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Using Path Integral Monte Carlo, we have calculated exchange frequencies as electrons undergo ring ex-
changes of 2, 3, and 4 electrons in a “clean” 3D Wigner cry&tet latticg as a function of density. We find
pair exchange dominates and estimate the critical temperature for the transition to antiferromagnetic ordering
to be roughly 1x 1078 Ry at melting. In contrast to the situation in 2D, the 3D Wigner crystal is different from
the solid bcc®He in that the pair exchange dominates because of the softer interparticle potential. We discuss
implications for the magnetic phase diagram of the electron gas.
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[. INTRODUCTION for example, the QMC calculations of Harret al? who
. . . found bcc the lowest energy structure in the range 60.

The uniform system of elec'trons IS one of the basic mod- Once the melting densitg)]/yis established, it is rclél‘}lienterest to
els of cor_ldensed matte_r physics. nghpomted out that at determine the low temperature spin order. Haetisal* re-
low density, the potential energy dominates and the systerfs e finding the ferromagnetic bce phase as stable, how-
will form what is now called a Wigner crystalBdWO).  ayer, other aspects of those calculations have not been repro-
There have been attempts to make laboratory examples @fced. Drummonet al€ attempted to determine directly the
the low density homogeneous 3D electron gas with speciallgnergy difference between ferromagnetic and antiferromag-
designed band-engineered AlGaAs heterostructutesthis  netic orderings using DMC but found the difference zero
paper, we report on calculations of the spin Hamiltonian inwithin their error bars(on the order of X 107 Ry at rq
the low density 3D Wigner crystal. =100). This is consistent with the results reported below.

At T=0, the properties of the electron gas are determine®ne needs to use a method sensitive to the small magnetic
by a single dimensionless parameterrg=a/a;,  energies, which are typically many orders of magnitude
=(m'/me)ala,, wherea=(3/4mp)*3, a, is the Bohr radius, smaller than the plasmon energies that determine the accu-
p is the electronic number density) is the effective mass, racy of the DMC energies.
and e the dielectric constant. In this paper we will use effec- Jones and Ceperlégtudied the quantum melting curve
tive Rydbergs for energies Ry(m' /m.e?)Ry anda for units ~ for distinguishable particles. At densities fog=100 the
of length. In these units the Hamiltonian is: melting is classical, and occurs for temper_atﬁlrl§§'l_'me|t

=2/(I'¢;rgRy, wherel',=173. We only use this melting to
H=-3 lv? + gz 1 (1) det_ermine the region _Where t_he (_:rystal is stak_JIe, and thus the
i r§ i fsizi i ' region where magnetic prderlng is relevant. Figure 1 summa-
’ rizes the 3deg phase diagram.

Though a variety of methods have been applied to calcu- For spin 1/2 particles, the magnetic ordering is not fixed
late the properties of the low density electron system, thdvsy the spatial ordering. The earliest quantitative calculation
most successful have been direct simulation methodsyas using a Slater determinant of localized Wannier func-
namely, Quantum Monte Carlo. Ceperley and Afdesing tions (i.e., Gaussiansby Carr? He found an antiferromag-
Diffusion Monte Carlo(DMC) determined that melting at netic phase in the Wigner crystal at intermediate density and
zero temperature occurs |at=100+20 for spin 1/2 fermi- ferromagnetic at lower density. We will compare with this
ons, and ats= 160 for bosons(This is also the zero tem- calculation later in the paper. Edwards and Hiflalsing a
perature melting density for distinguishable partigléster  Hartree-Fock method with a flexible, delocalized basis and a
estimate$found melting at higher densiti€s;=65+10, but  variety of spin orderings found antiferromagnetic ordering at
the variational trial functions in the liquid phase were notintermediate density 10r <40 and ferromagnetic at lower
sufficiently accurate. Very recently, Drummoed al® con-  densities. But, as mentioned above, the crystal phase is only
firmed the estimate af;=106+1 using DMC with a variety stable forrs>106.
of better functions and the more accurate results of Zeing Herring* reviewed the situation as understood in 1965 in
al.® in the fluid phase. The bcc crystal structure has the lowsome detail, including the contribution of ring exchanges of
est energy throughout the stability region of the crystal. Seeglectrons. Thoule$$ introduced the current theory of mag-
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FIG. 1. (Color onling Phase diagram of the 3D electron gas  F|G. 2. (Color onling The pair correlation function for the
showing the region of stability of the crystdRef. 7), the polariza-  3qwc (solid line) (rs=100 and for bcc®He (dashed red lingalso
tion transition from QMC calculationgRef. 9, and the antiferro- 5t melting (24.23 cni/mol). The functions are nearly identical,
magnetic transitiorithis work). though the electrons can get significantly closer together than he-
lium atoms can.
netism in quantum crystals. According to this theory, in the

