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Atheory is presented for the temperature dependence of surface and bulk spin waves in metamagnetic films,
allowing for the inclusion of both uniaxial and nonuniaxial contributions to the single-ion anisotropy. A
Green’s function formalism is employed to evaluate spin-wave dispersion relations and the mean square
amplitudes of spin-wave modes. The theory is applied to obtain numerical results 8¢ thenetamagnets
FeBr, and FeCJ in both the antiferromagnetic and ferromagnetic phases, depending on the strength of the
applied magnetic field. The case of ultrathin films with a relatively small number of atomic layers is consid-
ered, as well as that of thicker films.
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I. INTRODUCTION Spin-wave dispersion relations in semi-infinite metamag-

In recent years there have been numerous theoretical afttic materialgconsidering only one surfag@ave been re-
experimental studies of spin waves in antiferromagnetid®°rted, but ghese were limited to the low-temperat(fe
(AFM) and ferromagneti¢FM) thin films (see Refs. 1-3 for <T,) regime: The_dlspersmr_] relations were obtalned_ using
reviews. In some bulk magnetic materials, light scattering@n Operator equation-of-motion approach, and the anisotropy
experiments have clearly demonstrated that higher-frequendjaken as uniaxialwas treated as an effective field. Some
(or optica) spin waves can occur in the spectrum at elevatedimited low-temperature properties of surface and bulk spin
temperatures in addition to the usgal acoustig spin waves ~waves in metamagnets with nonuniaxial single-ion aniso-
seen at lower temperaturég hese optical spin waves are tropy have been reportegee Ref. & Again, these results
attributed to the single-ion anisotropy and correspond tavere also obtained using an effective-field approximation to
transitions between higher magnetic states, which can thereepresent the uniaxial and nonuniaxial anistropy. Recently
fore become important at higher temperatures when theve reported some temperature-dependent results for spin-
states become populated. Many of the theoretical works owave properties in semi-infinite metamagnets.these pre-
ordered magnetic materials with large single-ion anisotropyliminary results we considered only the contribution of the
such as metamagnets, have been limited to the lowuniaxial part of the single-ion anisotropy and ignored finite
temperature regimé€l <T,.), in which the anisotropy can be film thickness effects.
represented to a good approximation as an effective aniso- In general, metamagnets consist of ferromagnetically or-
tropy field (as in Refs. 5 and)6 This simplification becomes dered layers that are weakly coupled by AFM exchange to
unsatisfactory when considering results over a broader rangadjacent layers. In the presence of a weak external Figld
of temperatures, partly because of the problem of specifyingapplied perpendicular to the laygthe overall ordering of
the temperature dependence of the effective anisotropy fielddjacent layers is antiparallel, giving the AFM phase. If the
but also because it leads to a simplication of the spin dynamapplied field is large enough to overcome the AFM interlayer
ics by neglecting optical magnons. coupling, spins in adjacent layers will order parallel to one

In this paper we investigate the effects of both uniaxialanother, giving the FM phase. There is no intermediate spin-
and nonuniaxial single-ion anisotropy on the thermal properflop phase, as in normal antiferromagnets, because of the
ties of spin-wave excitations in metamagnetic films. Within alarge anisotropy. In this paper we consider spin-wave prop-
Green’s function equation-of-motion method, we extend preerties in both phases and apply the theory to obtain numeri-
vious theoretical studies on metamagnets by treating the amal results for films of the metamagnets FgRind FeCJ
isotropy terms exactly. Thermal effects are introduced byover a wide range of temperatures beldw
considering layer-dependent static thermal averages for the The outline of the paper is as follows. In Sec. Il we de-
spins. The method involves generating a closed set afcribe the metamagnetic Hamiltonian and the general
coupled equations for all of the required Green’s functionsGreen’s function formalism fo6=1 systems. In Sec. Il we
using the random phase approximati@RPA) to linearize  describe the theory for a uniaxial metamagnet and outline the
only the exchange terms. Explicit expressions for the Green'method used to obtain explicit expressions for the Green'’s
functions are obtained by solving an inhomogenous matriXunctions in both the FM and AFM phases. This is followed
equation. From the Green’s functions we are then able tin Sec. IV with the theory for metamagnets with nonuniaxial
extract dispersion relations and evaluate the spin-dependecontributions to the anisotropy in both the FM and AFM
correlation functions, which are of interest since they deterphases. In Sec. V we apply the theory to obtain numerical
mine the dynamic response of the magnetic system. It isesults for dispersion relations and the mean-square ampli-
shown that the inclusion of thermal effects leads to additudes(as a measure of intensjtpf surface and bulk spin-
tional optical surface and bulk spin-wave modes that becomeave modes in FeBrand FeCJ. The final section, Sec. VI,
important at elevated temperatures. contains the conclusions of our work.
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Il. HAMILTONIAN AND BASIC FORMALISM The single-ion anisotropy term in Hamiltonian gives rise to
Green’s function involving the product of operators at the
same sites and are not decoupled. They are treated exactly by
forming new equations of motion in order to form a closed
H= E Jii(S- S+ U§$ +Hy+H, set of equations. The system of equations is then transformed
] to a wave vector representation and the transformed Green’s

