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Quasicrystals have both positional and orientational long-range order. Thus, they are essentially anisotropic.
However, both theory and experiment show that ordinary linear elastic property(linear phonon elasticity) is
isotropic for quasicrystals. To detect the quasicrystal anisotropy the nonlinear elasticity should be discussed. In
this paper the nonlinear elastic properties are analyzed for decagonal quasicrystals. All the third-order elastic
constants(including phason strain) are determined for all symmetries of decagonal quasicrystals. The nonlinear
elastic properties due to the coupling between phonons and phasons may reveal the anisotropic structure of
decagonal quasicrystals by Hermann’s theorem.
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I. INTRODUCTION

Since the discovery of quasicrystals(QCs), their linear
elastic properties were extensively investigated.1 It shows
that within linear phonon elasticity QCs behave essentially
like isotropic media. The experimental measurements have
also confirmed this point.2–6 As is well known, QCs are new
types of solids, which possess positional and orientational
long-range order(quasiperiodicity) and may have a crystal-
lographically forbidden point-group symmetry. Accordingly
one could expect the physical behavior of a quasicrystal not
to be isotropic as in a glass but in principle to be anisotropic
as in a crystal. However, the commonly observed properties
are isotropic due to their low tensorial rank and do not reveal
the anisotropic structure of QCs.7,8 To detect the QC aniso-
tropy some people have studied nonlinear elastic properties
and phonon-phason coupling of the icosahedral QC.9–11

Meanwhile, all third-order elastic constants have already
been determined for the icosahedral QCs.12 Besides, the pure
phonon third-order elastic constants have also been calcu-
lated for decagonal QCs.13 In this paper we would like to
determine all third-order elastic constants(including phason
strain) of decagonal QCs. Decagonal QCs are two-
dimensional(2D) QCs, which have a periodicity along one
axis (tenfold axis) but quasiperiodicity in the 2D plane per-
pendicular to it. There are two Laue classes and seven point

groups—10, 10¯, 10/m, 10mm, 1022, 10̄m2, 10/mmmin the
decagonal QC.1 The first three groups belong to Laue 13, the
other to Laue 14(the number of Laue classes is the same as
in Ref. 1). The results show that there are 40 independent
third-order elastic constants(10 due to phonon field, 6 due to
phason field, 10 due to phonon-phonon-phason coupling, and
14 due to phonon-phason-phason coupling) for Laue 13 and
27 independent third-order elastic constants(9 due to phonon
field, 3 due to phason field, 5 due to phonon-phonon-phason
coupling and 10 due to phonon-phason-phason coupling) for
Laue 14, respectively. According to Hermann’s theorem,7,8

the nonlinear elasticity due to the coupling between phonons
and phasons may observe anisotropic structure of decagonal
QCs. The following section is devoted to deducing those
invariants. All independent third-order elastic constants are
tabulated and are given in Table III. Conclusions are given in
Sec. III.

II. GENERALIZED ELASTIC THEORY
OF DECAGONAL QCS

In the higher-dimensional description of QCs, adD QC
with Fourier modulus of rankn can be generated by inter-
section annD spaceV sV=VE+VId by 3D physical subspace
VE. Consequently, annD displacement vectorũ in V, when
projected uponVE andVI, becomes a direct sum:

ũ = ui + u' = u + w s1d

where u (phonon displacement) is a 3D vector inVE in
which a vector transforms under the vector representation
sGAd of the symmetry group of the structure considered and
w is ansn−3dD vector(phason displacement) in VI (perpen-
dicular space) in which a vector transforms under another
irreducible representationsGBd. For a decagonal QCn equals
5. The corresponding phonon strainE has its components of
the symmetric formEij =

1
2s] jui +]iujd and the corresponding

phason strainW has its components of formWai =]iwa,
where Latin lettersi , j ,k, . . ., areused for indices of 3D pho-
non displacement vectors, taking on the values 1, 2, 3 and
Greek lettersa ,b ,g , . . ., for indices of 2D phason displace-
ment vectors, taking on the values 1, 2.

