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We present an atomistic investigation on mechanical loading effects in a model fiber-reinfgSil
monocrystal where a crack is present. Our simulations are both consistent with the basic results of elementary
continuum mechanics and provide a deeper physical insight at the nanoscale. In particular, we propose an
effective renormalization of some basic quantigyg., the crack lengghwhich reconcile continuum theory to
atomistics. Finally, we prove that the interaction between the microcrack and the hard in¢filsoris able
to increase the strength of th&SiC lattice and falls beyond the linear regime. We consistently provide a
corresponding constitutive equation for the total stress field for an interacting crack-fiber pair.
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I. INTRODUCTION ture of the actual micro- or nanoscale structure of the fiber-

High hardness, low density and high inertness—amongﬁemforﬁed sysktem. o ation based
other interesting properties—make ceramic materials very Nt dISI wor vyel prelsentl an datom|§t|c |nv.est||galt|on ase
promising(and, therefore, quite extensively investiggteat 0" model-potential molecular dynami@éD) simulations on

structural applications. There are, however, two basic fealMechanical loading effects in a model fiber-reinforced
tures severely limiting their straightforward use, namely,3-SIC monocrystal where a crack is present. The fiber is

their brittle nature as well as their reduced-fracture tough@ctually modeled as a cylindrical diamond nanofiber, corre-

ness. In other words, a possible crack front can propagat%oondmg to the case of a hard inclusion. Silicon carbide is, in

) ) : rn, selected as the prototypical covalently bonded ceramic
g;;treeﬁzs;:?{goggz %?\?:r:i{?rﬂicr:l?r:ﬁed the overall mechani of great potential interest as candidate composite material for

. . . aerospace applications. In the present work the material is
A possible improvement toward an increased fractur b bp P

h has b d to be fib it Gesolved atomistically, so that there is no ambiguity in rep-
toughness has been proposed o be fiber reinforcement. rlésenting its actual structure displaying an elastic nonhomo-

