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A theory is presented for the temperature dependence of surface and bulk spin waves in metamagnetic films,
allowing for the inclusion of both uniaxial and nonuniaxial contributions to the single-ion anisotropy. A
Green’s function formalism is employed to evaluate spin-wave dispersion relations and the mean square
amplitudes of spin-wave modes. The theory is applied to obtain numerical results for theS=1 metamagnets
FeBr2 and FeCl2 in both the antiferromagnetic and ferromagnetic phases, depending on the strength of the
applied magnetic field. The case of ultrathin films with a relatively small number of atomic layers is consid-
ered, as well as that of thicker films.
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I. INTRODUCTION

In recent years there have been numerous theoretical and
experimental studies of spin waves in antiferromagnetic
(AFM) and ferromagnetic(FM) thin films (see Refs. 1–3 for
reviews). In some bulk magnetic materials, light scattering
experiments have clearly demonstrated that higher-frequency
(or optical) spin waves can occur in the spectrum at elevated
temperatures in addition to the usual(or acoustic) spin waves
seen at lower temperatures.4 These optical spin waves are
attributed to the single-ion anisotropy and correspond to
transitions between higher magnetic states, which can there-
fore become important at higher temperatures when the
states become populated. Many of the theoretical works on
ordered magnetic materials with large single-ion anisotropy,
such as metamagnets, have been limited to the low-
temperature regimesT!Tcd, in which the anisotropy can be
represented to a good approximation as an effective aniso-
tropy field (as in Refs. 5 and 6). This simplification becomes
unsatisfactory when considering results over a broader range
of temperatures, partly because of the problem of specifying
the temperature dependence of the effective anisotropy field
but also because it leads to a simplication of the spin dynam-
ics by neglecting optical magnons.

In this paper we investigate the effects of both uniaxial
and nonuniaxial single-ion anisotropy on the thermal proper-
ties of spin-wave excitations in metamagnetic films. Within a
Green’s function equation-of-motion method, we extend pre-
vious theoretical studies on metamagnets by treating the an-
isotropy terms exactly. Thermal effects are introduced by
considering layer-dependent static thermal averages for the
spins. The method involves generating a closed set of
coupled equations for all of the required Green’s functions,
using the random phase approximation(RPA) to linearize
only the exchange terms. Explicit expressions for the Green’s
functions are obtained by solving an inhomogenous matrix
equation. From the Green’s functions we are then able to
extract dispersion relations and evaluate the spin-dependent
correlation functions, which are of interest since they deter-
mine the dynamic response of the magnetic system. It is
shown that the inclusion of thermal effects leads to addi-
tional optical surface and bulk spin-wave modes that become
important at elevated temperatures.

Spin-wave dispersion relations in semi-infinite metamag-
netic materials(considering only one surface) have been re-
ported, but these were limited to the low-temperaturesT
!Tcd regime.5 The dispersion relations were obtained using
an operator equation-of-motion approach, and the anisotropy
(taken as uniaxial) was treated as an effective field. Some
limited low-temperature properties of surface and bulk spin
waves in metamagnets with nonuniaxial single-ion aniso-
tropy have been reported(see Ref. 6). Again, these results
were also obtained using an effective-field approximation to
represent the uniaxial and nonuniaxial anistropy. Recently
we reported some temperature-dependent results for spin-
wave properties in semi-infinite metamagnets.7 In these pre-
liminary results we considered only the contribution of the
uniaxial part of the single-ion anisotropy and ignored finite
film thickness effects.

In general, metamagnets consist of ferromagnetically or-
dered layers that are weakly coupled by AFM exchange to
adjacent layers. In the presence of a weak external fieldH0
(applied perpendicular to the layers) the overall ordering of
adjacent layers is antiparallel, giving the AFM phase. If the
applied field is large enough to overcome the AFM interlayer
coupling, spins in adjacent layers will order parallel to one
another, giving the FM phase. There is no intermediate spin-
flop phase, as in normal antiferromagnets, because of the
large anisotropy. In this paper we consider spin-wave prop-
erties in both phases and apply the theory to obtain numeri-
cal results for films of the metamagnets FeBr2 and FeCl2
over a wide range of temperatures belowTc.

The outline of the paper is as follows. In Sec. II we de-
scribe the metamagnetic Hamiltonian and the general
Green’s function formalism forS=1 systems. In Sec. III we
describe the theory for a uniaxial metamagnet and outline the
method used to obtain explicit expressions for the Green’s
functions in both the FM and AFM phases. This is followed
in Sec. IV with the theory for metamagnets with nonuniaxial
contributions to the anisotropy in both the FM and AFM
phases. In Sec. V we apply the theory to obtain numerical
results for dispersion relations and the mean-square ampli-
tudes(as a measure of intensity) of surface and bulk spin-
wave modes in FeBr2 and FeCl2. The final section, Sec. VI,
contains the conclusions of our work.
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II. HAMILTONIAN AND BASIC FORMALISM

We represent theS=1 metamagnets by the following spin
Hamiltonian:

H = o
i,j

Ji,jsSi ·Sj + sSi
zSj

zd + HZ + HA

−
1

2o
i,i8

Ji,i8
8 sSi ·Si8 + s8Si

zSi8
z d

−
1

2o
j ,j8

Jj ,j8
8 sSj ·Sj8 + s8Sj

zSj8
z d, s1d

where the Zeeman term is given by

Hz = − gmBH0So
i

Si
z + o

j

Sj
zD , s2d

and the single-ion anisotropy is represented in general by

HA = − DFo
i

sSi
zd2 + o

j

sSj
zd2G − FFo

i

sSi
xd2 − sSi

yd2G
− FFo

j

sSj
xd2 − sSj

yd2G . s3d

The termJi,j is the weaker interlayer AFM exchange between
sitesi and j on different sublattices, whileJi,i8 andJj ,j8 are the
stronger FM intralayer exchanges. The possibility of ex-
change anisotropy(of the Ising type) is represented by pa-
rameterss ands8. The applied fieldH0 is taken to be in the
z direction, which is perpendicular to the layers. The param-
etersD andF describe the effects of the uniaxial and nonu-
niaxial contributions to the anisotropy, respectively.

