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The equation of state(EOS) of alloys at high pressures is generalized with the cluster expansion method. It
is shown that this provides a more accurate description. The low temperature EOSs of Ni-Al alloys on FCC
and BCC lattices are obtained with density functional calculations, and the results are in good agreement with
experiments. The merits of the generalized EOS model are confirmed by comparison with the mixing model.
In addition, the FCC phase diagram of the Ni-Al system is calculated by the cluster variation method(CVM)
with both spin-polarized and nonspin-polarized effective cluster interactions(ECI). The influence of magnetic
energy on the phase stability is analyzed. A long-standing discrepancy betweenab initio formation enthalpies
and experimental data is addressed by defining a better reference state. This aids both evaluation of anab initio
phase diagram and understanding the thermodynamic behaviors of alloys and compounds. For the first time the
high-pressure behavior of order-disorder transition is investigated byab initio calculations. It is found that
order-disorder temperatures follow the Simon melting equation. This may be instructive for experimental and
theoretical research on the effect of an order-disorder transition on shock Hugoniots.
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I. INTRODUCTION

In recent years, the first-principles theory of alloy phase
stability of simple crystal structures and their superstructures
has advanced much, and the study of complex phases, where
several inequivalent sites exist in the unit cell, has gradually
attracted the interest of theoretical investigations.1–8 How-
ever, there remain significant issues in the study of phase
stability of simple crystal structures.9–11 Notably, the effect
of pressure on the thermodynamic properties and the phase
diagram(PD) of alloys have been investigated in few works
only.12–14 One of the authors(M.S.) has found byab initio
calculations that the Al-Li system is not affected signifi-
cantly by hydrostatic compression, except for some very mi-
nor effects, such as the reduced Li solubility in the Al-rich
fcc solid solution.13 However, the pressure in that computa-
tion is limited to 5.4 GPa, and the conclusion is for one
specific system only. The most important issues of high-
pressure physics of alloys, e.g., the equation of state(EOS),
have not been studied yet. Progress in the physics of the
Earth’s interior indicates that there are many nontrivial
pressure-temperature and pressure-composition phase dia-
grams for mantle minerals. A similar situation for alloys with
complex structure can be expected. The present work on al-
loys and compounds at high pressures, their equations of
state and phase stability is undertaken to better understand
the pressure behavior of alloys. The Ni-Al system was se-
lected because it is the basis of Ni-based superalloys. It is
necessary to point out that although the thermodynamics of
the Ni-Al binary system have been studied in great detail
(including both experiments and theoretical
calculations),11,15–20almost all of these works apply to zero
pressure and high pressure behavior remains unknown.

The theory of the EOS for alloys and compounds remains
rather undeveloped; the prevalent model being the mixing

model or the so-called volume-addition model.21–23 The ba-
sic assumption of this model is that the volume of alloys or
compounds under pressure is given by the summation of
equilibrium volumes of its constituents,

VsPd = o
i

nivisPd, s1d

wherevisPd is the equilibrium volume of ith component at
pressureP and ni the concentration. The internal energy is
then given by

EsPd = o
i

ni«isPd, s2d

and the enthalpy is as

H = o
i

nis«isvid + Pvid = o
i

niHisvid. s3d

This model assumes that thermodynamic quantities are just
the arithmetic average of each constituent, and more subtle
details, say, the structure-dependence of these quantities, are
ignored.

Here, we suggest a more general EOS model based on the
cluster expansion(CE) method. The EOS of Ni-Al alloys are
investigated by density functional calculations at zero tem-
perature and the generalized CE EOS model in the tetrahe-
dron approximation is compared with the mixing model.
Spin-polarization effects on phase stability in the Ni-Al sys-
tem are explored and are shown to have partly obscured the
fair assessment ofab initio results. Finally, the order-disorder
transition temperature dependence on pressure in FCC Ni-
Al alloys is investigated for the first time.
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II. THEORETICAL MODEL

A. Generalization of EOS model for alloys

For generalizing the mixing EOS model, the cluster ex-
pansion method(CEM) (Refs. 24–27) is a natural choice for
the mixing model in fact corresponds to the point approxi-
mation of CEM, where it is always assumed that interactions
are short-ranged in order to guarantee the convergence.

