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The BCS-BEC crossover is studied in a systematic way in the broken-symmetry phase between zero tem-
perature and the critical temperature. This study bridges two regimes where quantum and thermal fluctuations
are, respectively, important. The theory is implemented on physical grounds, by adopting a fermionic self-
energy in the broken-symmetry phase that represents fermions coupled to superconducting fluctuations in weak
coupling and to bosons described by the Bogoliubov theory in strong coupling. This extension of the theory
beyond mean field proves important at finite temperature, to connect with the results in the normal phase. The
order parameter, the chemical potential, and the single-particle spectral function are calculated numerically for
a wide range of coupling and temperature. This enables us to assess the quantitative importance of supercon-
ducting fluctuations in the broken-symmetry phase over the whole BCS-BEC crossover. Our results are rel-
evant to the possible realizations of this crossover with high-temperature cuprate superconductors and with
ultracold fermionic atoms in a trap.
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I. INTRODUCTION

In the BCS to Bose-Einstein condensation(BEC)
crossover,1–10 largely overlapping Cooper pairs smoothly
evolve into nonoverlapping composite bosons as the fermi-
onic attraction is progressively increased. These two physical
situations(Cooper pairs vs composite bosons) correspond to
the weak- and strong-coupling limits of the theory, while in
the interesting intermediate-coupling regime neither the fer-
mionic nor the bosonic properties are fully realized. Under
these circumstances, the theory is fully controlled on the
weak- and strong-coupling sides, while at intermediate cou-
pling an interpolation scheme results(as for all crossover
approaches). These physical ideas are implemented, in prac-
tice, by allowing for a strong decrease of the chemical po-
tential at a given temperature when passing from the weak-
to the strong-coupling limit.

The BCS-BEC crossover can be considered both below
(broken-symmetry phase) and above(normal phase) the su-
perconducting critical temperature. In particular, in the nor-
mal phase preformed pairs exist in the strong-coupling limit
up to a temperatureT* corresponding to the breaking of the
pairs, while coherence among the pairs is established when
the temperature is lowered below the superconducting criti-
cal temperatureTc. This framework could be relevant to the
evolution of the properties of high-temperature cuprate su-
perconductors from the overdoped(weak-coupling) to the
underdoped (strong-coupling) regions of their phase
diagram.11 The BCS-BEC crossover can be also explicitly
realized with ultracold fermionic atoms in a trap, by varying
their mutual effective attractive interaction via a Fano-
Feshbach resonance.12

The BCS-BEC crossover has been studied extensively in
the past, either atT=0 or for TùTc. At T=0, the solution of
the two coupled BCS(mean-field) equations for the order
parameterD and the chemical potentialm has been shown to
cross over smoothly from a BCS weak-coupling supercon-
ductor with largely overlapping Cooper pairs to a strong-
coupling superconductor where tightly bound pairs are con-

densed in a Bose-Einstein(coherent) ground state.1,2,13 For
this reason, the BCS mean field has often been considered to
be a reliable approximation for studying the whole BCS-
BEC crossover atT=0. At finite temperature, the increasing
importance in strong coupling of the thermal excitation of
collective modes(corresponding to noncondensed bosons)
was first pointed out by Nozières and Schmitt-Rink.3 By
their approach, the expected result that the superconducting
critical temperature should approach the Bose-Einstein tem-
peratureTBE in strong coupling was obtained(coming from
above Tc) via a (first-order) inclusion of thet-matrix self-
energy in the fermionic single-particle Green’s function. The
same type oft-matrix approximation(also with the inclusion,
by some authors, of self-consistency) has then been widely
adopted to study the BCS-BEC crossover aboveTc, both for
continuum5 and lattice models.14–17

Despite its conceptual importance, a systematic study of
the BCS-BEC crossover in the temperature range 0,T,Tc
is still lacking. A diagrammatic theory for the BCS-BEC
crossover that extends belowTc the self-consistentt-matrix
approximation was proposed some time ago by Haussmann.5

The ensuing coupled equations for the order parameter and
chemical potential were, however, solved explicitly only at
Tc,

18 leaving therefore unsolved the problem of the study of
the whole temperature region belowTc. The work by Levin
and co-workers,19 on the other hand, even though based on a
“preformed-pair scenario,” has focused mainly on the weak-
to-intermediate coupling region, where the fermionic chemi-
cal potential remains inside the single-particle band. An ex-
tension of the self-consistentt-matrix approximation to the
superconducting phase for a two-dimensional lattice model
was considered in Ref. 20. In that paper, however, the shift
of the chemical potential associated with the increasing cou-
pling strength was ignored, by keeping it fixed at the nonin-
teracting value.21 The results of Ref. 20 are thus not appro-
priate to address the BCS-BEC crossover, for which the
renormalization of the chemical potential(that evolves from
the Fermi energy in weak coupling to half the binding energy
of a pair in strong coupling) plays a crucial role.1–3 Addi-
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tional studies have made use of a fermion-boson model,22

especially in the context of trapped Fermi gases.23

The purpose of the present paper is to study the BCS-BEC
crossover in the superconducting phase over the whole tem-
perature range fromT=0 to T=Tc, thus filling a noticeable
gap in the literature. We will consider a three-dimensional
continuum model, for which the fermionic attraction can be
modeled by a point-contact interaction. As noted in Refs. 5
and 10, with this model the structure of the diagrammatic
theory for the single-particle fermionic self-energy simplifies
considerably, since only limited sets of diagrammatic struc-
tures survive the regularization of the contact potential in
terms of the fermionic two-body scattering lengthaF.10,24

The dimensionless interaction parameterskFaFd−1 [where the
Fermi wave vectorkF is related to the density vian
=kF

3 / s3p2d] then ranges from −̀ in weak coupling to +̀ in
strong coupling. The crossover region of interest is, however,
restricted in practice byskFuaFud−1&1.

For this model, a systematic theoretical study of the evo-
lution of the single-particle spectral function in the normal
phase from the BCS to BEC limits has been presented
recently.25 As in Ref. 3, in Ref. 25 the coupling of a fermi-
onic single-particle excitation to a(bosonic) superconducting
fluctuation mode was also taken into account by thet-matrix
self-energy. This approximation embodies the physics of a
dilute Fermi gas in the weak-coupling limit and reduces to a
description of independent composite bosons in the strong-
coupling limit. In this way, single-particle spectra were ob-
tained in Ref. 25 as functions of coupling strength and tem-
perature.

In the present paper, thet-matrix approximation for the
self-energy is suitably extended belowTc. In particular, the
samesuperconducting fluctuations, that in Refs. 3 and 25
were coupled to fermionic independent-particle excitations
above Tc, are now coupled to fermionic BCS-like single-
particle excitations belowTc. In the strong-coupling limit, it
turns out that these superconducting fluctuations merge in a
nontrivial way26 into a state of condensed composite bosons
described by the Bogoliubov theory, and evolve consistently
into a state of independent composite bosons aboveTc (as
the Bogoliubov theory for pointlike bosons does27). In this
way, a direct connection is established between the structures
of the single-particle fermionic self-energy aboveandbelow
Tc, as they embody the same kind of bosonic mode which
itself evolves with temperature.

A comment on the validity of the Bogoliubov theory at
finite temperature(and, in particular, close to the Bose-
Einstein transition temperatureTBE) might be relevant at this
point. A consistent theory for adilute condensed Bose gas
was developed long ago in terms of a(small) gas
parameter,28,29 of which the Bogoliubov theory30 is only an
approximate form valid at low enough temperatures(com-
pared withTBE). That theory also correctly describes the di-
lute Bose gas in the normal phase,29 whereas the Bogoliubov
theory(when extrapolated above the critical temperature) re-
covers the independent-boson form(albeit in a nonmono-
tonic way, with a discontinuous jump affecting the bosonic
condensate27). It would therefore be desirable to identify(at
least in principle) a fermionic theory that, in the strong-
coupling limit of the fermionic attraction, maps onto a more

sophisticated bosonic theory, overcoming the apparent limi-
tations of the Bogoliubov theory. In practice, however, it
should be considered already a nontrivial achievement of the
present approach the fact that the bosonic Bogoliubov ap-
proximation can be reproduced from an originally fermionic
theory. For these reasons, and also because it is actually the
intermediate-coupling(crossover) region that is of the most
physical interest, in the following we shall consider the Bo-
goliubov approximation as a reasonable limiting form of our
fermionic theory.

As it is always the case for the BCS-BEC crossover ap-
proach, implementation of the theory developed in the
present paper rests on solving two coupled equations for the
order parameterD and the chemical potentialm. The equa-
tions here considered forD andm generalize the usual equa-
tions already considered at the mean-field level1–3 by includ-
ing fluctuation corrections. Our equations reproduce the
expected physics in the strong-coupling limit, at least at the
level of approximation here considered. Their solution pro-
vides us with the values ofD andm as functions of coupling
strengthskFaFd−1 and temperatureT, thus extending results
obtained previously at the mean-field level. In particular, the
order parameter is now found to vanish at a temperature
(close to) Tc even in the strong-coupling limit, while it would
had vanished close toT* at the mean-field level.31

The analytic continuation of the fermionic self-energy to
the real frequency axis is further performed to obtain the
single-particle spectral functionAsk ,vd, that we study in a
systematic way as a function of wave vectork, frequencyv,
coupling strengthskFaFd−1, and temperatureT. In this con-
text, two sum rules(specific to the broken-symmetry phase)
are obtained, which provide compelling checks on the nu-
merical calculations. In addition, the numerical calculations
are tested against analytic(or semianalytic) approximations
obtained in the strong-coupling limit. The study of a dynami-
cal quantity such asAsk ,vd enables us to attempt a compari-
son with the experimental angle-resolved photoemission
spectroscpy(ARPES) and tunneling spectra for cuprate su-
perconductors belowTc, for which a large amount of data
exists showing peculiar features for different doping levels
and temperatures. As in Ref. 25 aboveTc, this comparison
concerns the experimental data about theM points in the
Brillouin zone of cuprates especially, where pairing effects
are supposed to be stronger than along the nodal lines.