We consider aN-layer metamagnetic film with a pair of
surfaces in the(001) direction. The layers are labeled using a
positive indexn, with n=1 andn=N denoting the two sur-
faces. In the AFM phase we assume that the spins in layers
with an odd (even) layer index n belong to the spin-up
(down) sublattice and have a thermal averagekSzl positive
(negative). Thus, while the topn=1 surface layer belongs to
the spin-up sublattice, the lower surface atn=N may be ei-
ther on the spin-up or spin-down sublattice, depending on
whetherN is odd or even. We anticipate that this odd/even
property will have consequences for the spin-wave spectrum.

The spin-dependent Green’s functions are obtained fol-
lowing an equation-of-motion approach(see Ref. 8). The
method involves writing down the equation of motion for
each of the required Fourier transformed Green’s functions
using

vkkX;Yllv = S 1

2p
DkfX,Ygl + kkfX,Hg;Yllv, s4d

wherefX,Yg is the commutator between operatorsX andY,
and k¯l represents a static thermal average.

We begin by forming the equation of motion for the trans-
verse Green’s function of the formkkSl

+;Sm
− llv at general sites

labeledl andm within the film. This leads to more compli-
cated Green’s functions being generated on the right-hand
side of the expression. The Green’s functions arising from
the exchange terms in the HamiltonianH involve products of
operators at different sites and are decoupled using the RPA.

The single-ion anisotropy term in Hamiltonian gives rise to
Green’s function involving the product of operators at the
same sites and are not decoupled. They are treated exactly by
forming new equations of motion in order to form a closed
set of equations. The system of equations is then transformed
to a wave vector representation and the transformed Green’s
functions are obtain using standard mathematical procedures.
The Green’s functions provide information about dispersion
relations and spectral intensities of the magnons. This
method has been applied to study light scattering from bulk
magnons in various anisotropic antiferromagnets and ferro-
magnets and, in principle, can be used for any value of the
spin S. This approach is particular suitable for low spin val-
ues because the number of equations of motion needed to
form a closed set is then relatively small. In this work we
present results for metamagnetic materials such as FeBr2 and
FeCl2 with spin S=1.

We expect one acoustic and one optical magnon in this
case. A simple argument to see this is to consider just the
single-ion term inH, which gives rise to three unequally
spaced energy levels whenS=1. Transitions between adja-
cent levels can therefore occur between either the lower pair
or the upper pair, leading to acoustic and optical magnons
when the full form ofH is taken into account. These main
branches can each be split into two by an applied field in the
AFM phase, and in our film geometry we expect to find
surface and bulk modes.

III. THEORY FOR UNIAXIAL CASE

For simplicity, we begin by considering the uniaxial case
sF=0d. Substituting the operatorsX andY in Eq. (4) with the
spin operatorsSl

+ andSm
− respectively, we form the equation

of motion for thekkSl
+;Sm

− llv Green’s function. We linearize
the equation of motion using standard RPA, which decouples
the product of operators at different sites. The linearized
equation of motion forFlmsvd;kkSl

+;Sm
− llv is written as

FE0 + s1 + sdo
i

Ji,lmi − s1 + s8do
i

Ji,l8 miGFlmsvd

= s1/pdmldl,m + DGlmsvd

+ mlFo
i

Ji,lFimsvd − o
i

Ji,l8 FimsvdG , s5d

where E0=v−gmBH0. The uniaxial anisotropy leads to a
Green’s function of the formGlmsvd;kkSl

+Sl
z+Sl

zSl
+;Sm

− llv,
which is not decoupled because it involves the product of
operators at the same site. The linearized equation of motion
for this Green’s function is

FE0 + s1 + sdo
i

Ji,lmi − s1 + s8do
i

Ji,l8 miGGlmsvd

= s1/pdMldl,m + DFlmsvd

+ MlFo
i

Ji,lFimsvd − o
i

Ji,l8 FimsvdG . s6d

The expressions involve static thermal averageskSl
zl and

3ksSl
zd2l−2, which we have denoted byml and Ml, respec-

tively.
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Next we exploit the translational symmetry parallel to the
layers and Fourier transform the linearized coupled equations
of motion to a wave vector representation using

Flmsvd =
1

N1
o
ki

Fn,n8sk i,vdexpfik i · srWl − rWmdg, s7d

wherek i=skx,kyd is a two-dimensional wave vector parallel
to the surface,rW is a position vector, andN1 is the number of
sites in any layer. We employ a similar transformation for
Glmsvd and denote its Fourier components asGn,n8sk i ,vd.
The indicesn andn8 label the layers parallel to the surface.
We also introduce Fourier transforms for the intralayer ex-
change interaction, which we write as

usk id = o
i

Ji,i8
8 expfik i · sr i − r i8dg, s8d

and for the interlayer exchange interaction we write

vsk id = o
d

Ji,jsddexpsik i · dd, s9d

where vectord joins sites in layern to sites in layern+1.
The transformed equations of motion forFn,n8sk i ,vd and

Gn,n8sk i ,vd are

fEn + mnusk idgFn,n8 − mnfvs− k idFn−1,n8 + vsk idFn+1,n8g

− DGn,n8 =
1

p
mndn,n8, s10d

EnGn,n8 =
1

p
Mndn,n8 + Mnfvs− k idFn−1,n8 + vsk idFn+1,n8g

+ fD − Mnusk idgFn,n8, s11d

where

En = fE0 + s1 + sdsmn−1 + mn+1dvs0d − s1 + s8dmnus0dg.

s12d

From symmetry considerations it is clear that the thermal
averagesml and Ml depend on position only through the
layer indexn. We estimate the layer-dependent thermal av-
eragesmn andMn using a modified mean-field theory which
we describe in the Appendix. Substituting Eq.(11) into Eq.
(10) reduces the system to a single equation of motion for the
Fn,n8sk i ,vd Green’s functions. We now describe the formal-
ism used to obtain the Green’s functions in each phase.

