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The phase transition occurring in a square two-dimensional spin lattice governed by an anisotropic Heisen-
berg Hamiltonian has been studied according to two recently proposed methods. The first one, the Dressed
Cluster Method, provides excellent evaluations of the cohesive energy. The discontinuity of its derivative
around the critical(isotropic) value of the anisotropy parameter confirms the first-order character of the phase
transition. Nevertheless, the method introduces two distinct reference functions(either Néel orXY) which may,
in principle, force the discontinuity. The Real-Space Renormalization Group with Effective Interactions does
not reach the same numerical accuracy, but it does not introduce a reference function and the phase transition
appears qualitatively, due to the existence of two domains with specific fixed points. The method confirms the
dependence of the spin gap on the anisotropy parameter occurring in the Heisenberg-Ising domain.
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I. INTRODUCTION

The study of spin or electron lattices, even when they are
governed by simple model Hamiltonians, generally requires
approximate methods in order to obtain reliable estimates of
the cohesive energy, excitation gap, spatial correlation, etc.
The treatment of phase transitions is a special challenge for
approximate methods, since it is generally not easy to iden-
tify the values of the interactions at critical points, the nature
of the phase transition, and the behavior of the properties on
both sides of the phase transition. The purpose of the present
work is to compare the abilities of two methods recently
developed by the authors to study a first-order phase transi-
tion.

Despite its rather formal character, the spin1
2 anisotropic

Heisenberg Hamiltonian on an infinite two-dimensional(2D)
square lattice may be used as an excellent model problem to
test the ability of a theoretical method to treat a phase-
transition phenomenon. This Hamiltonian is given by

H = Jo
ki,jl

sSi
xSj

x + Si
ySj

y + lSi
zSj

zd, s1d

whereki , jl runs over all pairs of nearest-neighbor sites. This
2D square lattice model has no exact solution and has there-
fore been the subject of numerous calculations1–27 in the re-
cent past, which employ either analytic13–16 or numerical al-
gorithms, such as coupled cluster(CC) approaches,8–11 exact
diagonalizations,17,18 and quantum Monte Carlo(QMC)
calculations.19–27At l=−1 a first-order transition takes place
between the ferromagnetic phase and a planarlike phase, in
which the spins in the ground-state wave function lie in the
XY plane. This so-calledXY polarized function is such that
the sites of one sublattice bear

X = sa + bd/Î2, s2d

wherea and b are the usual spin-up and spin-down func-
tions, and those of the other sublattice bear

Y = sa − bd/Î2. s3d

If one works in the basis ofsX,Yd functions instead of
sa ,bd ones, thisXY polarized function will appear as the
leading configuration for the −1,l,1 domain. At l=1
(isotropic Hamiltonian) a transition to an Ising-like phase
occurs. Actually, forl→` the Hamiltonian becomes an
Ising Hamiltonian and the ground state becomes the Néel
fully spin-alternate functionF0=abab. . ., which is also the
leading configuration forl.1. Early QMC calculations6

suggested, although with some imprecision, that this transi-
tion is of first-order type. More recent and accurate calcula-
tions (see, for instance Ref. 27) have confirmed its first-order
character. One may also quote elaborate CC calculations8–10

which start from either a planarlike function or the Néel
wave function as reference functionF0, and assume an ex-
ponential form of the wave operator

uCl = expSuF0l, s4d

whereS is restricted to a certain number of local many-body
operators(up to six-body operators). The results agree very
well with those of QMC calculations in the two regions
around l=1, each region being treated using the relevant
reference. Although the authors do not conclude explicitly,
the results support the first-order character of the phase tran-
sition atl=1. The extent of the domain of bistability is more
difficult to assess, since it seems to depend on the sophisti-
cation of the wave operator. The present work studies the
same problem using two methods that have different charac-
teristics. The methods employed hereafter are the:

(1) Dressed Cluster Method(DCM28).This method uses,
as do the CC expansion and perturbative approaches, a single
reference wave functionF0, which will be either the Néel
function or theXY polarized configuration. In DCM this
wave function is used as a bath in which a finite cluster is
embedded and treated exactly. Then, the configuration inter-
action matrix relative to the cluster is dressed under the ef-
fect of excitations occurring around the cluster, the ampli-
tudes of which are transferred from the amplitudes of similar
excitations within the cluster. This approach will be shown to
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give extremely accurate results, very close to the best QMC
calculations of the cohesive energy and confirming the first-
order character of the phase transition but, as well as the CC
method, it suffers from the prejudice introduced by the dis-
continuity of the reference functionF0.

