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Vortexlike elementary excitations in the Rokhsar-Kivelson dimer model on the triangular lattice
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The energy gap in the Rokhsar-Kivelson dimer model on the triangular lattice is computed by the classical
Monte Carlo method. The lowest excitations are identifiedagrtices(visong, and their energy is computed
as a function of the momentum.
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The Rokhsar-KivelsoiRK) dimer model is an interesting Hyy = > (- I|Z><I I| + U|:><:|).
example of a two-dimensional quantum ligdid.When the (1)

kinetic and potential coupling constants of the RK dimer )

model are equd]the so-called “RK point)” the ground State The sum is taken over all Iength—four |OOpS of the graph. The
of the model is known exactly and the ground-state propertwo coupling constants and v determine the strength of
ties on planar lattices may be analytically studied with thekinetic and potential terms, respectively. At the “RK point”
Pfaffian method.Much attention was paid to the study of the t=v, the Hamiltonian can be shown to be non-negata®

RK model on the triangular lattice, in which case the RKsumingt>0), and its ground state may be constructed as the
point is known to be in the liquid phase with topological sum of all dimer configurations taken with equal amplitudes
order and with exponentially decaying correlati®h%(on  [more precisely, we can restrict the sum to the dimer con-
the square lattice, in contrast, the RK point has power-lafigurations from any connected component of the “phase
correlations and a gapless spectrum, due to the bipartite ngpace,” i.e., to configurations which can be obtained from
ture of the latticé79. Unfortunately, our knowledge of the each other by the kinetic term in the Hamiltonid].! This
excitation spectrum at the RK point on the triangular latticeground state has energy zero, which is a manifestation of the
is limited to numerical methods:® Studying excitations in supersymmetry of the RK poid®.We further specify to the
the RK model is interesting in view of the prediction that the .5q6 of the underlying graph being the two-dimensional tri-

elementary.excitgtions are the so-ca!led “visons” which are‘angular latticg'the sum in the Hamiltonia(l) is taken over
nonlocal ObJeCtS. In _terms of dimers. V|§or)s were proposed @31l rhombi, so the total number of terms in the sum is three
elementary excitations in quantum liquids wi#y gauge ’

symmetry(possibly also in spin-1/2 systepis-*2While ap- t_imfs the number of lattice sifesand set the energy units
plicability of this proposal to realistic spin-1/2 systems is_l.)_l' O_ur main obpctwe in this paper 1S finding _the low-
debatable, there exist model systems, where the existence !g]mg_excnatlons of this model. From 'earller numerical stud-
vison excitations is explicitly shown and the whole spectrum!®*: It haslobee_n suggested that this model has a gapped
of visons may be exactly fourd:* The usual price to pay spec_trum?; which seems to be in agreement with the expo-
for the exact solvability is that in such models the Visonnentlal decay of ground-state correlation functions known

\ ar
excitations are strictly locai.e., their energy is independent TOM analytic studies:

of the momentumand noninteracting. In contrast, the RK . From the general discussions of the dimer qugids i_n two
\}gmensmns, th&,-vortex operato(the so called “visony'is

model presents a very nontrivial case, where the visons ha X )
known to play an important role among physical observ-

their dispersion and interact in many-vison states. - . ; A
In this work, | use the proposal of Henley to extract theablgs' Th_e visorimore precisely, _the tWO.'V'SO.') operator
Vr is defined for any contouf intersecting links of the

energy gap of the excitations from the time correlation of theI . d o h he lattice bound insid
classical Monte Carlo algorithm used to compute the ground-attlce and terminating either at the lattice boundary or inside

a plaquet in the bulk of the latticg-ig. 1(a)]. The operator

state observabl@gthe classical calculation of the excitation : i . . ;
is defined as the parity of the number of dimers intersect-

spectrum is actually possible due to the supersymmetry O_YF

the RK pointi516the relation between supersymmetric quan-"9 * -

tum systems and stochastic classical dynamics was discussed V= (= 1)no- of dimers intersecting ()

in various contexts). By choosing appropriate correlation

functions, we can resolve the momentum dependence of tHé one commutes such an operator with the Hamiltor{ian

gap, and also distinguish excitations carrying odd number othe only nonvanishing contribution comes from the rhombi

visons from those carrying even number of visons. We findcontaining the end points of the contour. In particular, if the

that the low-energy excitations are indeed visonlikarry  contour forms a closed loop or terminates at a lattice bound-

odd number of visonsand plot their dispersion in the Bril- ary, the corresponding operator exactly commutes with the

louin zone. Hamiltonian and gives rise to different topological sectors of
The Rokhsar-Kivelson dimer model may be defined onthe Hilbert spacé:'*18

any graph: the dimer coverings of the graph define an ortho- It is natural to suggest that terminating the contour in the

normal basis of the Hilbert space; and the quantum Hamilbulk of the lattice produces an excited state close to an eigen-

tonian is state. Of course, to form a true excited eigenstate would

1098-0121/2004/19)/09443@5)/$22.50 70 094430-1 ©2004 The American Physical Society