The internal energy and pressure in trinomial EOS(Ref.
28) are separated asE=Ex+Ev+Ee and P=Px+Pv+Pe,
where subscriptsx, v, ande refer to the contribution at 0 K,
the thermal contribution from lattice vibrations and that of
thermal electrons, respectively. Ionization due to temperature
and compression is beyond the scope of this work and ig-
nored. With CEM, one can write the(free) energy terms as
functions of correlation functions as24

ExsVd = o
n

vnsVdjn s4d

for the zero temperature part of internal energy and

FvsV,Td = o
n

wnsV,Tdjn s5d

for the free energy of thermal vibrations,29 where j is the
cluster correlation function as defined in Eq.(10) in Ref. 12.
As for the electronic free energy, instead of the simple free-
electrons approximation(which is almost configurational
independent),21,22 it is better to use integration involving the
configurational electronic density of statenssEd:

Fess,Td = E
msTd

nssEdfEfsEd + kBTffsEdln fsEd

+ s1 − fsEddln s1 − fsEddggdE, s6d

where fsEd is the Fermi-Dirac distribution. Then, CEM is
employed to obtain the electronic free energy for any con-
figuration,

Fe = o
n

lnsV,Tdjn. s7d

The convergence of this expansion is heuristic and further
confirmation is needed.

Pressure can be formulated analogously byPx=−]Ex/]V
andPT=−s]FT/]VdT:

PxsVd = − o
n

vn8sVdjn, s8d

PvsV,Td = − o
n

wn8sV,Tdjn, s9d

PesV,Td = − o
n

ln8sV,Tdjn, s10d

where the prime indicates the derivative with respect to vol-
ume. Equations(8)–(10) compose the generalized EOS
model which has the capability to account for the effects of
order-disorder transitions in alloys. Provided that effective
cluster interactions(ECI) vn, wn, and ln are known, either

from ab initio calculations or from fitting to experimental
data, the thermodynamic properties and equilibrium state can
be computed readily by the cluster variation method
(CVM).30 It is evident now that the mixing model is indeed
the single point approximation of CE EOS model as pointed
out before. In this paper, we will focus mainly on the zero
temperature compressions and vibrational31,32 and thermal
electronic effects all are neglected.

B. Calculation methodology

Since we do not aim to model magnetic transitions,33 the
magnetic cohesive energies as well as enthalpies of Ni-Al
system can be approximated by simple spin-polarized calcu-
lations. Total energies of FCC-based superstructures for Ni-
Al system(FCC, L10, L12, and DO22), as well as those based
on BCC lattice(BCC, B2, B32, and DO3), are computed
within the generalized gradient approximation34–36 by
CASTEP (CAmbridge Serial Total Energy Package) (Refs.
37 and 38), with a range of lattice parameters. Both spin-
polarized and nonpolarized results are calculated in order to
evaluate the influence of magnetic energy on phase diagram.
All calculations are performed using ultrasoft
pseudopotentials.39 The cutoff kinetic energy for plane waves
in the expansion of the wave functions is set as 540 eV.
Integrations in reciprocal space are performed in the first
Brillouin zone using a grid with a maximal interval of
0.03/Å generated by the Monkhorst-Pack40 scheme. The en-
ergy tolerance for self-consistent field(SCF) convergence is
23106 eV/atom for all calculations. This setting gives a
precision of 0.2 meV/atom to the convergence of the total
energy for FCC Al.