absence of point defects, at low temperatures the electronfe g(r)'s are so similar, one might expect their exchanges
will almost always be near a lattice site. If the system iSfrequencies would be similar and hence have the same mag-
constrained to stay in the neighborhood of the two perfechetic ordering. We also note that the Lindemann’s ratio, the
lattice positionsZ and PZ whereP is a permutation of par- mean squared displacement in units of the nearest neighbor
ticle labels, the exchange frequency equals the splitting bespacing, for bulk helium and the Wigner crystal are also
tween the antisymmetric spatial state and the symmetric Sp&jmjjar near melting0.32 and 0.30, respectivglyHowever,
tial state: Zp=Ep~Es>0. The spin Hamiltonian comes note theg(r)'s are very different at smali because the po-
about from making the total wave function antisymmetric: tentials are so different; the helium-helium interaction is
. much more repulsive at short distances.
Hpin= = 2 (= DPIpPspin, (2 In this paper, we determine the magnetic interaction in the
P Wigner crystal, based on ThouleSstheory of exchange.
where the sum is over all cycIiQing) exchanges described -FI-)ﬁ(t)r:“elgze %ﬁcli Rl\/cl)cg)]r;rrg hgsag%slel\élcté b?esaerﬁggfgev(\j/aybi/o
by a cyclic permutatiorP, and Py, is the corresponding  calculate these parameters directly from the Coulomb inter-
spin exchange operatagAlthough more complex products action. The theory and computational method have been
of several ring exchanges are possible, in cases consideragsted thoroughly on the magnetic properties of bulk helium
they are negligiblg. The sign,(-1)", implies that an ex- obtaining agreement with measured propertfed/e’® have
change of even number of electrons is antiferromagnetic andiso used this method to calculate exchange frequencies in
an odd number of electrons is ferromagnetic. Ring exchangghe 2dWC. Here we report results for the 3dWC.
models have been used to describe correlated electron sys-
tems, such as high temperature superconduétaysantum Il. COMPUTATIONAL DETAILS
Hall system&* as well as electroA8 and helium atom$
confined in planes.
One might expect that pair electron exchanges woul
dominate over higher-body exchanges. Since the bcc lattice (ZlePHP2)
is bipartite, a simple Néel antiferromagnetic state would fp(ﬂ)zm. ©)
seem to be favored. Rather surprisingly, it has been fund
that in 3 solid 3He, which also forms a bcc lattice, ex- WhereZ represents the many-body configuration of electrons
changes of 2, 3, and 4 particles have roughly the same ordéitting on the bcc lattice sites arfélZ is a permutation of
of magnitude and must all be taken into account to underthose sites. Then under general assumptions, the exchange
stand the magnetic ordering. This is known as the multipldrequencies are given by:
spin exchange moddaIMSE). The resulting spin order is _
more complex since the order is frustrated by the competing fe(B) = tanhJe(5 = Bo)), (4)
exchanges. We wish to determine whether such a model Wwhere g, is the amount of imaginary time to initiate the
relevant for the 3dWC. exchange. The ratiép is determined by a specialized Path
Figure 2 shows the pair correlation functions for sdlite Integral Monte Carlo method and E@) is inverted to de-
and the electron gas near the crystallization density. Becausermine Jp.

The Path Integral method for calculating exchange fre-
aquencies is based on the ratio:
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TABLE I. Results of the PIMC calculations at various values ofinits are 10° Ry/electron.Quantities i) are the estimated relative
statistical error. The second column is the estimated transition tempegaligsmen nRy based on Eq.13). The spin coupling$, are defined
in Eq. (8).