D. A. IVANOV PHYSICAL REVIEW B 70, 094430(2004)

NN/ AVAVAVAVAN L=
i, ARVAN ' :

excitation
wave packet

/\ @ \L (b) |"

FIG. 1. (a) Definition of the vison operatoy. The contourl |
(dashed ling connects two triangular plaquets of the lattice \ 1
(shadegl The value ofVr is the parity of the intersection of dimers S
with I". For the contoui” and for the dimer configuration shown in \,'_' -
the figureVy=-1 (three intersections(b) The reference dimer con-
figuration for the sign fixing of a single-vison operator. An alterna-
tive (to that described in the main texfiormulation of the sign-
fixing rule: the contour$” must be drawn in such a way that they do
not intersect dimers from the reference configuration.

1
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FIG. 2. Alocalized wave packet of visonlike excitations. Vison-
like excitations may be distinguished from non-vison-like ones by a
circular permutation of dimers along a big contgahown).

with odd number of visons, but keeps the wave function

require some “dressing” of the vison operator with localunchanged for the excitation with even number of visons
corrections around the contour end point. However, thgFig. 2). According to this criterion, we may classify any
topological structure of the excitation will be preserved“localized” wave packet as either visonlike or non-vison-
as visonlike. To clarify the above reasoning, we first describgike. non-vison-like excitations are expressed as local opera-
some properties of the vison operatdfg. First, it is easy tors in terms of dimers. A visonlike excitation may be de-
to check that the operatdry, up to a sign, depends only scribed as a non-vison-likdocal) operator multiplied by a
on the end points of the contour; the dependence on thgison operator. Thus we naturally have two classes of exci-
contour itself reduces to a controllable change of the signtations with aZ, grading: combining two visonlike excita-
changing from the contour to another contouf’ with the  tions we obtain a non-vison-like excitation, while combining
same end points changes the sign of the vison operator @snon-vison-like excitation with a visonlike excitation gives
Vr=(-1)%p, whereS is the number of lattice points be- a visonlike excitation. Of course, with this construction it
tween the contour§’ andI'. Second, concatenation of the seems natural that visonlike excitations should be considered
contours corresponds to the multiplication of the correspondas “elementary” excitations, while non-vison-like excitations
ing vison operators. Therefore we may represent the operataay be constructed as composite excitations from visonlike
Vi as the product of two vison operators at end pointselementary excitations. In reality, however, it may happen
Vr=V,V,, where each of the “single-vison” operatdsand  that visonlike excitations are pushed high in energy, so that
V, depends on one of the two end pointslofConstructed  the low-lying physical excitations are all non-vison-like. In
this way, the point vison operators; obey Z, algebra this paper | demonstrate that it is not the case at the RK point
(Vi2=1) and are defined on thieustrated dual latticetheir  on the triangular lattice. We shall see that both the visonlike
index i refers to a plaquet of the original lattice, and theyand non-vison-like sectors are gapped and that the gap in the
change sign on going around one lattice site of the originalisonlike sector is smaller than in the non-vison-like sector.
lattice. For the triangular lattice, we should think of visons asSo vison excitations are indeed the lowest-energy excitations
living on the hexagonal lattice with the magnetic flux of half in the model.
quantum per hexagon. The exponentially decaying ground-state correlation

To establish a sign convention for visons, we need to fix unctiong® suggest a gap in the excitation spectrum, and
Z, gauge on the dual lattice. This can be most easily done bindeed both quantum Monte Carlo studiesd exact diago-
taking a certair{arbitrary, but fixed once forevedimer con-  nalization on small systertfssuggest the presence of the gap
figuration as a reference one. Then in the definiii@n we  (from exact diagonalization, the value of the gap was esti-
multiply the right-hand side by the same expressdiprcom-  mated as 0.1 However, as pointed out by Henlggt the RK
puted in the reference dimer configuration. With the newpoint the gap may be more easily extracted from a classical
definition, V[ becomes a single-valued function of the endMonte Carlo simulation similar to that used for calculating
points ofI" (independent of the choice of the contpun our  the ground-state expectation valusge, e.g., Refs. 19 and
calculation, we take the reference dimer configuration a$). Namely, consider the following random walk defined on
shown in Fig. 1b) (note an additional doubling of the unit the space of all dimer coverings of the lattice. A step of the
cell). random walk is defined as picking at random any rhombus