Our main results are as follows. As far as thermodynamic
quantities are concerned, we will show that fluctuation cor-
rections over and above mean field are especially important
at finite temperatureT&Tc when approaching the strong-
coupling limit. At zero temperature, fluctuation corrections to
thermodynamic quantities turn out to be of some relevance
only in the intermediate-coupling region. This supports the
expectation2 that the BCS mean field at zero temperature
should describe the BCS-BEC crossover rather well essen-
tially for all couplings. Regarding instead dynamical quanti-
ties such asAsk ,vd, our calculation based on a “preformed-
pair scenario” reveals two distinct spectral features forv,0.
These features, which have different temperature and doping
dependences, together give rise to a peak-dip-hump structure
which is actively debated for the ARPES spectra of cuprate
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superconductors. Our results differ from those previously ob-
tained by other calculations19 also based on a “preformed-
pair scenario,” where a single feature was instead obtained in
the spectral function forv,0. An explanation of this dis-
crepancy between the two calculations will be provided. It
will also turn out from our calculation that the coherent part
of Ask ,vd for v,0 essentially follows a BCS-like behavior
as far as its wave-vector dependence is concerned, albeit
with a gap value which contains an important contribution
from fluctuations at finite temperature. The same BCS-like
behavior is not found, however, by our calculation for the
dependence of the spectral weight of the coherent peak on
temperature and coupling. This evidences a dichotomy in the
behavior ofAsk ,vd, according to which of its dependences
one is after. Such a dichotomy is clearly observed in experi-
ments on cuprate superconductors, in good qualitative agree-
ment with the results obtained by our calculations.32 A de-
tailed quantitative comparison of our results with the
experimental data on cuprates would, however, require a
more refined theoretical model, as to include the quasi-two-
dimensional lattice structure, thed-wave character of the su-
perconducting gap, and also a fermionic attraction that de-
pends effectively on doping(and possibly on temperature).
Future work on this subject should address these additional
issues.

The present theory could be improved in several ways. In
the present approach, the effective interaction between the
composite bosons is treated within the Born approximation.
For a dilute system of composite bosons one knows how to
improve on this result, as shown in Ref. 10(see also Ref.
33). In addition, the Bogoliubov description for the compos-
ite bosons could be also improved, for instance, by extending
to the composite bosons the Popov treatment for pointlike
bosons.29 Finally, on the weak-coupling side of the crossover
the BCS theory could be modified by including the contribu-
tions shown by Gor’kov and Melik-Barkhudarov34 to yield a
finite renormalization of the critical temperature and of the
gap functionevenin the extreme weak-coupling limit. Work
along these lines is in progress.

The plan of the paper is as follows. In Sec. II we discuss
our choice for the fermionic self-energy in the superconduct-
ing phase, from which the order parameterD and the chemi-
cal potentialm are obtained as functions of temperature and
coupling strength, and the spectral functionAsk ,vd also re-
sults. Analytic results are presented in the strong-coupling
limit, where the order parameter is shown to be connected
with the bosonic condensate density of the Bogoliubov
theory. In addition, the analytic continuation of our expres-
sions for the fermionic self-energy and spectral function is
carried out in detail. In Sec. III we present our numerical
calculations, and discuss the results for the single-particle
spectral function in the context of the available experimental
data for high-temperature cuprate superconductors. Section
IV gives our conclusions. In the Appendix two sum rules are
derived for the superconducting phase, which are used as
checks of the numerical results.

II. DIAGRAMMATIC THEORY FOR THE BCS-BEC
CROSSOVER IN THE SUPERCONDUCTING PHASE

In this section, we discuss the choice of the fermionic
single-particle self-energy in the superconducting phase for a

(three-dimensional) continuum system of fermions mutually
interacting via an attractive point-contact potential, with an
s-wave order parameter. We shall place special emphasis on
the strong-coupling limit of the theory, where composite
bosons form as bound fermion pairs. We extend in this way
below Tc an analogous treatment for the self-energy, made
previously in the normal phase to calculate the single-
particle spectral function.25

Knowledge of the detailed form of the attractive interac-
tion is not generally required when studying the BCS-BEC
crossover. Accordingly, one may consider the simple form
v0dsr d of a “contact” potential, wherev0 is a negative con-
stant. This choice entails a suitable regularization in terms,
e.g., of a cutoffk0 in wave-vector space. In three dimensions,
this is achieved via the scattering lengthaF of the associated
fermionic two-body problem, by choosingv0 as follows:10

v0 = −
2p2

mk0
−

p3

maFk0
2 , s1d

m being the fermion mass. With this choice, the classification
of the (fermionic) many-body diagrams is considerably sim-
plified not only in the normal phase10 but also in the broken-
symmetry phase,26 since only specific diagrammatic sub-
structures survive when the limitk0→` (and thusv0→0) is
eventually taken.

In particular, the particle-particle ladder depicted in Fig.
1(a) survives the regularization of the potential.35 It is ob-
tained by the matrix inversion

FIG. 1. (a) Particle-particle ladder in the broken-symmetry
phase. Conventions for four momenta and Nambu indices are speci-
fied. Dots delimiting the potential(broken line) representt3 Pauli
matrices. Only combinations withlL= lL8 and lR= lR8 occur owing to
the regularization we have adopted for the potential.(b) Fermionic
self-energy diagram associated with the expression(12) in the nor-
mal phase.(c) Fermionic self-energy diagram associated with the
expressions(13) and (14) in the broken-symmetry phase.(d) BCS
contribution(15) to the self-energy.
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SG11sqd G12sqd
G21sqd G22sqd

D = Sx11s− qd x12sqd
x12sqd x11sqd

D
3 fx11sqdx11s− qd − x12sqd2g−1 s2d

with the notation

− x11sqd =
m

4paF
+E dp

s2pd3F 1

b
o

n

G11sp + qdG11s− pd

−
m

upu2G , s3d

x12sqd =E dp

s2pd3

1

b
o

n

G12sp + qdG21s− pd. s4d

In these expressions,q=sq ,Vnd andp=sp ,vnd, whereq and
p are wave vectors, andVn=2pn /b (n integer) and vn
=s2n+1dp /b (n integer) are bosonic and fermionic Matsub-
ara frequencies, respectively[with b=skBTd−1, kB being the
Boltzmann constant]:

G11sp,vnd = −
jspd + ivn

Espd2 + vn
2 = − G22s− p,− vnd,

G21sp,vnd =
D

Espd2 + vn
2 = G12sp,vnd s5d

are the BCS single-particle Green’s functions in Nambu no-
tation, with jspd=p2/ s2md−m andEspd=Îjspd2+D2 for an
isotropic (s-wave) order parameterD. [Hereafter, we shall
take the order parameter to be real with no loss of general-
ity.]

The expressions(3) and(4) for x11sqd andx12sqd consid-
erably simplify in the strong-coupling limit(that is, when
bm→−` andD! umu). In this limit, one then obtains for the
matrix elements(2):5,26

G11sqd = G22s− qd .
8p

m2aF

mB + iVn + q2/s4md
EBsqd2 − siVnd2 s6d

and

G12sqd = G21sqd .
8p

m2aF

mB

EBsqd2 − siVnd2 , s7d

where

EBsqd =ÎS q2

2mB
+ mBD2

− mB
2 s8d

has the form of the Bogoliubov dispersion relation30 [mB
=2m being the bosonic mass,mB=D2/ s4umud=2m+e0 the
bosonic chemical potential, ande0=smaF

2d−1 the bound-state
energy of the associated fermionic two-body problem]. The
above relation between the fermionic and bosonic chemical
potentials holds providedmB!e0 (see also Sec. II D). Note
that mB can be cast in the Bogoliubov form

mB = v2s0dn0sTd, s9d

wherev2s0d=4paF /m is the residual bosonic interaction5,10

and n0sTd=D2sTdm2aF / s8pd is the condensate density. The
relation(9) has already been formally obtained at the(BCS)
mean-field level,26 albeit with an unspecified dependence of
n0sTd on temperature. Within our fluctuation theory, the tem-
perature dependence ofn0sTd will coincide in strong cou-
pling with the expression given by the Bogoliubov theory
(see Sec. II D). In particular, at zero temperature and at the
lowest order in the residual bosonic interaction,26 n0 reduces
to the bosonic densitynB=n/2 and mB is given by
2kF

3aF / s3pmd.
Note further that the above result forv2s0d can be cast in

the bosonic formv2s0d=4paB/mB with aB=2aF. The present
theory thus describes the effective interaction between the
composite bosons within the Born approximation, while im-
proved theories10,33 for aB would give smaller values for the
ratio aB/aF. These improvements will not be considered in
the present paper.

Apart from the overall factor −8p / sm2aFd (and a sign
difference in the off-diagonal component26), the expressions
(6) and(7) coincide with the normal and anomalous noncon-
densate bosonic Green’s functions within the Bogoliubov
approximation,30 respectively. These expressions will be spe-
cifically exploited in Sec. II D, where the strong-coupling
limit of the fermionic self-energy will be analyzed in detail.

In the normal phase, on the other hand, the BCS single-
particle Green’s functions are replaced by the bare single-
particle propagatorG0spd=fivn−jspdg−1, while for arbitrary
coupling the particle-particle ladder acquires the form

G0sqd = −H m

4paF
+E dp

s2pd3

3 F tanhfbjspd/2g + tanhfbjsp − qd/2g
2fjspd + jsp − qd − iVng

−
m

p2GJ−1

.

s10d

In particular, in the strong-coupling limit the expression(10)
reduces to

G0sqd . −
8p

m2aF

1

iVn − q2/s4md
, s11d

which coincides [apart again from the overall factor
−8p / sm2aFd] with the free-boson Green’s function.

The above quantities constitute the essential ingredients
of our theory for the fermionic self-energy and related quan-
tities in the broken-symmetry phase. As shown in Ref. 26,
they also serve to establish amappingbetween the fermionic
and bosonic diagrammatic structures in the broken-symmetry
phase, in a similar fashion to what was done in the normal
phase.10

A. Choice of the self-energy

In a recent study25 of the single-particle spectral function
in the normal phase based on the BCS-BEC crossover ap-
proach, the fermionic self-energy was taken in the form
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S0skd = −
1

bVo
q

G0sqdG0sq − kd, s12d

whereV is the quantization volume andk=sk ,vsd is again a
four-vector notation with wave vectork and fermionic Mat-
subara frequencyvs (s integer). In this expression,G0sqd is
given by Eq.(10) for arbitrary coupling andG0skd is the bare
single-particle propagator. The self-energy diagram corre-
sponding to the expression(12) is depicted in Fig. 1(b). The
fermionic single-particle excitations are effectively coupled
to a (bosonic) superconducting fluctuation mode, which re-
duces to a free composite boson in the strong-coupling limit.
Physically, the choice(12) for the self-energy entails the
presence of a pairing interaction aboveTc, which can have
significant influence on the single-particle(as well as other)
properties.