We represent th&=1 metamagnets by the following spin
Hamiltonian:

1 . ) functions are obtain using standard mathematical procedures.
- EE Ji(§ S +o stﬁzr) The Green’s functions provide information about dispersion
i’ relations and spectral intensities of the magnons. This

1 , , method has been applied to study light scattering from bulk
- 52 ‘]i,J’(Si Spto %ZSJZ')’ @) magnons in various anisotropic antiferromagnets and ferro-
1 magnets and, in principle, can be used for any value of the
where the Zeeman term is given by spin S. This approach is particular suitable for low spin val-
ues because the number of equations of motion needed to
H,= _gMBHO(E S+ §Z> (2)  form a closed set is then relatively small. In this work we
[ j

present results for metamagnetic materials such as,Fetsr

and the single-ion anisotropy is represented in general by FeCh with spinS=1. . . o
We expect one acoustic and one optical magnon in this

Hy=- D[E (§H2+> (S{)z] - F[E (89%- (Sy)z} case. A simple argument to see this is to consider just the
i i i single-ion term inH, which gives rise to three unequally
_ Y, spaced energy levels whe3r 1. Transitions between adja-
F[; (%X) (S/) ] 3) cent levels can therefore occur between either the lower pair

or the upper pair, leading to acoustic and optical magnons
The termJ; ; is the weaker interlayer AFM exchange betweenwhen the full form ofH is taken into account. These main
sitesi andj on different sublattices, whild; andJ; ; are the  pranches can each be split into two by an applied field in the
stronger FM intralayer exchanges. The possibility of ex-AFM phase, and in our film geometry we expect to find

change anisotropyof the Ising type is represented by pa- surface and bulk modes.
rameterso- ando’. The applied fielH, is taken to be in the

z direction, which is perpendicular to the layers. The param- lll. THEORY FOR UNIAXIAL CASE
etersD andF describe the effects of the uniaxial and nonu-
niaxial contributions to the anisotropy, respectively.

We consider a\-layer metamagnetic film with a pair of
surfaces in th€001) direction. The layers are labeled using a
positive indexn, with n=1 andn=N denoting the two sur-
faces. In the AFM phase we assume that the spins in laye
with an odd (ever) layer indexn belong to the spin-up
(down) sublattice and have a thermal avergd@® positive
(negative. Thus, while the tom=1 surface layer belongs to o / ro
the spin-up sublattice, the lower surfacenatN may be ei- Bo+ (1 +U); Him -+ )2 Ji*'m']F'm(w)
ther on the spin-up or spin-down sublattice, depending on

For simplicity, we begin by considering the uniaxial case
(F=0). Substituting the operatodandY in Eq. (4) with the
spin operators” and S, respectively, we form the equation
of motion for the((S'; S,))., Green’s function. We linearize
II%e equation of motion using standard RPA, which decouples
the product of operators at different sites. The linearized
equation of motion folF|,(w) ={(S"; S, is written as

whetherN is odd or even. We anticipate that this odd/even = (Umm 6 m+ DGm(w)
property will have consequences for the spin-wave spectrum. e _ =
The spin-dependent Green’s functions are obtained fol- m Ei:J"'F'm(w) Ei:J"'F'm(w) ' )

lowing an equation-of-motion approadee Ref. 8 The o _
method involves writing down the equation of motion for Where Eg=w—gugHo. The uniaxial anisotropy leads to a

each of the required Fourier transformed Green’s function&reen’s function of the fornGiy(w) =(SS+SS;S))w
using which is not decoupled because it involves the product of

1 operators at the same site. The linearized equation of motion
(X V)= (2—)<[x,v]> +([XHLY),, (4 forthis Green's function is
o
where[X, Y] is the commutator between operatdtgnd Y, [EO v 0)2 Jum =1+ )2 Ji*'mi]G'm(w)
and(- --) represents a static thermal average.

We begin by forming the equation of motion for the trans- = (L/m)M; 8 m+ DFjy(w)
verse Green’s function of the fortiS'; S,))., at general sites +M JE S E 6
labeledl and m within the film. This leads to more compli- ! 2 Fim(@) 2 Fim(@) ©)

cated Green's functions being generated on the right-hand _ ] )

side of the expression. The Green’s functions arising fromlhe expressions involve static thermal averag§s and
the exchange terms in the Hamiltoniglninvolve products of ~ 3((§)? -2, which we have denoted by, and M,, respec-
operators at different sites and are decoupled using the RPAively.
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Next we exploit the translational symmetry parallel to the f1F 0 —v(k)Fon = (Um) 8, Nn=1,
layers and Fourier transform the linearized coupled equations
of motion to a wave vector representation using ~ (= K)Fop + foF o —0(k)Fan = (Um) 6y, N=2,
1 . L
Flm(w) - N_lkzH ann,(kll,w)exglk“ . (rl - rm)], (7) - U(— kH)Fn—l,nf + ann,n' - U(kII)Fn+1,nr
wherek;=(k.k,) is a two-dimensional wave vector parallel =(UUm &y, N=3,... N-2, (14)

to the surfacer is a position vector, anbl; is the number of

sites in any layer. We employ a similar transformation for = v(=Ky)Fn-2pr + Fn-1Fn-10 = v (K P
Gm(w) and denote its Fourier components @,/ (k;, w). = (1/m)5 n=N-1

