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The phase transitions from a symmetric superconducting order parameter to a different or broken symmetry
phase are investigated for thin mesoscopic superconductors well below the nucleation temperature. By using an
effective two-state model the mechanism of these transitions has been revealed and four distinct types of
transitions have been found. The symmetry-breaking phase transition has the same structure as the pseudo
Jahn-Teller instability of high symmetry nuclear configurations in molecules. This analogy provides an inter-
esting connection between real and vortex molecules. The existence of broken-symmetry phases is predicted to
be strongly dependent on the size of the samples.
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Vortex matter in nanostructered superconductors shows a
number of new properties in comparison with the bulk ref-
erence materials.1–5 In particular, the superconducting con-
densate turns out to be strongly influenced by the geometry
of the sample. Similarly, Bose-Einstein condensates also
show a strong dependence on the geometry of their
confinement.6 The nucleation of superconductivity in applied
magnetic field,TcsHd, is described by the lowest levele1 of
the linearized Ginzburg-Landau(LGL) equation. This is al-
ways nondegenerate for finite size samples,7 therefore it is
fully consistent with the symmetry of the sample in applied
field.8 Examples of such symmetrical(S) solutions are giant
vortex states in disks.3,4 This is opposite to the case of bulk
type-II superconductors without boundaries, wheree1sHd is
an infinitely degenerate Landau level while the nucleating
order parameter is a combination of its degenerate
components,9 always of broken symmetry(BS) type. Besides
the symmetry, the discreteness of the spectrum of the LGL
equation in mesoscopic superconductors implies the stability
of the shape of the nucleated order parameter in a range of
temperatures close to theTcsHd line. Such stability of a sym-
metric order parameter has been found for mesoscopic
cylinders,10–12 squares and triangles.8,13–16 Remarkably, a
similar phenomenon is encountered in molecular physics
where it is known as the pseudo-Jahn-Teller effect.17

In this paper we investigate the mechanisms of phase
transitions from a nucleated order parameter of a mesoscopic
superconductor to another symmetry or broken symmetry
phase when temperature is lowered. We find that in the case
of BS phase transitions most often only one single LGL so-
lution of different symmetry effectively admixes to the
nucleated phase. In this case the description of the phase
transition is equivalent to the description of vibronic insta-
bility in a simple (two-level) pseudo Jahn-Teller problem.
Such analogy is specific to mesoscopic superconductors,
which have discrete LGL spectrum, and gives a “molecular”
view on the mechanism of BS phase transitions in mesos-
copic samples. We have also investigated the existence of
different phases as a function of the samples size and found
that the region on the phase diagram corresponding to the

nucleated order parameter of S-solution increases with re-
ducing the size. The critical sizes, corresponding to the dis-
appearence of BS phase transitions(when the nucleated
S-phases persist down toT=0) are predicted to be in the
range of micrometers for conventional superconductors, i.e.,
within the reach of current experimental techniques. This
opens new possibilities for the experimental verification of
different transitions predicted here on the basis of the simi-
larities with the pseudo Jahn-Teller mechanism.

Consider a superconducting polygon of sizea (a2 is the
surface of the sample) and thicknessd in a perpendicular
uniform magnetic fieldH. For small (a,j, the coherence
length) and thinsd!jd samples one can neglect the variation
of the order parameter across thickness10 and the distortion
of the magnetic field induced by screening and vortex cur-
rents. The order parameterC is found from the two-
dimensional GL functional:
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where A is vector potential of the applied field anda
=a8Tc

sT−Tcd;−"2/2m* jsTd2. C obeys in addition the ap-
propriate boundary condition.18 Minimizing (1) without the
term ,uCu4 results in the linear eigenvalue equation:
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Its lowest solutionf1 describes the nucleation phase bound-
ary via the equatione1=−a. The eigenvaluesei, measured in
units of "2/2m* a2 sei8d, depend only on the applied mag-
netic flux F=Ha2, presented in units of the superconducting
flux quantumF0. The eigenstates of(2), normalized to unity
within the surface of the sample, are used further as the basis
set for the order parameter,
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whereN is the dimension of the basis set. Substitution of(3)
into (1) yieldsDF as a function of the expansion coefficients:
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where the parameters

Aij
kl = a2E fi

*f j
*fkfldS s5d

depend only on the geometry but not on the size of the
sample.Aii

ii is precisely the Abrikosov parameterbA (Ref. 18)
for the statefi, which is a measure of its “flatness.”