In the present paper, we choose the self-energy in the
broken-symmetry phase belowTc, with the aim of recovering
the expression(12) when approachingTc from below and the
Bogoliubov approximation for the composite bosons in the
strong-coupling limit. To this end, we adopt thesimplestap-
proximations to describe fermionicas well asbosonic exci-
tations in the broken-symmetry phase, which reduce to bare
fermionic and free bosonic excitations in the normal phase,
respectively. These are the BCS single-particle Green’s func-
tions (5) (in the place of the bare single-particle propagator
G0) and the particle-particle ladder(2) (in the place of its
normal-phase counterpartG0). By this token, the fermionic
self-energy(12) are replaced by the following 232 matrix:

S11
L skd = − S22

L s− kd = −
1

bVo
q

G11sqdG11sq − kd, s13d

S12
L skd = S21

L skd = −
1

bVo
q

G12sqdG12sq − kd, s14d

where the labelL refers to the particle-particle ladder. The
corresponding self-energy diagram is depicted in Fig. 1(c).35

The choices(13) and (14) for the self-energy is made on
physical grounds. A formal “ab initio” derivation of these
expressions can also be done in terms of “conserving ap-
proximations” in the Baym-Kadanoff sense, that hold even in
the broken-symmetry phase.36. In such a formal derivation,
however, the single-particle Green’s functions entering Eqs.
(13) and (14) [also through the particle-particle ladder(2)]
would be required to be self-consistently determined with the
sameself-energy insertions. In our approach, we take instead
the single-particle Green’s functions to be of the BCS form
(5). The order parameterD and chemical potentialm are
obtained, however, via two coupled equations(to be dis-
cussed in Sec. II C) that include the self-energy insertions
(13) and (14). In this way, we will recover the Bogoliubov
form (6) and (7) for the particle-particle ladder not only at
zero temperature but also at finite temperatures(and, in par-
ticular, close to the Bose-Einstein transition temperature).

The choice(13) and(14) for the self-energy is not exhaus-
tive. In the broken-symmetry phase there, in fact, exists an
additional self-energy contribution that survives the regular-
ization (1) of the interaction potential in the limitk0→`,

even though it does not contain particle-particle rungs.37 This
additional self-energy diagram is the ordinary BCS contribu-
tion depicted in Fig. 1(d), with the associated expression

S12
BCSskd = S21

BCSskd = − D, s15d

while the corresponding(Hartree-Fock) diagonal elements
vanish with the regularization we have adopted. Relating the
expression(15) to the diagram of Fig. 1(d) rests on the va-
lidity of the BCS gap equation[Eq. (20) below], for arbi-
trary values of the chemical potential. For this, as well as for
an additional reason(see Sec. II D), we shall consistently
consider that equation to hold for the order parameterD.

The choice(15) alone would be appropriate to describe
the system in the weak-coupling(BCS) limit, where the su-
perconducting fluctuation contributions(13) and (14) repre-
sent only small corrections. In the intermediate- and strong-
coupling regions, on the other hand, both contributions
(13)–(15) might become equally significant(depending on
the temperature range belowTc). We thus consider both con-
tributionssimultaneouslyand write the fermionic self-energy
in the matrix form

SS11skd S12skd
S21skd S22skd

D = S S11
L skd S12

L skd + S12
BCSskd

S21
L skd + S21

BCSskd S22
L skd

D .

s16d

In the following, however, we shall neglectS12
L in compari-

son toS12
BCS. It will, in fact, be proved in Sec. II D that, in

strong coupling,S12
L is subleading with respect to bothS12

BCS

and S11
L . Inclusion of S12

L is thus not required to properly
recover the Bogoliubov description for the composite bosons
in the strong-coupling limit.

To summarize, the fermionic single-particle Green’s func-
tions are obtained in terms of the bare single-particle propa-
gatorG0skd and of the self-energy(13) and(15) via the Dys-
on’s equation in matrix form

SG11
−1skd G12

−1skd
G21

−1skd G22
−1skd

D = SG0skd−1 0

0 − G0s− kd−1D
− S S11

L skd S12
BCSskd

S21
BCSskd S22

L skd
D . s17d

If only the BCS contribution(15) to the self-energy were
retained, the fermionic single-particle Green’s functions
Gijskdsi , j =1,2d would reduce to the BCS form(5). Upon
including, in addition, the fluctuation contribution(13) to the
self-energy, modified single-particle Green’s functions result,
which we are going to study as functions of coupling
strength and temperature.

B. Comparison with the Popov approximation for dilute
superfluid fermions

The choice of the self-energy(13) and(15) resembles the
approximation for the self-energy introduced by Popov29 for
superfluid fermions in the dilute limitkFuaFu!1 (with
aF,0). There is, however, an important difference between
the Popov fermionic approximation and our theory. We in-
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clude in Eq.(13) the full G11 obtained by the matrix inver-
sion of Eq.(2); Popov instead neglectsx12 therein and ap-
proximateG11 by 1/x11, thus removing the feedback of the
Bogoliubov-Anderson mode on the diagonal fermionic self-
energyS11. Retaining this mode is essential when dealing
with the BCS-BEC crossover, to describe the composite
bosons in the strong-coupling limit by the Bogoliubov ap-
proximation, as discussed in Sec. II A. Approaching the
weak-coupling limit, on the other hand, the presence of the
Bogoliubov-Anderson mode becomes progressively irrel-
evant and the self-energies coincide in the two theories. As a
check on this point, we have verified that, in the weak-
coupling limit and at zero temperature,S11 obtained by our
theory(using the numerical procedures discussed in Sec. III)
reduces to 4paFn/ s2md, which is the expression obtained
also with the Popov approximation29 in the absence of the
Bogoliubov-Anderson mode.

There is another difference between the Popov fermionic
approximation and our theory as formulated in Sec. II A,
which concerns the off-diagonal fermionic self-energyS12.
Our expression(15) for S12 was obtained from the diagram
of Fig. 1(d), where the single particle line represents the
off-diagonal BCS Green’s function of Eq.(5) with no inser-
tion of the diagonal self-energyS11. Within the Popov ap-
proximation, on the other hand,S12 is defined formally by
the same diagram of Fig. 1(d), but with the single-particle
line being fully self-consistent(and thus includingS11).
SinceS11 turns out to approach a constant valueS0 in the
weak-coupling limit(as discussed above), inclusion of S11
.S0 can be simply made by a shift of the chemical potential
(such thatm→m−S0). This shift affects, however, the value
of the gap functionD in a non-negligible way even in the
extreme weak-coupling limit. Neglecting this shift, in fact,
results in a reduction by a factore1/3 of the BCS asymptotic
expression s8eF /e2dexpfp / s2kFaFdg for D [where eF

=kF
2 / s2md]. Inclusion of the shiftS0 is thus important to

recover the BCS value forD in the (extreme) weak-coupling
limit.

The need to include the constant shiftS0 on the weak-
coupling side of the crossover was also discussed in Ref. 25
while studying the spectral functionAsk ,vd in the normal
phase with the inclusion of pairing fluctuations. In that con-
text, inclusion of the shiftS0 proved necessary to have the
pseudogap depression ofAsk ,vd centered aboutv=0. Inclu-
sion of the shiftS0 in the broken-symmetry phase(at least
when approaching the critical temperature from below) is
thus also necessary to connect the spectral functionAsk ,vd
with continuity in the weak-coupling side of the crossover.

Combining the above needs forD and Ask ,vd, we have
introduced the constant shiftS0 for all temperatures below
Tc, by replacingm with m−S0 in the BCS Green’s functions
(5) entering the convolutions(3) and (4). The same replace-
ment is made in the gap equation[Eq. (20) below]. In the
Dyson’s equation(17), however,m is left unchanged since
the constant shiftS0 is already contained inS11skd as soon as
its k dependence is irrelevant. Accordingly, we have included
this constant shift in the calculation of both thermodynamic
and dynamical quantities in the weak-coupling side for
skFaFd−1ø−0.5, and neglected it for larger couplings when

S11skd can no longer be approximated by a constant.
It turns out that the temperature dependence ofS0 is

rather weak in the above coupling range. A plot ofS0 vs
T/Tc andskFaFd−1 is shown in Fig. 2. Here, the critical tem-
peratureTc is obtained by applying the Thouless criterion
from the normal phase as was done in Ref. 25(this procedure
to obtainTc will be used in the rest of the paper). In this plot,
the constant shift S0 is obtained as S0=ReS11

R fuk u
=Î2msm−S0d ,v=0g, in analogy to what was also done in
Ref. 25. Here,S11

R sk ,vd is the analytic continuation to the
real frequency axis of the Matsubara self-energyS11sk ,vsd
discussed in Sec. II E.

C. Coupled equations for the order parameter
and the chemical potential

Thermodynamic quantities, such as the order parameterD
and the chemical potentialm, are obtained directly in terms
of the Matsubara single-particle Green’s functions, without
the need of resorting to the analytic continuation to the real
frequency axis. Quite generally, the order parameterD is
defined in terms of the “anomalous” Green’s function
G12sk ,vsd via D=v0kc↑sr dc↓sr dl [see Eq.(A12)], where the
strengthv0 of the contact potential is kept to comply with a
standard definition of BCS theory.30 One obtains

D = − v0E dk

s2pd3

1

b
o

s

G12sk,vsd. s18d

By the same token, the chemical potentialm can be obtained
in terms of the “normal” Green’s functionG11sk ,vsd via the
particle densityn

n = 2E dk

s2pd3

1

b
o

s

eivshG11sk,vsd, s19d

whereh=0+. The two equations(18) and (19) are coupled,
since the Green’s functions depend on bothD and m. The
results of their numerical solution will be presented in the
next section for various temperatures and couplings.

In the following treatment, we shall deal with the two
equations(18) and (19) on a different footing. Specifically,
we will enter in the density equation(19) the expression for
the normal Green’s function obtained from Eq.(17), that
includes both BCSand fluctuation contributions[see Eq.
(35) below]. We will use instead in the gap equation(18) the
BCS anomalous function(5), that includes only the BCS

FIG. 2. Self-energy shiftS0 (in units of eF) vs temperatureT
(units of Tc) and couplingskFaFd−1.
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self-energy(15). In this way, the gap equation(18) reduces
to the form

m

4paF
+E dk

s2pd3F tanhfbEskd/2g
2Eskd

−
m

k2G = 0, s20d

where the regularization of the contact potential in terms of
the scattering lengthaF has been introduced. This equation
has the sameformal structure of the BCS gap equation, al-
though the numerical values of the chemical potential enter-
ing Eq. (20) differ from those obtained by the BCS density
equation. This procedure ensures that the bosonic propaga-
tors (2) in the broken-symmetry phase aregapless, as shown
explicitly by the Bogoliubov-type expressions(6) and (7) in
the strong-coupling limit. In general, in fact, there is noa
priori guarantee that a given(conserving) approximation for
fermions would result into a “gapless” approximation38 for
the composite bosons in the strong-coupling limit of the fer-
mionic attraction. Including fluctuation corrections to the
BCS density equation as in Eq.(19), on the other hand, re-
sults in the emergence of important effects in the strong-
coupling limit of the theory, as discussed next.