The indicesn andn’ label the layers parallel to the surface. N-1n" '
We also introduce Fourier transforms for the intralayer ex-
change interaction, which we write as = v(=K)Fn-1r + fNFrr = (U/m) Sy, N=N,

, : h
ulk) = 3 37 exik, - (ry = rin)], g e
! fn:[Aan_ D(D_ Mn)]/(rmBn"'DMn)- (15)
and for the interlayer exchange interaction we write The parameters appearing (t5) are
v(k)) = E Jj(o)explik, - 8), 9 A;=Ep+ (1 +0)mu(0) - (1 +o")muu(0) + myu(k)),
6
where vectord joins sites in layen to sites in layem+1. A;=Ep+ (1 +0)(m+mp(0) - (1 +0")mu0) + muk),
The transformed equations of motion fef, ,/(k;, w) and
Gn,n’(kH y (1)) are An = EO + 2(1 + O')rTIU(O) - (1 + U’)ml,(O) + mL(kH),
[En + mnu(kll)]Fn,n’ - mn[v(_ I(II)Fn—l,n’ + U(k\I)Fn+1,n’] n=3,...N-2, (16)
_DGnn’zlmnan o (10) An-1=Ep+ (1 +0)(my+mo(0) — (1 + 0" )mu0) + muk,),
= ,

Ay=Ey+ (1 +0)mu(0) — (1 + 0" )myu(0) + myu(k,),

and B,=A,-myu(k,). In writing (15) and (16) we use the
+[D = Muu(k)TF (11) approximation that only the thermal averages for the surface
' layers(n=1 andn=N) are significantly different from those
where for interior layers. Specifically, we denotg, asm; for n
E, = [Eg+ (1+0)(My 1+ Mo )u(0) — (14 0)mu(0)]. n(;Lt’artri]grﬁg Es(la\ld ?c?r\j nt.he bulk valuen otherwise. A similar
(12) The system of finite difference equations can be expressed
in matrix form as

1
EnGn,n’ = ;Mngn,n’ + Mn[v(_ kH)Fn—l,n' + U(kH)Fn+1,n’]

From symmetry considerations it is clear that the therma
averagesm, and M, depend on position only through the AF, =b,, (17)
layer indexn. We estimate the layer-dependent thermal av- ]
eragesm, andM,, using a modified mean-field theory which Where Fr.and b, are N-component column matrices
we describe in the Appendix. Substituting Eq1) into Eq.  With elements given by (Fy),=F,, and (by),
(10) reduces the system to a single equation of motion for th& 1/ (v (k))[) 8-

Fon (K, @) Green’s functions. We now describe the formal-  Following the general approach used in Ref. 9 for thin

ism used to obtain the Green'’s functions in each phase. films, which is an extension of earlier calculations for
semi-infinite samples, we split tié<X N matrix A into two

A. The ferromagnetic phase parts such thah=A,+A. Here the matrixA,, which is a

The critical field H,(T) producing a transition from the {ridiagonal matrix containing only bulk parameters of the
AFM to the FM phase in bulk metamagnets is givenfilm. has its nonzero elements defined @y);;=d and

approximately in the low-temperature limit by Aolijs1==7"", where
g/.LBHC(O) = 2(1 + U')&}(O) . (13) d = fn/(|U(k||)|) al’ld T= V’U(_ ku)/l}(k”) . (18)

At higher temperatures we will find its value numerically. Matrix A, which describes the perturbation due to the sur-
The analysis in the FM phagel,>H,) is straightforward ~face, has only a few nonzero elements, namely,

because all of the spins are aligned in the direction of the A= (f = £)/lo(k 19

applied fieldH, and belong to the same sublattice. If we = (= fol okl (19)

consider a metamagnetic film composed Nflayers, the for i=1,2,N-1,N. This decomposition is helpful because

closed set of finite difference equations is the inverse ofA, is known?!® DenotingB:Agl, the result is
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{TZiXi+j _ Xj—i + (72)N+1—jX2N+2—(i+j) _ (72)N+1—(j—i)X2N+2—(j—i)}
e (Px=x (1= (m)?N*?) ’
i~ {Tzixi+j _ (TZ)i—in—j + (72)N+1—jX2N+2—(i+j) _ (72)N+1X2N+2—(i—j)}
’ (Px=xH[1 - () ?*2] ’

i<j

=

B (20

i>j,

where the complex parameteris defined by=x+1/(7x)=d -2 )
and satisfies the conditiom|<1. k), ) = W'm{ﬁ,n(kn,w +in)}, (26
The formal solution of Eq(17) is written as
i where B=1/kgT, kg is the Boltzmann constant ant the

Fo =(1+BA)"Bby, (21) temperature. The real and positive quantitys introduced
phenomenologically to model an intrinsic damping or recip-
rocal lifetime. The above spectral intensities are used to
evaluate equal-time correlation functions, which in turn are
used to find the layer-dependent mean-square amplitude of

wherel denotes th&l X N unit matrix. It is then necessary to
invert the matrix(I +BA), which can be written in parti-
tioned form as