The actual parameters defining the relative free energy in
Eq. (4) can be found as follows. If we use new coefficients
ci →aÎ−a1/b ci and measure the free energy in units of
a2a1

2/b (a1 corresponds to the lowest LGL eigenvaluee1)
then the right-hand side of Eq.(4) will depend(besidesAij

kl)
only on the ratiosai /a1=sa2/j2+ei8d / sa2/j2+e18d. Hence the
GL functional for a given sample(measured in units of
a2a1

2/b) and the emerging phase diagram are only dependent
on sa/jsTdd2 andF /F0.

The spectrum of eigenvalues in(2) is strongly influenced
by the symmetry of the problem. If the sample has a rota-
tional symmetry axisCn, the eigenstates are characterized by
n different one-dimensional irreps which transform as
,expsimwd, m=0,1, . . ., n−1 under rotations around this
axis. As a result the Landau levels are split in groups ofn
levels belonging to different irreps, because only these can
intersect each other(lower panel in Fig. 1). In addition, the
Cn symmetry imposes the selection rules on integrals in Eq.
(5), mk+ml −mi −mj =0, similar to the case of cylindrical
symmetry.11

Because the fourth order terms in(4) are overall positive,
it is generally expected that only the statesfi with ai ,0 will
effectively contribute to the order parameter. In the close
vicinity to the nucleation phase boundary onlya1 is negative,
thereforeC<c1f1, with c1=aÎ−a1/bA11

11,Îsa/jd2−e18 and
the free energyDF1=−sa1

2/2bA11
11da2. The only allowed ad-

mixtures in this phase are from the excited LGL states of the
same irrep.,f18, described by the coefficientsc18:

c18
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< −
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wherexi j
kl=argAij

kl. In the temperature region wherea18.0
the coefficientsc18 in (6) show smooth behavior, with con-
tinuous derivatives with respect to temperature. The
symmetry-preserving phase transitions can therefore occur
only when some ofa18 become negative. However in sym-
metric samples thefi states which are close toe1 are always
of different symmetry(lower panel in Fig. 1) so that many of
the corresponding parametersai will become negative before

a18. We can conclude that the nucleated order parameter will
undergo a phase transitionmodifying its symmetrywhen tem-
perature is lowered.

Even if there are many LGL states withai ,0 at a given
temperature, only a few of them actually contribute to the
order parameter. This is due to the fact that while the terms
,Aii

ii and ,Aii
j j give net contributions to “repulsion,” the

other terms, which could become negative, partially cancel
out whenN is increased. One can check indeed that already
for N.3 there are less available phases of complexci coef-
ficients thanAij

kl terms to be optimized. The mutual reduction
of these terms increases with the number of mixed LGL
states which means that at a certain value ofN further ad-
mixure will become unfavorable. It is expected therefore that
only a few different irreps will effectively admix at the tran-
sition point.

Next we adopt a general description of the phase transi-
tions from a nucleated order parameter, which is achieved by
the following consideration. Given the small number of dif-
ferent irreps among the statesfi which admix at the transi-
tion point, we can always divide the correspondinghcij in
two groups so as to bring the functional(4) to the following
basic form:

