procedure in the ARPES literature. On the weak-couplingow peak in Imahy(k, ,») aboutw=0, as seen from Fig.
side(when the the self-energy shifi discussed in Sec. Il B 8(a), resulting in a depression #f(k,:, w) aboutw=0. [This
is_included in our calculation k, coincides with occurs barring a small temperature range closg:favhere
V2m(u—3). On the strong-coupling sidevhen .« becomes  the second term on the right-hand side of Ef) is not yet
negativg one takes insteakl,  =0. well developed. At larger couplinggwhen u<0), the first

For all couplings here considered, the progressive evoluterm on the right-hand side of E¢6) would not produce a
tion found in A(k,w) (from the presence of a pseudogap peak inA(k=0,w) aboutw=0 upon lowering the tempera-
aboutw=0 atT, to the occurrence of a superconducting gapture, becauséu|+ReST,(k=0,w) does not correspondingly
near zero temperaturstems from the interplay of the two vanish in this case even though Iﬁ‘fl(k:O,w) does. In
contributions in Eq(46) to the imaginary part o (k , ) addition, in this case the second term on the right-hand side
about w=0. Specifically, for intermediate-to-weak coupling of Eq. (46) does not produce a peak A(k=0,w) aboutw

(with > 0) the first term on the right-hand side of E¢6)  =0.
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FIG. 11. Temperature dependence of the total weight of the
spectral function at negative frequencies for different coupling val-
ues about the crossover region.

i
i ] sponding counterpart at positive frequengiedor
i intermediate-to-weak coupling is associated with the two
i dips in Im a?l symmetrically located about zero frequency
I [see Figs. &) and &b)]. In strong coupling, instead, the
143 coherent peak results from a delicate balance between the
] real and imaginary parts cxi".fl near the boundary of the
region where Iz =0.
0 : An interesting fact is that the weights of the negative and
2-15-1-050 05 1 15 2 positive frequency parts of the spectrum turn out to be sepa-
o/eg rately (albeit approximatively constant as functions of tem-
perature for given coupling, as shown in Fig. 11 for three
characteristic couplings. This implies that, for a given cou-
| pling, the coherent peak fan<0 grows at the expenses of
! the accompanying broad pseudogap feature upon decreasing
| the temperature.
i The result that the total area foregativew should be
: i 1(0) (approximately constant as a function of temperature can be
!
!

Al o)er

05 | At

realized also from the analytic results in the extreme strong-
| coupling limit discussed in Sec. Il D. Taking the analytic
=N continuation of the Matsubara Green’s functi@®) (which

2

A, o)er

....... is appropriate in the strong-coupling limit as far as this total

2 18 1 ) ‘5 (') 0'5 1 15 2 area is concerned, as it will be shown bejawsults, in fact,
: ' ) : : in the total weighf?(k) of the w <0 region being indepen-
WEr dent of temperature, since the combinatidh+ A3 entering

FIG. 10. Spectral function fok|=k, vs frequencyin units of ~ the expression oE(k) is proportional to the total density in
er) at different temperatures for the coupling valubgaz)™  this limit [see Eq(32)].
=-0.5(a), 0.1(b), and 0.5(c). Returning to Fig. 10, it is also interesting to comment on

the positions of the pseudogap feature and the coherent peak

Figure 10 shows the resulting spectral functilk ,w) vs  as functions of temperature for given coupling. The position
o for |K| =k, at different temperatures and couplings. In all of the coherent peak depends markedly on temperature, shift-
cases, al there occurs only a broad pseudogap feature boting progressively toward more negative frequencies as the
for >0 and w<0. (For photoemission experiments only temperature is lowered. In particular, for weak-to-
the casew< 0 is relevant, so that we shall mostly commentintermediate coupling the position of the coherent peak about
on this case in the followiny.A coherent peak is seen to coincides with(minusg the value of the order paramet&r In
grow on top of this broad pseudogap feature as the temperéhe strong-coupling regio(whereu <0), on the other hand,
ture is lowered belowl.. When zero temperature is eventu- its position is about at vA?+u?. This remark entails the
ally reached, the pseudogap feature is partially suppressed possibility of extracting two important quantities from the
favor of the coherent peak, which thus absorbs a substantiémperature evolution of the coherent peak in the spectral
portion of the spectral intensity. This interplay between thefunction. (i) The frequency position of this peak when ap-
broad pseudogap feature and the sharp coherent peak resuyiteaching T, determines whethep is positive (when the
in a characteristic peak-dip-hump structure, which is bespeak position approaches=0) or negative(when the peak
recognized from the features for weak-to-intermediate couposition approaches |z|), corresponding to weak-to-
pling. Generally speaking, this coherent p&akd its corre- intermediate coupling and strong coupling, respectiv@iy.
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FIG. 12. Spectral function at different wave vectors ablout
for T=0.6T. vs frequency(in units of e-) for the coupling value
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In both cases, the temperature dependence of the order pa-
rameter can be extracted from the frequency position of the
coherent peak.