M; 0 Mg spin precession defined as
(I1+BA)=( M, | Mg [, (22 Q(n) = <(S>;)2+ (S¥)2>k“- 27)

_ In the numerical examples presented in Sec. V we will find
whereM;, M3, My, andMg are 2xX 2 matrices, whereadl,  that the optical modes have spectral functions and mean-
and M5 are 2<(N-4) matrices. The required inverse can square amplitudes that vanish in the low-temperature limit

also be written in partitioned form as but become important at elevated temperatures.
X, 0 Xg
(1+BA)™ =X | Xs |, (23) B. The antiferromagnetic phase
X3 0 X4 The analysis is algebraically more complicated in the

AFM phase(Hy<H,) because spins in adjacent layers be-

with elements given b
g y long to different sublattices. The thermal averages associated

X1 == (M= M;Mg*My) M MG, with an odd layer indexh belong to the spin-up sublattice,
whereas those associated with an even layer imdb&long
Xp =~ MsMgt+ (MsMgM; = M) Xy, the spin-down sublattice.

The set of finite difference equations are analogous to
o= M= M=IM. X those in the FM phase, except now the coefficients of the
3™ V6 6 1AL 24 diagonal Green’s functions are defined as
X4= = Mg'My(Mg = MqMg™My) ™%, fn=[ABy—D(D ~ M)[(- 1)™'m,B, + DM,]. (28)

The parameters appearing in E88) are defined as

X5 = (MsMg'M; = M) (M3 - M;Mg'Mp) ™2,
Ay =Ep— (1 +0)mu(0) - (1 +0")muu(0) + mu(k)),

Xe=(M3=MgMgMy) ™.

. _ _ Ay=Eo+ (L+a)(my+mp(0) + (1 +0")mu0) - muk)),
The explicit expressions for all of the Green’s functions
Fnn(Ky, @) can be obtained by carrying out the appropriate - _ 1N /
matrix multiplications on the right-hand side of EQ1). The An=Eo+ (= D121 +0)mo(0) + (1 + o)MU0)
spin-wave energies are found from the poles of these Green’s -muk)], n=3,...N-2, (29
functions. We shall find in the application presented later that
the solutions for a thin-film geometry, which consist of quan- Ay_; = Eo + (- YN (1 + o) (my + mu(0) + (1 + ¢’ )mu(0)
tized bulk modes and some discrete surface modes, come
from the(I +BA) ! term; i.e., they correspond to solutions of -muk)],

detl +BA)=0. (25 Ay=Eo+ (- DM(1+0)mu(0) + (1 + o' )myu(0) - myu(k))],

From the diagonal Green’s functiofig ,(k;, w) and the use andB,=A,-(-1)"myu(k;). Here we again use the approxi-
of the fluctuation-dissipation theorem, we write the spectramation that only the thermal averages for the surface layers
intensity of the spin-wave modes in layeand wave vector (n=1 andn=N) are different from those for interior bulk

K, asé&y(k;, ), which we define as layers.
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As a result of the two-sublattice system, we must treat the In both cases the solutions for the Green’s functibgs,
cases ofN odd andN even differently. We first describe the are obtained by inverting the matri following the same
approach used to obtain the Green'’s functibpg for afilm  approach as in the FM phase. The solutions for the Green’s
with an odd number of layers. The Green’s function associ-functionsF,,.,, are then found from the set of finite dif-
ated withn odd (denotingn=2u+1) can be eliminated by ference equations. As before, the bulk and surface spin-wave

substituting modes are solutions of the determinantal condition in Eg.
25), and the mean-square amplitudes are calculated usin
Fl,n’ = [U(kH)FZ,n' + (1/7T)51’nl]/f1, (Eq (27) q p g
Fourin = [0(= K)o + 0(K)Fopuzp (0n)2 = (UMT S + W= k/T1) S + (0 (K200 B3],

+ (1/77)52M+1‘nr]/f2M+1, M= 1,... ,(N - 3)/2,
(30)

(bn’)Z,u = (1/77)1—‘[52#'“/ + (U(_ kl\)/prﬁl) 52M—l,n’
+ (v(kll)/f2y,+l)52,u+l,n’:|! m= 2, . ,(N - 4)/2,
Frnn = [v(K)Fyogpr + (L) Sy 0 M, (35

(bn)n-2 = (UM [y + (0(= K240 g
into the equations fon even. The resulting system of equa-

tions is again written in matrix form a8F, =b, except * (k) fn-0) On-1,0],
now F, andb, are column matrices witliN—1)/2 ele- )
ments defined agF )y, =F, v and (b )n = (L) (Faeal [o (kD) e + (= k) o) Snea ]

(bn)2 = (UmI[8 0 + (= K/ 1 + WK/ F2p01) T3],
IV. THEORY FOR NONUNIAXIAL CASE
(bn)2, = (UM [ 8y + (0 (= K F240) e The calculations become more complicated when the

+ (v(k”)/fZWl)azMﬂ’n,], uw=2,...(N=3)/2, nonuniaxial anisotropyF # 0) is included, and for this rea-
son we limit our analysis in this section to a semi-infinite