FIG. 1. (Color online) Lower panel: LGL solutionsei8 for a
square with superconductor-vacuum boundary condition, character-
ized by irrepsAsm=0d, Bsm=2d, E+sm=1d, andE−sm=−1d. Upper
panel: the corresponding phase diagram obtained by Monte Carlo
calculations. For each phase, the vortex structure is shown sche-
matically and the involved irreps are indicated. The number at each
boundary line denotes the type of transition(Table I). In the color
online version: the colors stand for the winding number of the cen-
tral vortex: 0(yellow), 1 (green), 2 (blue), and −1(red).
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wherec18 andc28 are the norms of the coefficients in the first
and the second group, respectively, while the parametersã1,
ã2 s,0d and A11, A22, A12 s.0d are functions of associated
angular variables to be specified below. The two groups con-
tain different irreps, in numbersn1 and n2, correspondingly
(f1 belongs to the first group). Minimization with respect to
c81 and c82 for fixed values of the five parameters in(7)
results in three(meta)stable phases:

DF1 = −
ã1

2

2bA11
a2, DF2 = −

ã2
2

2bA22
a2,

DF12

DF1
=

sÎhDF2/DF1 − 1d2

h − 1
+ 1, s8d

where

h =
A11A22

A12
2 . s9d

The first two are pure phases, withc28=0 andc18=0, respec-
tively, while DF12 is the mixed onesc18 ,c28Þ0d. Figure 2
shows the diagram of the thermodynamically stable phases.
The vertical lineh=1 divides the diagram in two regions.
On the left-hand side we have a switch between pure phases
(first-order transition). On the right-hand side the two
phase boundary lines correspond to the second order transi-
tions. At temperatures close to the lower phase boundary,
T=TBS−DT, j=jBS−Dj, the BS phase will grow as
c28,ÎDT, ÎDj.

Now the free energy expressions(8) are minimized with
respect to the remaining variables fromãi andAij resulting in
the lowest energy phase for a given temperature. Since we
are looking for phase transitions from the nucleated S-order
parameter, the pure phase 1 in Fig. 2 always corresponds to
f1 with possible small admixures of the same symmetry, Eq.
(6). Depending on the symmetries of other LGL states which
admix through the transition we can have several types of
phase transitions which are investigated below. As in the case
of f1, the contributions from states of other symmetries are
mainly represented by one LGL state. Therefore to simplify

further analysis we will consider that only one state per irrep.
contributes.

In the case of a single admixed statesf2d one should
substitutec1=c18 and c2=c28 in Eq. (7) and ãi =ai, Aii =Aii

ii ,
and A12=2A12

12− uA11
22u into (8) and (9). When the interaction

between these states,A12, is larger thanÎA11
11A22

22, the order
parameter corresponds either tof1 or f2 (left side of the
diagram in Fig. 2). The transition fromf1 to f2 takes place
when

a2

a1
.ÎA22

22

A11
11. s10d

The left-hand side of this equation increases with lowering
the temperature, being always,1. Therefore the transition
between symmetric states can only occur ifA22

22,A11
11. When

the interaction is weaker,h.1, the transition fromf1 to a
BS order parameter(right-hand side of the phase diagram)
can arise under the condition

a2

a1
.

A12

A11
11. s11d

When two states of different symmetry mix withf1, two
situations can occur.

(1) If the involved irreps. obey the inequalitiesm1+m3
−2m2Þ0, ±n, m1+m2−2m3Þ0, ±n, then c1=c18, c2
=c28 cosw, c3=c28 sinw, and

ã1 = a1,

ã2 = a2 cos2 w + a3 sin2 w,

A11 = A11
11,

A22 = A22
22 cos4 w + A33

33 sin4 w + sA23
23 − uA22

33u/2dsin2 2w,

A12 = 2A12
12 cos2 w + 2A13

13 sin2 w − uA11
23usin 2w. s12d

Substitutings12d into Eqs.s8d and minimizing with respect
to w we obtain again three thermodynamically stable phases
of Fig. 2 for corresponding equilibrium values ofw. The
difference is that now the left-hand side of the diagram de-
scribes the switch between the symmetricsf1d and the
broken-symmetrysf2+f3d phases, while the BS phase in the
right-hand side of the diagram corresponds tof1+f2+f3.