The above results for the coherent peak contrast some-
what with the position of the pseudogap feature by decreas-
ing temperature below,, also determined from Fig. 10. The
broad pseudogap feature does not depend sensitively on tem-
perature for all couplings shown in this figure. This indicates
that the broad pseudogap feature does not relate to the order

parameter belowr. o FIG. 13. (a) Positions of the coherent peakis units of e) vs

As far as the spectral function is concerned, one of thene wave vector as extracted from Fig. 12. Posiisguares and
key results of our theory is thus the presenceved struc-  negative(circles branches are compared with BCS-like dispersions
tures (coherent peak and pseudogaphich behave rather (full lines), as explained in the textb) Corresponding weights vs
independently from each other as functions of temperaturéhe wave vector, with particlelikéfull line) and holelike(dashed
and coupling. This result, which is also evidenced by thdine) contributions.
behavior of the experimental spectra in tunneling experi-
ments on cuprate’$, originates in our theory from the pres- »<0 absorbing most of the total weight. The situation is
ence of two distinct contributions to the self-energy, namelyreversed wherk/k,,>1. Whenk/k, =1 the spectrum is
the BCS and fluctuation contributions of EG.7). While the  (abouyj symmetric betweerw and -w. In addition, when
broad pseudogap feature B& T, develops with continuity following the position of the coherent peak @t 0 starting
from the only feature present at> T, the coherent pegher ~ from k/k,, <1, one sees that this position moves toward
sewould be present in a BCS approach even in the absendacreasingw, reaches a minimum distance frow=0, and
of the fluctuation contribution. This remark, of course, doesbounces eventually back to more negative values.ofhe
not imply that the two contributions to the self-energy of Eqg.value of the minimum distance from=0 identifies an en-
(24) are totally independent from each other. They both deergy scaleA,. At the same time, the weight of the coherent
pend, in fact, on the value of the order parametevhich is,  peak atw<0 progressively decreases for increaskig,,
in turn, determined by both self-energy contributions via thestarting fromk/k,, <1. Whenk/k,, becomes larger than
chemical potential. unity, the weight of the coherent peak is transferred from

In addition to the presence of two structures at negative negative to positive frequencies. This situation is character-
in A(k,w), from Fig. 10 one also notes a clear asymmetryistic of the BCS theory, where only the coherent peaks are
between negative and positiveo especially in the present without the accompanying broad pseudogap features.
intermediate-coupling region of interest. This feature hagOur calculation shows that this situation persists also for
been observed experimentally in tunneling spetiand re-  couplings values inside the crossover region, where the pres-
cently addressed theoretically along diffeférend relatetf  ence of the pseudogap feature is well manifest due to strong
lines to our work. superconducting fluctuationgSufficiently far from the un-

A further important feature that can be extracted from ourderlying Fermi surface, the coherent peak and the pseudogap
calculation of the spectral function is the evolution of thefeature merge into a single structure, as is evident from Fig.
coherent peak for varying wave vector at fixed temperaturd2. In this case, the above as well as the following consid-
and coupling. Figure 12 repors(k,w) vs o for different  erations apply to the structure as a whole and not to its indi-
values of the ratick/k,, about unity when(kzag)™*=-0.5  vidual components.
and T/T.=0.6. Here, k/k, =1 identifies the underlying Figure 13a) summarizes this finding for the dispersion of
Fermi surface that represents the “locus of minimum gap.the coherent peaks, by showing the positions of the two co-
When k/k, <1, there is a strong asymmetry between theherent peaks as extracted from Fig. 1k, . These posi-
two coherent peaks ab<0 and w>0, with the peak at tions are compared with the two branche$@)2+Aﬁ1 of a