A. The ferromagnetic phase

The critical field HcsTd producing a transition from the
AFM to the FM phase in bulk metamagnets is given
approximately5 in the low-temperature limit by

gmBHcs0d = 2s1 + sdSvs0d. s13d

At higher temperatures we will find its value numerically.
The analysis in the FM phasesH0.Hcd is straightforward

because all of the spins are aligned in the direction of the
applied fieldH0 and belong to the same sublattice. If we
consider a metamagnetic film composed ofN layers, the
closed set of finite difference equations is

f1F1,n8 − vsk idF2,n8 = s1/pdd1,n8, n = 1,

− vs− k idF1,n8 + f2F2,n8 − vsk idF3,n8 = s1/pdd2,n8, n = 2,

− vs− k idFn−1,n8 + fnFn,n8 − vsk idFn+1,n8

= s1/pddn,n8, n = 3, . . . ,N − 2, s14d

− vs− k idFN−2,n8 + fN−1FN−1,n8 − vsk idFN,n8

= s1/pddN−1,n8, n = N − 1,

− vs− k idFN−1,n8 + fNFN,n8 = s1/pddN,n8, n = N,

where

fn = fAnBn − DsD − Mndg/smnBn + DMnd. s15d

The parameters appearing in(15) are

A1 = E0 + s1 + sdmvs0d − s1 + s8dm1us0d + m1usk id,

A2 = E0 + s1 + sdsm1 + mdvs0d − s1 + s8dmus0d + musk id,

An = E0 + 2s1 + sdmvs0d − s1 + s8dmus0d + musk id,

n = 3, . . . ,N − 2, s16d

AN−1 = E0 + s1 + sdsmN + mdvs0d − s1 + s8dmus0d + musk id,

AN = E0 + s1 + sdmvs0d − s1 + s8dmNus0d + mNusk id,

and Bn=An−mnusk id. In writing (15) and (16) we use the
approximation that only the thermal averages for the surface
layers(n=1 andn=N) are significantly different from those
for interior layers. Specifically, we denotemn as m1 for n
=1, mN for n=N, and the bulk valuem otherwise. A similar
notation is used forMn.

The system of finite difference equations can be expressed
in matrix form as

AFn8 = bn8, s17d

where Fn8 and bn8 are N-component column matrices
with elements given by sFn8dn=Fn,n8 and sbn8dn

=1/spuvsk iduddn,n8.
Following the general approach used in Ref. 9 for thin

films, which is an extension of earlier calculations for
semi-infinite samples, we split theN3N matrix A into two
parts such thatA =A0+D. Here the matrixA0, which is a
tridiagonal matrix containing only bulk parameters of the
film, has its nonzero elements defined assA0di,i =d and
sA0di,i±1=−t71, where

d = fn/suvsk idud and t = Îvs− k id/vsk id. s18d

Matrix D, which describes the perturbation due to the sur-
face, has only a few nonzero elements, namely,

Di,i = sf i − fnd/uvsk idu, s19d

for i =1,2,N−1,N. This decomposition is helpful because
the inverse ofA0 is known.15 DenotingB=A0

−1, the result is
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Bi,j =5 t
ht2ixi+j − xj−i + st2dN+1−jx2N+2−si+jd − st2dN+1−s j−idx2N+2−s j−idj

st2x − x−1ds1 − stxd2N+2d
, i ø j

t
ht2ixi+j − st2di−jxi−j + st2dN+1−jx2N+2−si+jd − st2dN+1x2N+2−si−jdj

st2x − x−1df1 − stxd2N+2g
, i . j ,6 s20d

where the complex parameterx is defined bytx+1/stxd=d
and satisfies the conditionuxuø1.

The formal solution of Eq.(17) is written as

Fn8 = sI + BDd−1Bbn8, s21d

whereI denotes theN3N unit matrix. It is then necessary to
invert the matrixsI +BDd, which can be written in parti-
tioned form as

sI + BDd = 1M1 0 M6

M2 I M5

M3 0 M4
2 , s22d

whereM1,M3,M4, and M6 are 232 matrices, whereasM2
and M5 are 23 sN−4d matrices. The required inverse can
also be written in partitioned form as

sI + BDd−1 = 1X1 0 X6

X2 I X5

X3 0 X4
2 , s23d

with elements given by

X1 = − sM3 − M4M6
−1M1d−1M4M6

−1,

X2 = − M5M6
−1 + sM5M6

−1M1 − M2dX1,

X3 = M6
−1 − M6

−1M1X1,

s24d
X4 = − M6

−1M1sM3 − M4M6
−1M1d−1,

X5 = sM5M6
−1M1 − M2dsM3 − M4M6

−1M1d−1,

X6 = sM3 − M4M6
−1M1d−1.

