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Using Path Integral Monte Carlo, we have calculated exchange frequencies as electrons undergo ring ex-
changes of 2, 3, and 4 electrons in a “clean” 3D Wigner crystal(bcc lattice) as a function of density. We find
pair exchange dominates and estimate the critical temperature for the transition to antiferromagnetic ordering
to be roughly 1310−8 Ry at melting. In contrast to the situation in 2D, the 3D Wigner crystal is different from
the solid bcc3He in that the pair exchange dominates because of the softer interparticle potential. We discuss
implications for the magnetic phase diagram of the electron gas.
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I. INTRODUCTION

The uniform system of electrons is one of the basic mod-
els of condensed matter physics. Wigner1 pointed out that at
low density, the potential energy dominates and the system
will form what is now called a Wigner crystal(3dWC).
There have been attempts to make laboratory examples of
the low density homogeneous 3D electron gas with specially
designed band-engineered AlGaAs heterostructures.2 In this
paper, we report on calculations of the spin Hamiltonian in
the low density 3D Wigner crystal.

At T=0, the properties of the electron gas are determined
by a single dimensionless parameterrs=a/a0
=sm* /meda/ab, wherea=s3/4prd1/3, ab is the Bohr radius,
r is the electronic number density,m* is the effective mass,
ande the dielectric constant. In this paper we will use effec-
tive Rydbergs for energies Ry* =sm* /mee

2dRy anda for units
of length. In these units the Hamiltonian is:
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. s1d

Though a variety of methods have been applied to calcu-
late the properties of the low density electron system, the
most successful have been direct simulation methods,
namely, Quantum Monte Carlo. Ceperley and Alder3 using
Diffusion Monte Carlo(DMC) determined that melting at
zero temperature occurs atrs.100±20 for spin 1/2 fermi-
ons, and atrs.160 for bosons.(This is also the zero tem-
perature melting density for distinguishable particles.) Later
estimates4 found melting at higher densitiessrs=65±10d, but
the variational trial functions in the liquid phase were not
sufficiently accurate. Very recently, Drummondet al.6 con-
firmed the estimate ofrs=106±1 using DMC with a variety
of better functions and the more accurate results of Zonget
al.5 in the fluid phase. The bcc crystal structure has the low-
est energy throughout the stability region of the crystal. See,

for example, the QMC calculations of Harriset al.4 who
found bcc the lowest energy structure in the rangers.60.

Once the melting density is established, it is of interest to
determine the low temperature spin order. Harriset al.4 re-
ported finding the ferromagnetic bcc phase as stable, how-
ever, other aspects of those calculations have not been repro-
duced. Drummondet al.6 attempted to determine directly the
energy difference between ferromagnetic and antiferromag-
netic orderings using DMC but found the difference zero
within their error bars(on the order of 2310−7 Ry at rs
=100). This is consistent with the results reported below.
One needs to use a method sensitive to the small magnetic
energies, which are typically many orders of magnitude
smaller than the plasmon energies that determine the accu-
racy of the DMC energies.

Jones and Ceperley7 studied the quantum melting curve
for distinguishable particles. At densities forrsù100 the
melting is classical, and occurs for temperatures8 kBTmelt
=2/sGcrsdRy, whereGc<173. We only use this melting to
determine the region where the crystal is stable, and thus the
region where magnetic ordering is relevant. Figure 1 summa-
rizes the 3deg phase diagram.

For spin 1/2 particles, the magnetic ordering is not fixed
by the spatial ordering. The earliest quantitative calculation
was using a Slater determinant of localized Wannier func-
tions (i.e., Gaussians) by Carr.9 He found an antiferromag-
netic phase in the Wigner crystal at intermediate density and
ferromagnetic at lower density. We will compare with this
calculation later in the paper. Edwards and Hillel10 using a
Hartree-Fock method with a flexible, delocalized basis and a
variety of spin orderings found antiferromagnetic ordering at
intermediate density 10, rs,40 and ferromagnetic at lower
densities. But, as mentioned above, the crystal phase is only
stable forrs.106.