Cohesive energies at different lattice parameters are ex-
tracted from the total energies by subtracting the spin-
polarized energies of isolated atoms. Then, they are em-
ployed to evaluate the CE EOS at 0 K and the formation
enthalpies for CVM(Refs. 13,30, 41–45) calculations ac-
cording to

DHform
a sPd = HasPd − cA

aHA−asPd − s1 − cA
adHB−asPd,

s11d

where superscripta refers to superstructure, andcA
a the con-

centration of speciesA in a phase.P is hydrostatic pressure
and enthalpy is defined as

HasPd = Ecoh
a fVsPdg + PVsPd. s12d

The volume V is determined directly by solvingP
=−]Ecoh/]V in this work, implying the effects of heat expan-
sion have been neglected. After formation enthalpiesDHform
of a set of superstructures have been worked out, the effec-
tive cluster interaction(ECI) vnsPd for clustern at pressureP
can be obtained readily by means of a Connolly-Williams
procedure24

vnsPd = oa
DHform

a sPdsjn
ad−1. s13d

This set of ECIs is appropriate for phase stability calcula-
tions. However, it is improper for EOS computations since
cohesive energies and their pressure-dependence of pure el-
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ements have been omitted. A set of ECIs containing more
information needed for EOS, while may be less accurate for
phase stability studies, can be derived analogously by

v̄nsVd = oa
Ecoh

a sVdsjn
ad−1. s14d

Here v̄n corresponds to the contribution of clustern to cohe-
sive energy. Equations(13) and (14) can be solved using a
singular value decomposition procedure. Then, the EOS of
any phase can be calculated based on its cohesive energy
curve

Ecoh
a sVd = o

n=1

nmax

v̄nsVdjn
a. s15d

Merits of Eq.(15) lie on its capability of providing accurate
EOS for alloys(in particular solid solutions) that is difficult
by direct ab initio methods. The phase equilibria at finite
temperatures are determined with the Gibbs free energy by
CVM

Ga = Ha − TSa. s16d

In the present work, only tetrahedron approximation is used
because we focus mainly on the trends and variations of
phase boundaries and transition temperatures rather than the
precise phase diagram and tetrahedron is enough for this
purpose.46

III. RESULTS AND DISCUSSION

A. EOS at zero temperature

Calculated cohesive energies, equilibrium lattice param-
eters, and bulk moduli are listed in Tables I–IV. Experimen-
tal and other theoretical results are also included for com-
parisons. The superscripts in the tables refer to the
corresponding reference papers. Both spin-polarized and
nonpolarized results are presented simultaneously to evaluate
the influence of local moments on weak magnetic Ni-Al al-
loys. The cohesive energies for a range of atomic volume are
calculated and shown in Figs. 1 and 2. For elemental Al, the
spin-polarized and nonpolarized cohesive energy curves are
identical within a large range of volume, which is different
from elemental Ni(Fig. 2). The excess energies due to spin-
polarization of valence electrons are about -0.5s−1d eV for
FCC AlsNid at a lattice parameter of 15 Å. These values are
comparable to cohesive energies of Ni-Al alloys at ambient
pressure and accurate cohesive energies can be obtained only
when referenced them to spin-polarized isolated atoms.

For the nonmagnetic phase of B2 and FCC Al, the calcu-
lated equilibrium lattice parameters and bulk moduli are in
good agreement with experimental data47–52 (better than pre-
vious calculations16,53–55). Our computed lattice parameters
are slightly larger than other calculations systematically. It is
owing to the GGA (GGS) approximation, which always
overcorrects the deficiencies of LDA and leads to an un-
derbinding. The influence of spin-polarization of electrons
are limited to Ni-rich side with concentration of Al below
0.5(0.25) for FCC(BCC) based phases. Spin-polarized equi-

TABLE I. Spin-polarized total energies for FCC superstructures at 0 GPa.