The explicit expressions for all of the Green’s functions
Fn,n8sk i ,vd can be obtained by carrying out the appropriate
matrix multiplications on the right-hand side of Eq.(21). The
spin-wave energies are found from the poles of these Green’s
functions. We shall find in the application presented later that
the solutions for a thin-film geometry, which consist of quan-
tized bulk modes and some discrete surface modes, come
from thesI +BDd−1 term; i.e., they correspond to solutions of

detsI + BDd = 0. s25d

From the diagonal Green’s functionsFn,nsk i ,vd and the use
of the fluctuation-dissipation theorem, we write the spectral
intensity of the spin-wave modes in layern and wave vector
k i asjnsk i ,vd, which we define as

jnsk i,vd =
− 2

expsbvd − 1
ImhFn,nsk i,v + ihdj, s26d

where b=1/kBT, kB is the Boltzmann constant andT the
temperature. The real and positive quantityh is introduced
phenomenologically to model an intrinsic damping or recip-
rocal lifetime. The above spectral intensities are used to
evaluate equal-time correlation functions, which in turn are
used to find the layer-dependent mean-square amplitude of
spin precession defined as

Qsnd = ksSn
xd2 + sSn

yd2lki
. s27d

In the numerical examples presented in Sec. V we will find
that the optical modes have spectral functions and mean-
square amplitudes that vanish in the low-temperature limit
but become important at elevated temperatures.

B. The antiferromagnetic phase

The analysis is algebraically more complicated in the
AFM phasesH0,Hcd because spins in adjacent layers be-
long to different sublattices. The thermal averages associated
with an odd layer indexn belong to the spin-up sublattice,
whereas those associated with an even layer indexn belong
the spin-down sublattice.

The set of finite difference equations are analogous to
those in the FM phase, except now the coefficients of the
diagonal Green’s functions are defined as

fn = fAnBn − DsD − Mndg/fs− 1dn+1mnBn + DMng. s28d

The parameters appearing in Eq.(28) are defined as

A1 = E0 − s1 + sdmvs0d − s1 + s8dm1us0d + m1usk id,

A2 = E0 + s1 + sdsm1 + mdvs0d + s1 + s8dmus0d − musk id,

An = E0 + s− 1dnf2s1 + sdmvs0d + s1 + s8dmus0d

− musk idg, n = 3, . . . ,N − 2, s29d

AN−1 = E0 + s− 1dN−1fs1 + sdsmN + mdvs0d + s1 + s8dmus0d

− musk idg ,

AN = E0 + s− 1dNfs1 + sdmvs0d + s1 + s8dmNus0d − mNusk idg,

and Bn=An−s−1dnmnusk id. Here we again use the approxi-
mation that only the thermal averages for the surface layers
(n=1 and n=N) are different from those for interior bulk
layers.
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As a result of the two-sublattice system, we must treat the
cases ofN odd andN even differently. We first describe the
approach used to obtain the Green’s functionsFn,n8 for a film
with an odd number of layers. The Green’s function associ-
ated withn odd (denotingn=2m+1) can be eliminated by
substituting

F1,n8 = fvsk idF2,n8 + s1/pdd1,n8g/f1,

F2m+1,n8 = fvs− k idF2m,n8 + vsk idF2m+2,n8

+ s1/pdd2m+1,n8g/f2m+1, m = 1, . . . ,sN − 3d/2,

s30d

FN,n8 = fvsk idFN−1,n8 + s1/pddN,n8g/fN,

into the equations forn even. The resulting system of equa-
tions is again written in matrix form asAFn8=bn8 except
now Fn8 and bn8 are column matrices withsN−1d /2 ele-
ments defined assFn8d2m=F2m,n8 and

sbn8d2 = s1/pdGfd2,n8 + svs− k id/f1dd1,n8 + svsk id/f2m+1dd3,n8g,

sbn8d2m = s1/pdGfd2m,n8 + svs− k id/f2m+1dd2m−1,n8

+ svsk id/f2m+1dd2m+1,n8g, m = 2, . . . ,sN − 3d/2,

s31d

sbn8dN−1 = s1/pdGfdN−1,n8 + svs− k id/f2m+1ddN−2,n8

+ svsk id/fNddN,n8g,

whereG= f2m+1/ uvsk idu2.
Following the approach used in the FM phase, we write

the matrixA as the sum ofA0 and D. The elements ofA0
now correspond to

d = Gf2m − 2 and t = vs− k id/vsk id, s32d

and matrixD now has just two nonzero elements

D1,1= Gsf2 − f2md − sf2m+1/f1d + 1,

DN,N = GsfN−1 − f2md − sf2m+1/fNd + 1. s33d

For a film with anevennumber of layers, we also begin
by eliminating the Green’s functions associated with an odd
layer indexn. In this case the column matricesFn8 andbn8
have N/2 elements, and as a result of the surface layern
=N belonging to the spin-down sublattice the elementsbn8
are modified[see Eq.(35)].

The elements of the matrixA0 are defined as in the case
of N odd, but the nonzero elements ofD are now

D1,1= sf2 − f2mdG − sf2m+1/f1d + 1,

DN−1,N−1 = 1 − sf2m+1/fN−1d,
s34d

DN−1,N = t−1DN−1,N−1,

DN,N = ffNfN−1/uvsk idu2g − f2mG + 1.

In both cases the solutions for the Green’s functionsF2m,n8
are obtained by inverting the matrixA following the same
approach as in the FM phase. The solutions for the Green’s
functionsF2m+1,n8 are then found from the set of finite dif-
ference equations. As before, the bulk and surface spin-wave
modes are solutions of the determinantal condition in Eq.
(25), and the mean-square amplitudes are calculated using
Eq. (27):

sbn8d2 = s1/pdGfd2,n8 + svs− k id/f1dd1,n8 + svsk id/f2m+1dd3,n8g,

sbn8d2m = s1/pdGfd2m,n8 + svs− k id/f2m+1dd2m−1,n8

+ svsk id/f2m+1dd2m+1,n8g, m = 2, . . . ,sN − 4d/2,

s35d
sbn8dN−2 = s1/pdGfdN−2,n8 + svs− k id/f2m+1ddN−3,n8

+ svsk id/fN−1ddN−1,n8g,

sbn8dN = s1/pdsfN−1/uvsk idu2dfdN,n8 + svs− k id/fN−1ddN−1,n8g.

