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Chemical pressure effect on magnetic properties in electron-doped perovskite manganites
(Gdp 0gCaSrp 924)MNO 3 (0<y<1): Percolation transition of ferromagnetic clusters
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The magnetic properties of electron-doped perovskite manga(@eg;a,Sr; ., )MnO; (x=0.08 and 0.05,
0.1s<y<1), were investigated as a function of the average ionic radius oAtbi¢e cationgi.e., Gd, Ca and
S, {rayusing polycrystalline samples. For the samples witt0.08, asy increased from 0, the low tempera-
ture phase changed from an antiferromagnetic insu(@l) to a ferromagnetic metgFM) aty~ 0.35 which
corresponds tér,)=1.25 A. The magnitude of the Néel temperature was found to correlate with the bandwidth
of the Mn—-31 band. On the other hand, for the samples wjth 0.5, a small saturation magnetization
suggested the coexistence of the FM and AFI phase; in other words, magnetic phase separation occurred below
the Curie temperature~120 K). A scaling analysis of the resistivity 0Gd, (dCa,Sry 9,-,)MnO3 indicated that
a percolation transition between FM clusters was induced by the decreésg.in
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[. INTRODUCTION istence of both magnetic phases is important for the CMR
effect in the electron-doped manganites. For the hole-doped

Doped perovskite manganites R, ,MnO; (RE de- . . ;
notes a trivalent rare earth ion and AlExa di\falent alka“nemanganltes, there are many reports regarding the chemical

earth ion, henceforth both are called &site cationg have pressure effect on various physical propertis**25which

been studied extensively because of their colossal magn@-rOVide. impo”""”? information about their magnetic phase
toresistance(CMR) effect! Recent studies regarding the separation behavior. To jche best of our knowledge, howeyer,
hole-doped manganites have revealed two crucial parameteﬁ%ere has been no dtettauled rep;ort on t?e eff?cihof cr|1ent1|cal
that govern the relationship between their crystal structurelr€Ssure on magnetotransport properties of the electron-

magnetism, and electrical transport properties. One is gop\;\e/:d rznanggmte\:,'. ted the effect of chemical
charge-carrier doping; for exampley-electrons are intro- h N av?_ mveg Iglaet_ Ie etiec t'o c fetrr?lca| prtessudre or(;
duced by chemical substitution for AE by RE*. This € magnetic and electrical properties ot the electron-dope

causes a ferromagnetiE) metallic state in which the itiner- manganites (Gd,.CaSh-y)MNO; (x=0.08 and 0.05,

anteg-electrons mediate an F double-exchange interaéffon, 0-1=y<1) to _understand th_e physical nature of magnetic
The other is an effective one-electron bandwitit, which phase separation and to clarify the ground-state phase evolu-

is affected strongly by the degree of the hybridization pefion in detail. According to our preliminary experiments us-

tween Mn-3l and O-2 orbitals. The magnitude oW is ing several rare earth oxides, the sample with the highest
controlled by the average ionic radius of tAesite cations density was easily obtained using &. We therefor_e Se-
(ry), i.e., the chemical pressufe’ which induces the evo- lected Gd as a dopant for the current work to elucidate the
lution of the F transition temperatu(&c) for the hole-doped change in the transport properties by chemical pressure.

manganites. Other factors, including temperature and applied

. . . - . Il. EXPERIMENT
(physica) pressure, provide various magnetic phase dia-
grams for the hole-doped manganifeg). Polycrystalline samples of(GdCa,Sr_,)MNO; (X
The electron-doped manganites, 8E_ MnO;  =0.08 and 0.05, 0.&y< 1) were synthesized by a conven-

REC&_,MnO;, and BjCa_,MnO; (x<0.5), etc. have been tional solid-state reaction from stoichiometric mixtures of
studied recently because of their peculiar magnetic propeicd,0;, CaCQ, SrCQ,, and MO, The mixtures were cal-
ties, including magnetic phase separation and the CMRined at 1573 K for 12 h in air, then sintered at 1823 K for
effect1-23 As with the hole-doped manganites, magnetics h in air. The heating and the cooling rate of the sintering
phase diagrams in the electron-doped manganites depepdocess were-100 and 200 K/h, respectively. Densities of
strongly on(r,).*® Unlike the hole-doped manganites, the the sintered samples were92% of the theoretical values.
CMR effect in the electron-doped manganites is observe®owder x-ray diffraction XRD(Cu-Ka radiation, model
only in a narrow region in a phase diagram. For exampleRINT-1500V, RIGAKU, 40 kV, 350 mA analysis was used
RE;_.CaMnO; (x>0.5) exhibits the CMR effect at around to determine the crystal structure at room temperature. Struc-
the critical concentration, (~0.8—0.9.1%12 Charge order- tural parameters were refined by the Rietveld method using
ing phenomena together with antiferromagngA€) order-  the programRIETAN 2000?° The value of(r,) was calculated

