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The energy gap in the Rokhsar-Kivelson dimer model on the triangular lattice is computed by the classical
Monte Carlo method. The lowest excitations are identified asZ2 vortices(visons), and their energy is computed
as a function of the momentum.
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The Rokhsar-Kivelson(RK) dimer model is an interesting
example of a two-dimensional quantum liquid.1–3 When the
kinetic and potential coupling constants of the RK dimer
model are equal(the so-called “RK point”), the ground state
of the model is known exactly and the ground-state proper-
ties on planar lattices may be analytically studied with the
Pfaffian method.4 Much attention was paid to the study of the
RK model on the triangular lattice, in which case the RK
point is known to be in the liquid phase with topological
order and with exponentially decaying correlations2,5,6 (on
the square lattice, in contrast, the RK point has power-law
correlations and a gapless spectrum, due to the bipartite na-
ture of the lattice1,3,7–9). Unfortunately, our knowledge of the
excitation spectrum at the RK point on the triangular lattice
is limited to numerical methods.2,10 Studying excitations in
the RK model is interesting in view of the prediction that the
elementary excitations are the so-called “visons” which are
nonlocal objects in terms of dimers. Visons were proposed as
elementary excitations in quantum liquids withZ2 gauge
symmetry(possibly also in spin-1/2 systems).11,12While ap-
plicability of this proposal to realistic spin-1/2 systems is
debatable, there exist model systems, where the existence of
vison excitations is explicitly shown and the whole spectrum
of visons may be exactly found.13,14 The usual price to pay
for the exact solvability is that in such models the vison
excitations are strictly local(i.e., their energy is independent
of the momentum) and noninteracting. In contrast, the RK
model presents a very nontrivial case, where the visons have
their dispersion and interact in many-vison states.

In this work, I use the proposal of Henley to extract the
energy gap of the excitations from the time correlation of the
classical Monte Carlo algorithm used to compute the ground-
state observables9 (the classical calculation of the excitation
spectrum is actually possible due to the supersymmetry of
the RK point;15,16the relation between supersymmetric quan-
tum systems and stochastic classical dynamics was discussed
in various contexts17). By choosing appropriate correlation
functions, we can resolve the momentum dependence of the
gap, and also distinguish excitations carrying odd number of
visons from those carrying even number of visons. We find
that the low-energy excitations are indeed visonlike(carry
odd number of visons) and plot their dispersion in the Bril-
louin zone.

The Rokhsar-Kivelson dimer model may be defined on
any graph: the dimer coverings of the graph define an ortho-
normal basis of the Hilbert space; and the quantum Hamil-
tonian is

s1d

The sum is taken over all length-four loops of the graph. The
two coupling constantst and v determine the strength of
kinetic and potential terms, respectively. At the “RK point”
t=v, the Hamiltonian can be shown to be non-negative(as-
sumingt.0), and its ground state may be constructed as the
sum of all dimer configurations taken with equal amplitudes
[more precisely, we can restrict the sum to the dimer con-
figurations from any connected component of the “phase
space,” i.e., to configurations which can be obtained from
each other by the kinetic term in the Hamiltonian(1)].1 This
ground state has energy zero, which is a manifestation of the
supersymmetry of the RK point.15 We further specify to the
case of the underlying graph being the two-dimensional tri-
angular lattice[the sum in the Hamiltonian(1) is taken over
all rhombi, so the total number of terms in the sum is three
times the number of lattice sites], and set the energy unitst
=v=1. Our main objective in this paper is finding the low-
lying excitations of this model. From earlier numerical stud-
ies, it has been suggested that this model has a gapped
spectrum,2,10 which seems to be in agreement with the expo-
nential decay of ground-state correlation functions known
from analytic studies.2,5,6

From the general discussions of the dimer liquids in two
dimensions, theZ2-vortex operator(the so called “vison”) is
known to play an important role among physical observ-
ables. The vison(more precisely, the “two-vison”) operator
VG is defined for any contourG intersecting links of the
lattice and terminating either at the lattice boundary or inside
a plaquet in the bulk of the lattice[Fig. 1(a)]. The operator
VG is defined as the parity of the number of dimers intersect-
ing G:

