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We giveab initio calculations for vacancies in Al. The calculations are based on the generalized-gradient
approximation in the density-functional theory and employ the all-electron full-potential Korringa-Kohn-
Rostoker Green’s function method for point defects, which guarantees the correct embedding of the cluster of
point defects in an otherwise perfect crystal. First, we confirm the recent calculated results of Carlinget al.
[Phys. Rev. Lett.85, 3862 (2000)], i.e., repulsion of the first-nearest-neighbor(1NN) divacancy in Al, and
elucidate quantitatively the micromechanism of repulsion. Using the calculated results for vacancy formation
energies and divacancy binding energies in Na, Mg, Al, and Si of face-centered-cubic, we show that the single
vacancy in nearly free-electron systems becomes very stable with increasing free-electron density, due to the
screening effect, and that the formation of divacancy destroys the stable electron distribution around the single
vacancy, resulting in a repulsion of two vacancies on 1NN sites, so that the 1NN divacancy is unstable. Second,
we show that the cluster expansion converges rapidly for the binding energies of vacancy agglomerates in Al.
The binding energy of 13 vacancies consisting of a central vacancy and its 12 nearest neighbors, is reproduced
within the error of 0.002 eV per vacancy, if many-body interaction energies up to the four-body terms are taken
into account in the cluster expansion, being compared with the average errors.0.1 eVd of the glue models
which are very often used to provide interatomic potentials for computer simulations. For the cluster expansion
of the binding energies of impurities, we get the same convergence as that obtained for vacancies. Thus, the
present cluster-expansion approach for the binding energies of agglomerates of vacancies and impurities in Al
may provide accurate data to construct the interaction-parameter model for computer simulations which are
strongly requested to study the dynamical process in the initial stage of the formation of the so-called Guinier-
Preston zones of low-concentrated Al-based alloys such as Al1−cXc (X=Cu, Zn; c,0.05).
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I. INTRODUCTION

Ab initio calculations based on the density-functional
theory provide accurate data of materials properties and are
expected to play an important role for material design. We
have shown that the full-potential Korringa-Kohn-Rostoker
(FPKKR) Green’s function method for point defects, devel-
oped by the Jülich group,1 combined with the generalized-
gradient approximation of Perdew and Wang of the density-
functional theory(PW91-GGA),2 reproduce accurately the
point-defect energies as well as the bulk properties of metals.
For example, the equilibrium lattice parameters, bulk
moduli, and monovacancy formation energies of elemental
face-centered-cube(fcc) and body-centered-cubic(bcc) met-
als Li-Au are reproduced, respectively, within the errors
of 1%, 10%, and 10% of the experimental values:3 the
generalized-gradient approximation(GGA) corrects the defi-
ciency of the local-spin-density approximation(LSDA) of
the density-functional theory, such as the underestimation of
the equilibrium lattice parameter and the overestimation of
the bulk modulus and monovacancy formation energy. The
advantage of the Green’s function method is that due to the
introduction of the host Green’s function, the embedding of
point defects in an otherwise ideal crystal is described cor-
rectly, differently from the usual supercell and cluster calcu-
lations. It is noted that although the potential perturbation
due to the defects is localized in the vicinity of the defects,

the change of the wave functions due to the defects is delo-
calized over the whole space.3,4 The practical advantage in
using the Green’s function method is to exploit this short-
range nature of the defect potential. For example, in order to
obtain the accurate and converged total energy of the defects
in fcc metals, it is enough to redetermine self-consistently
only the potentials of the defects and their nearest-
neighboring host atoms, if the total energy change due to the
perturbed wave functions over the infinite space is correctly
evaluated by using the Lloyd’s formula.4 This is a big advan-
tage of Green’s function calculations, compared with the su-
percell and cluster calculations where all potentials must be
recalculated in each iteration cycle. The energetics of point
defects in complex periodic systems can be calculated by the
present GGA-FPKKR method, because it allows one to cal-
culate the electronic structure of complex periodic systems
with a large number of atoms per unit cell by the screened
FPKKR band structure calculation method.5 The important
advantage of the screened FPKKR band structure calculation
method is the exploitation of the freedom in the choice of the
reference system related to the real bulk system through the
Dyson equation. Instead of a free-electron system the
screened FPKKR method applies a reference system with
repulsive potentials, leading to short-ranged structure con-
stants which substantially simplify the numerical calcula-
tions as discussed by Zeller.5 Thus at the present stage the
GGA-FPKKR method is a most useful and accurateab initio
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method for the electronic structure of materials. Recently the
measured temperature dependence of solid solubility limit of
impurities in metals has also been reproduced accurately by
the free-energy calculations based on the present GGA-
FPKKR method combined with the cluster variation
method.6