Structure
(spin-polarized) cAl EcohseV/atomd asÅd aothersÅd B (GPa) BothersGPad

FCC 0.0 −4.873 3.510 3.52a 215.6 187.6g

3.450b

DO22 0.25 −4.825 3.557 3.54c 190.5

3.538d

L12 0.25 −4.873 3.547 3.567e 194.5 186g

3.55c

3.532b

L10 0.5 −4.624 3.651 2.524f 159.4

3.613b

DO22 0.75 −4.008 3.845 3.777f 112.5

3.781b

L12 0.75 −4.009 3.839 3.802b 111.1

FCC 1.0 −3.498 4.052 4.05a 78.6 79.4g

3.984f

aReference 50.
bReference 16.
cReference 54.
dReference 16.
eReference 51.
fReference 53.
gReference 47.
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librium lattice parameters of the magnetic phase(FCC Ni
and L12 Ni3Al ) are better than nonpolarized ones by compar-
ing with experimental data(partly for this reason, following
discussions at zero temperature are all based on spin-
polarized calculations if without special statements). The cal-
culated bulk modulus of FCC Ni, both spin-polarized and
nonpolarized, however, are larger than experiment measure-
ments. This is expected since DFT calculations always over-
estimate the cohesive energy and consequently the bulk
modulus for transition metals.

Based on the above calculations, the cold EOS(spin-
polarized) of Ni-Al alloys is computed readily. Shown in Fig.

3 is the pressure vs compression ratio curves, whose feature
of concentration and structure dependences is evident. It
demonstrates the mixing model is inappropriate for ordered
states. The curves of B2 and L10 phases are almost identical,
and those of DO22 and L12 are close very well within the
studied pressure range. In particular, a detailed comparison
of these curves with experimental52 and the mixing model
results is given in Fig. 4 for stoichiometric NiAl, where the
FCC+FCCsBCC+BCCd curve is derived from FCC(BCC)
elemental phases only by the mixing model. B32 phase
seems better than the stable B2 phase by comparison with
experimental data. However, both of them are within the

TABLE II. Nonpolarized total energies for FCC superstructures at 0 GPa.

Structure
(nonpolarized) cAl EcohseV/atomd asÅd aothersÅd B (GPa)

FCC 0.0 −4.645 3.488 3.52a 227.4

3.450b

DO22 0.25 −4.806 3.553 3.54c 195.5

3.538b

L12 0.25 −4.845 3.545 3.567e 198.3

3.55c

3.532b

L10 0.5 −4.624 3.651 2.524e 159.0

3.613b

DO22 0.75 −4.008 3.845 3.777e 111.1

3.781b

L12 0.75 4.009 3.839 3.802a 111.4

FCC 1.0 −3.498 4.052 4.05a 79.2

3.984e

aReference 50.
bReference 16.
cReference 54.
dReference 51.
eReference 53.

TABLE III. Spin-polarized total energies for BCC superstructures at 0 GPa.

Structure
(spin-polarized) cAl EcohseV/atomd asÅd aothersÅd B (GPa) BothersGPad

BCC 0.0 −4.731 2.794 2.745a 210.0

DO3 0.25 −4.788 2.825 2.755b 188.4

2.789a

B2 0.5 −4.769 2.882 2.886c 162.1 166d

2.833b 156±3e

2.864a 186f

B32 0.5 −4.438 2.914 2.871a 151.2

DO3 0.75 −3.879 3.056 3.003a 105.0

BCC 1.0 −3.403 3.240 3.177a 71.3

aReference 16.
bReference 53.
cReference 49.
dReference 48.
eReference 52.
fReference 55.

GENG, CHEN, AND SLUITER PHYSICAL REVIEW B70, 094203(2004)

094203-4



measurement error bar. The curves of bulk modulus vs com-
pression ratio are also presented in Fig. 5. One can see both
the bulk modulus and its gradient with respect to volume of
nonpolarized FCC Ni are larger than the spin-polarized one.
The structure dependence of bulk modulus is also evident.