Herring11 reviewed the situation as understood in 1965 in
some detail, including the contribution of ring exchanges of
electrons. Thouless12 introduced the current theory of mag-
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netism in quantum crystals. According to this theory, in the
absence of point defects, at low temperatures the electrons
will almost always be near a lattice site. If the system is
constrained to stay in the neighborhood of the two perfect
lattice positionsZ and PZ whereP is a permutation of par-
ticle labels, the exchange frequency equals the splitting be-
tween the antisymmetric spatial state and the symmetric spa-
tial state: 2JP=EA−ES.0. The spin Hamiltonian comes
about from making the total wave function antisymmetric:

Hspin= − o
P

s− 1dPJPP̂spin, s2d

where the sum is over all cyclic(ring) exchanges described

by a cyclic permutationP, and P̂spin is the corresponding
spin exchange operator.(Although more complex products
of several ring exchanges are possible, in cases considered,
they are negligible.) The sign, s−1dP, implies that an ex-
change of even number of electrons is antiferromagnetic and
an odd number of electrons is ferromagnetic. Ring exchange
models have been used to describe correlated electron sys-
tems, such as high temperature superconductors,13 quantum
Hall systems14 as well as electrons15 and helium atoms16

confined in planes.
One might expect that pair electron exchanges would

dominate over higher-body exchanges. Since the bcc lattice
is bipartite, a simple Néel antiferromagnetic state would
seem to be favored. Rather surprisingly, it has been found17

that in 3d solid 3He, which also forms a bcc lattice, ex-
changes of 2, 3, and 4 particles have roughly the same order
of magnitude and must all be taken into account to under-
stand the magnetic ordering. This is known as the multiple
spin exchange model(MSE). The resulting spin order is
more complex since the order is frustrated by the competing
exchanges. We wish to determine whether such a model is
relevant for the 3dWC.

Figure 2 shows the pair correlation functions for solid3He
and the electron gas near the crystallization density. Because

the gsrd’s are so similar, one might expect their exchanges
frequencies would be similar and hence have the same mag-
netic ordering. We also note that the Lindemann’s ratio, the
mean squared displacement in units of the nearest neighbor
spacing, for bulk helium and the Wigner crystal are also
similar near melting(0.32 and 0.30, respectively). However,
note thegsrd’s are very different at smallr because the po-
tentials are so different; the helium-helium interaction is
much more repulsive at short distances.

In this paper, we determine the magnetic interaction in the
Wigner crystal, based on Thouless’12 theory of exchange.
Path Integral Monte Carlo(PIMC) as suggested by
Thouless12 and Roger18 has proved to be a reliable way to
calculate these parameters directly from the Coulomb inter-
action. The theory and computational method have been
tested thoroughly on the magnetic properties of bulk helium
obtaining agreement with measured properties.19 We15 have
also used this method to calculate exchange frequencies in
the 2dWC. Here we report results for the 3dWC.

II. COMPUTATIONAL DETAILS

The Path Integral method for calculating exchange fre-
quencies is based on the ratio:

fPsbd =
kZue−bHuPZl
kZue−bHuZl

, s3d

whereZ represents the many-body configuration of electrons
sitting on the bcc lattice sites andPZ is a permutation of
those sites. Then under general assumptions, the exchange
frequencies are given by:

fPsbd = tanhsJPsb − b0dd, s4d

where b0 is the amount of imaginary time to initiate the
exchange. The ratiofP is determined by a specialized Path
Integral Monte Carlo method and Eq.(4) is inverted to de-
termineJP.

FIG. 1. (Color online) Phase diagram of the 3D electron gas
showing the region of stability of the crystal(Ref. 7), the polariza-
tion transition from QMC calculations(Ref. 5), and the antiferro-
magnetic transition(this work).

FIG. 2. (Color online) The pair correlation function for the
3dWC (solid line) srs=100d and for bcc3He (dashed red line) also
at melting s24.23 cm3/mold. The functions are nearly identical,
though the electrons can get significantly closer together than he-
lium atoms can.
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We do simulations with two types of paths:(a) paths be-
ginning and ending at the perfect lattice positions and(b)
paths beginning atZ and ending atPZ. The imaginary time
density matricese−bH are expanded out into a path integral
connecting the end-points of the paths. Using the polymer
“isomorphism,”19 fPszd is related to the free energy need to
induce a specific cross-linkingP into a crystal of ring poly-
mers. Using the Bennett method,20,21 we directly determine
the ratiofP by examining histograms of the change in action
in mapping paths of one type into paths of the other type.
With this method we can determine very small frequencies to
an accuracy of a few percent, irrespective of the magnitude
of JP.22

Ewald sums are used to represent the Coulomb interaction
in periodic boundary conditions, taken as a cube. The poten-
tial is split into long-range and short-range terms with the
usual Gaussian breakup.23 Then the exact two particle action
for the short ranged potential(the complementary error func-
tion) is determined using matrix squaring.19 The long range
action is taken in the primitive approximation; this is appro-
priate since it is smooth. Most calculations were done with
54 electrons in the simulation cube with a few tests of 128
electrons giving agreement. Note that at low density, long
wave-length plasmons are strongly suppressed by the poten-
tial energy, making the exchange more localized spatially
than is the case with solid helium.