J Jonn Ji J Js

nn p
rs ke Te 2(11) 2(22 3(112 4(1%;23) 414,22 i1 iz js
100 16.0  7.090.03 1.0(0.05 1.39(0.10 5.6 -1.9 0.7
110 6.0 2.480.05 0.32(0.10 0.45(0.04 2.0 -0.6 0.2
120 20  0.86%0.049  0.058(0.03 0.12(0.03 0.155(0.04) 0.0112(0.05 064  -0.25  0.08
130  0.90  0.3790.04 0.0460(0.03) 0.059(0.05 0.0037(0.06) 029  -0.09  0.03
140 049  0.20Q0.04 0.0196(0.03  0.0243(0.02 016  -0.04  0.01
150  0.21  0.0827.014 0.00720(0.09  0.00968(0.03 ~ 0.000565(0.025  0.071  -0.014  0.005
We do simulations with two types of path&) paths be- Y(R() = defexp(- c(ri(t) - )], (5)

ginning and ending at the perfect lattice positions &by . ) )

paths beginning aZ and ending aPZ The imaginary time Where z; is the set of spectator lattice sites andt) the
density matrice®™#" are expanded out into a path integral imaginary time path of the spectator electrons. The value of
connecting the end-points of the paths. Using the polymethe parl:;\zmete«c was optimized by variational Monte _Cf"‘ﬂ_éi
“isomorphism,*® f5(2) is related to the free energy need to ¢=0.25". The more recent values obtained by minimizing
induce a specific cross-linking into a crystal of ring poly-  the fixed-node ener§yc=0.1T ;" were not available when
mers. Using the Bennett meth&¥! we directly determine we did the calculations. A Slater determinant of Gaussian

the ratiofp by examining histograms of the change in actionorbit""lsI is an accura&e representati?n fqr the nodes of }he
in mapping paths of one e into paths of the other type2"Y-€ ectron groun .state wave unctlon. More compli-
pping p P P yp ated forms, such as linear combinations of Gaussians, do

With this method we can determine very small frequencies t& . L . .
an accuracy of a few percent, irrespective of the magnitudg)g\[,vrgsuIt in a significantly better trial functidhsor the

of Jp.?? . iy .
Ewald sums are used to represent the Coulomb interaction Only paths which keep a positive determinant throughout

in periodic boundary conditions, taken as a cube. The poterj}-he path are kepy(t) >0 for O<t<g: this is the fixed-node

tial is split into long-range and short-range terms with themethod. We find that these boundary conditions are sufficient

usual Gaussian breakd@bThen the exact two particle action [© Keep the system from melting. We do see a suppression of
for the short ranged potentiethe complementary error func- the exchg_nge frequency caused by the deFermlnantaI bqund-
tion) is determined using matrix squarifyThe long range ary conditions at;=150 of about 10%. In principle, the spin

action is taken in the primitive approximation; this is appro-orderm@:l should be determined self_-conS|stentIy._ For ex-
priate since it is smooth. Most calculations were done with®MPI€, it would be better to apply antiferromagnetic bound-

54 electrons in the simulation cube with a few tests of 12g27Y conditions, however, we have not tested that approach.
electrons giving agreement. Note that at low density, Ion{Or this reason, we may have corrections to the exchange
wave-length plasmons are strongly suppressed by the poteH€duencies on the order of 10%, particularly near melting.
tial energy, making the _exchf_;lnge more localized spatially Ill. EXCHANGE FREQUENCIES
than is the case with solid helium. ) )
One numerical approximation is the imaginary-time step, Ve have calculated 2, 3, and 4 particle exchanges for six
or equivalently, the number of points on the path. We digdifferent densities in the range 180s=<150. We deter-
several calculations for each value fand each type of Mined two different pair exchanges: first neighbay, and
exchange to establish that the results are in the zero time st&§cond neighbod,,, We do find a significant 2 body next-
limit within error bars. A second approximation concerns theNearest-neighbor exchange. The most compact three-body
value of 8 in Eq. (3). Because the exchanges are instanton&Xchangey;, has two first-neighbor and one second-neighbor
(i.e., confined in imaginary time the results converge felectr(_)ns. There are two types of four electron exchanges
quickly in 8 as long as3,< 8. We typically choose8< 34, involving only first neighborg? the planar exchangé,, and
and observe very weak dependenceoypically, for con- the folded exchangfsf. Table | shows 'the exchange frequen-
verged results, this implies one to two hundred steps in th&1€S of our calculations versus density.

exchange. Further details of the method have been discussed Figure 3 shows the exchange frequencies versus density.
in earlier paperg? We find that the exchange energies are very much smaller