The EOS of Ni-Al alloys can be generally calculated us-
ing ECIs obtained by Eq.(14). For the purpose of justifying
the CE EOS model, a stable phase of stoichiometric
L12 Ni3Al is considered. The ECIs for pressure are shown in
Fig. 6, which are derived from those for cohesive energies by
pn=−]v̄nsVd /]V (for bulk modulus,bn=V]2v̄nsVd /]V2 is ap-
plied analogously). Under tetrahedron approximation,n
takes the value from zero to the four, corresponding to the
null cluster, point, nearest neighbor(NN) pair, NN triangle,
and NN tetrahedron, respectively. Limited by the used parent
cluster and superstructures, the coefficients for clusters of
point and NN pair are identical(this degeneracy is lifted
when larger cluster and more superstructures are used). Con-
vergence of cluster expansion is demonstrated by the de-
crease of ECIs’ magnitude by ten times successively. Figure

7 shows the comparisons of bulk modulus, cohesive energy,
and pressure between results of mixing model and the CE
EOS model, respectively. Subscript FP refers to first-
principles calculations. Obviously, CE EOS is much better
than the mixing model, although the latter also provided a
relative precise approximation to the first principles results.
Peaks in the figure correspond to the zero points of first-
principle cohesive energy, pressure and bulk modulus and
indicate the requirement of larger parent cluster for more
accurate EOS.

B. Phase stability

The spin-polarized formation enthalpies of the Ni-Al sys-
tem as functions of pressure are plotted in Fig. 8 with pres-
sure up to 400 GPa. A structural transition from FCC to BCC
takes place at about 260 GPa for Al. It is in agreement with
previous calculations except for a more stable phase, HCP,
which is not considered here, presents at 220–300 GPa at
low temperature.56 The stability of all ordered phases are

TABLE IV. Nonpolarized total energies for BCC superstructures
at 0 GPa.

Structure
(nonpolarized) cAl EcohseV/atomd asÅd aothersÅd

BCC 0.0 −4.592 2.774 2.745a

DO3 0.25 −4.787 2.821 2.755b

2.789a

B32 0.5 −4.769 2.882 2.886c

2.833b

2.864a

B32 0.5 −4.438 2.914 2.871a

DO3 0.75 −3.879 3.056 3.003a

BCC 1.0 −3.403 3.240 3.177a

aReference 16.
bReference 53.
cReference 49.

FIG. 1. Spin-polarized cohesive energies vs atomic volume for
some BCC and FCC structrures.

FIG. 2. Comparison of cohesive energies of BCC Ni with spin-
polarized and nonpolarized FCC Ni.

FIG. 3. Ab initio pressure-compression ratio curves for Ni-Al
alloys based on FCC and BCC lattices. Notice the
structure-dependencies.
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strengthened by pressure, while DO3 is more notable com-
paring with the DO22 phase. The comparison of our calcu-
lated formation enthalpies at zero pressure with experimental
data57–59 and previous calculations16,53 is shown in Fig. 9.
Both spin-polarized and nonpolarized results are included. It
is clear that the former is much better by comparing with the
experimental data. The latter, however, shallower than Pas-
turel’s results16 and in good agreement with Watson’s

FIG. 4. Comparison of calculated EOS with experimental(Otto
et al.) and the mixing model results for NiAl.

FIG. 5. Calculated spin-polarized bulk moduli as functions of
compression ratio.

FIG. 6. Cluster expansion coefficients for pressure in tetrahe-
dron approximation.

FIG. 7. Comparisons of cluster expansion EOS with mixing
model referenced to first-principles results in terms of cohesive en-
ergy, pressure and bulk modulus, respectively.
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calculations.53 All theoretical calculations predict the same
order of stabilities for studied phases. The discrepancy be-
tween the theoretical results and experimental data at Al-rich
side is due to that more stable phases, DO20sNiAl 3d and
D513sNi2Al3d, in this composition range are not considered
in this work. It is necessary to point out that the experiment
data of Oelsen60 is excluded for their measurements were not
rigorous.19