basica_lly cons_ists in the incorporation of suitable ﬁbers into &eneity at the nanoscale. In other words, present simulations
ceramic matrix. There are at least two toughening mecha| naturally operate at the length scale, which falls out-of-
nisms ruled out by fibers, namely, crack deflection and fibeteach of continuum theories. MD simulations, such as the
bridging" While such mechanisms have been reasonablyresent one, are well-established tools used to investigate the
well developed as technological materials processing toolsmechanics and fracture of materidfsSince the system re-
there is still a lack of knowledge about the interaction fea-sponse is here computed by the collective displacement of
tures between a crack tip and a matrix-fiber interface at thatoms, the resulting mechanical behavior is governed by the
most fundamental, i.e., atomistic length scale. selected interatomic potential that, in turn, is derived from a
There are serious conceptual and computational limitafundamental understanding of chemical bonding between at-
tions in applying continuum mechanigse., the standard oms. The selection of suitable constitutive equations for the
theoretical framework for structural engineernintgp the  mechanical behavior is therefore not needed as in continuum
above situation. Stress and strain fields computed by comnechanics.
tinuum theories at vanishing distance from the crack tip be- The main goal of the present investigation is twofold: on
come mathematically singularthus preventing any mean- the one side, we want to understand whether linear elastic
ingful prediction of mechanical propertiés.g., toughness or fracture mechanics and atomistic simulations do provide
crack deflectionin the near vicinity of the crack tip. In other similar pictures for the stress field of such a system; on the
words it is difficult to project the continuum approach at theother side, we aim at getting an improved physical insight on
length scale where a direct interaction between the fracturthe interaction between a crack tip and a hard elastic inclu-
event and the phase boundary between the fiber and the msion (fiber) by using atomistic simulations as virtual labora-
trix occurs. Furthermore, the corresponding total computatory.
tional workload of a continuum analysis based on finite ele- The paper is organized as follows. In Sec. Il we describe
ments would be prohibitively large for the extreme the present computational framework, taking special care in
refinement of the numerical mesh requested by the local nordescribing the geometry and the border conditions. In Sec.
homogeneity of the system at such a short length scale. TyplHl we present our results for the two isolated defegtse
cally, the mesh refinement would indeed be stopped at arack and the inclusignand for an interacting crack-
longer scale, representing a possibly bad coarse-grained pigiclusion pair. We extensively discuss present results with
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respect to the prediction of linear elastic fracture mechanics At least three different interatomic potentials for SiC have
and we provide an important renormalization concept. Fibeen introduced thus f&ré Our simulations are based on the
nally, we prove that the phenomena investigated here falbond-order potential developed by Tersbffihich has been
beyond the linear response regime and, by means of atomissdely applied to study the structural, mechanitéiermal,
tic simulations, we provide a constitutive model for the non-vibrational, and surface properties gfSiC° In particular,
linear interaction between the crack tip and the model fiberthe thermomechanical bulk properties of silicon carbide cal-
culated according to present motfedre in good agreement
with experimental omab initio datal' Furthermore, the Ter-
Il. COMPUTATIONAL FRAMEWORK soff potential is able to reproduce the brittle failure of silicon
carbide under tensile lodd-'*A modification of Tersoff po-
The typical simulation cel(see Fig. 1 was a thin slab tential has indeed been proposed by Tan@l.® consisting
containing 60480 atoms of a SiC monocrystal withof scaling the original interaction cutoff upon the actual glo-
zincblend structurég-SiC). Atoms were arranged in a peri- bal deformation. Nonetheless, the present calculations are
odic supercell made of 842X 30 unit cells containing 12 based on the original form of the potential for two reasons:
atoms each, resulting in a system with dimensions 444.28) the modification does not apply to nonhomogenous sys-
X 6.107x 224.37 B. Thex, y, andz axes of the system were tems containing cracks and inclusiois) we are interested
aligned along thé112], [110], and[111] orthogonal direc- In tensile-strained system &0 K in which case the modi-
tions, respectively. In the-y plane the system was kept fixed fication is less relevant. o
at the equilibrium lattice parameter g£SiC (4.318 A) and Two kinds of defects were studied in the present work,
periodically repeated. In thedirection the crystal was elon- Na@mely a microcrack and an inclusion. To find their equilib-
gated in steps up to a tensile strain of 8 % by means of thdUm configurations in the bulk monocrystal we first per-

constant traction methddAccording to this method, peri- formed a serie_s of structural relaxations by a standard
odic boundary conditions were removed alongzftirection damped dynamics method. The convergence was controlled

and the resulting surface@n our case one top silicon and PY monitoring the maximum atomic force and stress compo-
one bottom carbofl11) shuffle planeswere subject to con- NeNts, and the system was considered fully relaxed for
stant forcegtractiong to mimick the embedding into an in- &tomic forces below 0.01 eV A The o, stress tensor of a
finite bulk at the same level of strain. As a consequence, theyStém aff=0 K is in principle defined as

top and the bottom surfaces are subject to opposite net forces

of modulus 3.72 eV A! per unit area of 16.15 A(calcu- 19U
lated according to the Tersoff potenfigland corresponding OB = Ve . (1)
to a stress 0.23 eV &=36.84 GP4i.e., about 6.6 % of the ap

Young’s modulus along thg¢111] directior). The typical

loading condition adopted here consists of fixed stress alongshereU is the internal energy of the system agg; is the

z direction o,,= 07, and fixed strain in the orthogonal plane strain tensor for the Cartesian coordinateand 8.1> Within
€= €y,=0, and therefore, represents the plane-strain bordeghe Tersoff force model it is possible to cast the internal
condition of continuum mechaniés. energyU of the system into a sum of single-site energies
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= = =D . A map of the stress, (X, z) in thex-z plane is represented

v Ell " 2.: {EJ: Valry) b”VA(r”)]}' @ in Fig. 2 for a fully relaxed configuration at 8 % strain. Dif-
ferent tones of gray represent the tengiight gray) and