D. Analytic results in the strong-coupling limit

We proceed to show that the original fermionic theory, as
defined by the Dyson’s equation(17), maps onto the Bogo-
liubov theory for the composite bosons which form as
bound-fermion pairs in the strong-coupling limit. To this end,
we shall exploit the conditionsbumu@1 andD! umusm,0d
(which definethe strong-coupling limit) in the (Matsubara)
expressions(13) and (14) for SLspd, thus also verifying that
S12

L can be neglected.
These expressions are calculated by performing the wave-

vector and frequency convolutions with the approximate ex-
pressions(6) and (7) for the particle-particle ladder and the
expressions(5) for the BCS single-particle Green’s func-
tions.

Upon neglecting contributions that are subleading under
the above conditions, we obtain in this way for the diagonal
part of the self-energy

S11
L sk,vsd .

8p

m2aF
E dq

s2pd3F uB
2sqdbfEBsqdg

ivs + Esq − kd − EBsqd

−
vB

2sqdbf− EBsqdg
ivs + Esq − kd + EBsqdG . s21d

In this expression,Eskd is the BCS dispersion of Eqs.(5),
EBsqd is the Bogoliubov dispersion relation(8), bsxd
=fexpsbxd−1g−1 is the Bose distribution, and

vB
2sqd = uB

2sqd − 1 =

q2

2mB
+ mB − EBsqd

2EBsqd
s22d

are the standard bosonic factors of the Bogoliubov
transformation.30

In the numerators of the expressions within brackets in
Eq. (21), the Bose functions are peaked at aboutq=0 and
vary over a scaleq2/ s2mBd<T! umu. Similarly, the factors
uB

2sqd andvB
2sqd are also peaked at aboutq=0 and vary over

a scaleq2/ s2mBd<mB! umu. The denominators in the expres-
sion (21), on the other hand, vary over the much larger scale
umu. For these reasons, we can further approximate the ex-
pression(21) as follows:

S11
L sk,vsd .

8p

m2aF

1

ivs + jskd
nB8sTd, s23d

where

nB8sTd =E dq

s2pd3huB
2sqdbfEBsqdg − vB

2sqdbf− EBsqdgj

s24d

identifies the bosonic noncondensate density according to
Bogoliubov theory.30 Note that in the normal phase[when
the condensate densityn0sTd of Eq. (9) vanishes], the non-
condensate density(24) becomes the full bosonic density
nB=n/2, and Eq.(23) reduces to the expression obtained in
Ref. 10 directly from the form(12) of the fermionic self-
energy.

The off-diagonal self-energyS12
L skd can be analyzed in a

similar way. Since its magnitude is supposed to be the largest
at zero temperature, we estimate it correspondingly fork
=0 andvs=0 as follows:

S12
L sk = 0,vs = 0d .

8p

m2aF

mBD

2
E dk8

s2pd3

1

Esk8dEBsk8d

3
1

fEsk8d + EBsk8dg
. s25d

At leading order, we can neglect bothD andmB in the inte-
grand, where the energy scaleumu dominates. We thus obtain
S12

L sk=0d<DfD2/ s2umu2dg in the strong-coupling limit
[where the relationmB=D2/ s4umud—see below—has been
used]. This represents a subleading contribution in the small
dimensionless parameterD / umu with respect to both the BCS
contributionS12

BCSskd=−D and the diagonal fluctuation con-
tribution S11

L skd. It can accordingly be neglected.
Within the above approximations, the inverse(17) of the

fermionic single-particle Green’s function reduces to

SG11
−1skd G12

−1skd
G21

−1skd G22
−1skd

D . 1 ivs − jskd −
D0

2

ivs + jskd
D

D ivs + jskd −
D0

2

ivs − jskd
2 s26d
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with the notation

D0
2 ;

8p

m2aF
nB8sTd. s27d

From Eq.(26) we get the desired expression forG11sk ,vsd in
the strong-coupling limit

G11sk,vsd .
1

ivs − jskd −
D2 + D0

2

ivs + jskd

, s28d

where we have discarded a term of orderD0
2/ umu with respect

to umu. Note that Eq.(28) has the same formal structure of the
corresponding BCS expression(5), with the replacement

Eskd→ Ẽskd=Îjskd2+sD2+D0
2d. We rewrite it accordingly

as

G11sk,vsd .
ũ2skd

ivs − Ẽskd
+

ṽ2skd

ivs + Ẽskd
s29d

with the modified BCS coherence factorsṽ2skd=1−ũ2skd
=f1−jskd / Ẽskdg /2.

Before making use of the asymptotic expression(29) in
the density equation(19), it is convenient to manipulate suit-
ably the gap equation(20) in the strong-coupling limit. Ex-
panding 1/Eskd therein ash1−D2/ f2jskdgj /jskd and evalu-
ating the resulting elementary integrals, one obtains

D2

4umu
. 2sÎ2umue0 − 2umud. s30d

Setting further 2m=−e0+mB, one gets the relation
D2/ s4umud=mB quoted already after Eqs.(8) and (25).

Let us now consider the density equation(19). With the
BCS-like form (29) one immediately obtains

n . 2E dk

s2pd3ṽ2skd s31d

that holds forT!e0, at temperatures well below the disso-
ciation threshold of the composite bosons. Similarly to what
was done to get the gap equation(30), in Eq. (31) one ex-

pands 1/Ẽskd as h1−sD2+D0
2d / f2jskdgj /jskd and evaluates

the resulting elementary integrals, to obtain

n .
m2aF

4p
sD2 + D0

2d. s32d

Recalling the definition(27) for D0
2, as well as the expres-

sions(30) and(9) for the order parameter, which we rewrite
in the form

D2 =
8p

m2aF
n0sTd s33d

in analogy to Eq.(27), the result(32) eventually becomes

n = 2fnB8sTd + n0sTdg s34d

that holds asymptotically forT!e0.

These results imply that in the strong-coupling limit the
original fermionic theory recovers the Bogoliubov theory for
the composite bosons, not only at zero temperature but also
at any temperaturein the broken-symmetry phase. Accord-
ingly, the noncondensate densitynB8sTd is given by the ex-
pression(24), the bosonic factorsvB

2sqd anduB
2sqd are given

by Eq.(22), and the dispersion relationEBsqd is given by Eq.
(8). In the strong-coupling limit, the present fermionic theory
thus inherits all virtues and shortcomings of the Bogoliubov
theory for a weakly interacting Bose gas.27 The present fer-
mionic theory at arbitrary coupling then provides an interpo-
lation procedure between the Bogoliubov theory for the com-
posite bosons and the weak-coupling BCS theory plus
pairing fluctuations. Both these analytic limits will constitute
important checks on the numerical calculations reported in
Sec. III. Note that inclusion of the off-diagonal fluctuation
contributionS12

L skd to the self-energy is not required to re-
cover the Bogoliubov theory in strong coupling. For this rea-
son, we will not considerS12

L skd altogether in the numerical
calculations presented in Sec. III, as anticipated in Eq.(17).

The above analytic results enable us to infer the main
features of the temperature dependence of the order param-
eter in the strong-coupling limit. In particular, the low-
temperature behaviorn0sTd=n0s0d−mBskBTd2/ s12cd [where
c=În0v2s0d /mB is the sound velocity] within the Bogoliubov
approximation, implies thatDsTd decreases fromDs0d with a
T2 behavior, in the place of the exponential behavior ob-
tained within the BCS theory(with an s-wave order
parameter).30 In addition, in the present theory the order pa-
rameter vanishes over the scale of the Bose-Einstein transi-
tion temperatureTBE, while in the BCS theory it would van-
ish over the scale of the bound-state energye0 of the
composite bosons.

Note finally that the fermionic quasi-particle dispersion

Ẽskd, entering the expression(29) of the diagonal Green’s
function in the strong-coupling limit, contains the sumD2

+D0
2 instead of the single termD2 of the BCS dispersion

Eskd.

E. Spectral function and sum rules

We pass now to identify the form of the spectral function
Ask ,vd associated with the approximate choice of the Mat-
subara self-energy of Eq.(17). To this end, we need to per-
form the analytic continuation in the complex frequency
plane, thus determining the retarded fermionic single-particle
Green’s functions from their Matsubara counterparts. The ap-
proach developed in this subsection holds specifically for the
approximate choice for the self-energy of Eq.(17). It thus
differs from the general analysis presented in the Appendix
which holds for the exact Green’s functions, irrespective of
any specific approximation.

In general, the process of analytic continuation to the real
frequency axis from the numerical Matsubara Green’s func-
tions proves altogether nontrivial, as it requires in practice
recourse to approximate numerical methods such as, e.g., the
method of Padé approximants.39 We then prefer to rely on a
procedure whereby the analytic continuation to the real fre-
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quency axis is achieved by avoiding numerical extrapola-
tions from the Matsubara Green’s functions.

The fermionic normal and anomalous Matsubara single-
particle Green’s functions are obtained at any given coupling
from matrix inversion of Eq.(17):

G11sk,vsd = Fivs − jskd − S11sk,vsd

−
D2

ivs + jskd − S22sk,vsd
G−1

, s35d

G12sk,vsd = Dhfivs − jskd − S11sk,vsdg

3 fivs + jskd − S22sk,vsdg − D2j−1. s36d

Consider first the normal Green’s function(35), which we
rewrite in the compact form

G11sk,vsd =
1

ivs − jskd − s11sk,vsd
s37d

with the short-hand notation

s11sk,vsd ; S11sk,vsd +
D2

ivs + jskd − S22sk,vsd
. s38d

To perform the analytic continuation of this expression, we
look for a function s11sk ,zd of the complex frequencyz
which satisfies the following requirements at any givenk: (i)
It is analytic off the real axis,(ii ) it reduces tos11sk ,vsd
given by Eq.(38) whenz takes the discrete valuesivs on the
imaginary axis,(iii ) its imaginary part is negative(positive)
for Im z.0 sIm z,0d, and (iv) it vanishes whenuzu→`
along any straight line parallel to the real axis with Imz
Þ0.