Using theab initio pseudopotential approach combined
with the supercell approximation, Carlinget al. recently
found that the first-nearest-neighbor(1NN) divacancy in Al
is energetically unstable(repulsion of 1NN divacancy, posi-
tive values of divacancy binding energies) against two iso-
lated monovacancies:7 the GGA resultss0.08 eVd is almost
the same as the LDA results0.07 eVd. The result is in con-
trast to the commonly accepted interpretation of the experi-
mental data on the non-Arrhenius temperature dependence of
the vacancy concentration, in terms of the monovacancy-
divacancy model where the interaction of a divacancy is as-
sumed to be attractive due to the decrease of the number of
the dangling bonds.8 Using the molecular-dynamics(MD)
simulations, however, Carlinget al.showed in Ref. 7 that the
non-Arrhenius temperature dependence of the vacancy con-
centration can arise from anharmonic atomic vibrations; the
temperature dependence of the measured vacancy concentra-
tion can be explained without the presence of divacancies.
Following the work of Carlinget al. Uesugiet al.9 also car-
ried out the LDA-pseudopotential-supercell calculations for
the divacancy binding energies in Al and obtained the repul-
sion for the 1NNs0.05 eVd, which is similar to the local
density approximation(LDA ) and GGA values(0.07 eV,
0.08 eV) obtained by Carlinget al. For the second-nearest-
neighbor binding energy Uesugiet al. obtained the attraction
(−0.04 eV, LDA), which is slightly different from the LDA
and GGA values(−0.005 and −0.004 eV, very weak attrac-
tion) of Carling et al. Uesugi et al. discussed that larger
supercells and largerk point numbers than those used in Ref.
7 are necessary to obtain converged numerical results, espe-
cially, for two vacancies on more distant neighboring sites.
The FPKKR calculations for point defects are free of such
convergence problems since they are not based on a super-
cell approach. Thek summation is only needed once to cal-
culate the structure Green’s function matrix of pure fcc-Al
(once per host), being needed for solving the Dyson equation
of the impurity problem. The structure Green’s function can
be easily and accurately obtained by the bulk calculation of
one atom per unit cell, therefore, a large number ofk points
poses no problem.

The aim of the present work is twofold. In Sec. II, we
confirm the repulsion of the 1NN divacancy in Al and eluci-
date quantitatively its physical origin. The present GGA-
FPKKR calculations show that the repulsion of the diva-
cancy occurs in high-density free electron metals. In the
present calculations we neglect the relaxation effects around
vacancies.10 However, it is noted that the present results do
not change very much by the inclusion of the lattice relax-
ation effects because the earlier-mentioned supercell
calculations9,11 show the negligible contribution(0.004 eV,
repulsion) to the binding energy of a divacancy, due to
the cancellation of both the relaxation effects in the

monovacancy and divacancy. We also discuss the limitations
of the pair-potential model and the glue models,12,13 both of
them predict an attraction for the interaction between the
nearest-neighboring vacancies in Al. In Sec. III, we show
that the binding energies of agglomerates of vacancies and
impurities in Al can be reproduced very well by the low-
order many-body interaction energies(MBIEs) in the cluster
expansion,6 for example, up to three-body terms or four-body
terms. Thus, the present cluster-expansion approach, based
on the impurity calculations, may provide accurate data to
construct an interaction-parameter model for computer simu-
lations for the low-concentrated alloys, where the minor con-
stituents of the elements are considered as impurities. In Sec.
IV, we give a summary and discuss the possiblity of the
present cluster-expansion approach to construct the
interaction-parameter model for comuter simulations, which
are needed to study the dynamical process in the initial stage
of the formation of the Guinier-Preston(GP) zones for the
low-concentrated Al alloys, such as Al1−cXc sX
=Cu,Zn;c,0.05d.14,15