(32) metamagnet that occupies the half-spased.
In the nonuniaxial case we must form the equations of
(Br)n-1 = (UM [Sy-100 + (= K/ F200) SN2 motion of the Green's function<S';S,>,, <S5 :;S.>..
+ (0 (k) S, <§§+55:5>,, and <§§+55:5>, to obtain a
’ closed set after applying RPA to the exchange terms. As be-
WhereF=f2M+1/|v(kH)|2. fore, the equations of motion are transformed to a represen-

Following the approach used in the FM phase, we writetation involving layer indices and a two-dimensional wave
the matrixA as the sum oAy and A. The elements oA,  vector parallel to the surface. This leads to four sets of equa-
now correspond to tions coupling the various layer-dependent Fourier compo-

nents. After tedious algebraic manipulations we can elimi-
d=TIfy, -2 and 7=v(-k)/v(k)), (320 nate the Fourier components associated WSS

and matrixA now has just two nonzero elements +S5':S>, and<§§+55; §>, and reduce the system
to two sets of coupled equations, which we write as
Ay 1=T(fp—15,) = (fauea/f) + 1,

Al(I)l,n’ - U(kll)®l¢2,n’ = (1/7T)Qlél,n" n= 1,
Ann =T (Fnog = F2) = (Fouea/f) + 1. (33 (36)

. . . —v(=K)O @1+ A®@p o — (KO P
For a film with anevennumber of layers, we also begin ‘ ’ ’
by eliminating the Green’s functions associated with an odd =(UmQpbypn, Nn>1.
layer indexn. In this case the column matric&, andb,, )
have N/2 elements, and as a result of the surface layer €€ ®nn are two-component column vectors defined as
=N belonging to the spin-down sublattice the elemdnis Fr (ko)
are modifiedsee Eq(35)]. . _< e )
The elements of the matri&, are defined as in the case
of N odd, but the nonzero elements Afare now

37
F;,n/(kuaw) ©0

whereF:‘n,(k”,w) andF, ., (k;, ») represent the Fourier com-
Ay 1= (fo = Fo )T = (fopea/f) + 1, ponents of<S'; S >, and<5'; §,>,, respectively. The el-
ements of the X2 matricesA,, and ®, and the column
An-1n-1= 1= (Fopa/fn-a), vectors(),, are complicated expressions involving frequency
(34 and the parameters of the metamagnetic materials. These ex-
An-in= r‘lAN_lyN_l, pressions also involve the layer-dependent thermal average
<(S")?>,, which we estimate numerically using a modified
Ann=[Fnfaea/fo (k2] = f, 0 + 1. mean-field theory described in the Appendix. We again use
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the approximation that only the thermal averages for the sur- \'
face layer are significantly different from those for interior
layers.

As in the uniaxial case, the analysis for the FM phase is z
simpler because all of the spins belong to one sublattice. The 3
system of equations can be expressed in supermatrix form as
(Ag+A)®,, =b,,, where A, represents the bulk-parameter
supermatrix whose elements are

d = fn/|U(kH)| and T= \”U(_ kH)/U(kH)|21 (38)

wheref,, is a 2x 2 matrix defined a§,=®,'A, andl, is the

2 X 2 unit matrix. The matrixA, which describes the effect

due to the surface, is also a supermatrix whose elements are
2X 2 matrices defined as 3

A= -f)lvk)], =12 (39

and ®,, is a column vector whoseth element is a two-
component vector defined &, ...

In the AFM phase we proceed by eliminating the equa-
tions associated with an odd layer indexSince our analysis FIG. 1. Planar view of the F& ions (solid circleg in the ferro-
in the nonuniaxial case is limited to a semi-infinite metamag-magnetically ordered layers for FgBand FeCJ. The nearest and
net there is no need to treat cases Witlodd or even differ- next-nearest neighbors to the ion labeled 1 are those labeled 2 and
ently. The resulting system of equations can be expressed fh respectively. The crosses and open circles represents the positions

supermatrix form, where the elements of the supermatgix ©f the ions in the adjacent layers above and the below the planes for
are now defined as FeCl. For FeBp the ions in adjacent layers are stacked vertically.

d=Ify, -2, and 7=@(-k)vk)lz (40 If we denoteJ; and J, as the nearest and next-nearest
where neighbor intralayer exchanges, respectively, the intralayer
exchange sum defined in E@) is

= faullol 0 (k) = 23,[cogkea) + 2 cogk,a/2)cogk,a\3/2)]
u(k,) = 2J,[cogka) + 2 co cogk,ay
In the AFM phase the perturbation matri has a single : ! o X i !
nonvanishing X 2 element defined as + 2J;[cogk,ay3) + 2 cogk ay3/2)cogka3/2]
Ay =T(fo=T5) = foafi + 15, (42 (43)
and thenth element of the column vectab.., is defined as for both materials, where is the nearest-neighbor distance
D, . " in the layers. The interlayer exchange sum defined in(&q.