One numerical approximation is the imaginary-time step,
or equivalently, the number of points on the path. We did
several calculations for each value ofrs and each type of
exchange to establish that the results are in the zero time step
limit within error bars. A second approximation concerns the
value ofb in Eq. (3). Because the exchanges are instantons
(i.e., confined in imaginary time), the results converge
quickly in b as long asb0,b. We typically chooseb,3b0
and observe very weak dependence onb. Typically, for con-
verged results, this implies one to two hundred steps in the
exchange. Further details of the method have been discussed
in earlier papers.22

In order to keep the system from melting for densities
higher than the bosonic melting3 100ø rsø160, the electron
paths are restricted to stay in the positive region of a trial
wavefunction: the fixed-node boundary conditions. We sepa-
rate the electrons into those exchanging(say “p” of them)
and the spectators(i.e., N-p electrons). A Slater determinant
of only the spectator electrons is constructed:

csRstdd = detfexps− csr istd − zjd2dg, s5d

where zj is the set of spectator lattice sites andr istd the
imaginary time path of the spectator electrons. The value of
the parameterc was optimized by variational Monte Carlo:23

c=0.2rs
1/2. The more recent values obtained by minimizing

the fixed-node energy6 c=0.11rs
1/2 were not available when

we did the calculations. A Slater determinant of Gaussian
orbitals is an accurate representation for the nodes of the
many-electron ground state wave function. More compli-
cated forms, such as linear combinations of Gaussians, do
not result in a significantly better trial functions6 for the
3dWC.

Only paths which keep a positive determinant throughout
the path are keptcstd.0 for 0ø tøb: this is the fixed-node
method. We find that these boundary conditions are sufficient
to keep the system from melting. We do see a suppression of
the exchange frequency caused by the determinantal bound-
ary conditions atrs=150 of about 10%. In principle, the spin
ordering should be determined self-consistently. For ex-
ample, it would be better to apply antiferromagnetic bound-
ary conditions, however, we have not tested that approach.
For this reason, we may have corrections to the exchange
frequencies on the order of 10%, particularly near melting.

III. EXCHANGE FREQUENCIES

We have calculated 2, 3, and 4 particle exchanges for six
different densities in the range 100ø rsø150. We deter-
mined two different pair exchanges: first neighbor,Jnn, and
second neighbor,Jnnn. We do find a significant 2 body next-
nearest-neighbor exchange. The most compact three-body
exchange,Jt, has two first-neighbor and one second-neighbor
electrons. There are two types of four electron exchanges
involving only first neighbors:17 the planar exchange,Jp, and
the folded exchange,Jf. Table I shows the exchange frequen-
cies of our calculations versus density.

Figure 3 shows the exchange frequencies versus density.
We find that the exchange energies are very much smaller
than the plasmon energies. The kinetic energy of the Wigner
crystal can be expanded in a power series:23

T = −
dsrsEd

drs
= 0.669rs

−3/2 − 0.553rs
−2. s6d

In the density range of consideration, the kinetic energy var-
ies from 0.6 mRy to 0.3 mRy: five orders of magnitude

TABLE I. Results of the PIMC calculations at various values ofrs Units are 10−9 Ry/electron.Quantities in( ) are the estimated relative
statistical error. The second column is the estimated transition temperature(also in nRy) based on Eq.(13). The spin couplingsjn are defined
in Eq. (8).

rs kBTc

Jnn

2 s11d
Jnnn

2 s22d
Jt

3 s112d
Jp

4s14;23d
Jf

4s14;22d j1 j2 j3

100 16.0 7.09(0.03) 1.0 (0.05) 1.39 (0.10) 5.6 −1.9 0.7

110 6.0 2.48(0.05) 0.32 (0.10) 0.45 (0.04) 2.0 −0.6 0.2

120 2.0 0.865(0.04) 0.058(0.03) 0.12 (0.03) 0.155(0.04) 0.0112(0.05) 0.64 −0.25 0.08

