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Nonlinear elastic properties of decagonal quasicrystals
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Quasicrystals have both positional and orientational long-range order. Thus, they are essentially anisotropic.
However, both theory and experiment show that ordinary linear elastic profliedsr phonon elasticityis
isotropic for quasicrystals. To detect the quasicrystal anisotropy the nonlinear elasticity should be discussed. In
this paper the nonlinear elastic properties are analyzed for decagonal quasicrystals. All the third-order elastic
constantgincluding phason strajrare determined for all symmetries of decagonal quasicrystals. The nonlinear
elastic properties due to the coupling between phonons and phasons may reveal the anisotropic structure of
decagonal quasicrystals by Hermann’s theorem.
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I. INTRODUCTION Il. GENERALIZED ELASTIC THEORY

Since the discovery of quasicrystal®@Cs9, their linear OF DECAGONAL QCS

elastic properties were extensively investigatedl.shows In the higher-dimensional description of QCsda QC

that within linear phonon elasticity QCs behave essenuall)%lith Fourier modulus of rank can be generated by inter-

like isotropic media. The experimental measurements hav . .
also confirpmed this poir?teAspis well known, QCs are new section amD spaceV (V=Ve+V)) by 3D physical subspace

types of solids, which possess positional and orientationafe: Consequently, anD displacement vectdii in V. when
long-range ordetquasiperiodicity and may have a crystal- Projected upo/e andV,, becomes a direct sum:
lographically forbidden point-group symmetry. Accordingly

one could expect the physical behavior of a quasicrystal not U=u'+ut=u+w (1)

to be isotropic as in a glass but in principle to be anisotropic

as in a crystal. However, the commonly observed propertie§here u (phonon displacementis a 3D vector inVe in

are isotropic due to their low tensorial rank and do not reveajyhich a vector transforms under the vector representation
the anisotropic structure of QC$.To detect the QC aniso- (1, of the symmetry group of the structure considered and
tropy some people have studied nonlinear elastic pgopeme\ﬁ is an(n-3)D vector(phason displacemeyin V, (perpen-
and phonon-phason coupling of the icosahedral ®3€. i jar spacgin which a vector transforms under another
Meanwhile, all third-order elastic constants have already eqycible representatiofi’s). For a decagonal Q6 equals
been determined for the icosahedral G€Besides, the pure 5. The corresponding phonon strdirhas its components of
phonon third-order elastic constants have also been calcy symmetric formE, = 1(d:u+du;) and the corresponding
lated for decagonal QCS.In this paper we would like to phason strairW has” itg éolmploglents of formV. .= ow
determine all third-order elastic constafitscluding phason . L - al e
strain of decagonal QCs. Decagonal QCs are two_where Latin letters, j,k, ..., areused for indices of 3D pho-

) . T oS non displacement vectors, taking on the values 1, 2, 3 and
dimensional(2D) QCs, which have a periodicity along one Greek IgtterSa 3 forindice% of 2D phason displace-
axis (tenfold axig but quasiperiodicity in the 2D plane per- ment vectors tak|7r/10n the values 1. 2
pendicular to it. There are two Laue classes and seven point Then the élasticgenergy densiwaHicH is a function of

groups—10, 1010/m, 10mm 1022, 162, 10/mmmin the  phonen and phason strains can be expanded into the Taylor
decagonal QC.The first three groups belong to Laue 13, the ggries in the vicinity of;=0 andW,,=0 to third order:
other to Laue 14the number of Laue classes is the same as

in Ref. 1). The results show that there are 40 independent

1 1
third-order elastic constan(&0 due to phonon field, 6 due to F(Epg Wour) = 2CijaBijBia + 2Kaig WaiWp; + Rij i Wk
phason field, 10 due to phonon-phonon-phason coupling, and + %CijmmnEij EEmn+ %Kaiﬁjyk i W Wy
14 due to phonon-phason-phason coupliftg Laue 13 and 1.00) 1.2)
27 independent third-order elastic consta@tslue to phonon + 3Rk amEi] EWam + 2R aa Ei WakWai
field, 3 due to phason field, 5 due to phonon-phonon-phason 2)
coupling and 10 due to phonon-phason-phason coupforg
Laue 14, respectively. According to Hermann’s theorém, where

the nonlinear elasticity due to the coupling between phonons
and phasons may observe anisotropic structure of decagonal PF PF
QCs. The following section is devoted to deducing those Cij :( ) , i :( )
invariants. All independent third-order elastic constants are 0 0
tabulated and are given in Table Ill. Conclusions are given in

Sec. Ill. and
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TABLE I. Laue classes, point groups, dimension of symmetrized space, and the numbers of invariants of
third-order elastic constants for decagonal QCs.