ing state are observed for<x., while F metallic state ap- using the tabulated values for cations in a ninefold
pears forx>x.. The competition between charge ordering, coordinatior?’

the AF ordering and the F metallic phenomena leads to the Electrical resistivity(p) was measured using a standard dc
CMR effect at the phase boundaryfx.. Thus, the coex- four-probe method in the temperature range between 25 and
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' Pry.1Sth. MnO5.14 However, the diffraction intensity of the

(8) (Gdg45C89 5510 62)MNO, peaks from the hexagonal phase was extremely weak com-
| pared with that from the main phagactually, almost invis-

o |°bs ible in Fig. 1(b)]. We therefore ignored the contribution from

el the hexagonal phase in the structural analysis using the Ri-

etveld method.

Although a cubic- or a tetragonal-perovskite phase was
reported to be stabilized in the Sr-rich manganites
' ' ' ' due to an increase ifr,),'*?3?8the current XRD patterns for
{b) (Gd, 45Cay 157y 52IMNO, the samples withy=<0.5 were well fitted using the
orthorhombic-perovskite structure and were unable to be fit-
ted using the cubic- and/or the tetragonal-perovskite struc-
ture.

The refined structural parameters determined by the Ri-
l 1 1 1 L oa . » etveld analysis for théGd, 0dCa,Srp.92,)MNO; samples with
. . . . y=0.1 are listed in Tables | and Il. Figure 2 shows the varia-
40 60 80 100 tion in the structural parameters as a function of Ca content
26 (deg) for (G 0gCaySly.92)MNO3. The unit cell volume(V) de-

FIG. 1. () A powder x-ray diffraction pattern and the result of Cr®aS€s monotonically with Increasing asz expected+from
the Rietveld analysis faiGdy eCab 5T s)MNOs, and(b) a powder  the difference between the ionic radii of*Srand C&". A
x-ray diffraction pattern fofGdy geCay 1Sf s)MnOs. In (b), the ar-  Similar change in the cell volume with increasing Ca content

row indicates a very weak diffraction peak probably due to theh@s also been reported for POWCWSta_"im@a:SDMnoa_
hexagonal perovskite phase. samples® For the orthorhombic perovskite, the coordina-

tion number of the Mn ions is six; however, there are two
unequivalent oxygen sites, which are named th&)@nd

(2) sites in the unit celltwo oxygen atoms locate on the

(1) site and the rest four on the(®) site]. Namely, there
are three Mn-O bonds¢dy,,—o) and two Mn-O-Mnangles
(6), which are determined by the direction of the crystallo-
graphic axis.

Although the threedy,_o are almost independent of
the values oftyp-o ac1 @Nd dyn-o ac2 fOr the samples with
y=0.7 and 0.8 seem to deviate from such behavior. Since the
[ll. RESULTS AND DISCUSSION accuracy of the atomic positions for the samples with
y=0.7 and 0.8 is approximately equal to that for the other
samples, this would indicate the difficulties for determining
The (Gdy 0dCa,Sry.9,4)MNO; samples withy=0.2 were  the oxygen positions using the powder XRD data. Neverthe-

assigned to be single-phase of the orthorhombic-perovess, the average of the thrdg,_g is almost independent of
skite structure with théPnma space grougFig. 1(@)], in  y and in good agreement with the result for the orthorhombic
which the MnQ octahedra are rotated around and tiltedperovskite CaMn@(dy,.o~ 1.9 A) determined by a neutron
off the b axis. The sample witty=0.1 was almost single- powder diffraction analysi¥>?° On the other hand, the two
phase of the orthorhombic-perovskite structure, while a verfMn-O-Mn bond angles are found to decrease systematically
small amount of the hexagonal-perovskite phase was dewith increasingy [see Fig. 2c)]. The implications of the
tected in the XRD patterrjFig. 1(b)], as in the case of variation in these parameters are discussed later. However, it
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300 K. Magnetic susceptibilitfy) from 5 to 600 K was
measured using a superconducting quantum interference d
vice (SQUID) magnetometefmpms,Quantum Designin a
magnetic fieldH of less than 55 kOe. Hall voltage was mea-
sured at 300 K using an ac four-probe technique with
<60 kOe (ppms, Quantum Designfor thin plate samples
with ~200 um thickness.

