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Theoretical studies of the phase transition in the anisotropic two-dimensional square spin lattice
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The phase transition occurring in a square two-dimensional spin lattice governed by an anisotropic Heisen-
berg Hamiltonian has been studied according to two recently proposed methods. The first one, the Dressed
Cluster Method, provides excellent evaluations of the cohesive energy. The discontinuity of its derivative
around the critica{isotropig value of the anisotropy parameter confirms the first-order character of the phase
transition. Nevertheless, the method introduces two distinct reference fun@itrer Néel oiXY) which may,
in principle, force the discontinuity. The Real-Space Renormalization Group with Effective Interactions does
not reach the same numerical accuracy, but it does not introduce a reference function and the phase transition
appears qualitatively, due to the existence of two domains with specific fixed points. The method confirms the
dependence of the spin gap on the anisotropy parameter occurring in the Heisenberg-Ising domain.
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I. INTRODUCTION If one works in the basis ofX,Y) functions instead of

The study of spin or electron lattices, even when they aria’ﬁ) ones, thisXY polarized function will appear as the

governed by simple model Hamiltonians, generally require (_—:-ad|ng.conf|ggrat|<_)n for the ..<I7\<1 dom.am..At)\:l

approximate methods in order to obtain reliable estimates o@SOtrOp'C Hamiltonian a transition to_ an Ising-like phase
the cohesive energy, excitation gap, spatial correlation, et CCurs. Aqtual!y, forh = the Hamiltonian becomes an
The treatment of phase transitions is a special challenge f ping H.am|lton|an and t_he gr_ound state bgco_mes the Neel
approximate methods, since it is generally not easy to idenl_ully_spm-alte_rnate_funchoﬁbo—a,BaB. -, Which is alsq :"Ese
tify the values of the interactions at critical points, the natureeadlng configuration f_or)\> L. E_arly QMC calculat_|o .
of the phase transition, and the behavior of the properties o uggested, although with some imprecision, that this transi-

puggested
both sides of the phase transition. The purpose of the preseﬂ?n is of fwst-prder type. More recent gnd aC.C““?“e calcula-
work is to compare the abilities of two methods recently ions(see, for instance Ref. 2have confirmed its first-order

developed by the authors to study a first-order phase transﬁ:—haraCter' One may also quote elaborate CC calculdtiths

tion which start from either a planarlike function or the Néel
Despite its rather formal character, the séianisotropic wave function as reference functiahy, and assume an ex-

Heisenberg Hamiltonian on an infinite two-dimensio¢i) ponential form of the wave operator
square lattice may be used as an excellent model problem to
test the ability of a theoretical method to treat a phase-

transition phenomenon. This Hamiltonian is given by

W) = expS Do), (4)

whereSis restricted to a certain number of local many-body
_ operatorgup to six-body operatoysThe results agree very
H_J% (SX%X-FSVS/H\SZS%)’ @ well with those of QMC calculations in the two regions
aroundA=1, each region being treated using the relevant
where(i, j) runs over all pairs of nearest-neighbor sites. Thisreference. Although the authors do not conclude explicitly,
2D square lattice model has no exact solution and has therehe results support the first-order character of the phase tran-
fore been the subject of numerous calculatioffsn the re-  sition ath =1. The extent of the domain of bistability is more
cent past, which employ either analyfic'®or numerical al-  difficult to assess, since it seems to depend on the sophisti-
gorithms, such as coupled clus@€) approache&;* exact cation of the wave operator. The present work studies the
diagonalizationd/*® and quantum Monte Cail@MC)  same problem using two methods that have different charac-
calculations'®2’At A=~1 a first-order transition takes place teristics. The methods employed hereafter are the:
between the ferromagnetic phase and a planarlike phase, in (1) Dressed Cluster Metho@dCM?2®).This method uses,
which the spins in the ground-state wave function lie in theas do the CC expansion and perturbative approaches, a single
XY plane. This so-calleXY polarized function is such that reference wave functio®,, which will be either the Néel