Then the elastic energy densityF which is a function of
phonon and phason strains can be expanded into the Taylor
series in the vicinity ofEij =0 andWai =0 to third order:

FsEpq,Wmnd = 1
2CijklEijEkl +

1
2Kaib jWaiWb j + Rij akEijWak

+ 1
6CijklmnEijEklEmn+ 1

6Kaib jgkWaiWb jWgk

+ 1
2Rijklam

s1d EijEklWam + 1
2Rij akbl

s2d EijWakWbl ,

s2d

where

Cijkl = S ]2F

]Eij]Ekl
D

0
, Kaib j = S ]2F

]Wai]Wb j
D

0

and
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Rij ak = S ]2F

]Eij]Wak
D

0
s3d

are second-order elastic constants of phonon field, phason
field and phonon-phason coupling, respectively. Similarly,

Cijklmn = S ]3F

]Eij]Ekl]Emn
D

0

and

Kaib jgk = S ]3F

]Wai]Wb j]Wgk
D

0
s4d

are the third-order elastic constants of phonon and phason
fields, respectively, and

Rijklam
s1d = S ]3F

]Eij]Ekl]Wam
D

0

and

Rij akbl
s2d = S ]3F

]Eij]Wak]Wbl
D

0
s5d

are the third-order elastic constants associated with phonon-
phonon-phason coupling and phonon-phason-phason cou-
pling, respectively.

By using group representation theory all invariants of
these elastic constants can be determined. As we know, the
number of independent tensor components is equal to the
number of times that the identity representation is contained
in this tensor representation, e.g.,

n =
1

uGu ogPF

x̄sgd s6d

where uGu is the order ofG, x̄ is the character of the tensor
representation. Once the characters ofCijklmn, Kaib jgk, Rijklam

s1d ,
andRij akbl

s2d are calculated for anygPG, the number of inde-
pendent components of all nonlinear elastic tensors are im-
mediately obtained from Eq.(6). The formulas for calculat-
ing the characters ofCijklmn, Kaib jgk, Rijklam

s1d , andRij akbl
s2d have

already been given in our earlier work.14 Unfortunately in
Ref. 14 a mistake was made in calculating the dimension of
symmetric space and the number of independent tensor com-
ponents forKaib jgk, Rijklam

s1d , and Rij akbl
s2d where the phason

strain Wai was considered to be independent of
z-components. The right results are given in Table I.

The determination of explicit forms for these invariants is
much more complicated than counting their number. As an
example, we considerKaib jgk for decagonal QCs with the
10mmsymmetry. This point group has eight irreducible rep-
resentations(cf. Table II), four of which are one-dimensional

TABLE I. Laue classes, point groups, dimension of symmetrized space, and the numbers of invariants of
third-order elastic constants for decagonal QCs.

Laue
classes

Point
groups

Third-order
elastic tensors

Dimension of
symmetrized space

Numbers of independent
invariants

13 10,10, Cijklmn 56 10

10/m Kaib jgk 56 6

Rijklam
s1d 126 10

Rij akbl
s2d 126 14

14 10mm, 1022, Cijklmn 56 9

10m2, 10/mmm Kaib jgk 56 3

Rijklam
s1d 126 5

Rij akbl
s2d 126 10

TABLE II. Characters of 10mmsymmetry.

10mm e 2a 2a2 2a3 2a4 a5 5b 5ab

G1 1 1 1 1 1 1 1 1

G2 1 1 1 1 1 1 −1 −1

G3 1 −1 1 −1 1 −1 1 −1

G4 1 −1 1 −1 1 1 −1 1

G5 2 t t−1 1−t −t −2 0 0

G6 2 t−1 −t −t t−1 2 0 0

G7 2 1−t −t t t−1 −2 0 0

G8 2 −t t−1 t−1 −t 2 0 0
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TABLE III. Independent third-order elastic constants for decagonal QCs.