A. Crystal structure

TABLE |. Refined structural parameters determined by the Rietveld analysis of the powder x-ray diffrac-
tion pattern(Cu-Kea radiation for the (Gdy 0Ca,Srp g, )MNO3 samples withy=0.1.

Ca contenty a(h) b(A) c(A) V (A3) Rup (%) R, (%) S
0.1 5.37222) 7.62073) 5.37292) 219.971) 9.91 2.65 2.78
0.2 5.35481) 7.62791) 5.355%2) 218.7%0) 7.15 2.48 1.92
0.3 5.3388l)  7.62942)  5.33962)  217.470) 7.14 202  1.87
0.4 5.36283)  7.55013) 5.342G3) 216.282) 12.96 201 127
0.5 5.35082)  7.543713) 5.333%2)  215.271) 9.02 439  1.98
0.7 5.31271) 7.51522) 5.317%1)  212.3Q1) 10.46 473  1.25
0.8 5.3058l)  7.49612) 5.300%1)  210.791) 8.33 444 173
0.92 5.30101) 7.47312) 5.27971)  209.161) 12.35 566  1.34
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TABLE Il. Atomic positions determined by the Rietveld analysis of the powder x-ray diffraction pattern
(CuKa radiation for the (Gd, 0gCa,Sry 9-,)MNO; samples withy=0.1; the position of Mn ig0,0,0.5 for

all samples.
Ca/Sr/Gd 1) 02

Ca contenty X y z X y z X y z
0.1 0.0017) 0.250) -0.0034) 0.495) 0.250) 0.032) 0.264) -0.012) -0.244)
0.2 0.0015) 0.250) -0.0061) 0.503) 0.250) 0.0277) 0.261) -0.0055) -0.2636)
0.3 0.0014) 0.250) -0.0071) 0.502) 0.250) 0.036) 0.261) 0.041) -0.262)
0.4 0.00%2) 0.250) —0.00%3) 0.4898) 0.250) 0.055%5) 0.2646) 0.0134) -0.2646)
05 0.0082) 0.250) 0.00%5) 0.48Q7) 0.250) 0.031) 0.2725) 0.0264) -0.2695)
0.7 0.02174) 0.250) —-0.0022) 0.49%2) 0.250) 0.0595) 0.29G2) 0.0252) -0.2614)
0.8 0.02785) 0.250) -0.0062) 0.49G2) 0.250) 0.0695) 0.27G4) 0.0262) -0.2972)

0.92  0.0337%) 0.250) —0.0071) 0.4922) 0.250) 0.0684) 0.2842) 0.0272) -0.2852)

should be pointed out here that the linear relationship beture range between 300 and 600 K aug g4=7.80 ug, we
tweenV andy is caused by not the shrinkage @,-o, but ~ can obtain the values foeswn, O, and x, for the
by the deviations of from 180°(i.e., the tilting of the Mn@  (Gd, 0€CqS1p 9, )MNO; samples, as listed in Table Il

octahedra Ty was simply defined as the peak temperature in the
x(T) curve.
B. Antiferromagnetic phase As y increases from 00, decreases up tg=0.3, sud-

denly changes the sign from negative to positive ngar
=0.35, and then increases with further increasey ifsee
Fig. 5), indicating that the magnetic phase boundary exists at
S3'/~0.35. Ignoring the data for thg=0.2 and 0.3 samples,
Meftmn 1S @lmost independent of (~3.7 ug), as shown in
Table 1lI; this value is in good agreement with the spin only
moment of Mn ions for(Gd, 0dCa,Sy 92)MNO; (3.94 ug).