Once the functions11sk ,zd is obtained, the expression

GRsk,vd =
1

v + ih − jskd − s11sk,v + ihd
s39d

(h being a positive infinitesimal) represents theretardedsRd
single-particle Green’s function(for real v) associated with
the Matsubara Green’s function(37), since it satisfies the
requirements of the Baym-Mermin theorem40 for the analytic
continuation from the Matsubara Green’s function. The first
step of the above program is to find the analytic continuation
of S11sk ,vsd [andS22sk ,vsd] off the real axis in the complex
z plane. To this end, it is convenient to expressS11sk ,vsd via
the spectral form

S11sk,vsd =E
−`

+` dv8

p

hsk,v8d
ivs − v8

. s40d

With the replacementivs→z, the spectral representation
(40) defines an analytic functionS11sk ,zd off the real axis. In
the case of interest withS11sk ,vsd given by Eq.(13), the
function hsk ,vd of Eq. (40) reads

hsk,vd = −E dq

s2pd3suq−k
2 ImG11

R fq,v + Esq − kdg

3 hffEsq − kdg + bfv + Esq − kdgj

+ vq−k
2 Im G11

R fq,v − Esq − kdghff− Esq − kdg

+ bfv − Esq − kdgjd, s41d

wherefsxd=fexpsbxd+1g−1 is the Fermi distribution whileuk
2

andvk
2 are the BCS coherence factors. To obtain the expres-

sion (41), a spectral representation has been also introduced
for G11 entering Eq.(13), by writing

G11sq,Vnd = −
1

p
E

−`

+`

dv8
Im G11

R sq,v8d
iVn − v8

. s42d

Here, the spectral functionG11
R sq ,vd is defined by

G11sq , iVn→v+ ihd, which is obtained from the definitions
(2)–(4) with the replacementiVn→v+ ih after the sum over
the internal frequencyvn has been performed therein. Even
in the absence of an explicit Lehmann representation forG11,
in fact, it can be shown that the spectral representation(42)
holds provided the functionG11sq , iVn→zd of the complex
variablez is analytic off the real axis. The crucial point is to
verify that the denominator in Eq.(2) with the replacement
iVn→z never vanishes off the real axis. This property can be
explicitly verified in the strong-coupling limit, as discussed
below. For arbitrary coupling, we have checked it with the
help of numerical calculations. For the validity of the expres-
sion (42), it is also required thatG11sq ,zd vanishes foruzu
→`. This property can be proved directly from Eqs.(2)–(4),
according to whichG11sq ,zd has the asymptotic expression

G11sq,zd .
− 1

m

4paF
−

m3/2

4p
Î− z+

q2

4m
− 2m

s43d

and thus vanishes foruzu→`. OnceS11sk ,zd has been ex-
plicitly constructed according to the above prescriptions,
S22sk ,zd is obtained as −S11sk ,−zd in accordance with Eq.
(13).

From the spectral representation(40) for S11sk ,zd, it can
be further shown thatS11sk ,zd vanishes whenuzu→` along
any straight line parallel to the real axis with ImzÞ0. It can
also be shown that ImS11sk ,zd,0fIm S11sk ,zd.0g when
Im z.0sIm z,0d. This property follows from the spectral
representation ofS11sk ,zd, providedhsk ,vdù0 in Eq. (40).
For arbitrary coupling, we have verified thathsk ,vdù0 with
the help of numerical calculations. In the strong-coupling
limit, this condition can be explicitly proved, as discussed
below.

From these properties ofS11sk ,zd [and S22sk ,zd] it can
then be verified that the function

s11sk,zd = S11sk,zd +
D2

z+ jskd + S11sk,− zd
, s44d

satisfies the requirements(i)–(iv) stated after Eq.(38). With
the replacementz→v+ ih, Eq. (39) follows eventually on
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the real frequency axis for the retarded Green’s function
GRsk ,vd.

For later convenience, we introduce the following nota-
tion on the real frequency axis

S11
R sk,vd ; S11sk,v + ihd s45d

such thatS11sk ,−v− ihd=S11
R sk ,−vd* and

s11
R sk,vd ; s11sk,v + ihd

= S11
R sk,vd +

D2

v + ih + jskd + S11
R s− k,− vd* .

s46d

From Eq. (40) it is also clear that ImS11
R sk ,vd=−hsk ,vd,

and that ReS11
R sk ,vd and ImS11

R sk ,vd are related by a
Kramers-Kronig transform.

As anticipated, the properties of the functionS11sk ,zd,
required above to obtain the retarded Green’s function(39)
on the real axis, can be explicitly verified in the strong-
coupling limit without recourse to numerical calculations. In
this case, the approximate expression(6) can be used forG11.
This can be cast in the form(42), with

Im G11
R sq,vd = −

8p2

m2aF
hvB

2sqddfv + EBsqdg

− uB
2sqddfv − EBsqdgj . s47d

Entering the expression(47) into Eq. (41) and the resulting
expression into Eq.(40), one obtains forS11sk ,vsd the sum
of four terms

S11sk,vsd = −
8p

m2aF
E dq

s2pd3

3HuB
2sqduq−k

2 bfEBsqdg + ffEsq − kdg
EBsqd − Esq − kd − ivs

+ uB
2sqdvq−k

2 bfEBsqdg + ff− Esq − kdg
EBsqd + Esq − kd − ivs

+ vB
2sqduq−k

2 bf− EBsqdg + ffEsq − kdg
EBsqd + Esq − kd + ivs

+ vB
2sqdvq−k

2 bf− EBsqdg + ff− Esq − kdg
EBsqd − Esq − kd + ivs

J .

s48d

Since in strong couplingffEskdg→0, uk
2→1, andvk

2→0, the
second and fourth term within braces on the right-hand side
of the Matsubara expression(48) may be dropped. The sim-
plified expression(21) then results from Eq.(48). In the
strong-coupling limit, one would then be tempted to perform
the analytic continuationivs→z directly from the expression
(21). Care must, however, be exerted on this point since the
processes of taking the strong-coupling limit and performing
the analytic continuation may not commute. By performing
the analytic continuationivs→z directly in Eq.(48) one, in
fact, obtains two additional terms with respect to the analytic
continuation of Eq.(21). These two additional terms cannot

be droppeda priori by the presence of the small factorvq−k
2

in the strong-coupling limit, because for realz the corre-
sponding energy denominators may vanish. Retaining prop-
erly these two additional terms indeed affects in a qualitative
way the spectral functionAsk ,vd in the strong-coupling
limit, as discussed in Sec. III.

With the expression obtained by the analytic continuation
ivs→z of Eq. (48), one can prove explicitly thatS11sk ,zd is
analytic off the real axis and vanishes likez−1 along any
straight line parallel to the real axis with ImzÞ0, and that
sgnfIm S11sk ,zdg=−sgnfIm zg. In this way, the properties of
the functionS11sk ,zd, required to obtain the retarded Green’s
function (39) on the real axis, are explicitly verified in the
strong-coupling limit.

Once the retarded Green’s function has been obtained in
the form(39) according to the above prescriptions, its imagi-
nary part defines the spectral function

Ask,vd ; − s1/pdIm GRsk,vd. s49d

which will be calculated numerically in Sec. III for a wide
range of temperatures and couplings. In the Appendix, it is
shown at a formal level thatAsk ,vd satisfies the sum rule
(A6). This sum rule will be considered an important test for
the numerical calculations of Sec. III. To this end, it is nec-
essary to prove that the sum rule(A6) holds even for our
approximate theory based on the Dyson’s equation(17).

To prove the sum rule(A6) for the approximate theory, it
is sufficient that the approximateG11sk ,zd [from which the
retarded Green’s function(39) results whenz=v+ ih] be-
haves asz−1 for large uzu. This property is verified by our
theory, as shown above. As a consequence,

E
−`

+`

dvAsk,vd = −
1

p
ImFE

−`

`

dvGRsk,vdG
=

1

p
ImF−R

C

dv G11sk,zdG = 1, s50d

where the contourC is a half circle in the upper-half com-
plex plane with center in the origin, large radius[such that
the approximationG11sk ,zd,z−1 is valid], and counterclock-
wise direction.

Finally, the analytic continuation of the anomalous Mat-
subara single-particle Green’s function(36) can be obtained
by following the same procedure adopted for the normal
Green’s function(35). One writes for the retarded anomalous
Green’s function

FRsk,vd = Dhfv + ih − jskd − S11
R sk,vdg

3 fv + ih + jskd + S11
R s− k,− vd*g − D2j−1

s51d

in the place of Eqs.(39) and (46). In this case, the analytic
properties ofSiisk ,zdsi =1,2d discussed above imply that
G12sk ,zd,−D /z2 asymptotically for largeuzu. As a conse-
quence, the imaginary part ofFRsk ,vd

Bsk,vd ; − s1/pdImFRsk,vd s52d

satisfies the two following sum rules:
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E
−`

+`

dvBsk,vd = 0 s53d

and

E
−`

+`

dvBsk,vdv = − D. s54d

These sum rules can be verified by introducing the contourC
as in Eq.(50). Note again that these sum rules(which are
proved on general grounds in the Appendix for the exact
anomalous retarded single-particle Green’s function) follow
here from our approximate form ofFRsk ,vd only on the
basis of the properties of analyticity. Verifying numerically
the sum rules(50), (53), and (54) at any coupling and tem-
perature will, in practice, constitute an important check on
the validity of the above procedure for the analytic continu-
ation. An additional numerical check on the validity of the
whole procedure at intermediate-to-weak coupling will be
provided by the merging of the results, obtained by calculat-
ing the spectral functionAsk ,vd when approachingTc from
below, with the results previously obtained in the normal
phase25 when approachingTc from above.

III. NUMERICAL RESULTS AND DISCUSSION

In this section we present the numerical results based on
the formal theory developed in Sec. II. Specifically, in Sec.
III A we present the results obtained by solving the coupled
equations(19) and(20) for the order parameter and chemical
potential. Section III B deals instead with the numerical cal-
culation of the spectral function(49) in the broken-symmetry
phase, over the whole coupling range from weak to strong.

A. Order parameter and chemical potential

Before presenting the numerical results forD andm, it is
worth outlining briefly the numerical procedure we have
adopted. At given temperature and coupling, the coupled
equations(19) and(20) for the unknownsD andm are solved
via the Newton’s method. This requires knowledge of the
self-energyS11sk ,vsd of Eq. (13), with G11sqd obtained from
Eqs. (2)–(4). (As anticipated, in the numerical calculations
we neglectS12

L in comparison toS12
BCS, since inclusion ofS12

L

is not required to recover the Bogoliubov results in the
strong-coupling limit, as shown in Sec. II D.)

To this end, the frequency sums in Eqs.(3) and (4) are
evaluated analytically, while the remaining wave-vector inte-
gral is calculated numerically by the Gauss-Legendre
method. In particular, the radial wave-vector integral extend-
ing up to infinity is partitioned into an inner and an outer
region, with the transformationupu→1/upu exploited in the
outer region.