IV. THEORY FOR NONUNIAXIAL CASE

The calculations become more complicated when the
nonuniaxial anisotropysFÞ0d is included, and for this rea-
son we limit our analysis in this section to a semi-infinite
metamagnet that occupies the half-spacezø0.

In the nonuniaxial case we must form the equations of
motion of the Green’s functions!Sl

+;Sm
−@v, !Sl

−;Sm
−@v,

!Sl
+Sl

z+Sl
zSl

+;Sm
−@v, and !Sl

−Sl
z+Sl

zSl
−;Sm

−@v to obtain a
closed set after applying RPA to the exchange terms. As be-
fore, the equations of motion are transformed to a represen-
tation involving layer indices and a two-dimensional wave
vector parallel to the surface. This leads to four sets of equa-
tions coupling the various layer-dependent Fourier compo-
nents. After tedious algebraic manipulations we can elimi-
nate the Fourier components associated with!Sl

+Sl
z

+Sl
zSl

+;Sm
−@v and!Sl

−Sl
z+Sl

zSl
−;Sm

−@v and reduce the system
to two sets of coupled equations, which we write as

L1F1,n8 − vsk idQ1F2,n8 = s1/pdV1d1,n8, n = 1,

s36d
− vs− k idQnFn−1,n8 + LnFn,n8 − vsk idQnFn+1,n8

= s1/pdVndn,n8, n . 1.

HereFn,n8 are two-component column vectors defined as

Fn,n8 = SFn,n8
+ sk i,vd

Fn,n8
− sk i,vd D , s37d

whereFn,n8
+ sk i ,vd andFn,n8

− sk i ,vd represent the Fourier com-
ponents of!Sl

+;Sm
−@v and!Sl

−;Sm
−@v respectively. The el-

ements of the 232 matricesLn and Qn and the column
vectorsVn are complicated expressions involving frequency
and the parameters of the metamagnetic materials. These ex-
pressions also involve the layer-dependent thermal average
,sS+d2.n, which we estimate numerically using a modified
mean-field theory described in the Appendix. We again use
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the approximation that only the thermal averages for the sur-
face layer are significantly different from those for interior
layers.

As in the uniaxial case, the analysis for the FM phase is
simpler because all of the spins belong to one sublattice. The
system of equations can be expressed in supermatrix form as
sA0+DdFn8=bn8, where A0 represents the bulk-parameter
supermatrix whose elements are

d = fn/uvsk idu andt = Îvs− k id/vsk idI 2, s38d

wherefn is a 232 matrix defined asfn=Qn
−1Ln andI 2 is the

232 unit matrix. The matrixD, which describes the effect
due to the surface, is also a supermatrix whose elements are
232 matrices defined as

Di,i = sf i − fnd/uvsk idu, i = 1,2, s39d

and Fn8 is a column vector whosenth element is a two-
component vector defined asFn,n8.

In the AFM phase we proceed by eliminating the equa-
tions associated with an odd layer indexn. Since our analysis
in the nonuniaxial case is limited to a semi-infinite metamag-
net there is no need to treat cases withN odd or even differ-
ently. The resulting system of equations can be expressed in
supermatrix form, where the elements of the supermatrixA0
are now defined as

d = Gf2m − 2I 2 and t = svs− k id/vsk iddI 2, s40d

where

G = f2m+1/uvsk idu2. s41d

In the AFM phase the perturbation matrixD has a single
nonvanishing 232 element defined as

D1,1= Gsf2 − f2md − f2m+1f1
−1 + I 2, s42d

and thenth element of the column vectorFn8 is defined as
F2n,n8.

If we define B=A0
−1, then the spin-wave modes can be

determined in both phases from the determinantal condition
as defined formally in Eq.(25). The construction of the ele-
ments ofB and the condition for physically acceptable solu-
tions of the surface-mode problem are discussed in detail in
Ref. 10. Due to the algebraic complexity, we carry out the
calculations numerically and obtain spin-wave dispersion re-
lations for certain special cases that we illustrate in the fol-
lowing section.

V. APPLICATION TO FeBr 2 AND FeCl2

We now apply the results of the previous sections to the
S=1 metamagnets FeBr2 and FeCl2. These materials have
different crystal structures that lead to important differences
in their spin-wave properties. The positions of the Fe2+ ions
in both materials are depicted in Fig. 1. Both materials have
the same trigonal arrangement of the magnetic Fe2+ ions
within any particular layer, but they differ from one another
because they have different stacking arrangements of the lay-
ers. In FeBr2, the Fe2+ ions are stacked vertically above and
below those in adjacent layers, whereas in FeCl2 the layers
are staggered with respect to each other.

If we denoteJ1 and J2 as the nearest and next-nearest
neighbor intralayer exchanges, respectively, the intralayer
exchange sum defined in Eq.(8) is

usk id = 2J1fcosskxad + 2 cosskxa/2dcosskyaÎ3/2dg

+ 2J2fcosskyaÎ3d + 2 cosskyaÎ3/2dcosskxa3/2dg
s43d

for both materials, wherea is the nearest-neighbor distance
in the layers. The interlayer exchange sum defined in Eq.(9)
is simplyvsk id=J3 for FeBr2, whereJ3 denotes the interlayer
nearest-neighbor exchange interaction. For FeCl2 the inter-
layer exchange sum is

vsk id = J3fexpsikya/Î3d + 2 cosskxa/2dexps− ikya/2Î3dg.

s44d

The latter sum is more complicated because of the stacking
arrangements of the layers in this case.