(2) If the first or the second relation for irreps. becomes
equality then c1=c18 cosw, c2=c28, c3=c18 sinw, or c1
=c18 cosw, c2=c18 sinw, c3=c28, respectively. Therefore for
h,1 we can only have a symmetry-changing transition from
f1 to f2 (or f3). However forh.1, at w corresponding to
thermodynamically stable BS phasef1+f2+f3, the lowest
boundary line in Fig. 2 separates this phase from the meta-
stable onef1+f3 (or f1+f2). Therefore the phase transition
from f1 will take place along the line which lies somewhere
higher(dashed line in Fig. 2), i.e., it is of the first order. This
type of transition is associated with a small jump ofc1, hence
it is close to second order.

FIG. 2. Diagram of thermodynamically stable phases(solid
lines) for the effective two-state model(7) as function of the pa-
rameters from Eqs.(8) and(9). 1, 2 are pure phases and 1+2 is the
mixed one.
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Considering higher numbers of mixing irreps will not re-
sult in qualitatively new phase transitions which are thus of
four types(Table I).

The diagram of the lowest transitions from symmetric
phases in a thin square was evaluated within the above ap-
proach, which compares well with an accurate Monte Carlo
calculation19 shown in the upper panel of Fig. 1. The critical
values ofj calculated by the two approaches differ by only
several percent. One finds indeed that only a few states ef-
fectively admix to the order parameter. The described region
in the phase diagram becomes relatively large with decreas-
ing a. For small enough samples some phase boundary lines
pass abovesa/js0dd2 and the nucleated symmetric phases
remain thermodynamically stable down toT=0. Thus the
transition from the phase with an antivortex in the center
sF /F0=5.5÷6.5d to a BS phase with the same vorticity but
without antivortex is supressed fora, s7÷8djs0d (<1 mm
for Al ).

It follows from Fig. 1 that the phase boundary lines sepa-
rating the areas with different vorticity have positive slopes
and correspond to transitions of type 1(Table I) in the lower
part of the diagram.20 The reason is the increase of Abriko-
sov parametersbA in the lowest group of LGL states(Fig. 1)
when passing through the corresponding avoided crossings
towards increased fields. Indeed, it was shown21 that the low-
est Landau level of each irrep. maps into cylindrical states
with rotational numbersL to the left andL+n to the right of
the avoided crossing, respectively. Therefore for two lowest
LGL states the Abrikosov parameter is smaller for the ground
state to the left and for the excited one to the right of their
intersection, so that the condition(10) can only be obeyed in
the latter case.

On the other hand the obtained transitions to broken-
symmetry phases are always of the second order and go
mostly via a two-state mixing scenario(in the phasesE−
+A+B in Fig. 1 the admixure ofB states is relatively small).
The direct analogy for this in molecular physics is the
pseudo Jahn-Teller(PJT) instability of symmetric geometry
of a molecule with respect to a low symmetry nuclear distor-
tion sqd. Usually such an instability results from a strong
interaction of the ground electronic statesf1d with an excited
state sf2d, induced by q, which is described by the
Hamiltonian:17

HPJT=
1

2
Kq2 + S− D Vq

Vq D
D , s13d

where 2D is the energy gap between the ground and the
excited states in the symmetric nuclear configuration,V is

the vibronic constant, andK is the force constant. The insta-
bility occurs whenV2/K.D and it results in an equilibrium
distortion qs0d (Fig. 3) and a broken-symmetry electronic
ground state.