The bosonic frequency sum in Eq.(13) requires special
case because of its slow convergence and the lack of an
intrinsic energy cutoff within our continuum model. We have
accordingly partitioned this frequency sum into three re-
gions, separated by the frequency scalesVc1

and Vc2
(with

0,Vc1
,Vc2

). For uVnu,Vc1
, the frequency sum is calcu-

lated explicitly. ForVc1
, uVnu,Vc2

, the frequency sum is
approximated with great accuracy by the corresponding nu-
merical integral, owing to the slow dependence ofG11 on Vn.
Finally, the tail of the frequency sum forVc2

, uVnu [where
the asymptotic expression(43) yields G11~ siVnd−1/2] is
evaluated analytically. Typically,Vc1

is taken of the order of
the largest among the energy scalesuvsu ,D , umu ,q2/ s2md, and
k2/ s2md; Vc2

is then taken at least ten timesVc1
. It turns out

that it is most convenient to apply this procedure to the fre-
quency sum in Eq.(13) after the integration over the two
angular variables of the wave vectorq has been performed
analytically; the remaining radial wave-vector integration is
then performed numerically, with a cutoff much larger than
the wave-vector scalesuk u ,Î2mD, andÎumu.

Finally, the frequency sum in the particle number equation
(19) is evaluated by adding and subtracting the BCS Green’s
functionG11 on the right-hand side of that equation, in order
to speed up the numerical convergence. Matsubara frequen-
cies are here summed numerically up to a cutoff frequency,
beyond which the sum is approximated by the corresponding
numerical integral. The radial part of the wave-vector inte-
gral in Eq.(19) is also calculated numerically up to a cutoff
scale beyond which a power-law decay sets in, so that the
contribution from the tail can be calculated analytically. With
the above numerical prescriptions, we have obtained the be-
havior of D and m vs temperature and coupling reported in
Figs. 3–6.

Specifically, Fig. 3 shows the order parameterD vs tem-
perature for different couplings[skFaFd−1=−0.5,0.5,1.2,
from top to bottom], in the window −1skFaFd−1& +1, where
the crossover from weak to strong coupling is exhausted.
Comparison is made with the corresponding curves obtained
within mean field (dashed lines), when the BCS Green’s
function G11 enters Eq.(26) in the place of the dressedG11.
In these plots, the temperature is normalized with respect to
the critical temperatureTc for the given coupling. This com-
parison shows that fluctuation corrections on top of mean
field get progressively important at given coupling as the
temperature is raised towardTc. Close toTc, fluctuation cor-
rections become even more important upon approaching the
strong-coupling limit. Near zero temperature, on the other
hand, fluctuation corrections become negligible when ap-
proaching strong coupling. This confirms the expectation
that, near zero temperature, the BCS mean field should be
rather accurate both in the weak- and strong-coupling limits.2

Note from Fig. 3 thatD jumps discontinuously close to
the critical temperature when fluctuations are included on top
of the mean field. This jump becomes more evident as the
coupling is increased. It reflects an analogous behavior of the
condensate density near the critical temperature as obtained
by the Bogoliubov theory for pointlike bosons.41 In the
present theory this jump is carried over to the composite
bosons, even at fermionic couplings(as in the middle panel
of Fig. 3) when the composite bosons are not yet fully de-
veloped. When the fermionic coupling increases beyond the
values reported in Fig. 3, however, the residual interaction
between the composite bosons decreases further and the
jump becomes progressively smaller. More refined theories
for pointlike bosons(see, e.g., Ref. 42) remove the jump of
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the bosonic condensate density, which thus should be consid-
ered as an artifact of the Bogoliubov approximation. Apart
from this jump, note that when the temperature is decreased
belowTc the order parameterD grows more rapidly with the
inclusion of fluctuations than within the mean field.

Figure 4 shows the chemical potentialm vs temperature
for the same coupling values of Fig. 3. Note that in weak
coupling the chemical potential decreases slightly upon mov-
ing deep in the superconducting phase fromTc to T=0, in
agreement with the BCS behavior. In strong coupling the
opposite occurs, reflecting the behavior of the bosonic
chemical potentialmB=2m+e0 within the Bogoliubov theory.
It should be, however, mentioned that with improved bosonic
approximations,42 the bosonic chemical potential would
rather decrease upon entering the condensed phase.

Figure 5 shows the order parameterD at zero temperature
(full line) and the corresponding mean-field value(dashed
line) vs the couplingskFaFd−1. While D increases monotoni-

cally in absolute value from weak to strong coupling(as
expected on physical grounds), the relative importance of the
fluctuation corrections to the order parameter at zero tem-
perature(over and above mean field) reaches a maximum in
the intermediate-coupling region, never exceeding about
30%. This results confirms again that the BCS mean field is
a reasonable approximation to the ground state for all cou-
plings.

Figure 6 shows the chemical potentialm at zero tempera-
ture vs the coupling parameterskFaFd−1. The results obtained
by the inclusion of fluctuations(full lines) are compared with
the mean field(dashed lines). Even for this thermodynamic
quantity the fluctuation corrections to the mean-field results
appear to be not too important at zero temperature.

Note, finally, that the values forD and m obtained from
our theory atT=0 with the coupling valueskFaFd−1=0 are in
remarkable agreement with a recent quantum Monte Carlo
calculation43 performed for the same coupling. Our calcula-
tion yields, in fact,D /eF=0.53 andm /eF=0.445, to be com-
pared with the valuesD /eF=0.54 andm /eF=0.44±0.01 of
Ref. 43.(In contrast, the BCS mean field yieldsD /eF=0.69
andm /eF=0.59).

In summary, the above results have shown that, for ther-
modynamic quantities likeD and m, fluctuation corrections
to mean-field values in the broken-symmetry phase are im-
portant only as far as the temperature dependence is con-
cerned, while at zero temperature the mean-field results are
reliable.

FIG. 4. Chemical potentialm (in units of eF) vs temperature(in
units of Tc), for the same values of the couplingskFaFd−1 as in
Fig. 3.

FIG. 5. Order parameterD at T=0 (in units of eF) vs the cou-
pling skFaFd−1. Results obtained by the inclusion of fluctuations
(full line) are compared with mean-field results(dashed line).

FIG. 3. Order parameterD (in units of eF) vs temperature(in
units of Tc) for different values of the couplingskFaFd−1. Results
obtained by the inclusion of fluctuations(full lines) are compared
with mean-field results(dashed lines).
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B. Spectral function

For a generic value of the coupling, calculation of the
imaginary part of the retarded self-energy ImS11

R sk ,vd
=−hsk ,vd [with hsk ,vd given by Eq.(41)] requires us to
obtain the imaginary part of the particle-particle ladderG11

R

on the real-frequency axis, as determined by the formal re-
placement iVn→v+ ih in the Matsubara expressions
(2)–(4). After performing the frequency sum therein, the
wave-vector integrals of Eqs.(3) and (4) for the functions
xi jsq , iVn→v+ ihdfsi , jd=1,2g are evaluated numerically,
by exploiting the properties of the delta function for the
imaginary part and keeping a finite albeit small value ofhs
=10−8Îm2+D2d for the real part.

Direct numerical calculation of the imaginary part of the
particle-particle ladder fails, however, when this part has the
structure of a delta function for realv at givenq. This occurs
when the determinant in the denominator of Eq.(2) vanishes
for real v. To deal with this delta function, let us first con-
sider the caseT=0 for which three cases can be distin-
guished, according to(i) aF,0 and m.0 (weak-to-
intermediate coupling), (ii ) aF.0 and m.0 (intermediate
coupling), (iii ) aF.0 andm,0 (intermediate-to-strong cou-
pling). The curvesvsqd where the(analytic continuation of
the) determinant in the denominator of Eq.(2) vanishes are
shown (full lines) for these three cases in Figs. 7(a)–7(c),
respectively. In these figures we also show the boundaries
(dashed lines) delimiting the particle-particle continuum,
where the imaginary part of the particle-particle ladder is
nonvanishing and regular(in the sense that it does not have
the structure of a delta function). At finite temperature, the
sharp boundary of the particle-particle continuum smears
out, owing to the presence of Fermi functions after perform-
ing the sum over the Matsubara frequencies in Eqs.(3) and
(4). The Fermi functions produce, in fact, a finite(albeit
exponentially small with temperature) imaginary part of the
particle-particle ladder also below the(dashed) boundaries of
Fig. 7, resulting in a Landau-type damping of the
Bogoliubov-Anderson modevsqd. In addition, the finite
imaginary part broadens thed-function structure centered at
the curvesvsqd of Fig. 7, turning it into a Lorentzian func-
tion. In practice, our numerical calculation takes advantage
of this broadening occurring at finite temperature, and deals

with smooth Lorentzian functions instead of thed-function
peaks.44

As a further consistency check on our numerical calcula-
tions, we have sistematically verified that the three sum rules
(50), (53), and (54) are satisfied within numerical accuracy,
for all temperatures and couplings we have considered.

The imaginary and real parts of the retarded self-energy
s11

R sk ,vd obtained from Eq.(46) are shown, respectively, in
Figs. 8 and 9 as functions of frequency at different tempera-
tures and for different couplings(about the crossover region

FIG. 6. Chemical potentialm at T=0 (in units of eF for m.0
and ofe0/2 for m,0) vs the couplingskFaFd−1. Results obtained by
the inclusion of fluctuations(full line) are compared with mean-
field results(dashed line).

FIG. 7. Dispersionvsqd of the pole ofG11
R sq ,vd at T=0 (full

lines) and boundary of the particle-particle continuum(dashed
lines) for three characteristic couplings.
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of interest). The magnitude of the wave vectork is taken in
Figs. 8 and 9 at a special value(denoted bykm8), which is
identified from the behavior of the ensuing spectral function
Ask ,vd when performing a scanning over the wave vector
(see Fig. 12 below). Accordingly,km8 is chosen to minimize
the gap in the spectral function, in agreement with a standard
procedure in the ARPES literature. On the weak-coupling
side(when the the self-energy shiftS0 discussed in Sec. II B
is included in our calculation), km8 coincides with
Î2msm−S0d. On the strong-coupling side(whenm becomes
negative) one takes insteadkm8=0.