VG = s− 1dno. of dimers intersectingG. s2d

If one commutes such an operator with the Hamiltonian(1),
the only nonvanishing contribution comes from the rhombi
containing the end points of the contour. In particular, if the
contour forms a closed loop or terminates at a lattice bound-
ary, the corresponding operator exactly commutes with the
Hamiltonian and gives rise to different topological sectors of
the Hilbert space.1,11,18

It is natural to suggest that terminating the contour in the
bulk of the lattice produces an excited state close to an eigen-
state. Of course, to form a true excited eigenstate would
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require some “dressing” of the vison operator with local
corrections around the contour end point. However, the
topological structure of the excitation will be preserved
as visonlike. To clarify the above reasoning, we first describe
some properties of the vison operatorsVG. First, it is easy
to check that the operatorVG, up to a sign, depends only
on the end points of the contour; the dependence on the
contour itself reduces to a controllable change of the sign:
changing from the contourG to another contourG8 with the
same end points changes the sign of the vison operator as
VG=s−1dSVG8, where S is the number of lattice points be-
tween the contoursG and G8. Second, concatenation of the
contours corresponds to the multiplication of the correspond-
ing vison operators. Therefore we may represent the operator
VG as the product of two vison operators at end points:
VG=V1V2, where each of the “single-vison” operatorsV1 and
V2 depends on one of the two end points ofG. Constructed
this way, the point vison operatorsVi obey Z2 algebra
sVi

2=1d and are defined on thefrustrated dual lattice: their
index i refers to a plaquet of the original lattice, and they
change sign on going around one lattice site of the original
lattice. For the triangular lattice, we should think of visons as
living on the hexagonal lattice with the magnetic flux of half
quantum per hexagon.

To establish a sign convention for visons, we need to fix a
Z2 gauge on the dual lattice. This can be most easily done by
taking a certain(arbitrary, but fixed once forever) dimer con-
figuration as a reference one. Then in the definition(2), we
multiply the right-hand side by the same expressionVG com-
puted in the reference dimer configuration. With the new
definition, VG becomes a single-valued function of the end
points ofG (independent of the choice of the contour). In our
calculation, we take the reference dimer configuration as
shown in Fig. 1(b) (note an additional doubling of the unit
cell).

An important property of the vison operator is that it is a
nonlocal operator in terms of dimers. A single-vison operator
Vi in an infinite system involves the contourG continued to
infinity and hence corresponds to a change in the boundary
conditions on the wave function at infinity. Namely, a circu-
lar permutation of dimers along a big closed contour encir-
cling the “excitation region” reverses sign of the excitation

with odd number of visons, but keeps the wave function
unchanged for the excitation with even number of visons
(Fig. 2). According to this criterion, we may classify any
“localized” wave packet as either visonlike or non-vison-
like. non-vison-like excitations are expressed as local opera-
tors in terms of dimers. A visonlike excitation may be de-
scribed as a non-vison-like(local) operator multiplied by a
vison operator. Thus we naturally have two classes of exci-
tations with aZ2 grading: combining two visonlike excita-
tions we obtain a non-vison-like excitation, while combining
a non-vison-like excitation with a visonlike excitation gives
a visonlike excitation. Of course, with this construction it
seems natural that visonlike excitations should be considered
as “elementary” excitations, while non-vison-like excitations
may be constructed as composite excitations from visonlike
elementary excitations. In reality, however, it may happen
that visonlike excitations are pushed high in energy, so that
the low-lying physical excitations are all non-vison-like. In
this paper I demonstrate that it is not the case at the RK point
on the triangular lattice. We shall see that both the visonlike
and non-vison-like sectors are gapped and that the gap in the
visonlike sector is smaller than in the non-vison-like sector.
So vison excitations are indeed the lowest-energy excitations
in the model.

The exponentially decaying ground-state correlation
functions2,5 suggest a gap in the excitation spectrum, and
indeed both quantum Monte Carlo studies2 and exact diago-
nalization on small systems10 suggest the presence of the gap
(from exact diagonalization, the value of the gap was esti-
mated as 0.1). However, as pointed out by Henley,9 at the RK
point the gap may be more easily extracted from a classical
Monte Carlo simulation similar to that used for calculating
the ground-state expectation values(see, e.g., Refs. 19 and
6). Namely, consider the following random walk defined on
the space of all dimer coverings of the lattice. A step of the
random walk is defined as picking at random any rhombus
and, if it contains two parallel dimers, flipping this pair of
dimers into the other two sides of the rhombus[as indicated
by the kinetic term of the Hamiltonian(1)]. If the chosen
rhombus is nonflippable, the dimer configuration remains un-
changed at this step of the random walk.