Here it may be necessary to discuss the differences be-
tween the present approach and the Connolly-Williams
approach,16,17 both of which calculate MBIEs in alloys by
using the cluster expansion. The present approach, while re-
stricted to the dilute limit, considers only atomic configura-
tions, the energy differences of which define uniquely the
many-body interactions. The MBIEs are determined succes-
sively from low-order to high-order interactions6 and are in-
dependent of concentration. The Connolly-Williams ap-
proach also determines the MBIEs from different atomic
configurations, but the results of the supercell calculations
with many different configurations in the unit cell are fitted
by models containing MBIEs. The best fit obtained by the
smallest number of parameters determines the optional
model for the interactions, which can therefore not be deter-
mined uniquely. It is also obvious that in order to obtain the
MBIEs of point defects (dilute limit properties), the
Connolly-Williams approach needs a large size of supercell,
where the false interactions between point defects in the
nearest-neighboring unit cells can be neglected. The interac-
tions between the point defects may be longer than the re-
gion of the potential perturbation of defects, as discussed
above. For example, the Nb-Nb interaction in Ag is long-
ranged and is as large as −0.04 eV for the eighth neighbors:6

it may be impossible to calculate accurately these long-
ranged interactions by supercell calculations. These false in-
teractions due to the defects in the neighboring unit cells
may affect all atoms in the central unit cell, resulting in
errors of the MBIEs.

On the other hand, the MBIEs obtained by the present
approach, being accurate for a dilute limit, may become
wrong with the increase of concentration of solute atoms.
However, we have recently shown that for the concentration
lower than,10%, the concentration dependence of vacancy
formation energies is accurately calculated by the present
calculations combined with the direct configuration
averaging.18,19 Thus, we believe that in the same way the
concentration dependence of MBIEs may also be calculated
accurately for the low-concentrated alloys such as
Al1−cXc sX=Cu,Zn;c,0.05d.
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II. BINDING ENERGIES OF VACANCIES IN AL

In Sec. II A, we show that the present all-electron GGA-
FPKKR calculations reproduce very well the repulsion of a
1NN divacancy in Al, which was obtained by theab initio
pseudopotential-supercell calculations. By examining the
screening effect due to the free electrons, we elucidate the
micromechanism of the repulsion. The long-ranged interac-
tion energies of a divacancy in Al are also shown up to the
eighth neighbor. In Sec. II B, we discuss the limitations of
the pair-potential model and the glue models,12,13 both of
which predict an attraction of a 1NN divacancy in Al.

A. Divacancy binding energies in Al

In order to clarify the free-electron-density dependence of
the screening effect, we carried out calculations for vacan-
cies in Na, Mg, Al, and Si offcc structure: the bulk electron-
density increases from Na to Si by a factor of 10. It is noted
that the measured ground-state atomic structures are, respec-
tively, hexagonal-close-packed(hcp), hcp, fcc, diamond for
Na, Mg, Al, and Si,20 all of which are reproduced by the
present total-energy calculations based on the screened
GGA-FPKKR band structure method, as seen in Fig. 1: the
calculated results of lattice parameters and cohesive energies
agree with the experimental results, respectively, within the
errors of 1% and 2%. Figure 2 shows the calculated results
for vacancies in Na, Mg, Al, and Si offcc structure, using
the GGA equilibrium lattice constants(see Fig. 1): (a) aver-
age free-electron densitiessraved, (b) cohesive energies
sEcohd, (c) monovacancy formation energiessEV

Fd, and (d)

1NN divacancy binding energiessB2V
1std. The calculations for

the structure constants were carried out by use of 891 sym-
metry inequivalentk points and the highest angular momen-
tum lmax=4. The details of the calculations for defect systems
are discussed in Refs. 3 and 4. It is noted thatEV

F shows the
energy loss caused by the formation of a vacancy. Positive
values ofB2V

1st mean repulsion of a divacancy. The calculated
results are summarized as follows.