130 0.90 0.379(0.04) 0.0460(0.03) 0.059(0.05) 0.0037(0.06) 0.29 −0.09 0.03

140 0.49 0.200(0.04) 0.0196(0.03) 0.0243(0.02) 0.16 −0.04 0.01

150 0.21 0.0827(.014) 0.00720(0.02) 0.00968(0.03) 0.000565(0.025) 0.071 −0.014 0.005
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greater than the exchange frequencies. Roughly speaking, the
electrons vibrate around their lattice sites 105 times before
exchanging with a nearby electron. This is comparable with
the situation in bcc3He and justifies that we can reduce the
original Hamiltonian involving charges, Eq.(1), to the spin
Hamiltonian, Eq.(2).

We see in Fig. 3 that the exchange frequencies drop off
exponentially: roughly as exps−Srs

1/2d. This follows from as-
suming a single most probable path for the ring exchange18 is
independent of density.(Note that we do not make this as-
sumption in the PIMC simulation.) It is likely that WKB
calculation ofS will give reasonable estimates of the ex-
change frequencies as they do for the 2dWC.18,24

We find that the rate for pair exchanges is much larger
than the other exchanges, making a very stable antiferromag-
netic ground state. The planar 4-body exchange, also antifer-
romagnetic, is slightly larger than the ferromagnetic, 3-body
exchange. Only ratios of the exchange rates can enter into
determining the stability of a given magnetic state. Figure 4
shows the density dependence of the ratiosJf /Jn andJt /Jn.
We see a decrease in these ratios as density decreases,
thereby further stabilizing the antiferromagnetic phase. Next
in importance is the 2-body next nearest neighbor exchange,
followed by the folded 4-body exchange.

IV. MAGNETIC PROPERTIES

Having determined the exchange frequencies, we can now
discuss the magnetic properties, based on the spin Hamil-
tonian in Eq.(2). In principle, one has a formidable many-
body problem. However, we can make use of the extensive
results available from studies of solid3He, also a bcc lattice.
In particular, see the review of Rogeret al.17 (RHD) and
references therein. For spin 1/2 particles, one can write the
spin Hamiltonian in terms of Pauli spin matrices. Two and 3
particle exchanges map into a Heisenberg model:

Hh =
j1
2 o

i,j

s1d

si · s j +
j2
2 o

i,j

s2d

si · s j + ¯, s7d

where the sums are over first, second and third neighbor
pairs respectively.[Note on notation:Jx.0 refers to a ring
exchange frequency for the cyclex, while jn refers to the
coupling constant in Eq.(7) between two spins a distancex
apart; all frequencies have an opposite sign from the notation
of RHD.] These spin couplings are given in terms of the ring
exchanges by

j1 = Jnn + 3s− 2Jt + Jp + Jfd,

j2 = 2s− 2Jt + Jfd + Jp + Jnnn,

j3 = Jp/2. s8d

The pair couplings, shown in Table I, can either be positive
(antiferromagnetic) or negative(ferromagnetic) depending
on the relative importance of even and odd ring exchanges.

The four spin exchanges lead to additional four spin terms
in the effective Hamiltonian in Eq.(7),

Gijkl = ssi · s jdssk · sld + ssi · sldss j · skd − ssi · skdss j · sld,

s9d

DHx =
Jx

4 o
i,j ,k,l

Gijkl . s10d

The summation(x=p or x= f) is over distinct labels describ-
ing the planar or folded four-particle exchanges. According
to RHD, one can neglect these additional terms in estimating
properties at high temperatures. Since they are fourth order
in the order parameter field, they can only contribute at lower
temperature.

Given the above spin Hamiltonian, several things can be
easily computed. At high temperature, the Curie-Weiss con-
stant measures the leading term in a 1/T expansion to the
susceptibilityx−1=CsT−Q+B/T+¯d. We find that:

FIG. 3. (Color online) Exchange frequencies(in Ry log scale)
versusrs

1/2. The solid(black) line shows the 2-body nearest neigh-
bor exchange. The dashed(red) line is from the calculations of Carr
(Ref. 9). The other lines are the triple(blue short dashes) and planar
4-electron(cyan, long dashes) exchange frequencies. A WKB cal-
culation would be a straight line.