The phase stability of the Ni-Al system at finite tempera-
ture is computed with CVM and Eq.(13) is employed to
derive the corresponding ECIs. To evaluate the influence of
magnetic energy on phase stability partly, FCC phase dia-
grams(PD) are produced by both spin-polarized and nonpo-
larized ECIs. Figure 10 shows the low temperature part of
this PD. It is surprising that the spin-polarized and nonpolar-
ized PDs are almost identical. The only discernable distinc-
tion is L12-FCC boundaries at the Ni-rich side shown in the
inset. This is unusual for the two sets of ECIs are quite
different. A completely different situation presents for high
temperature part, however(see Fig. 11). The reason for this
lies on that the Gibbs free energy depends on both ECIs and

entropy. Its variation with respect to small changes of ECIs
vn→vn+dvn is simply as

dGa < o
n

dvnjn
a −

T

2o
n

]2Sa

] jn
a sDjn

ad2. s17d

Here the condition]Ga /]jn
a=0 is used, andDjn

a are varia-
tions of correlation functions due to the changes of ECIs via
the procedure of minimizing Gibbs energy. One concludes
from Figs. 10 and 11 that the contribution of the first term in
Eq. (17) is small, while the second term is magnified by
temperatureT and becomes dominant at high temperatures.
The distinct phase boundaries at the Ni-rich side(Fig. 11) are
just the responsibility of this term, indicating the precision
requirement of ECIs for reliable Gibbs free energy and phase
diagram calculations at high temperatures.

We also find from Fig. 11 that the spin-polarized ECIs
produced a wrong high temperature PD for Ni-Al alloys. The
order-disorder transition temperatureTc of L12 Ni3Al-FCC is
too low to be true. In fact, it is still too low even volume
relaxation effects are included. This crushes Carlssonet al.’s

FIG. 8. Formation enthalpies as functions of pressure up to
400 GPa. Notice the strengthening of the stability of DO3, B2, and
BCC Al phases.

FIG. 9. Calculated formation enthalpies at zero pressure com-
pared with experimental and previous theoretical results. The con-
vex hull pertaining to spin-polarized(nonpolarized) ground states is
marked with a solid(dotted) line.

FIG. 10. FCC phase diagram of Ni-Al system at low tempera-
ture region.

FIG. 11. FCC phase diagram of the Ni-Al system at high tem-
perature region. Notice the Ni-rich part, where spin-polarized ECIs
produced wrong phase boundaries.
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hope20 to improve the first-principlesTc by including mag-
netic energy. It is reasonable because the range of tempera-
ture here is much higher than the Curie temperatures of
Ni-Al alloys and the magnetic interactions should have been
vanished. Thus the proper ECIs for this region should be the
nonpolarized one. Actually, the nonpolarized PD is in agree-
ment with previous calculations,16,20 and an improvement of
Tc about 100 K is acquired when no volume relaxation ef-
fects are included. The relaxedTc is about 2500 K with an
improvement of 300 K compared with previous
calculations,16 counting roughly 15% of the extrapolated ex-
perimentalTc. This result can be improved further by em-
ploying larger parent clusters, including local lattice distor-
tions and vibrational entropies.31

Nevertheless, it is inconsistent between experimental for-
mation enthalpies and the phase diagram. The former prefers
the spin-polarized ECIs whereas the latter prefers the nonpo-
larized one. The situation becomes worse when formation
enthalpies measured at different temperatures are taken into
account. It seems the formation enthalpy of Ni-Al alloys is
scattered and intractable.53 However, if dividing the mea-
sured formation enthalpies into two sets according to
whether they are measured below or above the Curie tem-
perature of Ni, one may find those measured at low tempera-
tures (commonly at room temperature) prefers the spin-
polarized results, while the other set prefers the nonpolarized
one. Obviously the excess spin-polarized energy of Ni is the
key for this problem. In view of almost all ordered phases of
the Ni-Al system are nonmagnetic at room temperature ex-
cept FCC Ni, it is convenient to shift the reference state from
magnetic Ni (used in measurements) to the nonmagnetic
state for these data. This is done using the spin-polarized and
nonpolarized cohesive energies of FCC Ni listed in Tables I
and II. The low temperature experimental formation enthalpy
of Ni3Al is then re-evaluated from −37.3(Ref. 58) [−35(Ref.
53)kJ/mol] to −53.8s−51.5d kJ/mol, which is in good agree-
ment with our nonpolarized result −47.0 kJ/mol, Pasturel’s
−48.36 kJ/mol,16 and high temperature measurement of
−47 kJ/mol.53 That of NiAl sB2d is also re-evaluated from
−58.8 kJ/mol (Ref. 57) to −69.79 kJ/mol, by comparison
with our nonpolarized −67.3 kJ/mol, Pasturel’s
−75.6 kJ/mol,16 and high temperature measurement of
−67 kJ/mol.53 It is evident now that the discrepancy between
the experiment data and Pasturel’s calculations is mainly due
to the LDA approximation they used, which has been cor-
rected in this work by GGA instead.