Both magnetic and transport properties(€fa, SiMnO,
are reported to depend off,), i.e., the chemical press-
ure?® Furthermore, the parent compounds of the current sy
tem, CaMnQ@ and SrMnQ@, are an antiferromag-
netic insulator with the Néel temperatufig, of 123 and
233 K, respectively® The magnitude of Ty for
(Gt 0C8STo.52)MNO; i therefore expected to be srongly o Ar interaction, therefore, weakens with increasyng
affected byy (i.e., (), if they are also antiferromagnetic. and the F interacti’on is dominant for the samples vy,}th
Thus, at first, we focus on the effect of chemical pressure O (.4, while the electron configuration of the Mn ions is

the AF transition in(Gdy 0dCa,St.92y)MnO;. _ unaffected by the Ca substitution for Sr.
Figure 3 shows thex(T) curves measured in the

field-cooled mode with  H=10 kOe for the

(G 0C3,STy.024)MNO3 samples withy<0.5. The maxima 220} (Gdy 05Ca,Sro g5, )MnO; |
in the x(T) curves indicate the AF transition witfy &2 215}

=150-255 K. Here, the value ¢f,) of the samples indicat- g

ing the AF transition ranges from 1.23 to 1.28 A, as in the 210p

case of(Sm,SIMnO,.*3 For the samples witly>0.5, the 205 s s s @

magnitude ofy dramatically increases with decreasings-
pecially below~120 K (Fig. 4), indicating the existence of a

F phase withTo~120 K. In addition, the magnitude of <c., 1.8 o

below T¢ increases with increasing 5 16 o Ay sen ]
Assuming that only M#&", Mn**, and Gd* moments are ~~ duno,b (b)

responsible for the paramagnetic behavioryohit tempera- 1.4 ‘ : : :

tures aboveTy or T¢, the Curie-Weiss law in the general
form is written as

_ Nuinatimn + Nodtar.cd
3ka(T-©,) Xo:

where Ny, and Ngq are the number density of Mn and Gd
ions(per unit gram, wefvn aNd uet gq are the effective mag-

netic moment of Mn and Gd ionsg is the Boltzmann’s FIG. 2. Structural parameters 66d, 0dCa,Sr 92o,)MNO; as a
constant,T is the absolute temperatur®,, is the paramag- function of the Ca content; (a) unit cell volume,(b) Mn-O bond
netic Curie temperature, and, is the temperature- |ength, andc) Mn-O-Mn bond angle. I1b), dyi.0 ac1@Nddyn.o ac2
independent susceptibility. Using E(L) over the tempera- are the Mn-O bond lengths in tree plane.

(Y

0 02 04 06 08 1
Ca CONTENTy
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120 - ' ' low 300 K for the(Gdy ofCa, Sry 92-,)MNO; samples. For the
100l (GdooCa)S r°'92'y)Mn03_ samples withy=0.4 and Oéép(T) ?ncreases remarkably be-
5 My FC -o- y=0.1 low Ty with decreasing temperature. This indicates that the
£ sof T H=10kOe |7 ;:8:% AF ordering induces an insulating behavior in the electron-
o .5t = y=0.4 doped manganites. TH&T) curves exhibit maxima ak .y
2 6o = y=05 [see Fig. )] and the highest value OF .y (=225 K) is
® observed for the sample wity=0.3. It is worth noting that