In order to keep the system from melting for densitiesthan the plasmon energie;. The kinetic energy of the Wigner
higher than the bosonic meltihg00<r.< 160, the electron Crystal can be expanded in a power seffes:
paths are restricted to stay in the positive region of a trial d(rE) s >
wavefunction: the fixed-node boundary conditions. We sepa- =- T =0.669™" - 0.553". (6)
rate the electrons into those exchangisgy ‘p” of them) s
and the spectatoig.e., N-p electron$. A Slater determinant In the density range of consideration, the kinetic energy var-
of only the spectator electrons is constructed: ies from 0.6 mRy to 0.3 mRy: five orders of magnitude
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FIG. 4. (Color onling Ratio of exchange frequencies versys

FIG. 3. (Color onling Exchange frequencigsn Ry log scale Shown areJ/J,, (blue, short dashgsand J,/Jy, (cyan, long

versusré’z. The solid(black) line shows the 2-body nearest neigh-

bor exchange. The dashé@d) line is from the calculations of Carr dashes

(Ref. 9. The other lines are the tripldlue short dashesnd planar

4-electron(cyan, long dashg@sxchange frequencies. A WKB cal- i D ir 2

culation would be a straight line. Hp= EE g oj+ EE oot (7)
i i

greater than the exchange frequencies. Roughly speaking, thehere the sums are over first, second and third neighbor

electrons vibrate around their lattice sites’ lilnes before pairs respectivelyjNote on notationJ, >0 refers to a ring

exchanging with a nearby electron. This is comparable wittexchange frequency for the cycle while j,, refers to the

the situation in bcéHe and justifies that we can reduce the coupling constant in Eq7) between two spins a distange

original Hamiltonian involving charges, E@l), to the spin  apart; all frequencies have an opposite sign from the notation

Hamiltonian, Eq.(2). of RHD.] These spin couplings are given in terms of the ring
We see in Fig. 3 that the exchange frequencies drop oféxchanges by

exponentially: roughly as ekpsé/z). This follows from as-

suming a single most probable path for the ring exch&tige

independent of densityNote that we do not make this as-

jlz\]nn+3(_ 2Jt+~]p+~]f)a

sumption in the PIMC simulatiop.lt is likely that WKB J2=2(=2X+3) + Jp+ Jnnn,
calculation of S will give reasonable estimates of the ex-
change frequencies as they do for the 2dW€" ja=J2. (8

We find that the rate for pair exchanges is much larger . . . . .
than the other exchanges, making a very stable antiferroma%—he_p"’lIr couplings, shown in Table I, can either be positive
netic ground state. The planar 4-body exchange, also antifef@ntiferromagnetic or negative (ferromagnetig depending
romagnetic, is slightly larger than the ferromagnetic, 3-bodyP" the relative importance of even and odd ring exchanges.
exchange. Only ratios of the exchange rates can enter into | "€ four spin exchanges lead to additional four spin terms
determining the stability of a given magnetic state. Figure 4N the effective Hamiltonian in Eq.7),
shows the density dependence of the rafigd, and J;/J,,. e . . Y — (. .

We see a decrease in these ratios as density decrease%!“(' (01~ o)1 o) + (07 - )~ 01 = (0 - 0 - ),
thereby further stabilizing the antiferromagnetic phase. Next (9)
in importance is the 2-body next nearest neighbor exchange,

followed by the folded 4-body exchange. J
Y Y g AH, = ZXE Giji - (10
ik
IV. MAGNETIC PROPERTIES . . - .
The summatiorix=p or x=f) is over distinct labels describ-

Having determined the exchange frequencies, we can nowng the planar or folded four-particle exchanges. According
discuss the magnetic properties, based on the spin Hamito RHD, one can neglect these additional terms in estimating
tonian in Eq.(2). In principle, one has a formidable many- properties at high temperatures. Since they are fourth order
body problem. However, we can make use of the extensive the order parameter field, they can only contribute at lower
results available from studies of sofitle, also a bcc lattice. temperature.