For all couplings here considered, the progressive evolu-
tion found in Ask ,vd (from the presence of a pseudogap
aboutv=0 atTc to the occurrence of a superconducting gap
near zero temperature) stems from the interplay of the two
contributions in Eq.(46) to the imaginary part ofs11

R sk ,vd
aboutv=0. Specifically, for intermediate-to-weak coupling
(with m.0) the first term on the right-hand side of Eq.(46)

[which is responsible for the pseudogap suppression in
Ask ,vd at Tc] would produce a narrow peak structure in
Askm8 ,vd about v=0 upon lowering T, since
Re S11

R skm8 ,vd−S0 vanishes whileuIm S11
R skm8 ,vdu becomes

progressively smaller. The presence of the second term on
the right-hand side of Eq.(46), however, gives rise to a nar-
row peak in Ims11

R skm8 ,vd about v=0, as seen from Fig.
8(a), resulting in a depression ofAskm8 ,vd aboutv=0. [This
occurs barring a small temperature range close toTc, where
the second term on the right-hand side of Eq.(46) is not yet
well developed.] At larger couplings(when m,0), the first
term on the right-hand side of Eq.(46) would not produce a
peak inAsk =0,vd aboutv=0 upon lowering the tempera-
ture, becauseumu+ReS11

R sk=0,vd does not correspondingly
vanish in this case even though ImS11

R sk =0,vd does. In
addition, in this case the second term on the right-hand side
of Eq. (46) does not produce a peak inAsk =0,vd aboutv
=0.

FIG. 8. Imaginary part of the self-energys11
R for uk u=km8 vs

frequency(in units ofeF) at different temperatures for the coupling
valuesskFaFd−1=−0.5 (a), 0.1 (b), and 0.5(c).

FIG. 9. Real part of the self-energys11
R for uk u=km8 vs frequency

(in units of eF) at different temperatures for the coupling values
skFaFd−1=−0.5 (a), 0.1 (b), and 0.5(c).
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Figure 10 shows the resulting spectral functionAsk ,vd vs
v for uk u=km8 at different temperatures and couplings. In all
cases, atTc there occurs only a broad pseudogap feature both
for v.0 and v,0. (For photoemission experiments only
the casev,0 is relevant, so that we shall mostly comment
on this case in the following.) A coherent peak is seen to
grow on top of this broad pseudogap feature as the tempera-
ture is lowered belowTc. When zero temperature is eventu-
ally reached, the pseudogap feature is partially suppressed in
favor of the coherent peak, which thus absorbs a substantial
portion of the spectral intensity. This interplay between the
broad pseudogap feature and the sharp coherent peak results
in a characteristic peak-dip-hump structure, which is best
recognized from the features for weak-to-intermediate cou-
pling. Generally speaking, this coherent peak(and its corre-

sponding counterpart at positive frequencies) for
intermediate-to-weak coupling is associated with the two
dips in Im s11

R symmetrically located about zero frequency
[see Figs. 8(a) and 8(b)]. In strong coupling, instead, the
coherent peak results from a delicate balance between the
real and imaginary parts ofs11

R near the boundary of the
region where ImS11

R =0.
An interesting fact is that the weights of the negative and

positive frequency parts of the spectrum turn out to be sepa-
rately (albeit approximatively) constant as functions of tem-
perature for given coupling, as shown in Fig. 11 for three
characteristic couplings. This implies that, for a given cou-
pling, the coherent peak forv,0 grows at the expenses of
the accompanying broad pseudogap feature upon decreasing
the temperature.

The result that the total area fornegativev should be
(approximately) constant as a function of temperature can be
realized also from the analytic results in the extreme strong-
coupling limit discussed in Sec. II D. Taking the analytic
continuation of the Matsubara Green’s function(29) (which
is appropriate in the strong-coupling limit as far as this total
area is concerned, as it will be shown below) results, in fact,
in the total weightṽ2skd of the v,0 region being indepen-
dent of temperature, since the combinationD2+D0

2 entering

the expression ofẼskd is proportional to the total density in
this limit [see Eq.(32)].

Returning to Fig. 10, it is also interesting to comment on
the positions of the pseudogap feature and the coherent peak
as functions of temperature for given coupling. The position
of the coherent peak depends markedly on temperature, shift-
ing progressively toward more negative frequencies as the
temperature is lowered. In particular, for weak-to-
intermediate coupling the position of the coherent peak about
coincides with(minus) the value of the order parameterD. In
the strong-coupling region(wherem,0), on the other hand,
its position is about at −ÎD2+m2. This remark entails the
possibility of extracting two important quantities from the
temperature evolution of the coherent peak in the spectral
function. (i) The frequency position of this peak when ap-
proachingTc determines whetherm is positive (when the
peak position approachesv=0) or negative(when the peak
position approaches −umu), corresponding to weak-to-
intermediate coupling and strong coupling, respectively.(ii )

FIG. 10. Spectral function foruk u=km8 vs frequency(in units of
eF) at different temperatures for the coupling valuesskFaFd−1

=−0.5 (a), 0.1 (b), and 0.5(c).

FIG. 11. Temperature dependence of the total weight of the
spectral function at negative frequencies for different coupling val-
ues about the crossover region.
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In both cases, the temperature dependence of the order pa-
rameter can be extracted from the frequency position of the
coherent peak.

The above results for the coherent peak contrast some-
what with the position of the pseudogap feature by decreas-
ing temperature belowTc, also determined from Fig. 10. The
broad pseudogap feature does not depend sensitively on tem-
perature for all couplings shown in this figure. This indicates
that the broad pseudogap feature does not relate to the order
parameter belowTc.

As far as the spectral function is concerned, one of the
key results of our theory is thus the presence oftwo struc-
tures (coherent peak and pseudogap), which behave rather
independently from each other as functions of temperature
and coupling. This result, which is also evidenced by the
behavior of the experimental spectra in tunneling experi-
ments on cuprates,45 originates in our theory from the pres-
ence of two distinct contributions to the self-energy, namely,
the BCS and fluctuation contributions of Eq.(17). While the
broad pseudogap feature atT,Tc develops with continuity
from the only feature present atT.Tc, the coherent peakper
sewould be present in a BCS approach even in the absence
of the fluctuation contribution. This remark, of course, does
not imply that the two contributions to the self-energy of Eq.
(24) are totally independent from each other. They both de-
pend, in fact, on the value of the order parameterD which is,
in turn, determined by both self-energy contributions via the
chemical potential.

In addition to the presence of two structures at negativev
in Ask ,vd, from Fig. 10 one also notes a clear asymmetry
between negative and positivev especially in the
intermediate-coupling region of interest. This feature has
been observed experimentally in tunneling spectra,46 and re-
cently addressed theoretically along different47 and related48

lines to our work.
A further important feature that can be extracted from our

calculation of the spectral function is the evolution of the
coherent peak for varying wave vector at fixed temperature
and coupling. Figure 12 reportsAsk ,vd vs v for different
values of the ratiok/km8 about unity whenskFaFd−1=−0.5
and T/Tc=0.6. Here, k/km8=1 identifies the underlying
Fermi surface that represents the “locus of minimum gap.”
When k/km8,1, there is a strong asymmetry between the
two coherent peaks atv,0 and v.0, with the peak at

v,0 absorbing most of the total weight. The situation is
reversed whenk/km8.1. When k/km8=1 the spectrum is
(about) symmetric betweenv and −v. In addition, when
following the position of the coherent peak atv,0 starting
from k/km8,1, one sees that this position moves toward
increasingv, reaches a minimum distance fromv=0, and
bounces eventually back to more negative values ofv. The
value of the minimum distance fromv=0 identifies an en-
ergy scaleDm. At the same time, the weight of the coherent
peak atv,0 progressively decreases for increasingk/km8
starting from k/km8,1. When k/km8 becomes larger than
unity, the weight of the coherent peak is transferred from
negative to positive frequencies. This situation is character-
istic of the BCS theory, where only the coherent peaks are
present without the accompanying broad pseudogap features.
Our calculation shows that this situation persists also for
couplings values inside the crossover region, where the pres-
ence of the pseudogap feature is well manifest due to strong
superconducting fluctuations.(Sufficiently far from the un-
derlying Fermi surface, the coherent peak and the pseudogap
feature merge into a single structure, as is evident from Fig.
12. In this case, the above as well as the following consid-
erations apply to the structure as a whole and not to its indi-
vidual components.)

Figure 13(a) summarizes this finding for the dispersion of
the coherent peaks, by showing the positions of the two co-
herent peaks as extracted from Fig. 12 vsk/km8. These posi-
tions are compared with the two branches ±Îjskd2+Dm

2 of a

FIG. 12. Spectral function at different wave vectors aboutkm8
for T=0.6Tc vs frequency(in units of eF) for the coupling value
skFaFd−1=−0.5.

FIG. 13. (a) Positions of the coherent peaks(in units of eF) vs
the wave vector as extracted from Fig. 12. Positive(squares) and
negative(circles) branches are compared with BCS-like dispersions
(full lines), as explained in the text.(b) Corresponding weights vs
the wave vector, with particlelike(full line) and holelike(dashed
line) contributions.
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BCS-like dispersion, whereDm is also identified from Fig.
12. (The value ofDm turns out to about coincide with the
value of the order parameterD at the same temperature, see
below.) The corresponding evolution of the weights of these
peaks is shown in Fig. 13(b), where the characteristic feature
of an avoided crossing is evidenced. The dispersion of the
positions and weights of the coherent peaks shown in Fig. 13
compare favorably with those recently obtained
experimentally49 for slightly overdoped Bi2223 samples be-
low the critical temperature(for T/Tc.0.6).

An additional outcome of our calculation is reported in
Fig. 14, where the distanceDm of the coherent peak in
Ask ,vd from v=0 at uk u=km8 is compared at low tempera-
ture with the order parameterD when m.0 and with
Îm2+D2 whenm,0. This plot thus compares dynamical and
thermodynamic quantities. The good agreement between the
two curves confirms our identification of the coherent-peak
position in Ask ,vd with the minimum value of the excita-
tions in the single-particle spectra according to a BCS-like
expression(where the value of the order parameterD is,
however, obtained by including also fluctuation contribu-
tions).

Finally, it is interesting to comment on the strong-
coupling result(28) for the diagonal Green’s function, with a
characteristic double-fraction structure. The corresponding
spectral functionAsk ,vd, obtained from that expression after
performing the analytic continuationivn→v+ ih, shows
only a single feature for v,0, with a temperature-
independent position. This contrasts the numerical results we
have presented[see, in particular, Fig. 10]. This difference is
due to the fact that, in our numerical calculation, the analytic
continuation has been properly performedbefore taking the
strong-coupling limit, as emphasized in Sec. II E. With this
procedure, in fact, the pseudogap structure and the coherent
peak remain distinct from each other even in the strong-
coupling limit, without getting lumped into a single feature.
Such a noncommutativity of the processes of taking the ana-
lytic continuation and the strong-coupling limit was noted
already in a previous paper25 when studying the spectral
function aboveTc. More generally, the occurrence of this
noncommutativity is expected whenever one considers ap-
proximate expressions in the Matsubara representation and

takes the analytic-continuation of these expressions to real
frequency.