the highestTy was also observed for the samples with
=0.3. Thep(T) curves for the samples with= 0.3 exhibit a
semiconducting behavior over a wide temperature range, al-
though p(T) for the samples witly>0.3 shows a metallic
behavior in the paramagnetic state. Since the value,db
almost independent o§ 2.0-2.7x 1% cm3, as seen in
Table Ill), the metallic behavior for the samples with-0.3
is concluded to be induced by a decrease in . This suggests
R0 5 the formation of F clusters in the AF matrix, as discussed
& below.
o 100 200 300 400 Assuming that one Mt ion produces one electron in the
TEMPERATURE (K) current manganites, the measurggdprovides the MA* con-
tent as 0.10-0.14, which is larger than that expected from
FIG. 3. Temperature dependences (af y and (b) x™* for the Gd content, i.e.~0.08. This indicates the existence
(Gh.0eCaShy.92)MNO; with y=<0.5; y was measured in the field- of  oxygen deficiency 6(=0.01-0.03 in the
cooled mode wittH=10 kOe. (Gdo.oscaysro.gz—y)Mnos—ﬁ samples.
Next, we discuss the correlation betwegg and crystal
The magnitudes Ofteftmn for the y=0.2 and 0.3 samples  strycture for the samples with=0.08 and 6<y<0.5. Asy
are larger by~0.6 ug than those for the others. Also, the increases from 0 to 0.3 increases up to 255 K and then
sign of xo for the samples witly=0.2 and 0.3 is negative, decreases with further increasigigabove 0.3. Note that this
Wh|le that fOI’ the Others positive. A|th0ugh the magnitude Ofbeha\/ior looks to correlate Witn—max (See Table ”] The
Xo is expected to be independentyofthe observed variation yariation of Ty in the undoped perovskite manganites,
of xo seems to be strongly related to that@®f, which ap- - ca S, MnO; and BgSr,_,MnOs, was discussed using the
parently changes the sign arouy0.35. On the other hand, foliowing two factors; i.e., the\-site ionic size variancér?)
the anomaly inues,vn (@nd the accompanying decrease ingn the spatial average 6f,.o.un (fa) in the orthorhombic
Xo) suggests that the magnetic phase boundary exisys at|4ttice28.29 Both are expressed as
~0.35. Thus, this indicates that both anomalieg.iq v, and
Xo would be induced by critical phenomena caused by the 2 =3yr = (rp)?, 2
competition between the F and AF interaction, although the
details are not fully understood. By contrast, a long-range F

(102 g/emu)

€0S’ Oun-o(1)-mn + 2€08 Ouin-o(2)-n

order is observed for the samples with-0.5 (see Figs. 3 cos 0y, = 3 3
and 4, suggesting that the remaining AF interaction sup-
presses the long-range F order in the samples yvt0.5. wherey; andr; are the fractional occupancy and the ionic

Figure 6 shows the temperature dependences of resistivityadius of theith cations in theA-site. The two angles
p andd(In p)/d(T™) X kg, (i.e., the activation energ¥) be-  Gyn-o(1)-mn and Oyno-wn are caused by the orthorhombic

TABLE lIl. Magnetic and transport parameters f@d, 0$Ca,Sr g2, )MNOs. That is, the paramagnetic
Curie temperaturéd,, the effective magnetic moment of Mn iongs v, the temperature-independent
susceptibilityy,, the maximum temperature in tigT) curve T,y (See Fig. 6 and the carrier concentration
ny estimated from Hall measurements at 300 K.

Ca

contenty Tyor Te (K) Op  (K) penr (ug/Mnion) xo (X102 emu/mo) Tpax (K) Ny (X107 cmi3)
0.1 235 -23%9 3.69+0.09 0.09+0.10 218 2.0+0.8
0.2 255 -69+8 4.24+0.08 -0.46£0.09 219 2.5+0.2
0.3 255 -88+20 4.36+0.18 -0.58+£0.19 225 2.3+0.6
0.4 185 237 3.37+0.07 0.32+0.08 176 2.3+0.1
0.5 150 21+9 3.56+0.09 0.08+0.10 144 2.7+0.5
0.7 ~120 49+4 3.36+0.04 0.25+0.05 2.1+0.6
0.8 ~120 54+7 3.52+0.08 0.16+0.10 2.5+0.3
0.92 ~120 66+3 3.39+£0.04 0.19£0.05 2.0£0.3
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FIG. 6. Temperature dependence @ resistivity p and (b)
d(n p)/d(TY) X kg (i.e., the activation energy, E) for
(G 06C8,STp.92-y)MNO;.

distortion of the unit cell. This model was successful to ex-
plain the decrease My with y in CaSr;_ MnO; and
Ba,Sr;_,Mn0O3.28 On contrary, the magnitude @}, increases
with y up to 0.3 in the current Gd-doped manganites, as seen
in Table Ill. This indicates that the above model is unavail-
able for (Gd, 0dCa,Sry.92)MNOs.