) ) X X compressivgdark gray stress, respectively. The terms ten-
andj, by=f[£] is the Tersoff bond-order functional with  gjie and compressive are referred to the asymptotic stress
=2y21,9(rij M) In EQ. (2) Vg represents the two-body re- a1y o7, (mid-gray tone at the left and right extreme of Fig.
pulsive potential, whilev, is the two-body attractlve.on”e. 2). We first point out that numerical data qualitatively exhibit
By means of Eqg(1) and(2) we easily get an expression for he stress enhancement at the crack tip as expected from

wherei andj label atomsy;; is the distance between atdm

the o in terms of atomic stresses, elementary theory of linear elastic fracture mechanics
1 VAR | (.LEFM).2 Figure 2.shows that th.e present atomistic simula-

Oop= NE (N) e = NE Tapin (3)  tion correctly predicts the formation of two tensile lobes that

[ €ap i extend outward from the crack tips. This feature is clearly

shown by the bottom panel of Fig. 2, where isostress contour

once we attribute to any atom the same volu#i&l. Such | q h | he ed £ th
an attribution is in principle correct for homogeneous sys-p ots are reporte . On the contrary, along the edges of the
cut, two compressive lobes are formed.

tems only; nonetheless, we adopt the definition given in Eq: i
(3) even in the present investigation where cracks and inho- L€t US now move to a more quantitative study of the
mogeneities are found. We heuristically prove the reliabilitycr@ck-induced stress field. LeXc, Zc) be the coordinates of
of this assumption by verifing that the resulting atomisticthe center of the crack. We calculated the stress anng_a hori-
data agree with the elastic continuum thegsge Sec. 1), zontal line for values<>X¢ and z=Z¢. The corresponding
Furthermore, we remark that a similar approach was succeStressoz4X) data are represented as open circles in Fig. 3 as
fully applied by Cleriet all6 for the case of a crack tip in function of reduced unitX=(x-Xc)/a. The asymptotic be-
metal. havior of o,{X) for both X—1 andX— o« are nicely fitted

For any pairi-j of interacting atoms we calculate the av- by a functionA(X-B)°+C. We find, however, that two dif-
erage atomic stress 1(/&&5,i+0'aﬁ'j) and we attribute it to ferent exponent® are necessary to describe the whole set of
the average atomic position of the selectgdatom pair. We ~data. In the near vicinity of the crack tifl <X<4), the
will refer to such a quantity as the local stress tensomstress diverges as the inverse of the square root of the dis-

Eaﬁ(x,y,z)_ For the present plane strain condition $heli- tance(D ~-0.5). The fitting curve is represented as a conti-
rection is not relevant, therefore, we can average nous line in Fig. 3 and is unable to fit data at a distance
. greater thenX=4. As the distance from the crack tip in-
1(v_ creasesX>4), the g,, stress decays according to a different
X,2) = — X,¥,2)dy, 4 ” Zz o .
Tap2) Lyfo Tap%.¥,2)dy “@ power law with exponenb ~-2. The fit is represented in

] ] ) Fig. 3 as a dashed line. Far away from the crack tip the
and accordingly define the stresgs(x,2) in x-zplane. Inthe  asymptotic value of the stress, tends to the external ap-
following we will focus our investigation on such plane- plied loads?,=0.23 eV A3,
averaged stress tenseys(X,2). According to LEFM, the stress field produced by a sharp

L. RESULTS crack the under the remote load, and contained in a large
: plate of length 2 was calculated by Inglis in Ref. 2 to be