In particular, see the review of Roget all’” (RHD) and Given the above spin Hamiltonian, several things can be
references therein. For spin 1/2 particles, one can write theasily computed. At high temperature, the Curie-Weiss con-
spin Hamiltonian in terms of Pauli spin matrices. Two and 3stant measures the leading term in & Jgxpansion to the
particle exchanges map into a Heisenberg model: susceptibilityy *=C(T-©+B/T+---). We find that:
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0 =43+ 3350~ 36 + 18K + 18K, (11  difference. Assuming classical spins, the antiferromagnetic

and ferromagnetic energies are easily found to be:
In regions above the ordering temperature, this determines ) _ )
Ear/N=-2j;+ 1.5, + 3]s, (14)

the deviation with respect to uncoupled spins. It is positive
(antiferromagnetig for all densities. e ) )
From the dominance of),,, over the other ring ex- Ee/N=2j; + 1.9+ 3js. (15

changes, we expect ordering into an antiferromagnetic phase ojtmaa and Zherf§ determine corrections to the classical

via a second order transition at a sufficiently low temperaxntiferromagnetic ground state energy of thig j,) model
ture. The complications resulting from a frustrated SPiNysing an expansion technique and find:

Hamiltonian are absent, so that we can be considerably more .
confident in our predictions than is the case with a frustrated Ear/N=-2.3;+1.33,. (16)

spin-model such as helium or the 2dWC. First, let us deter- This is only roughly 10% lower than the classical value

mine the transition temperature within mean field theoryor the 3dWC parameters. Note that the classical ferromag-
RHD (Ref. 17 (their Fig. 16 show the mean field phase peiic energy needs no correction. Using these estimates and

diagram as a function dfy, j2,js). AS mentioned above, the gq (g) within a few percent, the energy difference to spin
four spin terms will not change this diagram. Based on thepolarize the crystal is:

values in Table I, we find that the 3dWC is very much in the ] _ _
antiferromagnetic region. The density dependence shown in AE= (Er~Eap)/N=4.3,+0.18,+2jy).  (17)
Fig. 4, has a tendency to enhance even more the antiferrqesr the melting density of,=100, AE~2.4X 10°8 Ry
magnetism at larger values of . which is a factor of 10 smaller than the repofiethatistical
Within mean field theory, the antiferromagnetic phase hagors within DMC. Even if one could reduce the statistical
a critical transition temperature: error, the usual spin wave function in the antiferromagnetic
. . . phase is relatively crude, and the nodal surfaces are not nec-
KeTc=4j1 =32~ 6a. (12) essarily optimized for the regions where exchanges occur.

We can include fluctuations into this estimate by using re-Calculation of the ring exchange frequencies are a much
sults of series expansions. Oitmaa and ZRehgve calcu- More direct and efficient way of determining the magnetic
lated properties of thg, j, model on a bec lattice using Padé ©rdering, and yield more physical insight into the micro-
approximates to high temperature expansiomg to tenth ~ SCOPIC mechanisms giving rise to the magnetism.

order in the inverse temperaturdhey find the antiferro- COnceming previous calculations on the magnetic proper-
magnetic phase is stable at low temperatures for ties of the bcec Wigner c.rystal at low temperaturg, €did a
<0.705,. They also find that the transition temperature isc@lculation of the 3D Wigner crystal and determined the har-
keT,~2.76],—2.61j,. The effect of fluctuations is to lower MONIC energy and the two electron exchange |r_1tegral. He did
T, by about 30%. Since the effect pfand]s is to couple the this assuming the ground state wave function is a product of

same sublattices, a reasonable way to extend these resultssfagle Gaussian o_rbitals and estimateq the exchang(_a fre-
js# 0 is to assume that the effect jpfis determined by the guency by calculating the exchange matrix element obtaining

number of spins coupled. Since there are twice as many third Jon= (1.6;"°- 6.5 Yexp- 1.55%7). (18)

neighbors as second neighbors, we assume: o o
As shown in Fig. 3, the slope of the exchange coefficient is