The approximate values for the exchange and anisotropy
parameters for FeBr2 and FeCl2 have been determined using
neutron-scattering and Raman-scattering experiments.11–14

The values used in this work are listed in Table I. In the
uniaxial case we setF=0.

Numerical calculations of the predicted spin-wave disper-
sion relations for FeBr2 and FeCl2 in the FM phase in the
uniaxial approximation are shown in Figs. 2 and 3, respec-
tively. We plot frequency versus in-plane wave vectorkxa
(taking ky=0) for an applied field corresponding to
h=4 cm−1, and evaluate thermal averages atT/Tc=0.5. In a
semi-infinite system the bulk spin-waves appear as a band
because of the range of values of the third wave vector com-
ponentkz. For a system with a finite number of layersN there

FIG. 1. Planar view of the Fe2+ ions (solid circles) in the ferro-
magnetically ordered layers for FeBr2 and FeCl2. The nearest and
next-nearest neighbors to the ion labeled 1 are those labeled 2 and
3, respectively. The crosses and open circles represents the positions
of the ions in the adjacent layers above and the below the planes for
FeCl2. For FeBr2 the ions in adjacent layers are stacked vertically.
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is a restriction on the allowed values ofkz, which leads to
discrete bulk spin-wave frequencies. The inclusion of ther-
mal averages leads to a mode splitting effect between the
acoustic and the additional optical spin-wave branches. The
optical branches are absent in the low-temperature limit be-
cause there is no spectral weight associated with these
modes. In the FM phase the acoustic and optical surface
spin-wave branches are located above their respective bulk
frequency bands. The inset in both figures focuses on the
small wave vector region above the acoustic bulk band. Here
the dotted line is the predicted surface mode in the semi-
infinite limit, whereas the solid lines represent surface modes
for the thin films. In both cases we predict an additional
acoustic surface spin-wave branch when the number of lay-
ersN is finite. However, for FeCl2 the splitting between one
of the surface branches and the acoustic bulk region is ex-
tremely small.

In Figs. 4 and 5 we show the predicted bulk and surface
dispersion relations for FeBr2 in the AFM phase for the cases
of the wave vectork i along thex and y directions, respec-
tively. In both cases we take an applied fieldh=0, evaluate
thermal averages atT/Tc=0.5, and consider results in the
uniaxial limit sF=0d. In the AFM phase the bulk regions are
very narrow because the dependence onkz is almost negli-

gible. We only show results for a semi-infinite system be-
cause the splitting of the spin-wave modes in thin films is
extremely small. Again, thermal effects produce a mode
splitting between the acoustic and the optical spin-wave
branches. In the AFM phase the acoustic and optical surface
branches appear below their respective bulk bands by about
2 cm−1. This splitting is sufficiently large to be observed us-
ing Raman scattering. Qualitatively similar results are ob-
tained for FeCl2. We only show the positive-frequency solu-
tions, but there are some interesting effects on the spin-wave
spectra as a result of the different symmetry properties of the
metamagnetic films in the AFM phase. For a film with an
odd number of layersN, the surfaces belong to the same
sublattice and are equivalent. In the absence of an applied
field (taking h=0), the spin-wave frequencies are nondegen-
erate and only positive-frequency surface modes are found.
For T.0 we find one positive-frequency acoustic and opti-
cal surface mode. For a film with an even number of layers

TABLE I. Exchange and anisotrophy parameters used in calcu-
lations for FeBr2 and FeCl2.

FeBr2 FeCl2

J1 scm−1d 5.07 5.5

J2 scm−1d −1.2 −1.2

J3 scm−1d 1.45 0.28

D scm−1d 7.34 9.4

F scm−1d 2.0 2.0

s=s8 0.28 0.20

FIG. 2. The spin-wave frequencies(solid
lines) plotted against in-plane wave vectorkxa for
a uniaxialsF=0d metamagnetic film of FeBr2 in
the FM phase. Here we have chosenN=6, h
=4 cm−1, and thermal averages atT/Tc=0.5. The
shaded areas represent the bulk bands in the
semi-infinite limit. The dotted line represents an
acoustic surface spin-wave mode for a semi-
infinite metamagnet.

FIG. 3. The same as in Fig. 2, but for FeCl2 and takingN=8.
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N, the two sublattices are equivalent whenh=0 and the spin-
wave frequency spectrum is completely symmetric.

For comparison we also include in Figs. 4 and 5 the bulk
(B) and surface(S) spin-wave frequencies as obtained in Ref.
5 for the T!Tc limit. These results are obtained by repre-
senting the uniaxial anisotropy in terms of an effective an-
isotropy field. This approximation simplifies the spin dynam-
ics by neglecting optical magnons and as a result there is no
mode splitting observed. Identical results in theT!Tc limit
can be obtained using the commonly employed approach of
transforming the spin operators to boson operators in a
uniaxial approximation. Thermal effects are seen to produce

a strong mixing between the acoustic and optical spin-wave
branches and also lead to a renormalization of the spin-wave
energies. Qualitatively similar results are obtained in the FM
phase.

In Figs. 6 and 7 we show representative plots for
ImfFn,nsk i ,v+ ihdg versus frequency in the FM phase. Here
we choosen=2, setk i <0 andh=0, take thermal averages at
T/Tc=0.5, and compare results for the semi-infinite case to a
film composed of 20 layers. In Fig. 6 we show results in the
acoustic frequency range, whereas in Fig. 7 we show results
in the optical frequency range. The peaks located at approxi-
mately 15 and 25 cm−1 are those associated with acoustic
and optical surface modes, respectively. These attenuate rap-
idly with distance from the surfaces. As the temperature is
increased the positions of the peaks renormalize to lower
frequencies. The bulk acoustic and optical spin-wave fre-
quency bands are broad because of the dependence of the
third wavevector componentkz in the FM phase. In the AFM
phase the acoustic and optical bulk regions are much narrow-
erbecause of a weak dependence onkz. These effects are also
seen in the dispersion relations.