A. Isolated crack in silicon carbide

First of all we studied a stable microcrack in strained ozz(x):crsz
B-SiC monocrystal. To insert the microcrack we cut a num- vXo-1

ber of bonds across the shuffl@ll) plane in a perfeci3 . 1 X~ Xc .
-SiC monocrystal homogeneously strained at 8 % in zhe Uzzm whenX = —1
direction, similarly to the procedure described by Cleti ~ v ,
al.! This direction has been chosen since ¢h#&l) shuffle =4 +}i) herx = 2%
surface ing-SiC is that of minimum enerd$ and, therefore, 7z oxz) Whem=———

a crack in thg111) shuffle plane is the most likely to occur. (5)
The front of the crack is parallel to the axes(see Fig. 1

and, due to the periodic boundary conditions along yhe where the relevant asymptotic trends are explicitely reported
direction, it extends through the whole sample. The halfon the right terms. We conclude that the atomistic simula-

lengtha of the microcrack measured along thelirection is  tions correctly reproduce the asymptotic far and near-field
about 18 A[the uncertainty in the measurementafs re- power laws predicted by LEFM.

lated to the atomic resolution and corresponds to the distance In order to test the quantitative agreement between the

between two adjaceriti12) planes. In response to the ap- atomistic data and the Inglis formula, we plot in Fig. 4 the
plied load the microcrack turns into an elliptical Griffith-like quantityX=q,(X)yX?*~1/07;,as a function ofX. According
hole!” However, for the given geometry and loading condi-to Eq.(5) we expect a straight line, as indeed proved by Fig.
tions no crack propagation is observed during any of thet up to a distance of about 200 A. Such an excellent agree-
simulations. This feature is not an artifact; rather, we selectethent stands for the reliability of the present atomistic simu-
those conditions to ensure stabiltfy. lation and, in particular, of Eq.3). Nevertheless, Fig. 4 de-
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FIG. 2. Top panel: stress map
o,4X,2) of a stable crack of semi-
lengtha=18 A in strainedB-SiC.
The applied tensile strain is,,
=8 %. Light gray represents ten-
sile stress, dark gray represents
compressive stress. Bottom panel:
isostress contour plo(units of
eV A3 for the same crack. We
clearly observe the formation of a
stress dipole, with enhanced stress
at the two crack tips. Note that
only a small portion of the simu-
lation cell is represented for sake
of clarity. Such a portion corre-
sponds to a length of 14 nm and
8 nm in thex and z directions,
respectively.

serves a more detailed analysis. In order to match LEFMhe atomic level. This is a source of conceptual difference
equations to atomistics it is necessary to introduce an effedsetween continuum and discrete analysis, and we propose
tive semilength of the crack (27 A) that does not corre- this latter to be more physically sound. In any case, by means
spond to the actual dimension of the ¢titat we remark was  of Fig. 4 we can state that, although so(eeven anybasic

as small as 18 A We found that the effective length corre- assumption of LEFM is not strictly fulfilled, we can recon-
sponds approximately to the sum of the real length to theile atomistics with continuum analysis by a proper renor-
extension of the region where the local stress is higher thamalization of the crack length.

0.3 eV/AS. At such stress valueg-SiC mechanical re-
sponse is strongly nonlinear. A possible origin for such a
discrepancy could be attributed to our definition of stress that
does not take into account local volume deformation and As a prototype of a hard inclusion we consider the case a
attributes the same local volume to each afeee Eq(1)].  diamond fiber inserted into A-SiC matrix as a pure chemi-
However in the near vicinity of the crack, bonds are elon-cal defect with no bond reconstruction or buckling at the
gated and atomic volumes are expanded; this correction, imterface(i.e., coherent with the crystalline matyixThis as-
turn, would reduce the stress at the crack tip, and the differsumption is validated by recent experimental results of Pecz
ence between the actual dimension of the crack and the eét all® where, by implanting carbon atoms #SiC at high
fective parameter would accordingly increase. Furthermoreilemperature, the formation of coherent diamond inclusions
the discrepancy would be stronger at the crack tip and woulgvith size of about~3 nm was shown. We selected a cylin-
vanish far from it. In conclusion, we exclude artifacts in ourdrical region whose axis is parallel to tlyecoordinate and
stress definition. On the other hand, we remark that somwith radiusR=1 nm. We then replaced the atoms of the cy-
approximations, as follows, are present in LEFHl the lindrical portion of the crystal by the same number of carbon
crack is assumed sharp, as the limiting configuration of amtoms to represent the cross-section of an infinite fiber along
elliptic hole when the shorter half axis approaches z@rp; they direction. Because the C-C bond is 12 % smaller than
the crack faces are traction free; &jid) linearity is assumed the Si-C bond, the inclusion gives rise to a sizeable deforma-
everywhere. None of these assumptions is indeed verified &bn field in the SiC matrix that, at variance with the crack