(2) Real-Space Renormalization Group with Effective In-
teractions(RSRG-EI29). This method is an improvement of
the RSRG method originally proposed by Wilson.30 It pro-
ceeds through the same reduction of the Hilbert space by
considering fragments(or blocks) of the lattice, and a reduc-
tion of the Fock space for these blocks to a few states of
lowest energy. However, it extracts effective interactions be-
tween the blocks through the exact diagonalization of dimers
of blocks. The knowledge of the exact spectrum of the
dimers enables one to define, using the theory of effective
Hamiltonians proposed by Bloch,31 interblock effective inter-
actions. The method is iterative, it is repeated to blocks of
blocks, etc., until it reaches fixed points of the problem. The
method provides at a very low cost reasonable estimates of
the cohesive energy of one-dimensional(1D) or 2D spin lat-
tices. It does not introduce any reference function, and is
therefore in principle continuous on both sides of the critical
value of the parameter. However, the method leads to two
distinct fixed points for thel,1 and l.1 domains. The
iterations result in a discontinuity of the cohesive energy
derivative. The method also shows the appearance of an ex-
citation gap forl.1.

II. DRESSED CLUSTER METHOD

Let us summarize the main points of the Dressed Cluster
Method:

(1) One first defines a single-determinantal reference
functionF0 on the infinite lattice, namely the Néel or theXY
function. For the sake of simplicity, the method will be pre-
sented here using only the Néel function in theab represen-
tation,

F0 = p
i

2is2i + 1d¯ . s5d

(2) One considers a 2D square finite cluster ofN sites,
which divides the atoms into two subsets, internal and exter-
nal, so that the reference function can be written as

F0 = F0
extF0

int. s6d

(3) The model spaceS is spanned by the determinants
obtained fromF0 by all possible excitation processesTi

+,
which only concern atoms within the cluster,

S= hFij = hF0
extTi

+F0
intj. s7d

Let Ps be the projector onto this model space. The dimension
of the full configuration interactionsCId space is equal to
that of the isolated cluster. Nevertheless, the diagonal ele-
ments of the matrixPsHPs differ from those of the isolated
cluster CI matrix under the effect of the embedding, i.e., the
energy of each determinant is shifted by a quantityJl per
alternating bondl, at the frontier. The determinantsFi in the
lattice problem interact only with the outer-space determi-

nantsDl
+Fi obtained fromFi by a spin exchangeDl

+ on the
external bondl. Replacing for simplicity the determinantsFi
by their indexi, the eigenequation for linei is

o
jPS,jÞi

HijCj + sHii − EdCi + o
l ext

Hi,Dl
+iCDl

+i = 0. s8d

The last summation must be evaluated through a proper es-
timate of the coefficientsCDl

+i. These coefficients are ap-
proximated to the product of the coefficients of the determi-
nants Fi by environment-dependent amplitudesdl,i
characteristic of the excitationsDl

+ on Fi.

CDl
+i = Ci,dl,i . s9d

These amplitudes are extracted from the knowledge of the CI
wave function of the embedded cluster.