Laue Point Third-order Dimension of Numbers of independent
classes groups elastic tensors ~ symmetrized space invariants

13 10,10, Cijidmn 56 10
10/m Kai g vk 56 6
RY 126 10
R?f;kﬁl 126 14
14 10mm 1022, Cijkimn 56 9
10m2, 10/mmm Kii gi vk 56 3
Ri('lk)l am 126 5
Rigjzzlkﬁl 126 10

PE By using group representation theory all invariants of
Rijak= (m) (3 these elastic constants can be determined. As we know, the
7 k70 number of independent tensor components is equal to the
are second-order elastic constants of phonon field, phasafumber of times that the identity representation is contained
field and phonon-phason coupling, respectively. Similarly, in this tensor representation, e.g.,

e

CA. - —
pkimn <(9Eij(7Eklf7Emn 0

6
n= |G|EF79) (6)

where|G| is the order ofG, x is the character of the tensor
FF ) representauon Once the character€@fimn, Kaigjyo Rfl)

K ( ikl am’
PR N W g My

and

(4) andRI «kp are calculated for ang e G, the number of inde-
pendent components of all nonlinear elastic tensors are im-
are the third-order elastic constants of phonon and phasofiediately obtained from Eq6). The formulas f0f calculat-

fields, respectively, and ing the characters dt;jmn, Kaigjho R”k,am, andR”QkﬁI have
A already been given in our earlier workUnfortunately in
Rf,ﬂam: <—F> Ref. 14 a mistake was made in calculating the dimension of
IE;j B W, symmetric space and the number of independent tensor com-
and ponents fork s R”k,am, and R( ks Where the phason
strain W, was considered 0 be independent of
PF z-components. The right results are given in Table I.
Ri(jz)kﬁl = (—> ©) The determination of explicit forms for these invariants is
“ IE;; MW Wiz / P

much more complicated than counting their number. As an
are the third-order elastic constants associated with phonomxample, we consideK 5.« for decagonal QCs with the
phonon-phason coupling and phonon-phason-phason cot®mmsymmetry. This point group has eight irreducible rep-
pling, respectively. resentationscf. Table Il), four of which are one-dimensional

TABLE Il. Characters of 16im symmetry.

10mm e 2a 20 2a° 2a* a® 58 5aB
ry 1 1 1 1 1 1 1 1
r, 1 1 1 1 1 1 -1 -1
I's 1 -1 1 -1 1 -1 1 -1
ry 1 -1 1 -1 1 1 -1 1
I's 2 T ™1 1-7 -7 -2 0 0
I's 2 =1 -7 -7 =1 2 0 0
I, 2 1-7 -7 T =1 -2 0 0
I's 2 -7 =1 1 -7 2 0 0
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TABLE lll. Independent third-order elastic constants for decagonal QCs.

Laue Point
classes group

Third-order

Independent

elastic constants invariants

13 10,10
10/m

14 10mm
1022,
10m2,

10/mmm

Cijkimn

Kaigik

(1)
lek|am

RJ akpl

Cijkimn

Kaigik

(1)
lekl am

RIJ akpl

C111=Cr25 C115=C125 C113=Cp23 C333 C103
C144= Cas5 C155=Cp44 C334=Cas5 C135=Casz
C145= ~C245=Caa6= ~Css6 C166= Cas6= 5 (C111~C220)
Caee= %(Cns_ Ci29 Cus6= %(Clss_ Cia4)
K1117 K116 K135= K357 Ksg6= ~K336= Kass= ~Kzzs
K220= K244 Kase=K3g5= —K155= Koss=K133= —Kogs
K116=Kaas K224=Koee K124= ~K226= K ga6= %K444
K114=Kage=~Ki26= —%Keee K120=K144=—Ky26= _%Klll
K110=Ko26=~K146= _§K222

(D) __pld p@ (1) —_p@ __pl __pl __p@
N
Rll&)_ R113)l R132__ (131_ _Rz) =" (1 4= 1)

R116: 143_ _R243 R155 Rz = R465_ Rsea
_R(l) (1) R(l)