B. Isolated diamond inclusion in silicon carbide
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0.4
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> o032} FIG. 3. Stress component(X) as a function
-— of the distanceX from the crack tip in reduced
N units X=(x-X¢)/a, open circles represent atom-
© 031 istic data, continous line represents ~ax705
trend, while dashed line represent theX™2
0.28 | behavior.
0.26 |
0.24 |
0.22
0

case, can be studied without applying any load. A map of théavored*® The critical radius is, moreover, expected to de-
stress fieldo,(x,2) for the unstraineds-SiC monocrystal crease if an external load is applied. Our calculations prove
(e,,=0) is represented in Fig. 5. Light gray corresponds tothat, in agreement with the experi_mental findings, a c_oherent
high tensile stress. It is worth noting that the stress field clos€ "M large inclusion under a strain of 8 % is stable, i.e., no
to the carbon inclusion has a quadrupole shape; the top arfiefects are formed at the matrix/inclusion border.

bottom lobes are regions of tensile stress because along the As for the diplacement fieldi(z), we consider an inclu-
[111] direction the softer Si-C bonds of the host matrix areSion in an unstraine@-SiC sample. Let; be the coordinate
pulled by the stronger C-C bonds of the inclusion. The rightof & givenith atom for a perfec-SiC monocrystal. Let

and left lobes of thw-SiC matrix undergo to Compressive be the coordinate of the same atom when the diamond inclu-
stress because there the local Si-C bonds are shortened $®n is present and forces have been fully relaxed. Finally, let
match the C-C bonds of diamond inclusitsee also Fig. 5, (X;,Z)) be the coordinate of center of the circular section
bottom panel for the corresponding isostress contour jplotscorresponding to the inclusion. We measure the atomic dis-
The total stress induced in the matrix increases with the raplacement fieldi,(z)=z -z along a vertical lingx=X; and
diusR of the inclusion. It has been proved that when a criti-z>Z)) starting at the center of the inclusion; the distance is
cal radius is reached, the formation of lattice damage at theneasured in reduced uni&=(z-2,)/R. The results of such
interface (amorphization at the interfagds energetically calculations are reported in Fig. 6 as open circles. It can be

10

o
‘f?ﬁ(f‘
9t P
e
8 r T
T
7 P -
ﬁ,@"" FIG. 4. Plot of the X
b S e - =0,4X) o, \X?=1 function dis-
e tance from the crack tip in re-
ST M@x"’f 7 duced units X=(x-Xg)/a. Full
al f.e**"o line: theoretical LEFM prediction;
_«‘e*‘“@f/ open circles: present atomistic
3t ,"f“"‘# data.
e
2 -
1 i"’”fw .
1 3 4 5 6 7 8 10
X
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FIG. 5. Top panel: stress map,x,2) of 8-SiC containing a diamond inclusida=10 A). Bottom panel: isostress contour ploinits
of eV A™3) for the same inclusion. We clearly observe the formation of a quadrupole structure with tensile stress enhanced at the top and
bottom lobes and depleated at the left and right lobes. Note that only a small portion of the simulation cell is represented for the sake of
clarity. Such a portion corresponds to a length of 14 nm and 8 nm ix #ved z directions, respectively.

0.25

pointed out that the displacement is a decreasing function of

the distance, as expected. In order to find out the decaying

behavior, data are fitted by thZ—-B)C+D function of the 0.2
distance, obtaining a power law with exponé&ht-—1. This

result is nicely in agreement with the theory of elasticity in 0.15
the case of a spherical elastic inclusion in a homogeneous
medium. According to EshelBYthe displacement decreases 3
asymptotically as the inverse square of the distandéZz?.