The PJT instability can be described by considering a
functional depending on electronic variables only.22 To ob-
tain such a functional, we averageHPJT over C=c1f1
+c2f2, find the equilibrium value ofq as function ofc1 and
c2 and substitute it back into the average:

kCuHPJTuCl0 = −
2V2

K
c1

2c2
2 + Ds− c1

2 + c2
2d. s14d

Next we introduce polar coordinates,c1=c cosw, c2
=c sinw for the PJT functional(14) and c1=A11

−1/4c cosw,
c2=A22

−1/4c sinw for the functional(7), wherew plays now the
role of the order parameter for the BS state. Thew-dependent
part of both functionals has now the following common
form:

DEswd = − Ac4 sin2 2w − Bc2 cos2 w, s15d

where A=V2/2K, B=D for the PJT problem andA
=sb /4a2ds1−h−1/2d, B=sa2A22

−1/2−a1A11
−1/2d /2 for the case of

superconductor. The main difference between them is that
c=1 in the former andcÞ1 in the second case. Therefore the
correspondence between PJT and GL parameters is the fol-
lowing:

TABLE I. Possible transitions from a symmetric vortex
phase.

Typea h n1 n2 nf
b Order (symmetry)

1 ,1 1 1 1 I (S)

2 .1 1 ù1 n2+1 II (BS)

3 ,1 1 .1 n2 I (BS)

4 .1 .1 ù1 n2+n1 I (BS)

aNumbers used in Fig. 1.
bNumber of irreps. in the final state.

FIG. 3. Upper panel: adiabatic potential for two nondegenerate
electronic terms of a square molecule in the case of weak(dashed
lines) and strong(solid lines) pseudo Jahn-Teller effect. Lower
panel: temperature dependence of the normalized coefficient of ad-
mixure of the excitedsAd state close to theB→B+A transition at
F=4.5F0 (Fig. 1) evaluated by Monte Carlo calculations and the
pseudo Jahn-Teller effect using the correspondence relations(16).
The numbers in the inset denote the dimension of the basis set in
the Monte Carlo calculations.
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V2/K → ua1u

2ÎA11
S1 −

1
Îh

D ,

2D → a2

ÎA22

−
a1

ÎA11

. s16d

Lower panel in Fig. 3 shows how the broken symmetry
phase appears for vortex molecules. We can see that the evo-
lution of the order parameter with temperature is reproduced
by the pseudo Jahn-Teller effect. In the caseN=2, only the
groundB and the first excitedA LGL states are taken into
account. The accurate calculation involvingN=24 LGL
states shifts the transition point obtained in theN=2 calcu-
lation only by <2%. This shift mainly arises due to the
renormalization of the effective parameters in Eq.(7) when
more LGL states are taken into account. As a result of this
renormalization the nucleated phase becomes optimized so
that the transition takes place at a lower temperature com-
pared to the two-state approximation.

As the analysis shows the specific structural similarity
between the pseudo Jahn-Teller and GL symmetry breaking
mechanisms is due to the presence of a quartic dependence
on the expansion coefficients. A different mechanism of sym-
metry breaking was described by Berger for the case of the
Schrödinger equation for a cylinder.23 In this case breaking
of axial symmetry was obtained through the induced mag-
netic field and the quartic term in the GL potential was not
considered.

In conclusion, we have investigated the mechanisms of

the phase transitions in symmetric mesoscopic superconduct-
ors from a nucleated order parameter. Compared to bulk type
II superconductors where only the Abrikosov vortex lattice
occurs, the mesoscopic samples show a rich variety of novel
vortex phases. By using an effective two-state model the
nature of the transition to these phases has been revealed and
four distinct types of transitions have been found. The
symmetry-breaking phase transition has the same structure as
the pseudo Jahn-Teller instability of high symmetry nuclear
configurations in molecules. This analogy provides an inter-
esting connection between real and vortex molecules.

The existence of novel phases can be experimentally veri-
fied by using various local probe techniques such as Hall
probe microscopy, STM and AFM. The phase diagram is
found to be strongly dependent on the samples size. In par-
ticular, the region on the phase diagram corresponding to the
nucleated(symmetric) order parameter enlarges with reduc-
ing the size of the sample. The critical size corresponding to
the complete disappearence of the BS phase(the nucleated
S-phase persists untilT=0) is predicted to be of the order of
micrometers for conventional superconductors, such as Al,
Pb. These predictions can be checked experimentally on dif-
ferent mesoscopic superconducting systems.
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