the sites of one sublattice bear function or the XY polarized configuration. In DCM this
= wave function is used as a bath in which a finite cluster is
X=(a+p)N2, ) embedded and treated exactly. Then, the configuration inter-

action matrix relative to the cluster is dressed under the ef-
fect of excitations occurring around the cluster, the ampli-
tudes of which are transferred from the amplitudes of similar
Y=(a- ,g)/\E, (3) excitations within the cluster. This approach will be shown to

where @ and B are the usual spin-up and spin-down func-
tions, and those of the other sublattice bear
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give extremely accurate results, very close to the best QMC & riririndnd
calculations of the cohesive energy and confirming the first- LTLT LT Lyl
order character of the phase transition but, as well as the CC TITLTLTLTL
method, it suffers from the prejudice introduced by the dis- LTI
continuity of the reference functio,,. v o

(2) Real-Space Renormalization Group with Effective In- rit ”l T” !
teractions(RSRG-E?°). This method is an improvement of Lrytit it
the RSRG method originally proposed by Wils®nit pro- Tl LTy
ceeds through the same reduction of the Hilbert space by LTLTTT LT

considering fragment®r blockg of the lattice, and a reduc-
tion of the Fock space for these blocks to a few states of raririrind
lowest energy. However, it extracts effective interactions be- Lririririt
tween the blocks through the exact diagonalization of dimers
of blocks. The knowledge of the exact spectrum of the

. + .
dimers enables one to define, using the theory of effective 2 D"',q?’;'
Hamiltonians proposed by Blochnterblock effective inter- TTLTiT LTl
actions. The method is iterative, it is repeated to blocks of 1171 =91 I
blocks, etc., until it reaches fixed points of the problem. The IEERSE IEERE
method provides at a very low cost reasonable estimates of
the cohesive energy of one-dimensiqal) or 2D spin lat- nHELETH I
tices. It does not introduce any reference function, and is yrirhr yriryn
therefore in principle continuous on both sides of the critical Tititl TiTitd

value of the parameter. However, the method leads to two

distinct fixed points for thex <1 and\A>1 domains. The FIG. 1. Dressed Cluster Meth@CM): A schematic view of

iterations result in a discontinuity of the cohesive energythe principle of the Configuration Interacti@@i) dressing under the

derivative. The method also shows the appearance of an egffect of the spin exchanges around the cluster, pictured by a full

citation gap forn > 1. line box. The upper part identifies the cluster and a determibant
embedded in a Néel environment, as well as the outer ba
which a spin exchange will be performed. The lower part pictures

Il. DRESSED CLUSTER METHOD the two determinants from which the amplitudg [Eq. (10)] will

) ) . be extracted.
Let us summarize the main points of the Dressed Cluster

Method:

(1) One first defines a single-determinantal referenc
function®, on the infinite lattice, namely the Néel or th&
function. For the sake of simplicity, the method will be pre-

sented here using only the Néel function in #@ represen-
tation, Y H;G+(Hi-EC+ X Hip+iCori=0. (8)
jeSj#i | ext

é1antsD|+<I>i obtained from®; by a spin exchang®; on the
external bond. Replacing for simplicity the determinany
by their indexi, the eigenequation for lineis

The last summation must be evaluated through a proper es-
timate of the coefficienti:Dri. These coefficients are ap-

(2) One considers a 2D square finite clusterNokites,  proximated to the product of the coefficients of the determi-
which divides the atoms into two subsets, internal and exteryants ®, by environment-dependent amplitudes;

nal, so that the reference function can be written as characteristic of the excitatiorBr on ®,.
Dy = d)SX'd)g“. (6)