An important property of the vison operator is that it is aand, if it contains two parallel dimers, flipping this pair of
nonlocal operator in terms of dimers. A single-vison operatodimers into the other two sides of the rhomijas indicated
V; in an infinite system involves the contolircontinued to by the kinetic term of the Hamiltoniaql)]. If the chosen
infinity and hence corresponds to a change in the boundamhombus is nonflippable, the dimer configuration remains un-
conditions on the wave function at infinity. Namely, a circu- changed at this step of the random walk.
lar permutation of dimers along a big closed contour encir- As shown by Henley,such a random walk simulates the
cling the “excitation region” reverses sign of the excitation quantum-mechanical evolution in imaginary time. Accord-
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FIG. 3. This figure shows the Brillouin zones for non-vison-like
and visonlike excitationgsuperimposed, on the same sgahon-
vison-like excitations the Brillouin zone is the big hexagasolid
line; the side length of the hexagon isr43 in the units of the
inverse lattice constant of the original triangular lattjceith the
minimum-gap points marked with big circles and labeted/ison-
like excitations: the Brillouin zone is the dashed rectangfier the
choice of gauge specified in Fig(l]. The small solid circles,
squares, and trianglékabeled with the letterd, B, andC, respec-
tively) are the high-symmetry points. For example, poiAtsre
centers of sixfold symmetry. The vison gap is found to reach its
minimum at pointsB, and to increase strongly towards poikts
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ingly, the exponents governing the decay of the dynamic (b)

correlation functions with time are given precisely by the

excitation energies of the quantum system. For our discrete FIG. 4. Top: the energy of the visonlike excitations along the
random walk, this procedure of determining the excitationSectionA-B-C-A of the Brillouin zone shown in Fig. 3. The error

energies produces systematic errors arising from the discretp@rs are much smaller than the symbol size. The arrows on the

zation of time steps. The discreteness of time steps may, i?llgsvrggt ae)gzri“digsﬁ]evﬁ’;’s:iﬁli‘: gcgg(:;‘g]ggthf&’isgr‘] Zirt)i(rjni(ie
principle, be properly compensat(_ad; however, we simply negc{r the bottgrn of the three-vison continuEth%ttom: three-
g!eCt the cprrequndlng systematlc'errors. One can show thélmensional plot of the energy of the visonlike excitations as a
dlscre_tlzatlon of time _Ieads to relative corrections to the ga unction of the wave vector. The center and the corners of the hexa-
magnitude of approximately one over the total number Ogon correspond to the poings as labeled in Fig. 3
rhombi in the system. In our Monte Carlo calculation we T
take a sufficiently large system of 2@0 sites(thus contain-  the vector connecting the plaquétand j. This correlation
ing 1200 rhomby, and those corrections are smaller than thefunction is properly defined, in spite of having only one vi-
statistical errors for the lengths of random walks used in oukon operator at each of the time momengndt’. To dem-
calculations. Therefore we disregard the time-diSCfetizatiorbnstrate the Consistency of the deﬂnm(@)’ it is convenient
errors and extract the gaps directly from the correlations ofg insert the square of the vison opera[Mf(t)F:l. Then we
the discrete random walk. . _rewrite V,()V(t) =[Vi()V, () ]V, ()V;(t")]. The first product
The next useful observation is that, by taking appropriatef the two vison operators is defined in E@) with the
correlation functions, we can probe the gap at a given waveontourl" connecting the pointsand . The second product
vector. And, moreover, we can distinguish between visonlikgnyglves two vison operators at one space point, but at dif-
and non-vison-like excitation sectors. For computing the gagerent time moments. Obviously this product is also well
in the non-vison-like sector, we should consider correlationgyefined for our random-walk process: namely, every dimer
of non-vison-like observable.g., the dimer densilyFor iy at any time betweehandt’ on a thombus containing the
the gap in the vison sector we take visonlike observablegiangle j changes the sign 0%,(H)V,(t'). In other words

€g. the point \./iSONi defin_ed _abov_)a i _ V;(t)V;(t") counts the parity of the number of such flips.

We first consider the excitations in thésonlikesector. In With the gauge choice for visons as discussed alfBige
order to compute the gap, we take the correlation function 1(b)], the unit cell of the lattice is doubled, and contains four
F(ryt—t) = (V(OV(t)), (3y  triangular plaquets. To characterize vison excitations with

wave vectors, we perform a Fourier transform of the corre-
whereV,(1) is the point vison on the triangleat the moment lation function (3) and arrive at the %4 matrix F(k,t),
t of the random-walk procedure as defined above gps  wherek is the wave vector from the reduced Brillouin zone.
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rather combinations of three visons from the poiBtsThus

£ — vison near point B thet dependence dE(k ,t) reflects not an isolated excitation,

= —— vison near point A . . . .