weight

0 L L L L L L L L
0 02040608 1 121416138
ik,
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FIG. 15. Spectral function vs frequency ftkeag)1=2.0 and
FIG. 14. Positiom, (in units of ) of the quasiparticle peak at  T/T,=0.1, obtained by taking alternatively the analytic continuation
T=0.1T, vs the couplingkeag)~* (full line). The dashed line cor- of 3, from the expressio48) (full line) or from the expression
responds to the value of the order parameétewhen x>0 and of  (23) (broken ling.
VAZ+ 42 when 1 <0.

takes the analytic-continuation of these expressions to real

BCS-like dispersion, wherd, is also identified from Fig. frequency

12. (The value ofA,, turns out to about coincide with the . o
value of the order parametdr at the same temperature, see To mz_ike _ewdent the noncommutativity of the two pro-
below) The corresponding evolution of the weights of these®®SS€S: "_‘1':'9' 15 we show the spectral funciék=0,w)
peaks is shown in Fig. 1B), where the characteristic feature fOF (ke@r)”"=2.0 andT/T.=0.1, obtained by two alternative
of an avoided crossing is evidenced. The dispersion of th&1ethods.(i) Using the analytic continuation of the expres-
positions and weights of the coherent peaks shown in Fig. 180N (48) for %, whereiws— w+i# (full line). (i) Taking
compare favorably with those recently obtainedthe strong-coupling expressia23) for %y;, in which the
experimentall§® for slightly overdoped Bi2223 samples be- analytic continuatiomws— w+iz is performedbroken ling.
low the critical temperaturéfor T/T,=0.6). Method(i) results in the presence tfo distinct structures in
An additional outcome of our calculation is reported in AK,®) for @<0, corresponding to the cohere(#-like)
Fig. 14, where the distancA,, of the coherent peak in Peak and the broad pseudogap feature. Metfiogjives in-
Ak, ) from »=0 at|k|=k, is compared at low tempera- stead asingle &-like peak. It is interesting to note that the
ture with the order parameteA when x>0 and with total spe_ctral weight of the two _peaks fa_>r<0 obtained _by
2+ A2 whenu < 0. This plot thus compares dynamical and Method(i) (=0.049 for the coupling of Fig. J%about coin-
thermodynamic quantities. The good agreement between tifddes with the weight of thé-like peak(=0.044 obtained by
two curves confirms our identification of the coherent-peakmMethod(ii). (We have verified that this correspondence be-
position in A(k,w) with the minimum value of the excita- tween the spectral weights persists also at stronger cou-
tions in the single-particle spectra according to a BCS-like?lings) ) )
expression(where the value of the order parametkris, These remarks explain the occurrence of a single feature

however, obtained by including also fluctuation contribu-in the spectral function as obtained by a different theory
tions). based on a preformed-pair scendfidn that theory, a single-

Finally, it is interesting to comment on the strong- partic_:le Gre_en’s function with a double-fraction structure_is
coupling resul(28) for the diagonal Green’s function, with a considered in th_e Matsupara representation for any couplllng,
characteristic double-fraction structure. The correspondingnd correspondingly a single feature in the spectral function
spectral functiorA(k , w), obtained from that expression after 1S obtained for real freqqenué%.Our theory instead shows
performing the analytic continuatioiw,— w+i7, shows (e appearance of two distinct energy scafeseudogap and
only a single feature for w<0, with a temperature- order parametgrin the spectral function below.. We are
independent position. This contrasts the numerical results wiUS 1€d to conclude that the occurrence of two distinct en-
have presentefsee, in particular, Fig. 10This difference is €9y Scales below, in photoemission and tunneling spectra
due to the fact that, in our numerical calculation, the analytic,f'hou_Id _”‘3'[ be necessarily associated with the presence of an
continuation has been properly performeeforetaking the  €xtrinsic” pseudogap due to additional non-pairing mecha-
strong-coupling limit, as emphasized in Sec. Il E. With thisMSMS, as sometimes reported in the literafire.
procedure, in fact, the pseudogap structure and the coherent
peak'rem.air) di§tinct from_ each othe_r even _in the strong- IV. CONCLUDING REMARKS
coupling limit, without getting lumped into a single feature.