(1) EV
F [Fig. 2(c)] decreases rapidly with increasing free-

electron-density[Fig. 2(a)] for Mg-Si: EV
F is almost zero for

fcc-Si.
(2) B2V

1st [Fig. 2(d)] are negative(attraction) for Na and
Mg, while positive(repulsion) for Al and Si. B2V

1st increases
with the free-electron-density for Mg-Si. The present GGA
value s0.06 eVd for B2V

1st agrees well with the LDA values
(0.07 eV7 and 0.05 eV9) and the GGA values0.08 eV7d, ob-
tained by the pseudopotential-supercell calculations. The
present value −0.007 eV forB2V

2nd corresponds to the LDA
values (−0.005 eV7 and −0.04 eV9) and the GGA value
s−0.004 eVd obtained by the pseudopotential-supercell ap-
proximation. The interaction of a divacancy is long-ranged,
as shown in Fig. 3.

(3) The increase ofB2V
1st [Fig. 2(d)] for Mg-Si is correlated

with the decrease ofEV
F [Fig. 2(c)].

(4) The ratios ofEV
F /Ecoh and B2V

1st/EV
F (Table I) are, re-

spectively, very different from the values(1 and −1/6) ob-
tained by a simple pair-potential model.

We may conclude from the results(1), (2), and(3) that in
the high-density-free-electron systems the formation of

FIG. 1. PW91-GGA results for Wigner-Seitz radius dependence
of total energies of(a) Na, (b) Mg, (c) Al, and (d) Al, for hcp, fcc,
bcc, and diamond structures. See text for details.

FIG. 2. (a) Average bulk-electron-density,(b) PW91-GGA re-
sults for cohesive energies,(c) monovacancy formation energies,
and (d) binding energies of two vacancies, for NasZ=12d, Mg sZ
=13d, Al sZ=13d, and SisZ=14d of fcc structure. See text for
details.
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monovacancies becomes, due to the so-called screening
effect, a very favorable mechanism and that the formation
of a 1NN divacancy destroys this favorable configuration,
leading to a repulsion of the divacancy. The importance of
the screening effect in Al is also demonstrated by the elec-
tron redistribution around a vacancy, shown by the calcula-
tions of Carlinget al.7 and Polatoglouet al.:21 the vacancy
induces an accumulation of charge between the 12 nearest-
neighboring atoms of the monovacancy, against the decrease
of the coordination number of those atoms. This effect in-
volves the vacancy and the two of its nearest neighbors and
thus basically represents a three-body interaction. From a
chemical-bond picture, it means that the free electrons
around a vacancy are redistributed to strengthen the back
bonds around a vacancy: the resultant energy gain due to the
backbond strengthening nearly overcomes the energy loss
due to the creation of dangling bonds. The earlier-mentioned
mechanism may not work for vacancies in diamond-Si be-
cause the bulk electrons of diamond-Si[ground state of Si,
Fig. 1(d)] are not free-electron like. On the other hand, the
present mechanism may be valid for vacancies in hcp-Na and
hcp-Mg because of the similarity of fcc and hcp structures
(the same nearest-neighbor atomic configuration) and the
small total-energy differences between them, as seen in Figs.
1(a) and 1(b).

B. Pair-potential model and glue models
for binding energies

In this section we discuss the limitations of pair-potential
model and the glue models,12,13 both of which predicts an
attraction of the 1NN divacancy, very differently from theab
initio results.

First, we discuss the limitations of the pair-potential
model for the point-defect energies in Al, where the total
energy is written as a sum of the pair potentials. The impor-
tant failures of the pair-potential model are well known:(1)
the vacancy formation energy is equal to the cohesive energy
and(2) the binding energy of the 1NN divacancy is −1/6 of
the vacancy formation energy. The differences of the present
calculated results with the results obtained from the pair-
potential model become large for the high-density free-
electron systems: the errors ofEV

F andB2V
1st in Al are, respec-

tively, as large as 2.68s=3.39−0.61d eV and −0.16s=−0.10
−0.06d eV and the errors become much larger for fcc-Si
due to the even higher free-electron density, as shown in
Table I.