To make evident the noncommutativity of the two pro-
cesses, in Fig. 15 we show the spectral functionAsk =0,vd
for skFaFd−1=2.0 andT/Tc=0.1, obtained by two alternative
methods.(i) Using the analytic continuation of the expres-
sion (48) for S11 where ivs→v+ ih (full line). (ii ) Taking
the strong-coupling expression(23) for S11, in which the
analytic continuationivs→v+ ih is performed(broken line).
Method(i) results in the presence oftwo distinct structures in
Ask ,vd for v,0, corresponding to the coherent(d-like)
peak and the broad pseudogap feature. Method(ii ) gives in-
stead asingle d-like peak. It is interesting to note that the
total spectral weight of the two peaks forv,0 obtained by
method(i) (=0.049 for the coupling of Fig. 15) about coin-
cides with the weight of thed-like peaks=0.044d obtained by
method(ii ). (We have verified that this correspondence be-
tween the spectral weights persists also at stronger cou-
plings.)

These remarks explain the occurrence of a single feature
in the spectral function as obtained by a different theory
based on a preformed-pair scenario.19 In that theory, a single-
particle Green’s function with a double-fraction structure is
considered in the Matsubara representation for any coupling,
and correspondingly a single feature in the spectral function
is obtained for real frequencies.50 Our theory instead shows
the appearance of two distinct energy scales(pseudogap and
order parameter) in the spectral function belowTc. We are
thus led to conclude that the occurrence of two distinct en-
ergy scales belowTc in photoemission and tunneling spectra
should not be necessarily associated with the presence of an
“extrinsic” pseudogap due to additional non-pairing mecha-
nisms, as sometimes reported in the literature.51

IV. CONCLUDING REMARKS

In this paper, we have extended the study of the BCS-
BEC crossover to finite temperatures belowTc. This has re-
quired us to include(pairing) fluctuation effects in the
broken-symmetry phase on top of mean field. Our approxi-
mations have been conceived to describe both a system of
superconducting fermions in weak coupling and a system of

FIG. 14. PositionDm (in units ofeF) of the quasiparticle peak at
T=0.1Tc vs the couplingskFaFd−1 (full line). The dashed line cor-
responds to the value of the order parameterD whenm.0 and of
ÎD2+m2 whenm,0.

FIG. 15. Spectral function vs frequency forskFaFd−1=2.0 and
T/Tc=0.1, obtained by taking alternatively the analytic continuation
of S11 from the expression(48) (full line) or from the expression
(23) (broken line).
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condensed composite bosons in strong coupling, via the sim-
plest theoretical approaches valid in the two limits. These are
the BCS mean field(plus superconducting fluctuations) in
weak coupling and the Bogoliubov approximation in strong
coupling. To this end, analytic results have been specifically
obtained in strong coupling from our general expression of
the fermionic self-energy.

Results of numerical calculations have been presented
both for thermodynamic and dynamical quantities. The latter
have been defined by a careful analytic continuation in the
frequency domain. In this context, a noncommutativity of the
analytic continuation and the strong-coupling limit has been
pointed out.

Results for thermodynamic quantities(such as the order
parameter and chemical potential) have shown that the ef-
fects of pairing fluctuations over and above the BCS mean
field become essentially irrelevant in the zero-temperature
limit, even in strong coupling. Results for a dynamical quan-
tity such asAsk ,vd have shown, in addition, that two struc-
tures(a broad pseudogap feature that survives aboveTc and
a strong coherent peak which emerges only belowTc) are
present simultaneously, and that their temperature and cou-
pling behaviors are rather(even though not completely) in-
dependent from each other.

These features produced in the spectral function by our
theory originate from a totallyintrinsic effect, namely, the
occurrence of a strong attractive interaction(irrespective of
its origin). Additional features produced by otherextrinsic
effects could obviously be added on top of the intrinsic ef-
fects here considered.

Similar results have recently been obtained in Ref. 52,
using a boson-fermion model for precursor pairing belowTc.
In that reference, a two-peak structure forAsk ,vd has also
been obtained, although with a self-energy correction intro-
duced by a totally different method.

The attractive interaction adopted in this paper is the sim-
plest one that can be considered, depending on a single pa-
rameter only. Detailed comparison of the results of this
theory with experiments on cuprates would then require one
to specify the dependence of this effective parameter on tem-
perature and doping.

The simplified model that we have adopted in this paper
should instead be considered realistic enough for studying
theoretically the BCS-BEC crossover for Fermi atoms in a
trap. The occurrence of this crossover in these systems is
being rather actively studied experimentally at present.12 In
this case, the calculation should also take into account the
external trapping potential by considering, e.g., a local ver-
sion of our theory with local values of the density and chemi-
cal potential in the trap.53
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APPENDIX: ANALYTIC CONTINUATION FOR THE
FERMIONIC RETARDED SINGLE-PARTICLE GREEN’S

FUNCTIONS AND SUM RULES BELOW THE
CRITICAL TEMPERATURE

In this appendix, we extend below the critical temperature
a standard procedure for obtaining at a formal level the fer-
mionic retarded single-particle Green’s functions via analytic
continuation from their Matsubara counterparts. This is done
in terms of the Lehmann representation30 and of the Baym-
Mermin theorem.40 In this context, in addition to the usual
sum rule that holds also above the critical temperature,30 we
will obtain two additional sum rules that hold specifically
below the critical temperature.

The results proved in this appendix holdexactly, irrespec-
tive of the approximations adopted for the Matsubara self-
energy. To satisfy the above three sum rules with an approxi-
mate choice of the self-energy, however, it isnot required for
the ensuing approximation to the fermionic single-particle
Green’s functions to be “conserving” in the Baym sense.36

Rather, it is sufficient that the analytic continuation from the
Matsubara frequencies to the real frequency axis is taken
properly, as demonstrated in Sec. II E with the specific
choice(16) of the self-energy.

We begin by considering the fermionic “normal” and
“anomalous” retarded single-particle Green’s functions in
the broken-symmetry phase, defined, respectively, by

GRsr ,t;r 8,t8d = − iust − t8dkhc↑sr ,td,c↑
†sr 8,t8djl sA1d

FRsr ,t;r 8,t8d = − iust − t8dkhc↑sr ,td,c↓sr 8,t8djl. sA2d

Here,ustd is the unit step function,cssr ,td is the fermionic
field operator with spins=s↑ , ↓ d at position r and (real)
time t [such thatcssr ,td=expsiKtdcssr dexps−iKtd with K
=H−mN in terms of the system HamiltonianH and the par-
ticle numberN], the braces represent an anticommutator, and
k¯l stands for the grand-canonical thermal average.

The Matsubara counterparts of Eqs.(A1) and (A2) are
similarly defined by

Gsr ,t;r 8,t8d = − kTt fc↑sr ,tdc↑
†sr 8,t8dgl, sA3d

Fsr ,t;r 8,t8d = − kTt fc↑sr ,tdc↓sr 8,t8dgl, sA4d

where now cssr ,td=expsKtdcssr dexps−Ktd, cs
†sr ,td

=expsKtdcs
†sr dexps−Ktd, andTt is the time-ordering opera-

tor for imaginary timet.
The Lehmann analysis for the normal functionGR in the

broken-symmetry phase proceeds along similar lines as for
the normal phase.30 The result is that(for a homogeneous
system) the wave vector and(real) frequency Fourier trans-
form can be obtained by the spectral representation

GRsk,vd =E
−`

+`

dv8
Ask,v8d

v − v8 + ih
, sA5d

h being a positive infinitesimal. Here, the real and positive
definite spectral functionAsk ,vd=−s1/pdIm GRsk ,vd satis-
fies the sum rule
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E
−`

+`

dv Ask,vd = 1 sA6d

for any givenk, as a consequence of the canonical anticom-
mutation relation of the field operators.

A similar analysis for the Matsubara normal Green’s func-
tion leads to the spectral representation

Gsk,vsd = G11sk,vsd =E
−`

+`

dv8
Ask,v8d
ivs − v8

sA7d

in terms of thesamespectral functionAsk ,vd of Eq. (A5),
wherevs=s2s+1dp /b (s integer) is a fermionic Matsubara
frequency and the diagonal Nambu Green’s function has
been introduced. The spectral representations(A5) and(A7),
together with knowledge of the asymptotic behavior
GRsk ,vd,v−1 for large uvu, are sufficient to guarantee that
the retarded normal function is the correct analytic continu-
ation of its Matsubara counterpart in the upper-half of the
complex frequency plane,30 in accordance with the Baym-
Mermin theorem.40

The above Lehmann analysis can be extended to the
anomalous function(A2) as well. One obtains

FRsk,vd =E
−`

+`

dv8
Bsk,v8d

v − v8 + ih
sA8d

in the place of Eq.(A5). The new spectral functionBsk ,vd
vanishes for largeuvu but, in general, is no longer real and
positive definite.[One obtains forBsk ,vd the same formal
expression30 for Ask ,vd in terms of the eigenstatesunl of the
operatorsH and N, apart from the replacement ofukn8uc↑sr
=0dunlu2 with knuc↓sr =0dun8lkn8uc↑sr =0dunl.]54 It can then be
readily verified thatBsk ,vd satisfies the sum rule

E
−`

+`

dv Bsk,vd = 0, sA9d

which is again a consequence of the canonical anticommuta-
tion relation of the field operators. The above properties
guarantee thatFRsk ,vd vanishes faster thanv−1 for largeuvu.

By a similar token, considering the Matsubara anomalous
Green’s function leads to the spectral representation

Fsk,vsd = G12sk,vsd =E
−`

+`

dv8
Bsk,v8d
ivs − v8

, sA10d

where the off-diagonal Nambu Green’s function has been
introduced. These considerations suffice again to guarantee
that the retarded anomalous function is the correct analytic
continuation of its Matsubara counterpart in the upper-half
complex frequency plane, in accordance with the Baym-
Mermin theorem.40

Finally, an additional sum rule forBsp ,vd can be ob-
tained by using the relation

E
−`

+`

dv Bsk,vdv = iE
−`

+` dv

2p
FRsk,vdv e−ivh

= i E dr e−ik·rKH ] c↑sr ,t = 0+d
] t

,c↓s0dJL
sA11d

and exploiting the equation of motion for the field operator.
For the contact potential we are considering throughout this
paper, we write

KH ] c↑sr ,t = 0+d
] t

,c↓s0dJL = − v0dsr dkc↑sr dc↓sr dl = − dsr dD

sA12d

in terms of the order parameterD. The expression(A11) thus
becomes

E
−`

+`

dvBsk,vdv = − D. sA13d

This constitutes a third sum rule for the spectral functions in
the broken-symmetry phase.
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