We therefore focus on the effect of the hybridization be-
tween Mn-3 and O-2 orbitals on the AF transition in the
(Gt 0C8S1y.924,)MNO; samples. For the orthorhombic per-
ovskite manganites, the effective band width is repre-
sented within the tight-binding approximation

CosSw
Woe —=—, (4)
dMn—O

where w is the tilt angle in the Mn@ plane and is given

by w=0.57-0y.o.mn) and dy,o is the Mn-O bond
length83° Figure 7 shows the variation iRy, and the relative

W (W,=W(y)/W(y=0.1)) as a function of for
(Gt 0CSIy.924,)MNO;. Although the accuracy oW, is
relatively low due to the analytical errors of the Mn-O-Mn
angles and Mn-O bond lengths, thié-(r,) curve seems to
exhibit a broad maximum dt,)~1.25 A(i.e.,y=0.3), as in

the case of the hole-doped manganft@se maximum o\,

in Fig. 7 is mainly induced by a slight decrease in the aver-
age Mn-O bond length ay=0.3. Furthermore, both the
Tn~(ray andT,.c(ra) curve are found to show a broad maxi-
mum at{r,)~1.26 A (Figs. 6 and 7, and Table )ll These
results suggest thatW is the suitable parameter
for explaining the change iy for the current manganites,
because the structural, magnetic, electrical transport proper-
ties are strongly coupled to each other. In other words,
the superexchange interaction between the neighboring Mn
ions is affected by the hybridization between Md-and
O-2p orbitals.
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. . ——1.06 0.8 ; . ;
a00l (Gdy 0sCa,Sro.60.,)MNO; (Gdy 05Cag gSr.12)MNO;
1.04
=
— <4+ 1 =
éZOO 5 1.02 s é
I—Z —5 <§ em
100} e =
0.98
0 . . .
122 124 126 1.28 55 , !
<ry> (A) -1000  -500 0 500 1000
. . H (Oe)
FIG. 7. The magnitude ofTy and the relativeW (W,
=WI(y)/W(y=0.1)) as a function of for(Gdy0dCaSt.92-,)MnOs FIG. 8. The relationship betweenM and H for
with y<0.5. (Gdy ogCa gSl.12MNO5 at 5, 50, and 100 K unddf <1000 Oe.

The inset shows th#-H curve at 5 K undeH <10 kOe.
In the above discussion, we ignored the temperature de-
pendence of the crystal structure. To understand the chemicgknsity3?  In  fact, our recent uSR studies on
pressure effect on magnetism in fully detail, both neutroerO_OSC;;ysro_gz_yMno3 (y>0.5 suggested an inhomoge-
and x-ray diffraction studies as a function of temperature argeous distribution of the internal magnetic field even at

necessary. 5 K32
Since the coexistence of AF and F phases was not ob-
C. Ferromagnetic transition and phase separation served in the RBr_MnO; (x<0.15 samples? such be-

Igwavior is also unlikely to exist in the Ca-poor
Gy 0Ca,Sry.92yMNO; samples. On the other hand, the val-

state is clearly observed at-120 K(=T.) for the . . )
. ues of®, andM at 5 K increased systematically withfor
p
(G 0dC8Slo.024)MNO;  samples  with y=0.7 and samples witly>0.5; these facts and the smallg ob-

(Glh.0sCaS10.95)MnO; with y=0.6 [Figs. 4a-4(d)]. The oo\ 0y for the samples wiy>0.5 suggest that the fraction
Increase m_the Gd content leads the enhancemeM bk- of F clusters increases with We therefore conclude that the
low T, as in the case of the electron-doped@a_MnO; £ mealiic clusters are distributed randomly in the AF matrix
\.N'th x<0.1, in WTSCE electrons are doped Into the AF b":mdphase in the Ca-rich samples. In such cases, a percolation
'”S“'atof CaMn@™ , Fu_rthermqre, the magnitude b be- transition between the separated F clusters would occur at a
low Tc Increases with increasing, whgreaSp below Te certain temperature beloW,, inducing a change from an
decreases¢Fig. 6). These are well explained by the decreasemsulating to a metallic statesee Fig. 6. Within the perco-

in the AF interaction between Mn ions caused by the Shrinliation theory, a power law gives a total resistivity of a com-

of . . . . .
. . . osite, which consists of an insulator and a conductor
Figure 8 shows the relationship betwebh and H for P