If we defineB:Aal, then the spin-wave modes can be is simplywv (k) =J; for FeBr, whereJ; denotes the interlayer

determined in both phases from the determinantal conditioff€arest-neighbor exchange interaction. For Fel# inter-

as defined formally in Eg25). The construction of the ele- 1ayer éxchange sum is

ments ofB and the condition for physically acceptable solu- v(k) = Jg[exp(ikya/v’g) + 2 cogk,a/2)exp— ikya/2\"§)].

tions of the surface-mode problem are discussed in detail in

Ref. 10. Due to the algebraic complexity, we carry out the (44)

calculations numerically and obtain spin-wave dispersion reThe |atter sum is more complicated because of the stacking

lations for certain special cases that we illustrate in the f0|‘arrangements of the layers in this case.

lowing section. The approximate values for the exchange and anisotropy

V. APPLICATION TO FeBr , AND FeCl, parameters for .Felgrand FeCJ have beer) determingd using
neutron-scattering and Raman-scattering experiménts.
We now apply the results of the previous sections to théThe values used in this work are listed in Table I. In the

S=1 metamagnets FeBrand FeCJ. These materials have uniaxial case we sdt=0.

different crystal structures that lead to important differences Numerical calculations of the predicted spin-wave disper-

in their spin-wave properties. The positions of thé'Hens  sion relations for FeBrand FeCJ in the FM phase in the

in both materials are depicted in Fig. 1. Both materials havainiaxial approximation are shown in Figs. 2 and 3, respec-

the same trigonal arrangement of the magnetié*Fens tively. We plot frequency versus in-plane wave veckga

within any particular layer, but they differ from one another (taking k,=0) for an applied field corresponding to

because they have different stacking arrangements of the lajr==4 cnil, and evaluate thermal averagesTaT,=0.5. In a

ers. In FeBy, the Fé" ions are stacked vertically above and semi-infinite system the bulk spin-waves appear as a band

below those in adjacent layers, whereas in ¢ layers because of the range of values of the third wave vector com-

are staggered with respect to each other. ponentk,. For a system with a finite number of layétighere
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40 s o5 Py /” N _ FIG. 2. The.spi'n-wave frequenciesolid
lines) plotted against in-plane wave vectga for

4 a uniaxial(F=0) metamagnetic film of FeBrin

the FM phase. Here we have chosh=6, h

=4 cnit, and thermal averages &t T,=0.5. The

shaded areas represent the bulk bands in the

semi-infinite limit. The dotted line represents an

acoustic surface spin-wave mode for a semi-

infinite metamagnet.

i

Frequency (cm™)

N
[=]
1

10 <

is a restriction on the allowed values kf which leads to gible. We only show results for a semi-infinite system be-
discrete bulk spin-wave frequencies. The inclusion of thercause the splitting of the spin-wave modes in thin films is
mal averages leads to a mode splitting effect between thextremely small. Again, thermal effects produce a mode
acoustic and the additional optical spin-wave branches. Theplitting between the acoustic and the optical spin-wave
optical branches are absent in the low-temperature limit bebranches. In the AFM phase the acoustic and optical surface
cause there is no spectral weight associated with thesléfanCheS appear below their respective bulk bands by about
modes. In the FM phase the acoustic and optical surfacd cm . This splitting is sufficiently large to be observed us-
spin-wave branches are located above their respective bulRg Raman scattering. Qualitatively similar results are ob-
frequency bands. The inset in both figures focuses on thtained for FeGl. We only show the positive-frequency solu-
small wave vector region above the acoustic bulk band. Heréons, but there are some interesting effects on the spin-wave
the dotted line is the predicted surface mode in the semispectra as a result of the different symmetry properties of the
infinite limit, whereas the solid lines represent surface modegetamagnetic films in the AFM phase. For a film with an
for the thin films. In both cases we predict an additionalodd number of layerdN, the surfaces belong to the same
acoustic surface spin-wave branch when the number of laysublattice and are equivalent. In the absence of an applied
ersN is finite. However, for FeGlthe splitting between one field (takingh=0), the spin-wave frequencies are nondegen-
of the surface branches and the acoustic bulk region is exerate and only positive-frequency surface modes are found.
tremely small. For T>0 we find one positive-frequency acoustic and opti-
In Figs. 4 and 5 we show the predicted bulk and surface&al surface mode. For a film with an even number of layers
dispersion relations for FeBm the AFM phase for the cases . . . . . .
of the wave vectok along thex andy directions, respec- 1* ,
tively. In both cases we take an applied figéld0, evaluate
thermal averages &k/T,=0.5, and consider results in the
uniaxial limit (F=0). In the AFM phase the bulk regions are
very narrow because the dependencekpis almost negli-

£
TABLE |. Exchange and anisotrophy parameters used in calcu-§
lations for FeBg and FeCJ. g
=]
g
FeBn FeCl i
J; (em™ 5.07 55
J, (cm™) -1.2 -1.2
Js (cm™) 1.45 0.28
D (cm™b) 7.34 9.4
F (cm™) 2.0 2.0
o=0’ 0.28 0.20

FIG. 3. The same as in Fig. 2, but for Fe@hd takingN=8.
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FIG. 4. The frequencies of bullshaded areasnd surfacgdot-
ted lineg spin waves for the semi-infinite uniaxial metamagnet
FeBr, in the AFM phase plotted against in-plane wave vedt@r
taking h=0 and thermal averages @i T,=0.5. The dashed lines
labeled B and S represent, respectively, the bulk and surface spi
wave frequencies in th&<T, limit, where effects due to optical
modes vanish.