(3) The model spacé is spanned by the determinants
obtained from®, by all possible excitation process@$,  These amplitudes are extracted from the knowledge of the ClI
which only concern atoms within the cluster, wave function of the embedded cluster.
_ e extetaint In order to be more explicit, let us consider a determinant
S={®} ={PF T g} (@) @, (cf. Fig. 1. The cluster is delimited by a continuous-line
Let Pg be the projector onto this model space. The dimensio®ox and is embedded in the Néel function. Bonds involved in
of the full configuration interactioCl) space is equal to the excitations frontb—®; appear with thick lines. The el-
that of the isolated cluster. Nevertheless, the diagonal eleémentary excitatiol; on an external bont(indicated by a
ments of the matrixPHP; differ from those of the isolated dashed ling leads to a determinanbpy;, which interacts
cluster Cl matrix under the effect of the embedding, i.e., thewith ®; through an exchange integrdl The excitation am-
energy of each determinant is shifted by a quanditper  plitudesd,; depend on the environment of the bohdgthe
alternating bond, at the frontier. The determinardy in the  largest considered environment is indicated by a dashed-line
lattice problem interact only with the outer-space determi-box) and are taken as

®o=]] 2i(2i +1). (5)

Cori = Ci.d;. (9
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TABLE |. Cohesive energy of the anisotropice 2D lattice.

A DCM RSRG QMC(Ref. 27)
0 -0.54890 -0.53966 -0.54882
0.6 -0.61094 ~0.60260 -0.60958
1 -0.66972 -0.66615 -0.66944
1.2 -0.73961 -0.73072 -0.73920
2 -1.08329 ~1.07849 -1.08220

atoms in the cluster. It does not proceed to a strict exponen-
tialization of the wave function, but it employs ratios of co-
efficients to transfer information from the internal Cl to take
into account the effect of elementary excitations on the ex-

FIG. 2. Cohesive energy as a function of the anisotropy paramternal bonds. Through the environmental dependence of

eter\. (+) DCM (from a 16-site clustgrwith the Néel reference
function, (0) DCM (from a 16-site clustgrwith the XY polarized
reference function.

— (10)

wherer is a translation from the external bohdo the out-
ermost equivalent bond-r of the clusterwhich is indicated
by a continuous lineand®; e Sis such that the environment
of the bondl-r in ®; has the maximum resemblance with

these elementary excitation amplitudes, many-body effects
are introduced. The relation with a CC expansion of the
wave functiod?3>has been discussed in Ref. 13. The accu-
racy of the DC method has been illustrated on 1D electron
and spin(frustrated and nonfrustratedattices. It has also
been applied to the study of the lowest excitation energies as
functions of the bond alternation in the 1D spin ch#iiThe

DC method is now applied to the 2D square spin lattice using
a 4x 4 cluster and starting from both the Néel function and
the XY polarized function as referenck,. The computed
cohesive energy as a function afis pictured in Fig. 2,

the environment of bondl in ®;. One must notice that, in Where the two branches, obtained from th¥ and Néel

some cases, it is necessary to restore the right Spif of

functions, respectively, appear clearly as crossing\#1l.

the translated determinants by changing the spins of the af2N€ observes the existence of a continuation of the Neel-

oms furthest from the bon# in order to obtain the most
relevant information from the CI wave function. Finally, the
quantity 3 oy HinriCDri can be replaced by

<2 Jld.,i)ci.

| ext
This summation can be dealt with as a diagonal energy shi
(dressing,

(11)

Aji= ( > Jldl,i)’ (12
| ext
and the corresponding dressing operator
A= [D)A(D. (13
ieS

Equation(9) insures the translational invariance; if the deter-
minantD; ®; is identical through a translatichto one of the
determinantsd, belonging toS, i.e., if D ®;=7 ®,, then
Cqu,i:Cq,k. This estimation OfCDri leads to an important
simplification: the effect of excitations on bonldsvhich are
far from the fragment(by more than the cluster sigeis
approximated to be identical for all determinasitsand only

shifts the diagonal elements of the CI matrix by the same -1f-=
amount. It has consequently no effect on the eigenvectors of