Laue
classes

Point
group

Third-order
elastic constants

Independent
invariants

13 10,10 Cijklmn C111=C222 C112=C122 C113=C223 C333 C123

10/m C144=C255 C155=C244 C334=C355 C133=C233

C145=−C245=C446=−C556 C166=C266=
1
4sC111−C222d

C366=
1
2sC113−C123d C456=

1
2sC155−C144d

Kaib jgk K111=K116 K135=−K235=K556=−K336=K455=−K334

K222=K244 K356=K345=−K155=K255=K133=−K233

K116=K444 K224=K666 K124=−K226=−K446=
1
3K444

K114=K446=−K126=−1
3K666 K122=K144=−K126=−1

3K111

K112=K226=−K146=−1
3K222

Rijklam
s1d R111

s1d =−R222
s1d R441

s1d =R442
s1d =−R454

s1d =−R456
s1d =−R551

s1d =−R552
s1d

R112
s1d =−R221

s1d R131
s1d =R132

s1d =−R231
s1d =−R232

s1d =−R364
s1d =−R366

s1d

R116
s1d =R224

s1d R143
s1d =−R243

s1d =R155
s1d =−R255

s1d =−R465
s1d =R563

s1d

R226
s1d =R114

s1d R444
s1d =−R446

s1d =−R451
s1d =−R452

s1d =−R554
s1d =R556

s1d

R134
s1d =−R136

s1d =−R234
s1d =R236

s1d =R361
s1d =R362

s1d

R145
s1d =−R245

s1d =−R153
s1d =R253

s1d =R463
s1d =R565

s1d

R121
s1d =−R122

s1d =R661
s1d =−R662

s1d =−1
2sR111

s1d −R112
s1d d

R124
s1d =R126

s1d =R663
s1d =−R666

s1d =−1
2sR116

s1d +R226
s1d d

R166
s1d =−R264

s1d = 1
4s3R111

s1d −R112
s1d d R226

s1d =−R164
s1d = 1

4s−R111
s1d +3R112

s1d d
R161

s1d =R262
s1d =−1

4s3R116
s1d +R226

s1d d R162
s1d =R261

s1d = 1
4sR116

s1d =3R226
s1d d

Rij akbl
s2d R111

s2d =R244
s2d R122

s2d =R266
s2d R222

s2d =R166
s2d R211

s2d =R144
s2d

R135
s2d =R235

s2d R312
s2d =−R346

s2d R335
s2d R311

s2d =R334
s2d =R366

s2d =R322
s2d

R525
s2d =−R534

s2d =−R413
s2d =R423

s2d =R456
s2d

R556
s2d =−R513

s2d =R523
s2d =R434

s2d =−R425
s2d

R611
s2d =−R644

s2d =R114
s2d =−R214

s2d R622
s2d =−R666

s2d =−R126
s2d =R226

s2d

14 10mm, Cijklmn C111=C222 C112=C122 C113=C223 C333 C123

1022, C144=C255 C155=C244 C334=C355 C133=C233

10m2, C166=C266=
1
4sC111−C222d C366=

1
2sC113−C123d

10/mmm C456=
1
2sC155−C144d

Kaib jgk K444=−K666=K116=−K224=−3K126=−3K226

=3K114=3K124=3K446=−3K466

K111=−K222=K166=−K244=−3K146=3K246

=3K112=−3K122=−3K144=3K266

K135=−K235=K556=−K336=K455=−K334

Rijklam
s1d R111

s1d =−R222
s1d R441

s1d =R442
s1d =−R454

s1d =−R456
s1d =−R551

s1d =−R552
s1d

R112
s1d =−R221

s1d R131
s1d =R132

s1d =−R231
s1d =−R232

s1d =R364
s1d =R366

s1d

R143
s1d =−R243

s1d =R155
s1d =−R255

s1d =−R465
s1d =R563

s1d

R121
s1d =−R122

s1d =R661
s1d =−R662

s1d =−1
2sR111−R112d

R166
s1d =−R264

s1d = 1
4s3R111

s1d −R112
s1d d R266

s1d =−R164
s1d = 1

4s−R111
s1d +3R112d

Rij akbl
s2d R111

s2d =R222
s2d =R244

s2d =R166
s2d R122

s2d =R211
s2d =R144

s2d =R266
s2d R355

s2d
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and four are two-dimensional. In this case,GA=G1+G5 and
GB=G7. Therefore, the componentsKaib jgk transform under

hfsG1 + G5d 3 G7g 3 fsG1 + G5d 3 G7g 3 fsG1 + G5d 3 G7gjs

= 3G1 + 3G2 + 2G3 + 2G4 + 5G5 + 7G6 + 5G7 + 6G8, s7d

whereh js is the symmetric part of the direct product.
From Eq.(7) we can see that there are three linear com-

binations of 56 symmetric basis vectors, which form three
1D subspaces corresponding to the identity representation
G1. They are invariants under all the transformations. From
Eq. (4) we can see that the transformation properties of
Kaib jgk follow directly from those forWai, Wb j, andWgk. If
we find the precise components ofWai, Wb j, and Wgk that
transform under the same constituent representations we can
construct all the invariants formed by their combinations,
and then establish the independent componentKaib jgk. Using
the same method given in Ref. 1, we get the three nonvan-
ishing components

I1 = 3W4W4W4 − 3W6W6W6 + 3W1W1W6 − 3W2W2W4

− W1W2W6 − W2W2W6 + W1W1W4 + W1W2W4

+ W4W4W6 − W4W6W6, s8d

I2 = 3W1W1W1 − 3W2W2W2 + 3W1W6W6 − 3W2W4W4

− W1W4W6 + W2W4W6 + W1W1W2 − W1W2W2

− W1W4W4 + W2W6W6, s9d

I3 = W1W3W5 − W2W3W5 + W5W5W6 − W3W3W6 + W4W5W5

− W3W3W4. s10d

Then the corresponding nonvanishing components are

K444= − K666= K116= − K224= − 3K126= − 3K226= 3K114

= 3K124= 3K446= − 3K466,

K111= − K222= K166= − K244= − 3K146= 3K246= 3K112

= − 3K122= − 3K144= 3K266,

K135= − K235= K556= − K336= K455= − K334. s11d

All independent components of all third-order elastic con-
stants for decagonal QCs are listed in Table III. The corre-
spondences between the index pairs and single indices are, as
usual,