S0} - dimer at point o _but the. bottom of a multiparticle continuum. The d_|fference

5 NN in the time dependence between low-energy and high-energy

A AN regions in thek space is illustrated in Fig. 5 where we show

ETOT PN N typical t dependences df(k,t) for the two k points: one

2 N near pointB in k space and the other one near pot

§10° LN\ i Next, we repeat the same procedure fam-vison-like

5 \\ excitations by taking the correlations of the dimer-density

= operator instead of the vison operadg(t) in Eq. (3). We
0, 20 40 60 then find that the lowest gap in the nonvison sectofs

imaginary time =0.1441) and is reached at points labeledn Fig. 3. Thet

dependence of the dimer-dimer correlation function at point

FIG. 5. Typical vison and dimer correlations in the classical @ is shown in Fig. 5. A good fit with an exponential depen-
Monte Carlo random walk. Solid and dashed lines show the visordence, together with the inequality, <2Ag, suggests that
correlations for wave vectors near poitsndA, respectivelysee  the lowest non-vison-like excitation is not just a superposi-
Fig. 3). Note that while near poir the correlation function has a tion of two noninteracting vison excitations, but a bound
well-marked exponential behavior at long times, the correlationsstate of such a pair. On the other hand, its energy is consid-
near pointA do not allow a precise fitting with a single exponent. erably higher than that of an elementary vison excitation
Th_e dotted Iin.e_shows the di_mer-dimer correlatiqn function at the(AB), which confirms the claim that the lowest excitation is
point  (the minimum-gap point A good exponential decay of the ;50 njike. [This result also suggests that we estimate the bot-
correlation function possibly indicates a two-vison bound state. tom of the continuum in the visonlike excitations as
Ap+Ag instead of g, see Fig. €a).]

Finally, with this method of calculating the excitation gap,
we can verify the claim of Ref. 10 about the absence of
jow-lying edge states in the case of lattices with boundaries.

The full Brillouin zone and the reduced Brillouin zone are
sketched in Fig. 3. Note that with our choice of the vison
gauge, the correlation functidf(k ,t) has certain symmetries

in k space reflecting the symmetries of the original triangula ; L
P 9 y 9 9 We examine the excitation spectrum of the X100 and

lattice. Those symmetries contain the sixfold rotation/20>< 20 cvlind th straiaht boundari I the latti
reflection symmetryDg symmetry group around a certain <" < cylinders with straig oundaries aiong the lattice
directions. From the result on non-vison-like excitations in

point ink space, together with translations by two basis vec—th bulk ¢ that vi Hracted t h oth
tors defining a triangular lattice. The high-symmetry points € bulk, we expect that visons are attracted to each other,
in the k space are marked in Fig. 3 by letteksB, andC. and therefore, visons should also get attracted to boundaries

Now we determine the energy of the vison excitations(smce the vison cut may be terminated at the boundary at no

A(k) from the exponential decay of the diagonal elements oF_”e_rgy_COQ‘ Note als_o th_at near the b_oundgw thefe IS No
distinction between visonlike and non-vison-like excitations.

20 i i i
f(k’t)' The ;ectmni of the energy dispersion along thP‘I’hus for determining the energy of the edge states we may
crystallographic axes .Of t_he Brillouin zone and the 3D plot take the dimer-dimer correlation function at the very bound-
OT A(I,:r)l are .p'reseinted in Fig. 4. j’geoggllr?sof r:hehk space ary. Our classical Monte Carlo simulation gives the boundary

give the minimal energy gapg=0. (which agrees gapAqqqe=0.0721) reached at the wave vectar along the

‘;Vriteh Ezf' sla? d(;lélir?)igigr]] t;heofgatﬂeva;?ergyﬂgii p%cr);?;ic Wi thboundary. In line with our expectations, the gap at the bound-
Ac=0.1141). The pointsA are the centers of high-energy ary is indeed somewhat reduced compared to the bulk vison

. : T . "_gap, but remains finite: there are no gapless edge excitations,
regions. In those regions, a naive fitting with an exponentia

n agreement with Ref. 10.
suggests\,>0.3 and does not reproduce well thelepen- g
dence off(k,t). This may indicate that, at those wave vec- The author thanks M. Feigelman for helpful discussions
tors, the lowest excitations are not elementary visons, buind comments.
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