In order to be more explicit, let us consider a determinant
Fi (cf. Fig. 1). The cluster is delimited by a continuous-line
box and is embedded in the Néel function. Bonds involved in
the excitations fromF0–Fi appear with thick lines. The el-
ementary excitationDl

+ on an external bondl (indicated by a
dashed line) leads to a determinantFDl

+i, which interacts
with Fi through an exchange integralJl. The excitation am-
plitudes dl,i depend on the environment of the bondl (the
largest considered environment is indicated by a dashed-line
box) and are taken as

FIG. 1. Dressed Cluster Method(DCM): A schematic view of
the principle of the Configuration Interaction(CI) dressing under the
effect of the spin exchanges around the cluster, pictured by a full
line box. The upper part identifies the cluster and a determinantFi,
embedded in a Néel environment, as well as the outer bondl on
which a spin exchange will be performed. The lower part pictures
the two determinants from which the amplitudedl,i [Eq. (10)] will
be extracted.
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dl,i =
CDl−r

+ j

Cj
, s10d

wherer is a translation from the external bondl to the out-
ermost equivalent bondl −r of the cluster(which is indicated
by a continuous line) andF j PS is such that the environment
of the bondl −r in F j has the maximum resemblance with
the environment of bondl in Fi. One must notice that, in
some cases, it is necessary to restore the right spinSz=0 of
the translated determinants by changing the spins of the at-
oms furthest from the bondl, in order to obtain the most
relevant information from the CI wave function. Finally, the
quantityol ext Hi,Dl

+iCDl
+i can be replaced by

So
l ext

Jldl,iDCi . s11d

This summation can be dealt with as a diagonal energy shift
(dressing),

Dii = So
l ext

Jldl,iD , s12d

and the corresponding dressing operatorD,

D = o
iPS

uFilDiikFiu. s13d

Equation(9) insures the translational invariance; if the deter-
minantDl

+Fi is identical through a translationT to one of the
determinantsFk belonging toS, i.e., if Dl

+Fi =T Fk, then
CDl

+Fi
=CFk

. This estimation ofCDl
+i leads to an important

simplification: the effect of excitations on bondsl, which are
far from the fragment(by more than the cluster size), is
approximated to be identical for all determinantsFi and only
shifts the diagonal elements of the CI matrix by the same
amount. It has consequently no effect on the eigenvectors of
the dressed CI matrixPssH+DdPs, and can be omitted. Since
the dressing depends on the eigenvector the procedure must
be repeated to self-consistency. One may say that the DC
method implies many-body operators, up to the number of

atoms in the cluster. It does not proceed to a strict exponen-
tialization of the wave function, but it employs ratios of co-
efficients to transfer information from the internal CI to take
into account the effect of elementary excitations on the ex-
ternal bonds. Through the environmental dependence of
these elementary excitation amplitudes, many-body effects
are introduced. The relation with a CC expansion of the
wave function32–35 has been discussed in Ref. 13. The accu-
racy of the DC method has been illustrated on 1D electron
and spin(frustrated and nonfrustrated) lattices. It has also
been applied to the study of the lowest excitation energies as
functions of the bond alternation in the 1D spin chain.36 The
DC method is now applied to the 2D square spin lattice using
a 434 cluster and starting from both the Néel function and
the XY polarized function as referenceF0. The computed
cohesive energy as a function ofl is pictured in Fig. 2,
where the two branches, obtained from theXY and Néel
functions, respectively, appear clearly as crossing inl=1.
One observes the existence of a continuation of the Néel-
generated solution in the 0.4,l,1, and of the
XY-generated solution in the 1,l,1.5. This may be seen
as the indication of metastable states around the criticall
=1 value, as expected for a first-order phase transition.

The quality of the DCM results has to be assessed by
comparison with accurate analytical or numerical calcula-
tions. Table I and Fig. 3 report such comparisons. Forl=1
our estimate −0.66928J coincides to 10−4 with the most ac-
curate QMC25–27 value −0.66944J. It may be interesting to
compare with CCM results8–10 which are −0.6670J when
introducing six-body operators, and −0.66817J when intro-

TABLE I. Cohesive energy of the anisotropice 2D lattice.

l DCM RSRG QMC(Ref. 27)

0 −0.54890 −0.53966 −0.54882

0.6 −0.61094 −0.60260 −0.60958

1 −0.66972 −0.66615 −0.66944

1.2 −0.73961 −0.73072 −0.73920

2 −1.08329 −1.07849 −1.08220

FIG. 2. Cohesive energy as a function of the anisotropy param-
eter l. (1) DCM (from a 16-site cluster) with the Néel reference
function, (h) DCM (from a 16-site cluster) with the XY polarized
reference function.