the dressed Cl matriRy(H+A)P,, and can be omitted. Since

}

generated solution in the O0d\<1, and of the
XY-generated solution in the<lA <1.5. This may be seen
as the indication of metastable states around the crikcal
=1 value, as expected for a first-order phase transition.
The quality of the DCM results has to be assessed by
comparison with accurate analytical or numerical calcula-
ions. Table | and Fig. 3 report such comparisons. kai
Bur estimate —0.66928coincides to 10* with the most ac-
curate QMC®?"value -0.66944. It may be interesting to
compare with CCM resulfs'® which are -0.6670 when
introducing six-body operators, and —0.668Wwhen intro-

the dressing depends on the eigenvector the procedure must
be repeated to self-consistency. One may say that the DC FIG. 3. Cohesive energy around the isotropic poimt.QMC,
method implies many-body operators, up to the number ofRef. 27, () DCM, (+) RSRG.
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ducing eight-body operators. The difference indicates the imB by solving exactly the Schrodinger equation for thB
portance of many-body operators, and the slow convergenadimer, and by making use of the Bloch’s theory of effective
in this expansion. The third-order spin wave gives —0.6700 Hamiltonians. We shall not repeat here the formalism, given

and a plaquette expansiSn-0.6691. in Ref. 29, which leads to a modified RSRG formalism,
The agreement of our DCM values with QMC calcula- called RSRG-EI. The first test applications of the method
tions is similar forn # 1. ForA =0 we obtain —0.5489 simi-  were quite encouraging. We simply make explicit hereafter

lar to the result of Linet al??, -0.54883, or for A=0.6  the specification of the method in its simplest version for the
(DCM=-0.61094, QMC=-0.60958]). Figure 3 shows the study of a square spin lattice. The method consists of con-
near identity of our results with those of Ligt al. in the  sidering a squar€ X 3) block of nine atoms. Its ground state
whole 0=\ <1 domain. FoiA > 1, the agreement is similar, is a doublet withS,=+1/2 and it is theonly state kept here-

as may be seen from Fig. 3 and Table I. For instance, wafter. Let us call a and the S,=1/2 andS,=-1/2 degener-
obtained nearly identical values fo=2 (DCM= ate doublet ground states of the blogk The block can
-1.08329, QMC=-1.08220). Notice that we have no con- therefore be seen as a superspin. In order to establish the
vergence problem whem — 1*, while cohesive energies effective interactions between the ground states of adjacent
could not be obtained in the<IA <1.09 domain in Ref. 27. blocks, one treats exactly the 18X 6)-site superblockAB.

It is clear that DCM represents, in view of its low cost, an One wants to establish the effective energies of, and interac-
interesting alternative to QMC. tions between, the four products of ground-state wave func-
tions which define a model spaed, ab, ab, ab. Diagonal-
izing the exact Hamiltonian for thAB superblock one may
identify the eigenstate®3(S,=1), ¥7(S,=-1), ¥4S,=0),
W4(S,=0), which have the largest projections on the model
A. Method space, and their energi€&s+=E;-, Eqo, and Ep. The three

The Real-Space Renormalization Group proposed by W"_energies_can be seen as the eigenvalues of a new anisotropic
son essentially consists of an iterative truncation of the Hil-Hamiltonian,
bert space. The method proceeds through the definition of

Ill. REAL-SPACE RENORMALIZATION GROUP
WITH EFFECTIVE INTERACTIONS

blocks ofN sites, periodisable fragments of the periodic lat- Hig = Jan (S, Sy, — 1/4) + 135«15);(5;55 +S,.Sh)
tices, and the research of thiowes) eigenstates of the 2
Hamiltonian relative to these blocks. For a bldckand the +Ep+Eg+ AEpg. (16)
corresponding HamiltoniaHl|,
Hence,

Hid1 = Ekid,i- (14 Er = Eq+Eg+AEsg, (17
One shall retain a fewlet us saym) eigenstates dfl,. Then
one will consider a block of block&l...l1...J...N), and one 1 1
will approach the wave function for this superblock by work- Ero=— 53(1))\@ + EJ(D +Ep+Eg+ AEpg, (18)

ing in a truncated Hilbert space constituted of all products of
the m eigenstates kept for each block.