In Table II we show numerical results for the layer-
dependent mean-square amplitudes of spin waves in FeBr2 in
the AFM phase for different temperatures. The mean-square
amplitudes associated with acoustic and optical surface
modes in the surface layern=1 are denoted byQS

acs1d and
QS

ops1d, respectively. For acoustic and optical bulk spin-
waves the mean-square amplitudes are denoted byQB

acsnd
and QB

opsnd and represent the contribution of all the modes
within their respective bulk bands. The numerial results are
obtained for a semi-infinite system in the small wave vector
limit k i <0, takingh=0. We find that the mean-square am-
plitudes of the optical surface and bulk modes vanish in the
low-temperature limit, as expected, but become important at
elevated temperatures. In the AFM phase we also find that

FIG. 4. The frequencies of bulk(shaded areas) and surface(dot-
ted lines) spin waves for the semi-infinite uniaxial metamagnet
FeBr2 in the AFM phase plotted against in-plane wave vectorkxa
taking h=0 and thermal averages atT/Tc=0.5. The dashed lines
labeled B and S represent, respectively, the bulk and surface spin-
wave frequencies in theT!Tc limit, where effects due to optical
modes vanish.

FIG. 5. The same as in Fig. 4, but withk i along the y
direction.

FIG. 6. ImsF2,2d versus frequency for FeBr2 in the FM phase.
We compare the semi-infinite case(dashed line) to a film composed
of 20 layers(solid line). We takek <0, F=0, h=4.0 cm−1, h=0.1,
and thermal averages atT/Tc=0.5. We show results for the lower
(acoustic) frequency range.
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the positive-frequency modes have a greater precessional
amplitude on the spin-up sublattice then on the spin-down
sublattice. The converse is true for the negative-frequency
(oppositely precessing) modes. In the FM phase the mean-
square amplitudes associated with optical modes are signifi-
cantly smaller then those for acoustic modes.

Figure 8 shows the dispersion relation of bulk and surface
spin waves for the nonuniaxial metamagnet FeBr2 in the
AFM phase. Comparison of this spectrum with those for a
uniaxial metamagnet shows that each bulk band is now split,
giving rise to four separated bulk regions. In the absence of
an applied field, this splitting is limited to the small wave
vector region. The inclusion of the nonuniaxial anisotropy
also leads to a splitting of the acoustic and optical surface
modes. We find surface branches above and below the lowest
frequency bulk band as well as two surface branches located
between the higher energy bulk bands. In the nonuniaxial
case the splitting between the surface branches and the bulk
bands is small. In the FM phase the inclusion of the nonu-
niaxial anisotropy leads to modified spin-wave frequencies,
but does not produce the additional splitting effects observed
in the AFM phase.

VI. CONCLUSIONS

In this paper we have investigated thermal properties of
surface and bulk spin waves inS=1 metamagnets. We have
generalized previous results to higher temperatures by con-

sidering layer-dependent thermal averages for the spins and
have considered spin waves in ultrathin films as well as in
thicker films. We have considered the effects of uniaxial and
nonuniaxial single-ion anisotropy and have examined spin-
wave properties for metamagnets in both the AFM and FM
phases. The method of calculation involved using a Green’s
function equation of motion formalism in which the aniso-
tropy terms were treated exactly while the exchange-
dependent terms were decoupled using RPA. We calculated
the spin-wave dispersion relations and using appropriate cor-
relation functions we evaluated the mean-square amplitude
of spin precession.

Numerical results were obtained for the metamagnets
FeBr2 and FeCl2, which have different crystal structures as
well as different exchange and anisotropy parameters. At el-
evated temperatures, the use of modified thermal averages
for the spins leads to additional optical magnetic excitations
that correspond to transitions between the higher energy
magnetic states and also produces a mode splitting effect
between the acoustic and the additional optical spin-wave
branches. This splitting vanishes in the low-temperature limit
because there is no statistical weight associated with the op-
tical spin waves. The layer-dependent mean-square ampli-
tudes of the spin precession for optical surface and bulk
modes are negligible in the low-temperature limit but be-
come important at elevated temperatures. The nonuniaxial
anisotropy leads to additional splitting of the surface and
bulk spin-wave branches.

These predicted features could be investigated experimen-
tally using inelastic light scattering techniques such as Ra-
man and Brillouin scattering and magnetic resonance. For
the study of surface excitations using light scattering it
would be appropriate to use an excitation wavelength for
which the metamagnets are optically opaque and use a scat-
tering geometry that enhances surface effects. Metamagnetic
materials in the AFM phase would be the best candidates for
experimental studies because our theoretical predictions in-

TABLE II. Relative mean-square amplitudes of surface and bulk
modes in the AFM phase for FeBr2 for different temperatures(tak-
ing k i <0). Results are normalized toQB

acs10d at T/Tc=0.

T/Tc 0 0.3 0.5

QS
acs1d 1.0 1.07 1.24

QB
acs10d 1.0 1.06 1.19

QS
ops1d 0 0.03 0.15

QB
ops10d 0 0.03 0.14

FIG. 7. The same as Fig. 6, except we takeh=0.05 and show
results for the higher(optical) frequency range.