As shown by Henley,9 such a random walk simulates the
quantum-mechanical evolution in imaginary time. Accord-

FIG. 1. (a) Definition of the vison operatorVG. The contourG
(dashed line) connects two triangular plaquets of the lattice
(shaded). The value ofVG is the parity of the intersection of dimers
with G. For the contourG and for the dimer configuration shown in
the figureVG=−1 (three intersections). (b) The reference dimer con-
figuration for the sign fixing of a single-vison operator. An alterna-
tive (to that described in the main text) formulation of the sign-
fixing rule: the contoursG must be drawn in such a way that they do
not intersect dimers from the reference configuration.

FIG. 2. A localized wave packet of visonlike excitations. Vison-
like excitations may be distinguished from non-vison-like ones by a
circular permutation of dimers along a big contour(shown).
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ingly, the exponents governing the decay of the dynamic
correlation functions with time are given precisely by the
excitation energies of the quantum system. For our discrete
random walk, this procedure of determining the excitation
energies produces systematic errors arising from the discreti-
zation of time steps. The discreteness of time steps may, in
principle, be properly compensated; however, we simply ne-
glect the corresponding systematic errors. One can show that
discretization of time leads to relative corrections to the gap
magnitude of approximately one over the total number of
rhombi in the system. In our Monte Carlo calculation we
take a sufficiently large system of 20320 sites(thus contain-
ing 1200 rhombi), and those corrections are smaller than the
statistical errors for the lengths of random walks used in our
calculations. Therefore we disregard the time-discretization
errors and extract the gaps directly from the correlations of
the discrete random walk.

The next useful observation is that, by taking appropriate
correlation functions, we can probe the gap at a given wave
vector. And, moreover, we can distinguish between visonlike
and non-vison-like excitation sectors. For computing the gap
in the non-vison-like sector, we should consider correlations
of non-vison-like observables(e.g., the dimer density). For
the gap in the vison sector we take visonlike observables
(e.g., the point visonVi defined above).

We first consider the excitations in thevisonlikesector. In
order to compute the gap, we take the correlation function

Fsr i j ,t − t8d = kVistdVjst8dl, s3d

whereVistd is the point vison on the trianglei at the moment
t of the random-walk procedure as defined above andr i j is

the vector connecting the plaquetsi and j . This correlation
function is properly defined, in spite of having only one vi-
son operator at each of the time momentst and t8. To dem-
onstrate the consistency of the definition(3), it is convenient
to insert the square of the vison operatorfVjstdg2=1. Then we
rewriteVistdVjst8d=fVistdVjstdgfVjstdVjst8dg. The first product
of the two vison operators is defined in Eq.(2) with the
contourG connecting the pointsi and j . The second product
involves two vison operators at one space point, but at dif-
ferent time moments. Obviously this product is also well
defined for our random-walk process: namely, every dimer
flip at any time betweent andt8 on a rhombus containing the
triangle j changes the sign ofVjstdVjst8d. In other words,
VjstdVjst8d counts the parity of the number of such flips.

With the gauge choice for visons as discussed above[Fig.
1(b)], the unit cell of the lattice is doubled, and contains four
triangular plaquets. To characterize vison excitations with
wave vectors, we perform a Fourier transform of the corre-
lation function (3) and arrive at the 434 matrix Fsk ,td,
wherek is the wave vector from the reduced Brillouin zone.

FIG. 3. This figure shows the Brillouin zones for non-vison-like
and visonlike excitations(superimposed, on the same scale). Non-
vison-like excitations: the Brillouin zone is the big hexagon(solid
line; the side length of the hexagon is 4p /3 in the units of the
inverse lattice constant of the original triangular lattice), with the
minimum-gap points marked with big circles and labeleda. Vison-
like excitations: the Brillouin zone is the dashed rectangle[for the
choice of gauge specified in Fig. 1(b)]. The small solid circles,
squares, and triangles(labeled with the lettersA, B, andC, respec-
tively) are the high-symmetry points. For example, pointsA are
centers of sixfold symmetry. The vison gap is found to reach its
minimum at pointsB, and to increase strongly towards pointsA.