FIG. 4. (Color online) Ratio of exchange frequencies versusrs.
Shown areJt /Jnn (blue, short dashes) and Jp/Jnn (cyan, long
dashes).
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Q = 4Jnn + 3Jnnn− 36Jt + 18Kf + 18Kp. s11d

In regions above the ordering temperature, this determines
the deviation with respect to uncoupled spins. It is positive
(antiferromagnetic), for all densities.

From the dominance ofJnnn over the other ring ex-
changes, we expect ordering into an antiferromagnetic phase
via a second order transition at a sufficiently low tempera-
ture. The complications resulting from a frustrated spin
Hamiltonian are absent, so that we can be considerably more
confident in our predictions than is the case with a frustrated
spin-model such as helium or the 2dWC. First, let us deter-
mine the transition temperature within mean field theory.
RHD (Ref. 17) (their Fig. 16) show the mean field phase
diagram as a function ofs j1, j2, j3d. As mentioned above, the
four spin terms will not change this diagram. Based on the
values in Table I, we find that the 3dWC is very much in the
antiferromagnetic region. The density dependence shown in
Fig. 4, has a tendency to enhance even more the antiferro-
magnetism at larger values ofrs.

Within mean field theory, the antiferromagnetic phase has
a critical transition temperature:

kBTc = 4j1 − 3j2 − 6j3. s12d

We can include fluctuations into this estimate by using re-
sults of series expansions. Oitmaa and Zheng25 have calcu-
lated properties of thej1, j2 model on a bcc lattice using Padé
approximates to high temperature expansions(up to tenth
order in the inverse temperature.) They find the antiferro-
magnetic phase is stable at low temperatures forj2
ø0.705j1. They also find that the transition temperature is
kBTc<2.76j1−2.61j2. The effect of fluctuations is to lower
Tc by about 30%. Since the effect ofj2 and j3 is to couple the
same sublattices, a reasonable way to extend these results to
j3Þ0 is to assume that the effect ofj3 is determined by the
number of spins coupled. Since there are twice as many third
neighbors as second neighbors, we assume:

kBTc . 2.76j1 − 2.61s j2 + 2j3d. s13d

The lower line in Fig. 1 and the second column of Table I
show this estimated transition temperature.

For rs=120, where we have done the most calculations,
we find an estimated transition temperature ofTc=2.0 nRy.
We can parameterize the density dependance of the transition
temperature by assuming the WKB form for the depen-
dence of the exchanges on the density. We obtainkBTc
<3.7 exps−1.92rs

1/2dRy. (Note: Because we calculatedJnnn

and Jf only at rs=120, we estimated their values at other
densities by scaling. The importance of these exchanges is
negligible.)

We now compare the present calculation with DMC cal-
culations aimed at determining the spin ordering. This is
done by performing a ground state total energy calculation
(within the fixed node method) for a fully polarized Wigner
crystal and for an antiferromagnetic crystal. Such an attempt
was made both for the 2dWC(Ref. 26) and for the 3dWC
(Ref. 6) but without finding a significant energy difference.
Given the exchange frequencies we can estimate this energy

difference. Assuming classical spins, the antiferromagnetic
and ferromagnetic energies are easily found to be:

EAF/N = − 2j1 + 1.5j2 + 3j3, s14d

EF/N = 2j1 + 1.5j2 + 3j3. s15d

Oitmaa and Zheng25 determine corrections to the classical
antiferromagnetic ground state energy of thes j1, j2d model
using an expansion technique and find:

EAF/N = − 2.3j1 + 1.32j2. s16d

This is only roughly 10% lower than the classical value
for the 3dWC parameters. Note that the classical ferromag-
netic energy needs no correction. Using these estimates and
Eq. (8), within a few percent, the energy difference to spin
polarize the crystal is:

DE < sEF − EAFd/N = 4.3j1 + 0.18s j2 + 2j3d. s17d

Near the melting density ofrs=100, DE<2.4310−8 Ry
which is a factor of 10 smaller than the reported6 statistical
errors within DMC. Even if one could reduce the statistical
error, the usual spin wave function in the antiferromagnetic
phase is relatively crude, and the nodal surfaces are not nec-
essarily optimized for the regions where exchanges occur.
Calculation of the ring exchange frequencies are a much
more direct and efficient way of determining the magnetic
ordering, and yield more physical insight into the micro-
scopic mechanisms giving rise to the magnetism.