For an infinite fiber, similarly to the electrostatic case of a

spherical point charge versus an infinite charged line, the 0.05
asymptotic decrease has a different power law due to the

different dimensionality and corresponds, in fact, to the in-

0
verse of the distance- 1/Z. 0 2 46 810121416182022
z

C. Interaction between a microcrack and a hard inclusion

in silicon carbide FIG. 6. Atomic displacement,(Z) (units of equilibriumg-SiC

lattice constant 4.32 Ras a function of the distance from the in-
In order to study the interaction between the microcrackclusion, measured in reduces urits(z—Z,;)/R. Open squares: ato-
and the inclusion, we performed several calculations immistic data; dashed line: fitting curvez™1.
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FIG. 7. Top panel: energy of
strained B-SiC (e,,=8 %) con-
taining a stable crack and a dia-
mond inclusion as a function of
the relative distance for a vertical
crack-inclusion alignment; bottom
panel: the same for horizontal
alignment.

FIG. 8. Top panel: stress map,(x,y) of B-SiC containing both a diamond inclusi¢R=10 A) and a stable cracka=18 A) at the
distance of 5.5 nm. Bottom panel: isostress contour @laits of eV A3 for the same system. Note that only a small portion of the
simulation cell is represented for the sake of clarity. Such a portion corresponds to a length of 18 nm and 10 noamdthdirections,

respectively.
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which we varied the relative distance between the two destress lobes interact with an energy gaiE~ 1.5 eV AL
fects. The distance is measured with respect to the defedthe relative map of the stress is represented in Fig. 8; the
centers(Xc,Zc) and (X;,Z,). The starting point for any run region corresponding to the highest tensile stielsdimited
was a-SiC monocrystal containing the carbon inclusion by the the isostress contou,=0.27 eV A%, as indicated in
relaxed at zero load. The system was then strained by theid. 8, bottom panglat the right crack tip is made smaller by
application of constant tractiongorresponding to 8 % of the compressive lobe of the |r1glu3|on. At the same time, the
tensile strain in perfec-SiC) and again fully relaxed. At [SOStress contow,;=0.25 eV A (corresponding to a lower
this stage the crack was inserted into the system as explaind@/ue Of tensile stregsurns out to be extended all around the

; . : inclusion. The maximum depth of the attraction basin is
above. We inserted the microcrack always i(Lal) shuffle reached when the crack tip and the inclusion are separated by

plane, at different distances from the inclusion, along tw st few Anastroms and the defects are nearly in contact
different alignments: in the case of horizontal alignmentJ g y

hereafter referred to as)the microcrack was put at differ- (AE~12 eV A™). In case V we find a similar attraction ba-
( : . i put at sin, however, the interaction is now strongalthough more
ent distances along the horizontal libgz=2,) as indicated

hort d the calculated basin has the depth
in Fig. 7 (bottom); in vertical alignment geometrghereafter ZEOLISZQ\?E—Q_ © calcliated energy basin has the dep