IT o, K=1m. (15)
1=1N

1 1
Eo=- EJ(l))\(D - EJ(” +Ep+Eg+AErs, (19

i from which one obtains
Then the process can be repeated, until convergence. If the

blocks and the sets of selected eigenstates are properly de- IV = Eg - Eqo, (20
fined, the problem at each iteration may keep its formal

structure, while the_intergctions between the super-super sitgs JOND = 2E1, - Ero- Eg. (21)
change along the iterations. One then reaches in a certain

number of steps a fixed point of the problem. These equations define a new anisotropic Heisenberg Hamil-

This idea is extremely elegant. However, attempts to uséonian between blocks. The process may be repeated, treating
it as a practical numerical tool for the study of periodic lat-a block of nine blocks and a superblock of 18 blocks, until
tices(of either spins or electronsvere extremely discourag- convergence is achieved.
ing. The method was abandoned, although it gave birth to a
deeply different formalism, namely the Density Matrix
Renormalization Group, which is extremely performant, but
limited to the treatment ofquas)-1D systems. The qualitative key points in that problem are the facts

The failure of the RSRG method is due to the simplethat:
truncation of the Hilbert space and the total neglect of the (i) for \=1, \(Y=1, the problem remains isotropic;
nonselected eigenstates of the blocks. Rather than trying to (i) for A>1, A\ >\, the anisotropy is increased in the
treat the effect of the nonselected states in a second-orddirection of an Ising problem; and
perturbative approacH,two of the authors have suggested (i) for A<1, A<\, the anisotropy increases in the
defining effective interactions between adjacent bloklsid  opposite direction towards a pukeY problem.

B. Results
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FIG. 4. RSRG study: anisotropic paramet®f" after the first FIG. 5. Appearance of the gap in the> 1 phase, as calculated

iteration, as a function of the initial anisotropic parametefEq. from the RSRG-EI. The full line is proportional {a2—1)%/2
(20)]. The stairs illustrate the convergence of the iterative procedure

to the fixed points, Ising on the right-hand side, a4 on the . . . L.
left-hand sidg g g interpolated estimates from QMC, the discontinuity of the

slope predicted from RSRG-EI is clear. The existence of a
. . . . discontinuity was not priori evident, since the quantities
For graphical purposes the anisotropic Hamiltonian mayj1 gand\® are continuous functions of. The discontinuity

been written as comes from the fact that the iterations tend to different fixed

H=J(SS)sin ® +(SS,+S,S,)cosd]. 22) points forn>1 andA < 1.

Actually, the method is also able to explain the absence of
The isotropic case correspondsde-/4, theXY problem agap for)\<1 and the eX|stenc.e .Of. a gap fm>1'. For'

to d=/2, and the Ising situation ®=—/2. One sees that A <1, since one must repeat an infinite number of iterations
\=tan® I,:igure 4 reports the evolution @? as a func- with decreasing values df?, the lowest states are degener-
tion of ®. The iterative process, starting from a new value@te: In thex >1 domam, thg s_ystem will be gapped, s!nce.the
®, leads to a new anisotropy angle=d(d). The sec- process converges in a finite number of steps, \_Nlth finite
ond step leads td,=dY(d,), etc. The qualitative nature values ofJ. Figure 5 reports the calculated gap foslightly

of the phase transition appears dramatically. Starting fro Jarger than 1. We have checked the behaviors of the gap as a
&> 7/4, Y increases rapidly. As seen from Fig. 3 the

Munction of. Spin-wave theory predicts that it should follow
process converges in a few steps to thg=#/2 fixed

the law,
point, i.e, to an Ising problem. Oppositely, starting from AE=2(\?-1)¥2, (23)

o< 7/4, d, decreases. The fixed point on that sile 1 ) ) o
is the pureXY problem (\=-1, ®=-=/4), but the curve Previous numerical works have shown that the excitation

PW=f(d) is tangent to the line of slope one®=d for energies are signifiqantly Iow_er, by a factor (ﬂgse to 05 Fig-
®=-7/2. Hence, the fixed point is in principle reached in Y"® 5 has used an interpolation 0.8664- 1) which fits
an infinite number of steps. well with our calculated values.