FIG. 6. Im(F; ,) versus frequency for FeBiin the FM phase.
We compare the semi-infinite cag#ashed lingto a film composed
of 20 layers(solid line). We takek =0, F=0, h=4.0 cn?, #=0.1,
and thermal averages &t T.,=0.5. We show results for the lower
raéCOUStiQ frequency range.

a strong mixing between the acoustic and optical spin-wave
branches and also lead to a renormalization of the spin-wave
N, the two sublattices are equivalent when0 and the spin-  energies. Qualitatively similar results are obtained in the FM
wave frequency spectrum is completely symmetric. phase.

For comparison we also include in Figs. 4 and 5 the bulk In Figs. 6 and 7 we show representative plots for
(B) and surfacgS) spin-wave frequencies as obtained in Ref.Im[F, ,(k;, w+i7)] versus frequency in the FM phase. Here
5 for the T<T, limit. These results are obtained by repre-we choosen=2, setk;~0 andh=0, take thermal averages at
senting the uniaxial anisotropy in terms of an effective an-T/T.=0.5, and compare results for the semi-infinite case to a
isotropy field. This approximation simplifies the spin dynam-film composed of 20 layers. In Fig. 6 we show results in the
ics by neglecting optical magnons and as a result there is ngcoustic frequency range, whereas in Fig. 7 we show results
mode splitting observed. Identical results in the& T, limit  in the optical frequency range. The peaks located at approxi-
can be obtained using the commonly employed approach ghately 15 and 25 cit are those associated with acoustic
transforming the spin operators to boson operators in @and optical surface modes, respectively. These attenuate rap-
uniaxial approximation. Thermal effects are seen to producglly with distance from the surfaces. As the temperature is

increased the positions of the peaks renormalize to lower
50 T T T frequencies. The bulk acoustic and optical spin-wave fre-
quency bands are broad because of the dependence of the
third wavevector componely, in the FM phase. In the AFM
phase the acoustic and optical bulk regions are much narrow-
erbecause of a weak dependencépihese effects are also
seen in the dispersion relations.

In Table Il we show numerical results for the layer-
dependent mean-square amplitudes of spin waves in,FeBr
the AFM phase for different temperatures. The mean-square
amplitudes associated with acoustic and optical surface
modes in the surface layer=1 are denoted b@31) and
Q2P(1), respectively. For acoustic and optical bulk spin-
waves the mean-square amplitudes are denote®@gjn)
and QgP(n) and represent the contribution of all the modes

10 . : . : . . within their respective bulk bands. The numerial results are

0 1 2 3 obtained for a semi-infinite system in the small wave vector
ka limit k,=~0, takingh=0. We find that the mean-square am-

plitudes of the optical surface and bulk modes vanish in the

FIG. 5. The same as in Fig. 4, but witk, along they  low-temperature limit, as expected, but become important at
direction. elevated temperatures. In the AFM phase we also find that

Frequency (cm™)
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Frequency (cm™)

T T T T T
22 23 24

frequency (cm™)

FIG. 8. The frequency of bulkshaded areasand surface
(dashed linesspin waves for the nonuniaxial metamagnet RaBr
the AFM phase plotted against in-plane wave vest@r, taking h
the positive-frequency modes have a greater precessionall.0 cnit and evaluating thermal averagesTdi =0.5.
amplitude on the spin-up sublattice then on the spin-down

sublatti_ce. The converse Is true for the negative-frequenciave considered spin waves in ultrathin films as well as in
(oppositely precessu)gno_des. In_the FM phase the me.an_.fthicker films. We have considered the effects of uniaxial and
square amplitudes associated with qpucal modes are signi nonuniaxial single-ion anisotropy and have examined spin-
cant.ly smaller then thos:e for ‘T"COUSUC. modes. wave properties for metamagnets in both the AFM and FM
_Flgure 8 shows the dlsp§r3|_on relation of bulk and SurfaC‘?)hases. The method of calculation involved using a Green’s
spin waves for the nonuniaxial metamagnet BeBr the  f,qqion equation of motion formalism in which the aniso-
AFM _phase. Comparison of this spectrum with t_hose for _atropy terms were treated exactly while the exchange-
uniaxial metamagnet shows that each bulk band is now splifyenendent terms were decoupled using RPA. We calculated
giving rise to four separated bulk regions. In the absence Gk gpin-wave dispersion relations and using appropriate cor-
an applied field, this splitting is limited to the small wave (g|ation functions we evaluated the mean-square amplitude
vector region. The inclusion of the nonuniaxial anisotropy . spin precession.
also leads to a splitting of the acoustic and optical surface Nymerical results were obtained for the metamagnets
modes. We find surface branches above and below the Iowe,sg[eBr2 and FeCJ, which have different crystal structures as
frequency bulk band as well as two surface branches locatege|| 35 different exchange and anisotropy parameters. At el-
between the higher energy bulk bands. In the nonuniaxialyateq temperatures, the use of modified thermal averages
case the splitting between the surface branches and the byl the spins leads to additional optical magnetic excitations
bands is small. In the FM phase the inclusion of the nonUy4; correspond to transitions between the higher energy
niaxial anisotropy leads to m.o.dlﬂed spin-wave frequenuesm(,:lgnetiC states and also produces a mode splitting effect
but does not produce the additional splitting effects observeflgyeen the acoustic and the additional optical spin-wave
in the AFM phase. branches. This splitting vanishes in the low-temperature limit
because there is no statistical weight associated with the op-
) _ ) ) tical spin waves. The layer-dependent mean-square ampli-
In this paper we have investigated thermal properties ofydes of the spin precession for optical surface and bulk
surface and bulk spin waves 8F 1 metamagnets. We have modes are negligible in the low-temperature limit but be-
generalized previous results to higher temperatures by cORpme important at elevated temperatures. The nonuniaxial