FIG. 8. The frequency of bulk(shaded areas) and surface
(dashed lines) spin waves for the nonuniaxial metamagnet FeBr2 in
the AFM phase plotted against in-plane wave vectorkxa, taking h
=1.0 cm−1 and evaluating thermal averages atT/Tc=0.5.
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dicate that there is a sufficiently large spacing between sur-
face and bulk spin-wave modes and the mean square ampli-
tudes of spin precession(which we use as measure of
intensity) are the largest in this phase.
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APPENDIX A: THERMAL AVERAGES

We now briefly discuss the approximate evaluation of the
static thermal averages using a modified mean-field theory.
Although the thermal averages can, in principle, be calcu-
lated self-consistently using the Green’s functions, and their
correlation functions, this becomes rather complicated for
the general nonuniaxial caseFÞ0. Instead, we employ a
modified mean-field approximation to simplify the exchange
terms in the Hamiltonian(see Ref. 16), but we treat the an-
isotropy terms exactly.

The thermal averagekXl of an operatorX in any repre-
sentation can be written as

kXl = TrfX exps− bHdg/Trfexps− bHdg. sA1d

We evaluate the various thermal averages using the follow-
ing mean-field Hamiltonian

HMF = − o
i

BesidSi
z − Dfo

i

sSi
zd2 + o

j

sSj
zd2g

− Ffo
i

sSi
xd2 − sSi

yd2g, sA2d

whereBesid=h−hesid+he8sid and the effective interlayer and
intralayer exchange fields are, respectively,

hesid = s1 + sdo
j

kSj
zlJi,j , sA3d

he8sid = s1 + s8do
i8

kSi8
z lJi,i8

8 . sA4d

The applied fieldh is assumed to be in thez-direction.
It is clear from symmetry considerations that the effective

exchange fields along with the thermal averages depend on
position only through the layer indexn. The effective intra-

layer exchange field is the same for both FeBr2 and FeCl2
because they have identical structures within any particular
layer, and is written ashe8snd=6sJ1+J2dkSzlns1+s8d.

Spins in surface layersn=1 andn=N have p (p=1 for
FeBr2, p=3 for FeCl2) interlayer nearest neighbor, and the
effective interlayer fields for the surface layers are

hes1d = pJ3kSzl2s1 + sd, n = 1, sA5d

hesNd = pJ3kSzlN−1s1 + sd, n = N. sA6d

For interior layerss1,n,Nd, we have

hesnd = pJ3skSzln−1 + kSzln+1ds1 + sd. sA7d

For a spinS=1 system, we employ the 333 irreducible
representation for the spin operators and write down the 3
33 matrix for the effective HamiltonianHMF. In the uniaxial
casesF=0d, the Hamiltonian is diagonal and the calculation
of the thermal averages is straightforward. In the nonuniaxial
casesFÞ0d, HMF is nondiagonal, but may be diagonalized
by the transformation

H̃MF = U−1HMFU, sA8d

where the columns of the matrixU are the normalized eigen-
vectors ofHMF. The thermal averages are evaluated using

kXln = TrfX̃i exps− bH̃MFdg/Trfexps− bH̃MFdg, sA9d

with X̃i =U−1XiU. Replacing the operatorXi with Si
z, sSi

zd2 and
sSi

+d2, we obtain a set of recurrence relationships satisfied by
the various thermal averages forn=1, . . . ,N. Finally, the
layer-dependent thermal averages are

kSzln =
BesndfexpsZbd − exps− Zbdg

ZfexpsZbd − exps− Zbd + exps− Dbdg
,

ksSzd2ln =
fexpsZbd − exps− Zbdg

fexpsZbd − exps− Zbd + exps− Dbdg
,

sA10d

ksS+d2ln =
FkSzln

Besnd
,

where Z=ÎBesnd2+F2. Note that in the uniaxial casesF
=0d the thermal averageksS+d2ln is zero.

*Electronic address: cottam@uwo.ca
1J. A. C. Bland and B. Heinrich,Ultrathin Magnetic Structures I

(Springer Verlag, Berlin, 1994).
2Linear and Nonlinear Spin Waves in Magnetic Films and Super-

lattices, edited by M. G. Cottam(World Scientific, Singapore,
1994).

3P. Grünberg, inLight Scattering in Solids V, edited by M. Car-
dona and G. Güntherodt(Springer, Heidelberg, 1989), p. 303.

4M. G. Cottam and D. J. Lockwood,Light Scattering in Magnetic

Solids(Wiley, New York, 1986) pp. 118–127.
5J. H. Baskey and M. G. Cottam, Phys. Rev. B42, 4304(1990).
6D. H. A. L. Anselmo, E. L. Albuquerque, and M. G. Cottam, J.

Appl. Phys. 83, 6955(1998).
7E. Meloche and M. G. Cottam, Phys. Status Solidi A196, 165

(2003).
8N. Zubarev, Sov. Phys. Usp.3, 320 (1960).
9J. M. Pereira and M. G. Cottam, Phys. Rev. B63, 174431(2001).

10T. Wolfram and R. E. De Wames, Phys. Rev.185, 762 (1969).

E. MELOCHE AND M. G. COTTAM PHYSICAL REVIEW B70, 094423(2004)

094423-10



11W. B. Yelon and C. Vettier, J. Phys. C8, 2760(1975).
12D. J. Lockwood, G. Mischler, A. Zwick, I. W. Johnstone, G. C.

Psaltakis, M. G. Cottam, S. Legrand, and J. Leotin, J. Phys. C
15, 2793(1982).

13M. G. Pini, E. Rastelli, A. Tassi, and V. Tognetti, J. Phys. C14,
3041 (1981).

14G. C. Psaltakis and M. G. Cottam, J. Phys. C15, 4847(1982).
15M. G. Cottam and D. Kontos, J. Phys. C13, 2945(1980).
16M. G. Cottam and D. R. Tilley,Introduction to Surface and Su-

perlattice Excitations(Cambridge University Press, Cambridge,
1989), pp. 91–92.

THERMAL PROPERTIES OF SURFACE AND BULK SPIN… PHYSICAL REVIEW B 70, 094423(2004)

094423-11