Such a noncommutativity of the processes of taking the ana- In this paper, we have extended the study of the BCS-
lytic continuation and the strong-coupling limit was noted BEC crossover to finite temperatures bel®w This has re-
already in a previous papgérwhen studying the spectral quired us to include(pairing) fluctuation effects in the
function aboveT,. More generally, the occurrence of this broken-symmetry phase on top of mean field. Our approxi-
noncommutativity is expected whenever one considers apnations have been conceived to describe both a system of
proximate expressions in the Matsubara representation arsliperconducting fermions in weak coupling and a system of
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condensed composite bosons in strong coupling, via the sim- APPENDIX: ANALYTIC CONTINUATION FOR THE

plest theoretical approaches valid in the two limits. These are FERMIONIC RETARDED SINGLE-PARTICLE GREEN'S

the BCS mean fieldplus superconducting fluctuations FUNCTIONS AND SUM RULES BELOW THE

weak coupling and the Bogoliubov approximation in strong CRITICAL TEMPERATURE

coupling. To this end, analytic results have been specifically |, this appendix, we extend below the critical temperature
obtained in strong coupling from our general expression of; gtandard procedure for obtaining at a formal level the fer-
the fermionic self-energy. mionic retarded single-particle Green’s functions via analytic

Results of numerical calculations have been presentegontinuation from their Matsubara counterparts. This is done
both for thermodynamic and dynamical quantities. The lattefn terms of the Lehmann representafidand of the Baym-
have been defined by a careful analytic continuation in thevlermin theorenf? In this context, in addition to the usual
frequency domain. In this context, a noncommutativity of thesum rule that holds also above the critical temperattivee
analytic continuation and the strong-coupling limit has beerwill obtain two additional sum rules that hold specifically
pointed out. below the critical temperature.

Results for thermodynamic quantitiésuch as the order The results proved in this appendix ha®actly irrespec-
parameter and chemical potenfifdave shown that the ef- tive of the approximations adopted for the Matsubara self-
fects of pairing fluctuations over and above the BCS mear@nergy. To satisfy the above three sum rules with an approxi-
field become essentially irrelevant in the zero-temperatur&ate choice of the self-energy, however, ingt required for
limit, even in strong coupling. Results for a dynamical quan-the ensuing approximation to the fermionic single-particle
tity such asA(k,w) have shown, in addition, that two struc- Green’s functions to be “conserving” in the Baym seffse.
tures(a broad pseudogap feature that survives abivand Rather, it is sufﬂmen; that the analytic continuation frpm the
a strong coherent peak which emerges only belyware Matsubara frequencies to the real frequengy axis is ta_k_en
present simultaneously, and that their temperature and Cog_roperly, as demonstrated in Sec. Il E with the specific

: . .~ Choice(16) of the self-energy.
ggg%nbdeehnivgg;Zr:CLaglﬁ:en though not completglyn We begin by considering the fermionic “normal” and

“anomalous” retarded single-particle Green’s functions in

These features produced in the spectral function by ouf o broken-symmetry phase, defined, respectively, by
theory originate from a totallyntrinsic effect, namely, the ' ' '

occurrence of a strong attractive interacti@mespective of GR(r.t;r' t')=—iat —t’)<{wT(r,t),¢/ﬁ(r’,t’)}} (A1)
its origin). Additional features produced by othektrinsic
effects could obviously be added on top of the intrinsic ef- FRI G ) = =16t =) g (r,0), 0, (r 1)), (A2)