keT.=2.761—2.61(j, + 2j3). (13) roughly correct, while the prefactor is too small by a factor
of about 3. By including all effects of electron correlation,
The lower line in Fig. 1 and the second column of Table Ithe tunnelling frequency is enhanced over what one gets with
show this estimated transition temperature. an uncorrelated wave function. More seriously, because of
For rs=120, where we have done the most calculationsthe two terms of opposite sign, he found an antiferromag-
we find an estimated transition temperatureTgf2.0 nRy.  netic to ferromagnetic transition ag=270. Carr's work is
We can parameterize the density dependance of the transitigiievious to the tunnelling theory of Thouléssand
temperature by assuming the WKB form for the depen-Herring!* which asserts that purely pair exchanges must be
dence of the exchanges on the density. We obtgili,  antiferromagnetic, so a sign change like this can only come
~3.7 ex—1.92)Ry. (Note: Because we calculatel{,,  about from cancellation of exchanges of even and odd num-
and J; only atrg=120, we estimated their values at other ber of electrons. In Carr’s calculation, there is no consider-
densities by scaling. The importance of these exchanges #tion of the possibility of more than two electron exchang-
negligible) ing. The sign change comes from neglecting correlation
We now compare the present calculation with DMC cal-between the electrons that are exchangi@iven the strong
culations aimed at determining the spin ordering. This iscorrelations present at=100, it is remarkable that the or-
done by performing a ground state total energy calculatiorer of magnitude is reasonable. A reasonable estimate would
(within the fixed node methgdor a fully polarized Wigner not be obtained this way for the solftie because the hard
crystal and for an antiferromagnetic crystal. Such an attempdore interaction makes the interaction matrix elements infi-
was made both for the 2dW@Ref. 26 and for the 3dWC nite, or nearly so. Carr also calculated the exchange for sec-
(Ref. 6 but without finding a significant energy difference. ond neighbors; at;=120 he obtained,,,/J,,=0.037, while
Given the exchange frequencies we can estimate this energye obtained a ratio of 0.067.
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Now turning to comparison with other quantum systems,so closely, and the similarity ig(r) leads to similar ratios of
similar behaviol® in the spin Hamiltonian was found near exchange frequencies.
melting between the second layer®fe absorbed on graph- Recently, it was found in DMC calculatiohthat the 3D
ite and the 2dWC, but the similar behavior does not seem telectron fluid has a partially spin polarized ground state at
occur in 3D. It is suggested that the similarity is due to alow density. In fact, it undergoes a second order transition to
common vacancy interstitial fluctuation mechanism, somea partially polarized state at=50+2. The polarization in-
thing that is also related to the melting of the quantumcreases until it is fully polarized at freezimg=106. (Note,
crystal?” which is possibly second order or nearly so. however, that_ because of the fermlpn sign problem, other

This similarity is not found in 3D. The magnetic proper- YP€S of ordering, such as superfluidity, cannot be ruled out.
ties of the 3dWC are quite different than bcc sdlite. This In this respect, the .I|qu|d is much more _d|ff|cult to treat than
comes about because pair exchanges are relatively more iffl€ crystal, since in the crystal, fermion effects are very
portant in the Wigner crystal: we find in the 3dWC that Small) The region of stability of the spin polarized fermi
3/3,,=0.14 while in3He the ratio is 0.41. This crucial en- 1quid is shown in F|g_. 1.1t is curious that both_the _fIU|d and
hancement of the pair exchange comes about because of th&/Stal have magnetic ordering near the melting line. How-
difference in the interaction strength at short distances: th§Ver in the crystal, the magnetic ordering occurs at a tem-
helium-helium interaction has a much harder core. During £€rature more than one thousand times lower than in the
pair exchange, the particles have to pass by each other. A&id- As in the 2dWC, in the 3dWC the magnetic ordering
can be seen in Fig. 2 electrons can approach closer thdRmperature drops off very fast as density decreases.
helium atoms, and this allows them to pass by each other W& hope to have provided a definitive result concerning
much more frequently. Exchange is a tunnelling process ant'®¢ magnetic ordering of the 3dWC, a system which has
the rate is very sensitive to the phase space in the transverBEVoked much speculation over the years. Because of the
direction that the electrons have when they undergo exSMall energy scales, it will be an experimental challenge to
change. observe the magnetic ordering in the 3D Wigner crystal.

The frustration between 2—, 3—, and 4-body exchanges
leads, in solid helium, to a more complicated Néel ordered
ground state, the uudd pha<eHowever, in the 3D Wigner This research was supported by NSF DMR01-04399 and
crystal, pair exchange dominates leading to a very stablthe Department of Physics at the University of lllinois
antiferromagnetic phase. We find that the relative frequencyrbana-Champaign and the CNRS-University of lllinois ex-
of 3- and 4-body exchanges is about the same in the twghange program. Computational resources were provided by
systemsd;/J,=1.42 in®He and 1.27 in the 3dWC. In 3- and the NCSA. L.C. thanks the support by Conselho Nacional de
4-body exchanges, the particles do not approach each othBresemvolvimento Cientifico e Tecnol6gi¢cGNPg).
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