We now discuss that the glue models also do not repro-
duce accurately the binding energies of vacancy agglomer-
ates. The glue models include the embedded-atom-method
(EAM) because both the models have the same mathematical
form

E = o
i

Ei , s1d

Ei = o
jÞi

fsr i jd + Usnid, s2d

ni = o
jÞi

rsr i jd, s3d

where E is the total energy,fsr i jd is the two-body central
potential between atomsi and j , rsr i jd is the electron density
at atomi due to all other atoms,Usnid is associated with the
many-body potentials beyond the two-body potentialf.12,13

According to Johnson,22 the binding energies of divacancy,
trivacancy, and tetravacancy, obtained by the EAM are al-
most the same as those obtained by the simple pair-potential
model which takes into account only the number of dangling
bonds. It is noted that the correct description of the
backbond-strength dependence of the local environment
needs the accurate estimation for the MBIEs of a vacancy
with its nearest-neighboring atoms, as discussed by
Moriarty23 and Tersoff.24 The backbond strengthening due to
the formation of vacancies may be one of the bonding effects
beyond the glue models. The accurate estimation for binding
energiesBnV

1st (n vacancies of first neighbors) of vacancy ag-
glomerates in Al needs not only the environment dependence
of coordination number, but also the environment depen-
dence of the atomic charges[rsr i jd in Eq. (3)]. It is noted that
the glue models include only the environment dependence of
the coordination number because the environment depen-
dence is described by the superposition of atomic charges
which are not dependent on the environment.

TABLE I. Calculated results(in electron-volts) for Na, Mg, Al,
and Si offcc structure: cohesive energiessEcohd, monovacancy for-
mation energiessEV

Fd, first-nearest-neighbor divacancy binding en-
ergies sB2V

1std, ratios of EV
F with Ecoh, and ratios ofB2V

1st with EV
F.

According to the simple pair-potential model, for fcc the ratios
EV

F /Ecoh andB2V
1st/EV

F are, 1 and −1/6(fcc), respectively. See text for
details.

Element Na Mg Al Si

Ecoh 1.09 1.48 3.39 4.01

EV
F 0.38 0.79 0.61 0.07

B2V
1st −0.05 −0.08 0.06 0.15

EV
F /Ecoh 0.35 0.53 0.18 0.02

B2V
1st/EV

F −0.13 −0.10 0.08 2.14

FIG. 3. Distance dependence of divacancy binding energies up
to the eighth neighbor.
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The limitations of the glue models for the different coor-
dination numberss0–12d were already discussed by Robert-
sonet al.,13 testing many differents.25d glue models: none
gives a root-mean-square error less than 0.1 eV and the in-
dividual energy errors range from −0.3 to 0.3 eV per atom.
These errors may contribute to the bonding effects beyond
the glue formalism. Table II lists the results ofBnV

1st (a central
and its nearest 12 neighbors forn=13), obtained by the two
kinds of glue models, made by Robertsonet al.13 The data-
base of 171 total energies, constructed byab initio calcula-
tions based on the LSDA in the density functional formalism,
were used to determine the parameters of the models, one of
which (glue 1 in Table II) takes into account only the nearest
neighbor interaction, while the other(glue 2 in Table II)
takes into account the interactions beyond the nearest-
neighbor. The parameters in the models and the results for
BnV

1st are very different, as shown in Table II. This sensitivity
is a general character for the glue models, as discussed by
Robertsonet al.13 It may be concluded from these results that
the simple glue models13 predict attraction for interactions of
vacancies, in the same way as the pair-potential model, and
the errors forBnV

1st become larger withn, compared with the
present GGA-FPKKR results. It is noted that the differences
betweenBnV

1st’s obtained by the LDA and GGA calculations
are very small, compared with the differences betweenBnV

1st’s
obtained by the GGA calculations and the glue models.