fects here considered.
Similar results have recently been obtained in Ref. 52Here, 6(t) is the unit step functiony,(r ,t) is the fermionic
using a boson-fermion model for precursor pairing befow  field operator with spino=(T, |) at positionr and (real)
In that reference, a two-peak structure f&k ,w) has also time t [such thaty,(r,t)=expiKt) ¢, (r)exp(-iKt) with K
been obtained, although with a self-energy correction intro=H-uN in terms of the system Hamiltonia and the par-
duced by a totally different method. ticle numbem], the braces represent an anticommutator, and
The attractive interaction adopted in this paper is the sim{ **) stands for the grand-canonical thermal average.
plest one that can be considered, depending on a single pa- The Matsubara counterparts of Eqél1) and (A2) are
rameter only. Detailed comparison of the results of thisSimilarly defined by
theory with experiments on cuprates would then require one o — T
to specify the dependence of this effective parameter on tem- G mr’,m) = ~(T L (1, D (', 7)), (A3)
perature and doping. o o
The simplified model that we have adopted in this paper Firmr', o) ==(T: Ly (r, Dy (', 70D, (A4)
should instead be considered realistic enough for studyingihere now ¢, (r, 7)=expK7) ¢, (r)exp-K7), Y,
theoretically the BCS-BEC.crossover for_ Fermi atoms in a,zex;iKT)sz(r)exp(—Kr), andT. is the time-ordering opera-
trap. The occurrence of this crossover in these systems Br for imaginary timer.
bging rather actively s_tudied experimentally_at preséin. The Lehmann analysis for the normal functiGf in the
this case, the.calculatlo'n should a]so _take into account thBroken-symmetry phase proceeds along similar lines as for
external trapping potential by considering, e.g., a local veryne normal phas® The result is thatfor a homogeneous
sion of our thgory with local values of the density and Chem"syster‘r) the wave vector an¢rea)) frequency Fourier trans-
cal potential in the trap? form can be obtained by the spectral representation

GR(k,w):f PR T (A5)
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oo By a similar token, considering the Matsubara anomalous
f do Ak,w) =1 (AB)  Green’s function leads to the spectral representation
for any givenk, as a consequence of the canonical anticom- B(k ")
mutation relation of the field operators. F(k, 09 = Giok, ws) = o (A10)

A similar analysis for the Matsubara normal Green'’s func-
tion leads to the spectral representation

where the off-diagonal Nambu Green’s function has been
AK, o) introduced. These considerations suffice again to guarantee
G(k,ws) = Gy1(k, wg) = J —, (A7) that the retarded anomalous function is the correct analytic
e continuation of its Matsubara counterpart in the upper-half
in terms of thesamespectral functiomA(k , ) of Eq. (A5), compl_ex frequenocy plane, in accordance with the Baym-
where v =(2s+ 1)/ B (s intege) is a fermionic Matsubara Mermin theorent?
frequency and the diagonal Nambu Green’s function has Finally, an additional sum rule foB(p,w) can be ob-
been introduced. The spectral representatig and(A7),  t@ined by using the relation
together with knowledge of the asymptotic behavior -
GR(k,w)~ w™* for large ||, are sufficient to guarantee that J do B(K, ) = if d_‘"FR(k’w)w eion

the retarded normal function is the correct analytic continu-J_,, o 27
ation of its Matsubara counterpart in the upper-half of the
complex frequency plan®,in accordance with the Baym- fdr gk I(r,t= ") 0,(0)
Mermin theorent? at .
The above Lehmann analysis can be extended to the (A11)
anomalous functioifA2) as well. One obtains
B(k,w') and exploiting the equation of motion for the field operator.
Rk, w) = f ’w o +ip (A8) For the contact potential we are considering throughout this

paper, we write

in the place of Eq(A5). The new spectral functioB(k , w) .
vanishes for largéw| but, in general, is no longer real and M #(0) { ) == vodr)(n (N (r)) = = 8(r)A
positive definite.[One obtains foB(k,w) the same formal at ¥ 0 [ANaE

expressioff for Ak, w) in terms of the eigenstatés) of the (A12)
operatorsH andN, apart from the replacement ﬁh’m(r

=0)|m)|? with {n[¢, (r =0)[n"){n’[14;(r =0)|n).]>* It can then be  in terms of the order parametar The expressiofA1l) thus
readily verified thaB(k , w) satisfies the sum rule becomes

L de B(k,) =0, (A9) f " doBlk,wo= - A. (A13)

which is again a consequence of the canonical anticommuta-
tion relation of the field operators. The above propertiesThis constitutes a third sum rule for the spectral functions in
guarantee thaR(k , w) vanishes faster than™ for large|w|.  the broken-symmetry phase.
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