556
(1) (1) (1) (1) (1)_ (l)
R134‘ Rise=~ R236 617 ' 362

R(la)S__ (1) R(llsa I:‘)253 Rgtle)s 6)5

R =R <R =R = z(R(ffl R,

ety
166 R(264 4 R(1111 12) R(64 4( R(111)1+3R(12)

(1 (l (1) | pD (1)_ (D) 11 _ oD
Rie1= 3R116+ Ry26) Riso™ Roe1=2(Ry16= 3Rsz9)

(2 _p2 2 _p2 2 _p2 K2 (2)
(Z)R (2) (2)R122 (2) GG(SZZZ(Z)RIGG(Z) . (§l44 (2)
Ri35= Ross Re1o= R346 35 11_ R334_ 66 322

25~

(2) — _ (2
(2) — (2) i (Z)R513 (2|)Q (2) — (2) y (2 — @
17 = Ry1="Ro14 Reoo= 6= Ri26=Rozs

C111=Cr22 C115=C125 C113=Cp23 C333 Ci23
C144=Cys55 C155= C244 C334=C355 C133= Caas
C166=Coe6= %(Clll_ C222) Cgp6= %(0113_ Ci29
Cas6= %(ClSS_ Ci44

Kaa4=—Kgpe=K116= ~K224= ~3K126= =3K226
=3K114= 3K124= 3K 446= ~3K466
K111=~K220=K166= ~K244= ~3K146= 3K246
=3K112= =3K122= ~3K144= 3K266

K135= —K235= Ksge= —Kz36= Kas5=~Kzas

D - _ D @ 1) - 50— 5D 1) _ 1)
Ri11= ~Raop Raa1=Rasr™ ~Rass= ~Rase™ Rss1=Rssy

(1) _ (1) (1) _pD) —_p@ _ (l) (1) —_p@
Ri= ('3221 Rl?i)l R1(3i2 Rz(sl)l - (1) (1) =Riss
Ff __(1 _F‘l’lss Fizss_ Ry6s=Rees

1
R,=-RY,=RY =—R = -1(Ry11-Ry1)

661~
(1) _ (l) (1) (1) (1) (l) (1)
Riss= "Ross™ 4(3R111_R 2) Roe6= "Rigs™ 4( R111"'3R112)

(2 _pR@ _ (2) K2 (2) _ 2 K2
R1117 Ro20= Ro4a=Riss Ri2=Ro11= Rias=Roge Rass
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TABLE lll.  (Continued)

Laue Point Third-order Independent
classes group elastic constants invariants
(2) _ (2 (2) = (2 (2) - (2) _ (2)
(g - 2F;212 (2)R (2) 2) R 2) (2)% (2) (2)
11_(2) _(2) _Rzex RSl%)__ a0 15_(R536:_R445
Ri1=Rie=~ R124 _R126 R214 ~Ro6= R224
R - <2>_ R<2> R? =-R2 =—R2 =-R?
26~ 612 622 (2 (2) 646~ ' 644
Reze 2 R122 Rlll)
and four are two-dimensional. In this cadg=1";+I's and All independent components of all third-order elastic con-

I'g=I';. Therefore, the componenks, 4« transform under  stants for decagonal QCs are listed in Table Ill. The corre-
spondences between the index pairs and single indices are, as
{{(T+Tg) X T7] X [(Ty+Tg) X T'7] X [(Ty +T'5) X T'7]}s usual,
=30+ 30+ 2003+ 214 + 55 + TIg + 57 + 6l'g,  (7) (ij) = 11 22 33 23 31 12 (2

where{ }, is the symmetric part of the direct product. I =123 4 5 6

From Eq.(7) we can see that there are three linear com-and
binations of 56 symmetric basis vectors, which form three )
1D subspaces corresponding to the identity representation (ai) 11 22 23 12 13 21 (13)
I';. They are invariants under all the transformations. From i 1 2 3 4 5 6.
Eq. (4) we can see that the transformation properties of
Kaigjy follow directly from those forW,,;, Wg;, andW,. If
we find the precise components ¥f,, Wg;, and W, that [ll. CONCLUSION
transform under the same constituent representations we can
construct all the invariants formed by their combinations,
and then establish the independent comporgpy; . Using
the same method given in Ref. 1, we get the three nonva
ishing components