FIG. 4. Top: the energy of the visonlike excitations along the
sectionA-B-C-A of the Brillouin zone shown in Fig. 3. The error
bars are much smaller than the symbol size. The arrows on the
energy axis indicate positions ofDB (bottom of the vison band), D0

(lowest-energy non-vison-like excitation), andDB+D0 (an estimate
for the bottom of the three-vison continuum). Bottom: three-
dimensional plot of the energy of the visonlike excitations as a
function of the wave vector. The center and the corners of the hexa-
gon correspond to the pointsA, as labeled in Fig. 3.
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The full Brillouin zone and the reduced Brillouin zone are
sketched in Fig. 3. Note that with our choice of the vison
gauge, the correlation functionFsk ,td has certain symmetries
in k space reflecting the symmetries of the original triangular
lattice. Those symmetries contain the sixfold rotation/
reflection symmetry(D6 symmetry group) around a certain
point in k space, together with translations by two basis vec-
tors defining a triangular lattice. The high-symmetry points
in the k space are marked in Fig. 3 by lettersA, B, andC.

Now we determine the energy of the vison excitations
Dskd from the exponential decay of the diagonal elements of
Fsk ,td.20 The sections of the energy dispersion along the
“crystallographic axes” of the Brillouin zone and the 3D plot
of Dskd are presented in Fig. 4. The pointsB of the k space
give the minimal energy gapDB=0.089s1d (which agrees
with Ref. 10 claiming the gap value 0.1). The pointsC
are the saddle points of the energy dispersion with
DC=0.114s1d. The pointsA are the centers of high-energy
regions. In those regions, a naive fitting with an exponential
suggestsDA.0.3 and does not reproduce well thet depen-
dence ofFsk ,td. This may indicate that, at those wave vec-
tors, the lowest excitations are not elementary visons, but

rather combinations of three visons from the pointsB. Thus
the t dependence ofFsk ,td reflects not an isolated excitation,
but the bottom of a multiparticle continuum. The difference
in the time dependence between low-energy and high-energy
regions in thek space is illustrated in Fig. 5 where we show
typical t dependences ofFsk ,td for the two k points: one
near pointB in k space and the other one near pointA.

Next, we repeat the same procedure fornon-vison-like
excitations by taking the correlations of the dimer-density
operator instead of the vison operatorVistd in Eq. (3). We
then find that the lowest gap in the nonvison sector isD0
=0.144s1d and is reached at points labeleda in Fig. 3. Thet
dependence of the dimer-dimer correlation function at point
a is shown in Fig. 5. A good fit with an exponential depen-
dence, together with the inequalityD0,2DB, suggests that
the lowest non-vison-like excitation is not just a superposi-
tion of two noninteracting vison excitations, but a bound
state of such a pair. On the other hand, its energy is consid-
erably higher than that of an elementary vison excitation
sDBd, which confirms the claim that the lowest excitation is
visonlike.[This result also suggests that we estimate the bot-
tom of the continuum in the visonlike excitations as
D0+DB instead of 3DB, see Fig. 4(a).]

Finally, with this method of calculating the excitation gap,
we can verify the claim of Ref. 10 about the absence of
low-lying edge states in the case of lattices with boundaries.
We examine the excitation spectrum of the 10310 and
20320 cylinders with straight boundaries along the lattice
directions. From the result on non-vison-like excitations in
the bulk, we expect that visons are attracted to each other,
and therefore, visons should also get attracted to boundaries
(since the vison cut may be terminated at the boundary at no
energy cost). Note also that near the boundary there is no
distinction between visonlike and non-vison-like excitations.
Thus for determining the energy of the edge states we may
take the dimer-dimer correlation function at the very bound-
ary. Our classical Monte Carlo simulation gives the boundary
gapDedge=0.072s1d reached at the wave vectorp along the
boundary. In line with our expectations, the gap at the bound-
ary is indeed somewhat reduced compared to the bulk vison
gap, but remains finite: there are no gapless edge excitations,
in agreement with Ref. 10.

The author thanks M. Feigelman for helpful discussions
and comments.
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