The quantityd? is significantly lower than one fax<1
and tends to zero whentends to -1. It increases with but
remains finite in the regioh>1. Figure 3 reports the
RSRG-EI calculated cohesive energy. Borl, as already The present paper studies the behavior of a 2D square
reported elsewher®,the RSRG-EI cohesive energy .,  spin lattice obeying an anisotropic Heisenberg Hamiltonian.
=-0.666153. This value is in slightly poorer agreement Since it presents a phase transition, this problem can be seen
with the best QMC value -0.66934han the previously re- as a convenient test to compare the abilities of the methods
ported DCM value, but it is obtained at a much lower cost.available for the treatment of 2@r 3D) lattices. One may
The underestimation of the cohesive energy by the RSRG-Hubdivide the methods into the following two groups:
method is systematic but never exceeds @% Table | and (1) Methods which rely on(or require the introduction
Fig. 3). We have carefully checked the existence of a disconef) a simple zero-order wave function. This wave function
tinuity of the slopes of the curv&.,=f(\) around\=1.  may be perturbed, or considered as the reference function for
This discontinuity clearly appears from the insert of Fig. 3.a CC expansior(i.e., an exponential development of the
The slope(dE/dN), _,1+ betweenh =1.02459 anch=1is 0.32  wave operator In such a case, different zero-order or refer-
in QMC and 0.26 in RSRG, and on the<1 side the slope ence wave functions will be used for the two different
from QMC is 0.175(between\=0.97 and\=1), while the  phases. This choice of two distinct references may be seen as
slope from RSRG is 0.20between\=0.95 and\=1) and  forcing the phase transition and presents the risk to impose
0.21 (between=0.99 and\=1). Although weaker than the artifactual discontinuities. The herewith employed DCM

IV. CONCLUSION
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only uses the reference function as a bath around a finite (2) It visualizes qualitatively the phase transition in terms
cluster, but it is subject to the same criticism. of a critical value of the parameter separating two domains

(2) Prejudiceless methods, which do not bias the treatwith their specific fixed points.
ment by introducing reference wave functions. Among them, (3) |t offers a simple understanding of the gapless-gapped
one may quote finite-cluster exact diagonalization, followed.p,oracter of the two phases.
by extrapolations on the cluster size. For 2D systems ex- o bhijosophy of the RSRG method is responsible for
trapolations are quite difficult to perform. QMC calculations , . o L . .

rtgns qualitative and pictorial advantage. The introduction of

require both statistics and extrapolation, and the error ba A . dd ical i hi
may prevent a clear assessment concerning the nature of tRG€Ctive interactions adds a numerical improvement to this

phase transition, when for instance the change of the slope §fnceptual tool. Of course, as shown for 1D lattices, the
the cohesive energy as a function of the internal parameter guantitative performance of the RSRG-EI treatment is much
small. Recent progresses have reduced these uncertaintiedetter when it is possible to extrapolate its results with re-
The excellent agreement of the DCM results with the besspect to the size of the blocks. This is not presently possible
QMC calculations foin=1 gives confidence in the accuracy for 2D lattices, since the next size of a square block would be
of the calculated dependence of the cohesive energy on ti®s (which would require the exact treatment of a 50-site

ahnisort]ropy parameter and assesses the first-order characterppplem for the superblogkBut the accuracy of the results
the phase transition. rom the nine-site blocks is surprisingly good and the el-
The RSRG-EI treatment does not enable one to reacb b gy 9

i : -gance of the method suggests it be considered an excellent
such a numerical accuracy but it presents several advantage

(1) It does not introduce the bias of a reference function.e)(ploratory tool.
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