TABLE II. Relative mean-square amplitudes of surface and bulk&nisotropy leads to additional splitiing of the surface and

modes in the AFM phase for Fepor different temperaturegak-  PUlK spin-wave branches. _ . .
ing k,~0). Results are normalized Q2%(10) at T/T,=0. These predicted features could be investigated experimen-
tally using inelastic light scattering techniques such as Ra-

man and Brillouin scattering and magnetic resonance. For

FIG. 7. The same as Fig. 6, except we tafe0.05 and show
results for the highefoptical) frequency range.

idering layer-dependent thermal averages for the spins and

VI. CONCLUSIONS

TIT, 0 0.3 0.5
the study of surface excitations using light scattering it
Q&) 1.0 1.07 1.24 would be appropriate to use an excitation wavelength for
Q110 1.0 1.06 1.19 which the metamagnets are optically opaque and use a scat-
Q¥(1) 0 0.03 0.15 tering geometry that enhances surface effects. Metamagnetic
QP(10) 0 0.03 0.14 materials in the AFM phase would be the best candidates for

experimental studies because our theoretical predictions in-
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dicate that there is a sufficiently large spacing between sutayer exchange field is the same for both FeBnd FeC)
face and bulk spin-wave modes and the mean square ampliecause they have identical structures within any particular
tudes of spin precessiofwhich we use as measure of layer, and is written ak/(n)=6(J;+J)(SHp(1+0”).

intensity) are the largest in this phase. Spins in surface layera=1 andn=N havep (p=1 for
FeBr, p=3 for FeC}) interlayer nearest neighbor, and the
ACKNOWLEDGMENT effective interlayer fields for the surface layers are

The authors are grateful to NSER6f Canada for sup- he(1) = pd(S)2(1 +0), n=1, (A5)
port of this project.

he(N) = pJy(SHn-1(1 +0), n=N. (AB)

APPENDIX A: THERMAL AVERAGES For interior layerg1<n<N), we have
We now briefly discuss the approximate evaluation of the he(n) = pJa(SD 1 + (D) (L + ). (A7)

static thermal averages using a modified mean-field theory.

Although the thermal averages can, in principle, be calcu- For a spinS=1 system, we employ the>33 irreducible
lated self-consistently using the Green’s functions, and theirepresentation for the spin operators and write down the 3
correlation functions, this becomes rather complicated forx 3 matrix for the effective HamiltoniaHlyg. In the uniaxial
the general nonuniaxial cage+ 0. Instead, we employ a case(F=0), the Hamiltonian is diagonal and the calculation
modified mean-field approximation to simplify the exchangeof the thermal averages is straightforward. In the nonuniaxial
terms in the Hamiltoniarisee Ref. 1§ but we treat the an- case(F #0), Hye is nondiagonal, but may be diagonalized

isotropy terms exactly. by the transformation
The thermal averagéX) of an operatorX in any repre- ~ .,
sentation can be written as Hur = U "HyeU, (A8)
(X) = T X exp(— BH) I Tr{exp(— BH)]. (A1) where the columns of the matrix are the normalized eigen-

. . vectors ofHye. The thermal averages are evaluated using
We evaluate the various thermal averages using the follow-

ing mean-field Hamiltonian Xyp= Tr[;(i exp(- BQMF)]/Tr[exp(— ,BHMF)], (A9)
Hue == 2 B - D[22 ()2 + X (S)7] with X;=U~1X;U. Replacing the operatot with &, ()2 and
i i i (S)?, we obtain a set of recurrence relationships satisfied by
_ _ the various thermal averages fa=1,... N. Finally, the
F[; (89 - ()71, (A2) layer-dependent thermal averages are
whereBg(i)=h—h(i)+h.(i) and the effective interlayer and (), = Be(n)[expZp) - exp- Zp)]
intralayer exchange fields are, respectively, " Z[expZp) - exn- ZB) + exp- DB)]’
he() = (1 +0) 2 (SHy, (A3) () [expZB) - exp(- ZB)]
: " [exp(Zp) - exp(- ZB) + exp(- DB)]’
h(i) = (1 +0) S (), (A4) (A10)
) . _FS
The applied fielch is assumed to be in thedirection. (8= Bn) |

It is clear from symmetry considerations that the effective

exchange fields along with the thermal averages depend amhere Z=B,(n)?+F2. Note that in the uniaxial casé~
position only through the layer index The effective intra- =0) the thermal averag&S")?), is zero.
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