C. Simon equation for order-disorder transition temperature

It is interesting to investigate the variation of order-
disorder transition temperaturesTc of L12 Ni3Al and
L10 NiAl phases with pressures. Here only cold pressure is
taken into account up to 130 GPa for simplicity, which is
determined by nonpolarized cohesive energy curves and no
vibrational contributions are included. TheTc of the L10
phase is lower than that of L12 only within a narrow range of
pressure and has a larger gradient(see Fig. 12). It is worth
pointing out thatTc perfectly satisfies the Simon’s melting
equation,61 which is a semiempirical law for melting at high

pressures. The reason for this may lie in that both order-
disorder transformations(L12-FCC and L10-FCC) and melt-
ing are first order. We know the phase boundary of a first-
order transition must obey the Clausius-Clapeyron relation

dP

dT
=

DS

DV
=

DH

TDV
. s18d

On the other hand, Simon equation has a form of

P − P0

a
= S T

T0
Dc

− 1. s19d

One can then obtain a relation for the latent heat, pressure
and difference of volume for order-disorder transition as
DH /cDV=a+P. The parametersa andc are 40.249 GPa and
3.546 for L12 Ni3Al and 21.472 GPa and 2.935 for
L10 NiAl, respectively.

The significance of this relation is that it would ignite the
interest to investigate the high-pressure thermodynamic be-
haviors of alloys, in particular the influence of order-disorder
transition on shock Hugoniots. A heuristic question is for the
B2-BCC transition. It is second order and what kind of rela-
tion will be followed by itsTc? Is it still in Simon form or
not? All of these are still open for answers.

IV. CONCULUSION

In conclusion, the mixing model for high pressure EOS of
alloys is generalized to CE EOS model with the cluster ex-
pansion method. It is shown that this provides a more accu-
rate description of ordered state due to its feature of structure
dependence. The low temperature EOSs of Ni-Al alloys that
based on the FCC/BCC lattice are calculated by first-
principles method and a good agreement with experiment
data is obtained. The CE EOS model is confirmed by com-
parison with the mixing model in tetrahedron approximation.
We also provide the formation enthalpies of studied struc-
tures up to 400 GPa in order to analyze the variation of
phase stability as functions of pressure. The FCC phase dia-
gram of the Ni-Al system is calculated by CVM with both

FIG. 12. Calculated order-disorder transition temperature as
functions of pressure by comparison with the Simon equation.
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spin-polarized and nonpolarized ECIs to evaluate the influ-
ence of magnetic energy. By defining a more sound reference
state, the low temperature experimental formation enthalpies
are re-evaluated and the results matched very well with our
first-principles calculations, previousab initio results and
high temperature measurements simultaneously, addressing
the long standing discrepancy of the formation enthalpies for
the Ni-Al system. For the first time the high-pressure behav-
ior of order-disorder transition is investigated byab initio
calculations. It is found that order-disorder temperatures fol-

low the Simon melting equation. This may be instructive for
experimental and theoretical research on the effect of an
order-disorder transition on shock Hugoniots.
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