III. CLUSTER-EXPANSION APPROACH FOR THE
BINDING ENERGIES

In Sec. III A, we discuss the convergence of the cluster
expansion for the binding energies of the agglomerates of
s2–6d vacancies and show that the binding energies ofs4–6d
vacancies may be reproduced very well by the low-order
MBIEs in the cluster expansion up to the three-body term, all
of which are obtained from the calculated results for two and
three vacancies, because the many-body interaction energies
beyond the three-body term are very small. In Sec. III B, we
show the convergence of the cluster expansion for the bind-
ing energies of the larger agglomerates of 13 vacancies and
impurities (Cu and Zn).

A. Vacancies

We use the more accurate expression for the binding en-
ergies of vacanciessBnV,np

d, differently from the definition

sBnVd used in Sec. II, which classifies the different shapes for
the same numbern of vacancies by the numbernp of nearest-
neighboring pairs. The MBIEssDEnV,np

d are also expressed
in the same way. We consider the pair(n=2 and np=1),
triangle (n=3 and np=3), square(n=4 and np=4), bent
rhombus (n=4 and np=5), tetrahedron(n=4 and np=6),
pyramid (n=5,np=8) and octahedron(n=6 andnp=12) of
first-neighbors, as shown in Fig. 4(a). Figure 4 shows(a)
DEnV,np

and (b) BnV,np
, as a function ofns=2–6d and

nps=1–12d. It is noted that the MBIEs beyond the three par-
ticles are very small. Thus, we can expect that theBnV,np

for

large n are reproduced by the MBIEs up to the three-body
term. In fact we can see in Fig. 4(b) that BnV,np

are repro-
duced very well by the cluster expansion up to the three-
body term. The error for an octahedron of vacancies(n=6
andnp=12) is ,0.02 eV per vacancy. If the two-body inter-
action of second-neighbor and the three-body interaction of a
triangle with one second neighbor are taken into account, the
error becomes as small as,0.01 eV per vacancy. On the
other hand, the error of the pair-potential model of nearest-
neighbor becomes larger withn and is larger than 0.1 eV per
vacancy, for an octahedron of vacancies, as shown in Fig.
4(b).

We note that the binding energy of 13 vacancies, as an
example of the larger agglomerates of vacancies, is very well
(the error of 0.002 eV per vacancy) reproduced by the cluster
expansion including up to the three-body terms or the four-
body terms, as discussed in the next subsection.

TABLE II. Calculated results(in electron-volts) for monova-
cancy formation energiessEV

Fd and binding energies ofns=2–13d
vacancies of first neighborssBnVd in Al, based on the two kinds of
glue model and the GGA-FPKKR method. See text for the glue
models.

Method Glue 1a Glue 2b GGA-FPKKR

EV
F 1.41 0.48 0.61

B2V −0.20 −0.06 0.06

B3V −0.70 −0.14 0.10

B4V −1.30 −0.28 0.01

B13V −10.53 −4.32 −0.95

FIG. 4. (a) Many-body interaction energiessDEnV,np
d and (b)

binding energiessBnV,np
d, as a function of a number of vacancies

ns=2–6d and a number of pairsnps=2–12d. The results obtained by
the pair(two-body) interaction model[dotted line in Fig. 4(b)] in-
cludes only the nearest-neighbor interaction energy, while the inter-
action model up to the three-body term[broken line in Fig. 4(b)] the
pair interaction energies up to second neighbor and the three-body
interaction energy of first-neighbors. See text for details.
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B. Impurities

We examined the cluster expansion for the binding ener-
gies of Cu and Zn agglomerates in Al. The calculated results
for a impurity cluster consisting of a central impurity and its
12 nearest-neighbors, are shown in Table III. The cluster
expansion includes the two-body interaction energies up to
the third-neighbors, and the three-body interaction energies
with one second-neighbor and two first-neighbors, together
with the MBIEs up to the three kinds of four-body terms,
shown in Fig. 4(a). We can obtain the same convergence as
that obtained for 13 vacancies: the error is 0.002 eV per
vacancy or impurity, compared with the average error 0.1 eV
of the glue models.13

As shown earlier, the inclusion of the three-body interac-
tion is most important for a reliable estimate of the binding
energies.