Concerning previous calculations on the magnetic proper-
ties of the bcc Wigner crystal at low temperature, Carr9 did a
calculation of the 3D Wigner crystal and determined the har-
monic energy and the two electron exchange integral. He did
this assuming the ground state wave function is a product of
single Gaussian orbitals and estimated the exchange fre-
quency by calculating the exchange matrix element obtaining

Jnn < s1.6rs
−.75− 6.5rs

−1dexps− 1.55rs
1/2d. s18d

As shown in Fig. 3, the slope of the exchange coefficient is
roughly correct, while the prefactor is too small by a factor
of about 3. By including all effects of electron correlation,
the tunnelling frequency is enhanced over what one gets with
an uncorrelated wave function. More seriously, because of
the two terms of opposite sign, he found an antiferromag-
netic to ferromagnetic transition atrs=270. Carr’s work is
previous to the tunnelling theory of Thouless12 and
Herring,11 which asserts that purely pair exchanges must be
antiferromagnetic, so a sign change like this can only come
about from cancellation of exchanges of even and odd num-
ber of electrons. In Carr’s calculation, there is no consider-
ation of the possibility of more than two electron exchang-
ing. The sign change comes from neglecting correlation
between the electrons that are exchanging.11 Given the strong
correlations present atrsù100, it is remarkable that the or-
der of magnitude is reasonable. A reasonable estimate would
not be obtained this way for the solid3He because the hard
core interaction makes the interaction matrix elements infi-
nite, or nearly so. Carr also calculated the exchange for sec-
ond neighbors; atrs=120 he obtainedJnnn/Jnn=0.037, while
we obtained a ratio of 0.067.
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Now turning to comparison with other quantum systems,
similar behavior15 in the spin Hamiltonian was found near
melting between the second layer of3He absorbed on graph-
ite and the 2dWC, but the similar behavior does not seem to
occur in 3D. It is suggested that the similarity is due to a
common vacancy interstitial fluctuation mechanism, some-
thing that is also related to the melting of the quantum
crystal,27 which is possibly second order or nearly so.

This similarity is not found in 3D. The magnetic proper-
ties of the 3dWC are quite different than bcc solid3He. This
comes about because pair exchanges are relatively more im-
portant in the Wigner crystal: we find in the 3dWC that
Jt /Jnn=0.14 while in3He the ratio is 0.41. This crucial en-
hancement of the pair exchange comes about because of the
difference in the interaction strength at short distances: the
helium-helium interaction has a much harder core. During a
pair exchange, the particles have to pass by each other. As
can be seen in Fig. 2 electrons can approach closer than
helium atoms, and this allows them to pass by each other
much more frequently. Exchange is a tunnelling process and
the rate is very sensitive to the phase space in the transverse
direction that the electrons have when they undergo ex-
change.

The frustration between 2–, 3–, and 4-body exchanges
leads, in solid helium, to a more complicated Néel ordered
ground state, the uudd phase.17 However, in the 3D Wigner
crystal, pair exchange dominates leading to a very stable
antiferromagnetic phase. We find that the relative frequency
of 3- and 4-body exchanges is about the same in the two
systems:Jt /Jp=1.42 in3He and 1.27 in the 3dWC. In 3- and
4-body exchanges, the particles do not approach each other

so closely, and the similarity ingsrd leads to similar ratios of
exchange frequencies.

Recently, it was found in DMC calculations5 that the 3D
electron fluid has a partially spin polarized ground state at
low density. In fact, it undergoes a second order transition to
a partially polarized state atrs=50±2. The polarization in-
creases until it is fully polarized at freezingrs=106. (Note,
however, that because of the fermion sign problem, other
types of ordering, such as superfluidity, cannot be ruled out.
In this respect, the liquid is much more difficult to treat than
the crystal, since in the crystal, fermion effects are very
small.) The region of stability of the spin polarized fermi
liquid is shown in Fig. 1. It is curious that both the fluid and
crystal have magnetic ordering near the melting line. How-
ever, in the crystal, the magnetic ordering occurs at a tem-
perature more than one thousand times lower than in the
fluid. As in the 2dWC, in the 3dWC the magnetic ordering
temperature drops off very fast as density decreases.

We hope to have provided a definitive result concerning
the magnetic ordering of the 3dWC, a system which has
provoked much speculation over the years. Because of the
small energy scales, it will be an experimental challenge to
observe the magnetic ordering in the 3D Wigner crystal.
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