In summary, we have determined all third-order elastic
constantg(including phason strajnof decagonal QCs. The
r{esults show that there are 40 independent third-order elastic
constants for Laue 13 where 10 third-order elastic constants
are due to phonon field, 6 due to phason field, 10 due to

I, = WW, W, — 3WWeWis + 3W, W, Wis — 3WoWo W, phonon-phon(_)n-phason c_oupling, 14 dug—:- to phonon-p_hason-
phason coupling, and 27 independent third-order elastic con-

= WiWoWe = WoWoWe + Wi Wi W, + Wi WL W, stants for Laue 14 where 9 third-order elastic constants are

+ W W, W — W, WeWe, (8) due to phonon filed, 3 due to phason field, 5 due to phonon-

phonon-phason coupling, and 10 due to phonon-phason-
phason coupling, respectively. It is interesting to notice that

I, = 3W, W, W, = SWLWLW, + 3W, WeWg — SWLW,W, compared with cubic crystals and glasses, icosahedral QCs
behave like a glass within linear phonon elasticity, but be-
- W, W, W; + W,W,W; + W, W, W, — W, WLW. . . - 7
16 T Tt e T T T have like a crystal with nonlinear phonon elasticity. The
= Wi W, W, + WoWe W, (9)  icosahedral anisotropy can be detected either by the nonlin-

ear elastic properties due to pure phonon strainby the
_ linear elastic properties due to phonon-phason coupfig.
13 = WiWeWe = WoW5Ws + WelWs W = WaWa\We + W,\WsWs contrast to the situation in icosahedral QCs, for decagonal
= WoW5W,. (10 QCs, which have a tenfold symmetry axis, all linear elastic
propertiegdue to phonon strain, phason strain, and phonon-
Then the corresponding nonvanishing components are  phason couplinyare isotropic as in a glass. Since the rank of
Cijkimns Kaigj ko R”k,am, andR akp A€ 6, 12, 8, and 10, re-
Kaa4= — Kops= K116= ~ K224= = 3K126= = 3K26= 3K 114 spectively, the nonlinear phonon elasticity of decagonal QCs
- — —_ is still isotropic. And it seems to be possible to reveal the
3K124= 3Ks46= — 3Kyep, : . o PR
decagonal anisotropy in the quasiperiodic plane only by non-
linear elastic behavior due to the coupling between phonons
K111= ~ Ko2o= Kige= = Kaasa= = 3K146= 3K46= 3K 112 and phasons.
- —_ — Finally, we would like to say something about how to
= 7 3K120= = H144= 3Kee, reveal the anisotropy of nonlinear phonon-phason elasticity
of QCs(at least in principle Since QCs possess positional
Kiss= = Ky35= Ksse= — Kazg = Kuss= —Kszzs.  (11)  and orientational long-range order with noncrystallographic
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rotational symmetry, they are fundamentally anisotropic andensors of rank 6. Thus the third-order nonlinear phonon
at the macroscopic level there should be some anisotropielastic properties and linear elastic properties at high tem-
physical properties. According to Hermann's theorem theperature due to phonon-phason coupling of icosahedral QCs
mininal tensorial rank which is necessary to reveal the anisoare expect to be anisotropi¢® Such conclusion has been
tropic of a symmetry is related to the order of the symmetryconfirmed experimental.Unlike for icosahedral QCs, for
rotation”® However, the symmetry of QCs is always so high decagonal QCs neither of them would be anisotropic due to
that mostly macroscopic properties are isotropic unless thetheir low tensorial rank which is verified by Rochet al.

are described by a tensor with rat=5 for icosahedral who showed the dispersions corresponding to the elastic
QCs orN=10 for decagonal QCs. In particular, QCs havewaves do not depend on the wave vector direction. So the
additional phason degrees of freedom which are frozen alecagonal QC anisotropy may be revealed only by the third-
room temperature but excited at high temperature. The pharder elastic constanﬁff;kﬁj which is a tensor of rank 10.
son displacement can be seen as a tensor of high rank sinceFivllowing Rochalet al. the angular anisotropy of acoustic
does not transform under the vector representdfijphut the  phonon velocity and attenuation coefficient of decagonal
irreducible representatiohs. The phason displacement of QCs at high temperature due to phonon-phason coupling in
decagonal or icosahedral QCs is a tensor of rank 3. It is easye nonlinear elastic domain may be observed in experi-
to find out that the elastic constan@jym, and R, are  ments.
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