FIG. 3. Cohesive energy around the isotropic point.(+) QMC,
(Ref. 27), (h) DCM, (1) RSRG.
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ducing eight-body operators. The difference indicates the im-
portance of many-body operators, and the slow convergence
in this expansion. The third-order spin wave gives −0.6700J
and a plaquette expansion15 −0.6691J.

The agreement of our DCM values with QMC calcula-
tions is similar forlÞ1. Forl=0 we obtain −0.5489J, simi-
lar to the result of Linet al.27, −0.54882J, or for l=0.6
(DCM=−0.61094J, QMC=−0.60958J). Figure 3 shows the
near identity of our results with those of Linet al. in the
whole 0ølø1 domain. Forl.1, the agreement is similar,
as may be seen from Fig. 3 and Table I. For instance, we
obtained nearly identical values forl=2 (DCM=
−1.08329J, QMC=−1.08220J). Notice that we have no con-
vergence problem whenl→1+, while cohesive energies
could not be obtained in the 1,l,1.09 domain in Ref. 27.
It is clear that DCM represents, in view of its low cost, an
interesting alternative to QMC.

III. REAL-SPACE RENORMALIZATION GROUP
WITH EFFECTIVE INTERACTIONS

A. Method

The Real-Space Renormalization Group proposed by Wil-
son essentially consists of an iterative truncation of the Hil-
bert space. The method proceeds through the definition of
blocks ofN sites, periodisable fragments of the periodic lat-
tices, and the research of the(lowest) eigenstates of the
Hamiltonian relative to these blocks. For a blockI, and the
corresponding HamiltonianHI,

HIfK,I = EK,IfK,I . s14d

One shall retain a few(let us saym) eigenstates ofHI. Then
one will consider a block of blockss1. . .I . . .J. . .Nd, and one
will approach the wave function for this superblock by work-
ing in a truncated Hilbert space constituted of all products of
the m eigenstates kept for each block.

p
I=1,N

fK,I, K = 1,m. s15d

Then the process can be repeated, until convergence. If the
blocks and the sets of selected eigenstates are properly de-
fined, the problem at each iteration may keep its formal
structure, while the interactions between the super-super sites
change along the iterations. One then reaches in a certain
number of steps a fixed point of the problem.

This idea is extremely elegant. However, attempts to use
it as a practical numerical tool for the study of periodic lat-
tices(of either spins or electrons) were extremely discourag-
ing. The method was abandoned, although it gave birth to a
deeply different formalism, namely the Density Matrix
Renormalization Group, which is extremely performant, but
limited to the treatment of(quasi)-1D systems.

The failure of the RSRG method is due to the simple
truncation of the Hilbert space and the total neglect of the
nonselected eigenstates of the blocks. Rather than trying to
treat the effect of the nonselected states in a second-order
perturbative approach,37 two of the authors have suggested
defining effective interactions between adjacent blocksA and

B by solving exactly the Schrodinger equation for theAB
dimer, and by making use of the Bloch’s theory of effective
Hamiltonians. We shall not repeat here the formalism, given
in Ref. 29, which leads to a modified RSRG formalism,
called RSRG-EI. The first test applications of the method
were quite encouraging. We simply make explicit hereafter
the specification of the method in its simplest version for the
study of a square spin lattice. The method consists of con-
sidering a square(333) block of nine atoms. Its ground state
is a doublet withSz= ±1/2 and it is theonly state kept here-
after. Let us call a andā the Sz=1/2 andSz=−1/2 degener-
ate doublet ground states of the blockA. The block can
therefore be seen as a superspin. In order to establish the
effective interactions between the ground states of adjacent
blocks, one treats exactly the 18(336)-site superblockAB.
One wants to establish the effective energies of, and interac-
tions between, the four products of ground-state wave func-

tions which define a model spaceab, ab̄, āb, āb̄. Diagonal-
izing the exact Hamiltonian for theAB superblock one may
identify the eigenstatesCT