referred to as Ythe distance was varied along the vertical  The present analysis does not demonstrate whether the
line (x=X,,2) as indicated in Fig. 7top). The energy of @ interaction between the defects is additive or whether the
system containing both the inclusion and the microcrack isegime is linear. If this is not the case, we say that there is a
reported in the same figure for both alignments. Being thejefect of linearity. For example, we may investigate the pos-
inclusion an infinite fiber, our result is expressed as energgible defect of linearity of the stress field, namely, the differ-
per unit length of fiber. ence between the stress field when both defects are present
Let us first consider case H. As the distance between thand the sum of the stress fields of the two isolated defects.
microcrack and inclusion decreases, the energy of the systelret us consider Fig. @ottom panelswhere the stress com-
lowers. This result indicates that there exists an attractioponento,{x) is measured along the direction keepingz
basin between the two objects. As no bond rearrangementz,=Z. (case of horizontal alignmenand for two different
occurs(the defects are spatially separated at all the distancaglative crack-inclusion distances, namehl5 nm(left) and
considereyl we can further conclude that such an energy~5.5 nm(right). First of all we observe that at the smaller
basin has to be attributed to the interaction between the stresgack-inclusion distance, the stress at the right crack tip de-
fields of the microcrack and of the hard inclusion. When thecreases. This clearly indicates that the inclusion is able to
relative distance of the two defects is about 5.5 nm, oppositaffect the stress intensification at the tip in agreement with a
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FIG. 10. Defect of linearitya$/(x) profiles
corresponding to four relative distancesbe-
tween the crack and the inclusion. Full ling:
=22.2 nm; long dashed lined=16.6 nm; short
dashed lined=11.1 nm; dotted lined=5.5 nm
(see text

possible toughening mechanism. We also prove that such ahe relative distance, we find theﬁ,'(x) profiles shown in

effect falls beyond the linear regime. Let us define the totaFig. 10. There we have normalized numerical data so that the
stress as the stress that is calculated when both the crack ahdight of the peaks at the right tip of the crack were the

the inclusion are present in the system. We can compare theame. The behavior o& (x) is represented by a function

total stress with the one calculated in a system containinganishing everywhere, but for two rather localized regions
just one crack or just one inclusion and accordingly definecorresponding to the positions of the crack and the inclusion.

the defect of linearityoy,(x) of the zz component of the Accordingly, we cast the defect of linearigyC'(x) in the

stresso. (x) as following form:

o (%) = [o5(x) = 07,] = [05/X) = 03] = [0,40% = o7,), 1
(6)

where the uniform stress backgrounad, is subtracted from

each contribution(lone can define similar quantity for any 05 |

component of stress and strain, gt is the most relevant

for the actual geometjyAccording to Eq(6), o, '(x) should
vanish if the |nteract|on of the two defects is purer additive.
Furthermorecr (x) obviously depends on the relative dis- 5
tance between the two defects. The actual result is presente®,
in Fig. 9 (top panels and clearly indicates that for an inter- §’

acting pair of crack inclusion under tensile loading, the me- g5 |

chanical responsestress fielgl falls beyond the linear re-
gime. At the crack tips the defect of linearity exhibits two
negative peaks that tend to reduce the tensile streséx)
actually corresponds to a few percent of the total stress
o)(x) when the crack-inclusion distance is small. Such a
deviation may not be considered negligible because its role
may be relevant near the stress stability threshold of a syster 4 5

0.4 0.6 0.8 1 1.2 1.4

containing a crack. Furthermore, its contribution may be im- 0.2
portant when several crack-inclusion pairs are present in the Log, d
system.
Let us finally consider thef (X) profiles corresponding FIG. 11. Scaling functiors(d) appearing in Eq(7) versus rela-

to different relative distances between the crack and the diaive distanced measured in reduced unité—X,|/R. Points are the
mond inclusion. If we scale them by a factor depending uporscale factors calculated so to get results shown in Fig. 10.
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a5 (%) = (X = Xc)ge(x = Xo) +gi(x = X))], (7) IV. CONCLUSIONS