si j d = 11 22 33 23 31 12

i = 1 2 3 4 5 6
s12d

and

said = 11 22 23 12 13 21

i = 1 2 3 4 5 6.
s13d

III. CONCLUSION

In summary, we have determined all third-order elastic
constants(including phason strain) of decagonal QCs. The
results show that there are 40 independent third-order elastic
constants for Laue 13 where 10 third-order elastic constants
are due to phonon field, 6 due to phason field, 10 due to
phonon-phonon-phason coupling, 14 due to phonon-phason-
phason coupling, and 27 independent third-order elastic con-
stants for Laue 14 where 9 third-order elastic constants are
due to phonon filed, 3 due to phason field, 5 due to phonon-
phonon-phason coupling, and 10 due to phonon-phason-
phason coupling, respectively. It is interesting to notice that
compared with cubic crystals and glasses, icosahedral QCs
behave like a glass within linear phonon elasticity, but be-
have like a crystal with nonlinear phonon elasticity. The
icosahedral anisotropy can be detected either by the nonlin-
ear elastic properties due to pure phonon strain9 or by the
linear elastic properties due to phonon-phason coupling.10 In
contrast to the situation in icosahedral QCs, for decagonal
QCs, which have a tenfold symmetry axis, all linear elastic
properties(due to phonon strain, phason strain, and phonon-
phason coupling) are isotropic as in a glass. Since the rank of
Cijklmn, Kaib jgk, Rijklam

s1d , andRij akbl
s2d are 6, 12, 8, and 10, re-

spectively, the nonlinear phonon elasticity of decagonal QCs
is still isotropic. And it seems to be possible to reveal the
decagonal anisotropy in the quasiperiodic plane only by non-
linear elastic behavior due to the coupling between phonons
and phasons.

Finally, we would like to say something about how to
reveal the anisotropy of nonlinear phonon-phason elasticity
of QCs (at least in principle). Since QCs possess positional
and orientational long-range order with noncrystallographic

TABLE III. (Continued.)

Laue
classes

Point
group

Third-order
elastic constants

Independent
invariants

R112
s2d =R212

s2d =−R146
s2d =−R246

s2d R135
s2d =R235

s2d R312
s2d =−R346

s2d

R311
s2d =R344

s2d =R366
s2d =R322

s2d R312
s2d =−R346

s2d R515
s2d =R536

s2d =−R445
s2d

R114
s2d =R116

s2d =−R124
s2d =−R126

s2d =−R214
s2d =−R216

s2d =R224
s2d

=R226
s2d =R611

s2d =−R612
s2d =R622

s2d =−R666
s2d =−R646

s2d =−R644
s2d

R614
s2d =R626

s2d = 1
2sR122

s2d −R111
s2d d
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rotational symmetry, they are fundamentally anisotropic and
at the macroscopic level there should be some anisotropic
physical properties. According to Hermann’s theorem the
mininal tensorial rank which is necessary to reveal the aniso-
tropic of a symmetry is related to the order of the symmetry
rotation.7,8 However, the symmetry of QCs is always so high
that mostly macroscopic properties are isotropic unless they
are described by a tensor with rankNù5 for icosahedral
QCs orNù10 for decagonal QCs. In particular, QCs have
additional phason degrees of freedom which are frozen at
room temperature but excited at high temperature. The pha-
son displacement can be seen as a tensor of high rank since it
does not transform under the vector representationGA but the
irreducible representationGB. The phason displacement of
decagonal or icosahedral QCs is a tensor of rank 3. It is easy
to find out that the elastic constantsCijklmn and Rij ak are

tensors of rank 6. Thus the third-order nonlinear phonon
elastic properties and linear elastic properties at high tem-
perature due to phonon-phason coupling of icosahedral QCs
are expect to be anisotropic.8,10 Such conclusion has been
confirmed experimentally.9 Unlike for icosahedral QCs, for
decagonal QCs neither of them would be anisotropic due to
their low tensorial rank which is verified by Rochalet al.
who showed the dispersions corresponding to the elastic
waves do not depend on the wave vector direction. So the
decagonal QC anisotropy may be revealed only by the third-
order elastic constantsRij akb j

s2d which is a tensor of rank 10.
Following Rochalet al. the angular anisotropy of acoustic
phonon velocity and attenuation coefficient of decagonal
QCs at high temperature due to phonon-phason coupling in
the nonlinear elastic domain may be observed in experi-
ments.
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