+sSz=1d, CT
−sSz=−1d, CT

0sSz=0d,
CS

+sSz=0d, which have the largest projections on the model
space, and their energiesET+=ET−, ET0, and ES0. The three
energies can be seen as the eigenvalues of a new anisotropic
Hamiltonian,

HAB
s1d = JAB

s1dls1dsSZA
SZB

− 1/4d +
1

2
JAB

s1dsSA
+SB

− + SA
−SB

+d

+ EA + EB + DEAB. s16d

Hence,

ET+ = EA + EB + DEAB, s17d

ET0 = −
1

2
Js1dls1d +

1

2
Js1d + EA + EB + DEAB, s18d

ES0 = −
1

2
Js1dls1d −

1

2
Js1d + EA + EB + DEAB, s19d

from which one obtains

Js1d = ES0 − ET0, s20d

Js1dls1d = 2ET+ − ET0 − ES0. s21d

These equations define a new anisotropic Heisenberg Hamil-
tonian between blocks. The process may be repeated, treating
a block of nine blocks and a superblock of 18 blocks, until
convergence is achieved.

B. Results

The qualitative key points in that problem are the facts
that:

(i) for l=1, ls1d=1, the problem remains isotropic;
(ii ) for l.1, ls1d.l, the anisotropy is increased in the

direction of an Ising problem; and
(iii ) for l,1, ls1d,l, the anisotropy increases in the

opposite direction towards a pureXY problem.
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For graphical purposes the anisotropic Hamiltonian may
been written as

H = JfsSzSzdsin F + sSxSx + SySydcosFg. s22d

The isotropic case corresponds toF=−p /4, theXY problem
to F=p /2, and the Ising situation toF=−p /2. One sees that
l=tanF. Figure 4 reports the evolution ofFs1d as a func-
tion of F. The iterative process, starting from a new value
F, leads to a new anisotropy angleF1=Fs1dsFd. The sec-
ond step leads toF2=Fs1dsF1d, etc. The qualitative nature
of the phase transition appears dramatically. Starting from
F.p /4, Fs1d increases rapidly. As seen from Fig. 3 the
process converges in a few steps to theFn=p /2 fixed
point, i.e, to an Ising problem. Oppositely, starting from
F,p /4, F1 decreases. The fixed point on that sidel,1
is the pureXY problem sl=−1, F=−p /4d, but the curve
Fs1d= fsFd is tangent to the line of slope oneFs1d=F for
F=−p /2. Hence, the fixed point is in principle reached in
an infinite number of steps.

The quantityJs1d is significantly lower than one forl,1
and tends to zero whenl tends to -1. It increases withl but
remains finite in the regionl.1. Figure 3 reports the
RSRG-EI calculated cohesive energy. Forl=1, as already
reported elsewhere,29 the RSRG-EI cohesive energy isEcoh
=−0.666155J. This value is in slightly poorer agreement
with the best QMC value −0.66934J than the previously re-
ported DCM value, but it is obtained at a much lower cost.
The underestimation of the cohesive energy by the RSRG-EI
method is systematic but never exceeds 2%(cf. Table I and
Fig. 3). We have carefully checked the existence of a discon-
tinuity of the slopes of the curveEcoh= fsld aroundl=1.
This discontinuity clearly appears from the insert of Fig. 3.
The slopes]E/]ldl→1+ betweenl=1.02459 andl=1 is 0.32
in QMC and 0.26 in RSRG, and on thel,1 side the slope
from QMC is 0.175(betweenl=0.97 andl=1), while the
slope from RSRG is 0.20(betweenl=0.95 andl=1) and
0.21 (betweenl=0.99 andl=1). Although weaker than the

interpolated estimates from QMC, the discontinuity of the
slope predicted from RSRG-EI is clear. The existence of a
discontinuity was nota priori evident, since the quantities
Js1d andls1d are continuous functions ofl. The discontinuity
comes from the fact that the iterations tend to different fixed
points forl.1 andl,1.