The interaction between a microcrack and a hard diamond
. . . inclusion in 8-SiC has been studied by means of molecular
WheFeS”X"XC') Is a scaling fu_nct|on only depen_dent on the dynamics. Itﬁhas been proved that theybasic features of elas-
relative distancel=|X,~Xc|, while the last factor is the SUM icity theory are reproduced even at the atomic scale, both for
of two suitable functions localized at the defect positions. Ae crack stress field and for the inclusion displacement field,
detailed analysis of the two functions will be prgs_ented e|seprovided that a renormalization of some basic quantity of
where; here we only remark th@lc(x—Xc) exhibits two  continuum theory is suitably defined. By means of a quanti-
negative peaks at the crack tips whiléx—X,) is negative in  tative investigation on the potential energy landscape, we
the interior of the inclusion. A plot of the scaling function have further demonstrated that at small crack-inclusion dis-
s(d) versus the distancd shows a power-law behavior as tances the elastic energy of the system decreases effectively,
can be verified in Fig. 11, where filled squares represent€., it is energetically more stable. Furthermore the tensile
present data in a log-log plot. Accordingly we can state thagtress at the crack tip decreases due to the presence of the
the scaling function decays as inverse of the square of th&clusion. Such atomic-scale results are consistent with the
relative distance of the crack and the inclusifX,—Xc|)  Possible proposed toughening mechanism according to
~|X,~Xg"2 This leads to an important qualitative result, which the diamond inclusion is able to reinforce tBeSiC

namely the total stress field can be formulated by means 0qrystal. The interaction between the stress fields of the crack
the following constitutive formulation: and the inclusion has been also investigated in detail; devia-

tion from a simple linear behavior is indeed observed. Fi-

nally, it is found that nonlinearity increases according to the

[gc(x— Xo) +gi(x=X)] inverse of the square of relative distance between the crack
X~ X (8) tip and the hard inclusiorfiber).

09 (X) = 0S(X) + o fX) +

ACKNOWLEDGMENT

This result is one step toward a continuum nonlinear model This work has been funded by Italian MIUR under
for the stress of an interacting crack-inclusion couple that if?.R.I.N.-2002 project “Fracture mechanics of complex co-

inferred fully from atomistic analysis. valently bonded materials.”
*Corresponding author. Electronic address: 133, Wang, S. Yip, S. R. Phillpot, and D. Wolf, Phys. Rev. Lét,
luciano.colombo@dsf.unica.it 4182(1993.
1J. D. Kuntz, G. Zhan, and A. K. Mukherjee, Mater. Res. Ba®, 143 Wang, J. Li, S. Yip, S. R. Phillpot, and D. Wolf, Phys. Rev. B
22 (2004); and references therein. 52, 12 627(1995.

2 . .
K. B. Broberg,Cracks and FracturéAcademic Press, San Diego, 15_ Landau and E. M. LifshitsTheory of Elasticity(Butterworth-

1999'. . . . . Heinemann, Oxford, 1986
3 ’ ’
Mz.oigl?lml,Heterogeneous Materials (ISpringer-Verlag, Berlin, 16, Cleri, S. R. Phillpot, D. Wolf, and S. Yip, J. Am. Ceram. Soc.
4R. L. B. Selinger and D. Farkas, Mater. Res. Bulix5), 11 Soc. 81, 501(1998.
(2000. A, A. Griffith, Philos. Trans. R. Soc. London London, 221, 163
SF. Cleri, Phys. Rev. B55, 014107(2002. (1920.
6J. Tersoff, Phys. Rev. B9, 5566(1989. 18\We performed careful analysis of the Griffith condition for crack
"E. Pearson, T. Takai, T. Halicioglu, and W. A. Tiller, J. Cryst.  propagation for the present force model and mechanical condi-
Growth 70, 33 (1984. tions. The actual values of the crack length and strain guarantee
8F. Shimojo, I. Ebbsjo, R. K. Kalia, A. Nakano, J. P. Rino, and P.  that we are below the Griffith threshold. A more detailed analy-
Vashishta, Phys. Rev. Let84, 3338(2000. sis on this issue will be reported elesewhere.
9M. Tang and S. Yip, Phys. Rev. Let?5, 2738(1995. 198, Pecz, H. Weishart, V. Heera, and L. Toth, Appl. Phys. L&g,.
10M. Tang and S. Yip, Phys. Rev. B2, 15 150(1995. 46 (2003.
1w. Li and T. Wang, Phys. Rev. B9, 3993(1999. 20J. D. Eshelby, Proc. R. Soc. London, Ser. A Society London, A
2M. Tang and S. Yip, J. Appl. Physz6, 2719(1994). 241, 376(1957.

094108-10