IV. SUMMARY AND FUTURE PROBLEM

First, we have confirmed the repulsion of the 1NN diva-
cancy in Al and elucidated quantitatively the micromecha-
nism of repulsion. The calculations are based on the
generalized-gradient approximation2 in the density-
functional formalism and the FPKKR method1,3,4 which
treats the correct embedding of the cluster of point defects
in an otherwise Al crystal. The limitation of the pair-
potential model and the glue models, both of which predict
an attraction of the 1NN divacancy in Al, has also been
discussed.

Second, we have examined the convergence of the cluster
expansion of the binding energies of agglomerates of vacan-
cies and impurities. It was shown that the cluster expansion
converges rapidly and the binding energies of 13 vacancies
and 13 impurities(Cu or Zn as impurities) are reproduced
within the error of 0.002 eV per vacancy or impurity, if the
MBIEs up to the four-body terms are taken into account in
the cluster expansion.

At the end of the paper, we want to discuss the usefulness
of the present cluster-expansion approach to constitute the
interaction-parameter model for computer simulations which
are needed to study the dynamical process in the initial stage
of the formation of GP zones of low-concentrated Al-based
alloys. Recently many experiments have been carried out to
investigate the dynamical process in the initial stage of the
formation of GP zones. The primary motivation for these
works is the desirable technological properties of many these
alloys, for example, their light weight and high strength. For

example, Satoet al.14,15 showed experimentally that a small
amount of Mg markedly accelerates the GP zone formation
of Al1−cCuc sc,0.05d and enhances age-hardening. Using
the Monte-Carlo computer simulation with the simple pair-
interaction model, they also discussed a physical picture: the
Mg/Cu/vacancy clusters formed in the initial stage act as
effective nucleation sites for GP zones and resultantly accel-
erate the formation of fine and high-density clusters, which
increases the strengthening due to the age hardening. In or-
der to examine this physical picture we need an accurate
interaction-parameter model beyond the pair-potential
model. We believe that the present cluster expansion ap-
proach may be useful for the construction of the interaction-
parameter model for the low-concentrated Al-based alloys
such as Al1−cXc sX=Cu, Zn; c,0.05d because the solute X
atoms of low concentration may be considered as impurities:
the present cluster-expansion approach provides the accurate
data for a dilute limit and the concentration dependence of
MBIEs in the low-concentrated alloys may be calculated by
the present method combined with the direct-configurational
averaging, as shown in Refs. 18 and 19. In addition to the
high accuracy and economical efficiency of the present ap-
proach, there are some other advantages. We found that the
sign and magnitude of the three-body interaction energies of
first neighbors are correlated to the shapes of the GP zones,
just as the sign and magnitude of the two-body interaction
energies are connected with the different types of phase di-
agrems of binary alloys, such as segregation, solid solution,
and orderering.6,25 For example, three-body interaction ener-
gies of Cu impurities and Zn impurities are, respectively,
positive (0.03 eV, repulsion) and zero, which correspond to
the (001) disk and the spherical shape of GP zones, respec-
tively; it is noted that there is no triangle cluster of first-
neighbors in the(001) layer of fcc structure. The micro-
mechanisms of structural stability of small clusters may
be elucidated, as discussed in Refs. 25 and 26; for example,
the Cu/Mg/vacancy cluster may become stable by both
the attractive interactions of Cu-Mg and Mg-vacancy. It is
also an advantage of the present method to treat easily the
effect of quenched-in excess vacancies and additional
elements of solutes: the systems may easily be studied as
an impurity problem. The details will be published
elsewhwere.27

It is obvious that the lattice relaxation effects become im-
portant for clusters of solute atoms of large atomic-radius
misfit, compared with the host atom.10 The modeling of the
lattice relaxation energies, interpolating theab initio results,
may be needed to complete the accurate interaction-
parameter model for computer simulations, although this is a
time-consuming and difficult problem.
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TABLE III. Calculated results(in electron-volts) for binding
energies of 13 vacancies and impurities. The cluster-expansion re-
sults including up to the four-body interaction energies are given
together with the exact GGA-FPKKR results. See text for details.

Up to n-body n=2 n=3 n=4 Exact

Vacancy13 1.90 −0.95 −0.92 −0.95

Cu13 1.04 1.96 1.92 1.94

Zn13 −0.63 −0.53 −0.50 −0.49
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