Actually, the method is also able to explain the absence of
a gap forl,1 and the existence of a gap forl.1. For
l,1, since one must repeat an infinite number of iterations
with decreasing values ofJs1d, the lowest states are degener-
ate. In thel.1 domain, the system will be gapped, since the
process converges in a finite number of steps, with finite
values ofJ. Figure 5 reports the calculated gap forl slightly
larger than 1. We have checked the behaviors of the gap as a
function ofl. Spin-wave theory predicts that it should follow
the law,

DE = 2sl2 − 1d1/2. s23d

Previous numerical works21 have shown that the excitation
energies are significantly lower, by a factor close to 0.5. Fig-
ure 5 has used an interpolation 0.86634sl2−1d1/2 which fits
well with our calculated values.

IV. CONCLUSION

The present paper studies the behavior of a 2D square
spin lattice obeying an anisotropic Heisenberg Hamiltonian.
Since it presents a phase transition, this problem can be seen
as a convenient test to compare the abilities of the methods
available for the treatment of 2D(or 3D) lattices. One may
subdivide the methods into the following two groups:

(1) Methods which rely on(or require the introduction
of) a simple zero-order wave function. This wave function
may be perturbed, or considered as the reference function for
a CC expansion(i.e., an exponential development of the
wave operator). In such a case, different zero-order or refer-
ence wave functions will be used for the two different
phases. This choice of two distinct references may be seen as
forcing the phase transition and presents the risk to impose
artifactual discontinuities. The herewith employed DCM

FIG. 4. RSRG study: anisotropic parameterFs1d after the first
iteration, as a function of the initial anisotropic parameterF [Eq.
(20)]. The stairs illustrate the convergence of the iterative procedure
to the fixed points, Ising on the right-hand side, andXY on the
left-hand side.

FIG. 5. Appearance of the gap in thel.1 phase, as calculated
from the RSRG-EI. The full line is proportional tosl2−1d1/2.
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only uses the reference function as a bath around a finite
cluster, but it is subject to the same criticism.

(2) Prejudiceless methods, which do not bias the treat-
ment by introducing reference wave functions. Among them,
one may quote finite-cluster exact diagonalization, followed
by extrapolations on the cluster size. For 2D systems ex-
trapolations are quite difficult to perform. QMC calculations
require both statistics and extrapolation, and the error bars
may prevent a clear assessment concerning the nature of the
phase transition, when for instance the change of the slope of
the cohesive energy as a function of the internal parameter is
small. Recent progresses have reduced these uncertainties.

The excellent agreement of the DCM results with the best
QMC calculations forl=1 gives confidence in the accuracy
of the calculated dependence of the cohesive energy on the
anisotropy parameter and assesses the first-order character of
the phase transition.

The RSRG-EI treatment does not enable one to reach
such a numerical accuracy but it presents several advantages:

(1) It does not introduce the bias of a reference function.

(2) It visualizes qualitatively the phase transition in terms
of a critical value of the parameter separating two domains
with their specific fixed points.

(3) It offers a simple understanding of the gapless-gapped
character of the two phases.

The philosophy of the RSRG method is responsible for
this qualitative and pictorial advantage. The introduction of
effective interactions adds a numerical improvement to this
conceptual tool. Of course, as shown for 1D lattices, the
quantitative performance of the RSRG-EI treatment is much
better when it is possible to extrapolate its results with re-
spect to the size of the blocks. This is not presently possible
for 2D lattices, since the next size of a square block would be
25 (which would require the exact treatment of a 50-site
problem for the superblock). But the accuracy of the results
from the nine-site blocks is surprisingly good and the el-
egance of the method suggests it be considered an excellent
exploratory tool.
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