Gdy ol gSlH.1MNO5 at 5, 50, and 100 K. Assuming the px(C-CyT, (5)
paramagnetic behavior of the Gd ions in the sample, we sub- , o i

tracted the contribution of the Gd moment from the mea\Wherep is the bulk resistivity of the samplé is the con-
suredM. A clear M-H loop is observed belowc, although centration of the Conc_iuctlve compon_eﬁg,ls the percolation
the saturation magnetization(M) is rather small threshold concentration, ands the critical exponent:-3®
(~0.9 ug/Mn ion at 5 K): in addition, the coercive field, Figure 9 shows the relationship between [#§0 K) and
appears to be independentTofH,~50 08 below 100 K. A 109(y=Yc) for Gdo 0gC8Sio.e2yMNO; with y=0.7. Here, the
similar result was also obtained for GgCa S ¢s-,MnO;. critical concentrationy,=0.6 was detern_uned from the de-
If the Mn moments are in the fully F ordered state, P€ndence oM(S K) ony. That is, asy increases from O,
M~ 3 ug/Mn ion, as in the case of CaMnOTherefore, the M(5 K) increases rapidly above 0.6, whereas almost O be-
small M, indicates that part of the samples exhibited ferro-low 0.6 (see the inset of Fig.)9Note that, abovg,, p(30 K)
magnetism. Since the magnetism of the sample changes frofflanges by about 3 orders of magnitude and the logarithm of
AF to F with increasing chemical pressure, our result sugy is almost proportional to that ¢§/-0.6). Using Eq.(7) and
gests that F clusters are distributed in the AF matrix phasez=Y, we obtain the resistivity critical exponenas 5.4. This

as reported for several electron-doped mangahité8§20-22  value is smaller than that reported for the hole-doped man-
Machidaet al. reported that two magnetic phases coexistedjanites Lgg_,Pr,CaggMnO; (t=6.9),%° whereas rather larger

in Thy ;Ca gVinO5 on a nanometer scalée., F and G-type than the universal exponent in the three dimensional
AF phasey?°22 Furthermore, recent specific heat measurepercolation theory(t=2).33 The enhancement df for the
ments on TRCa ,MnO; suggested charge separationhole-doped manganites is well explained by the percolat-
behavio?! which was anticipated theoretically for the ive conduction through metallic regions embedded in insu-
double-exchange-interaction system with a low electrorating regions’® Our scaling analysis therefore suggests that

The transition from the paramagnetic state to the
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electron doping. As a result, the magnetic properties of
' the electron-doped manganites are quite sensitive to Xoth
O8] H=10kOe qp. andy.

N y 1 IV. SUMMARY

We investigated the magnetic properties of electron-doped
perovskite manganite$Gd,Ca,Sr_,)MnO; (x=0.08 and
0.05, 0<y<1). The average ionic radius of thesite cat-

1 08 06 04 ions was found to have a significant effect on the transport
log (¥ - ¥o) properties and magnetism 66d,Ca Sr,_,_,)MnO;. For the
) . samples withx=0.08, the boundary between the antiferro-

FIG. 9. The relationship betwegn30 K) and (y-0.6 for the  magnetic insulator AFI and the ferromagnetic metal FM
sample§ v_wt_fy?Q._?; the absolute value_ of the slope is equivalent tophases was located near1.25 A(y~0.35. The scaling
]EEEC:;SAS;V It};ofr(lgcdil z(p%':ent' )T'\;fomset showsM(5 K) as a analysis of resistivity indicated that the FM clusters are dis-

y 08-&>10.92+ s tributed randomly in the AFI matrix. The metal-insulator

the percolative phase separation also occurs iransition at~1.22 Aly~0.6) was explained as a percolation
G 06C8,Sl.02-yMNOs, and the F phase is distributed ran- transition between the FM clusters.
domly in the AF matrix. This is consistent with the fact that
Tc is independent of for the samples with 0%y=<0.92. In
other words, the F cluster model is reasonable for under-
standing magnetism in Gg¢Ca,Sry goyMnOs. We would like to acknowledge Professor J. H. Brewer of
ConverselyM(5 K) is found to be level off to a constant University of British Columbia and Professor E. J. Ansaldo
value (~0.65 ug/Mn ion) for Gdy 05CqSK 95,,MNO;3 with of TRIUMF for their helpful discussions using theSR re-
y=0.7 [see Fig. 4c)]. This is probably because the carrier sults. Also, we would like to thank Dr. R. Asahi of Toyota
concentration(x=0.05 is too close to the critical concentra- CRDL and Professor N. Kamegashira of Toyohashi Institute
tion of x for the metal-insulator transition induced by an of Technology for their fruitful discussions.

{Gdy 05Ca,Sry 62,)MNO;

log [p(30K) (Qcm)]
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