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We present an atomistic investigation on mechanical loading effects in a model fiber-reinforcedb-SiC
monocrystal where a crack is present. Our simulations are both consistent with the basic results of elementary
continuum mechanics and provide a deeper physical insight at the nanoscale. In particular, we propose an
effective renormalization of some basic quantity(e.g., the crack length), which reconcile continuum theory to
atomistics. Finally, we prove that the interaction between the microcrack and the hard inclusion(fiber) is able
to increase the strength of theb-SiC lattice and falls beyond the linear regime. We consistently provide a
corresponding constitutive equation for the total stress field for an interacting crack-fiber pair.
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I. INTRODUCTION

High hardness, low density and high inertness—among
other interesting properties—make ceramic materials very
promising(and, therefore, quite extensively investigated) for
structural applications. There are, however, two basic fea-
tures severely limiting their straightforward use, namely,
their brittle nature as well as their reduced-fracture tough-
ness. In other words, a possible crack front can propagate
quite easily(once generated) and affect the overall mechani-
cal reliability of a given structure.

A possible improvement toward an increased fracture
toughness has been proposed to be fiber reinforcement. It
basically consists in the incorporation of suitable fibers into a
ceramic matrix. There are at least two toughening mecha-
nisms ruled out by fibers, namely, crack deflection and fiber
bridging.1 While such mechanisms have been reasonably
well developed as technological materials processing tools,
there is still a lack of knowledge about the interaction fea-
tures between a crack tip and a matrix-fiber interface at the
most fundamental, i.e., atomistic length scale.

There are serious conceptual and computational limita-
tions in applying continuum mechanics(i.e., the standard
theoretical framework for structural engineering) to the
above situation. Stress and strain fields computed by con-
tinuum theories at vanishing distance from the crack tip be-
come mathematically singular,2 thus preventing any mean-
ingful prediction of mechanical properties(e.g., toughness or
crack deflection) in the near vicinity of the crack tip. In other
words it is difficult to project the continuum approach at the
length scale where a direct interaction between the fracture
event and the phase boundary between the fiber and the ma-
trix occurs. Furthermore, the corresponding total computa-
tional workload of a continuum analysis based on finite ele-
ments would be prohibitively large for the extreme
refinement of the numerical mesh requested by the local non-
homogeneity of the system at such a short length scale. Typi-
cally, the mesh refinement would indeed be stopped at a
longer scale, representing a possibly bad coarse-grained pic-

ture of the actual micro- or nanoscale structure of the fiber-
reinforced system.

In this work we present an atomistic investigation based
on model-potential molecular dynamics(MD) simulations on
mechanical loading effects in a model fiber-reinforced
b-SiC monocrystal where a crack is present. The fiber is
actually modeled as a cylindrical diamond nanofiber, corre-
sponding to the case of a hard inclusion. Silicon carbide is, in
turn, selected as the prototypical covalently bonded ceramic
of great potential interest as candidate composite material for
aerospace applications. In the present work the material is
resolved atomistically, so that there is no ambiguity in rep-
resenting its actual structure displaying an elastic nonhomo-
geneity at the nanoscale. In other words, present simulations
will naturally operate at the length scale, which falls out-of-
reach of continuum theories. MD simulations, such as the
present one, are well-established tools used to investigate the
mechanics and fracture of materials.3,4 Since the system re-
sponse is here computed by the collective displacement of
atoms, the resulting mechanical behavior is governed by the
selected interatomic potential that, in turn, is derived from a
fundamental understanding of chemical bonding between at-
oms. The selection of suitable constitutive equations for the
mechanical behavior is therefore not needed as in continuum
mechanics.

The main goal of the present investigation is twofold: on
the one side, we want to understand whether linear elastic
fracture mechanics and atomistic simulations do provide
similar pictures for the stress field of such a system; on the
other side, we aim at getting an improved physical insight on
the interaction between a crack tip and a hard elastic inclu-
sion (fiber) by using atomistic simulations as virtual labora-
tory.

The paper is organized as follows. In Sec. II we describe
the present computational framework, taking special care in
describing the geometry and the border conditions. In Sec.
III we present our results for the two isolated defects(the
crack and the inclusion) and for an interacting crack-
inclusion pair. We extensively discuss present results with
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respect to the prediction of linear elastic fracture mechanics
and we provide an important renormalization concept. Fi-
nally, we prove that the phenomena investigated here fall
beyond the linear response regime and, by means of atomis-
tic simulations, we provide a constitutive model for the non-
linear interaction between the crack tip and the model fiber.

II. COMPUTATIONAL FRAMEWORK

The typical simulation cell(see Fig. 1) was a thin slab
containing 60 480 atoms of a SiC monocrystal with
zincblend structuresb-SiCd. Atoms were arranged in a peri-
odic supercell made of 8432330 unit cells containing 12
atoms each, resulting in a system with dimensions 444.28
36.1073224.37 Å3. Thex, y, andz axes of the system were

aligned along thef112̄g, f1̄10g, and [111] orthogonal direc-
tions, respectively. In thex-y plane the system was kept fixed
at the equilibrium lattice parameter ofb-SiC s4.318 Åd and
periodically repeated. In thez direction the crystal was elon-
gated in steps up to a tensile strain of 8 % by means of the
constant traction method.5 According to this method, peri-
odic boundary conditions were removed along thez direction
and the resulting surfaces(in our case one top silicon and
one bottom carbon(111) shuffle planes) were subject to con-
stant forces(tractions) to mimick the embedding into an in-
finite bulk at the same level of strain. As a consequence, the
top and the bottom surfaces are subject to opposite net forces
of modulus 3.72 eV Å−1 per unit area of 16.15 Å2 (calcu-
lated according to the Tersoff potential6), and corresponding
to a stress 0.23 eV Å−3=36.84 GPa(i.e., about 6.6 % of the
Young’s modulus along the[111] direction). The typical
loading condition adopted here consists of fixed stress along
z direction szz=szz

` and fixed strain in the orthogonal plane
exx=eyy=0, and therefore, represents the plane-strain border
condition of continuum mechanics.2

At least three different interatomic potentials for SiC have
been introduced thus far.6–8 Our simulations are based on the
bond-order potential developed by Tersoff,6 which has been
widely applied to study the structural, mechanical,9 thermal,
vibrational, and surface properties ofb-SiC.10 In particular,
the thermomechanical bulk properties of silicon carbide cal-
culated according to present model10 are in good agreement
with experimental orab initio data.11 Furthermore, the Ter-
soff potential is able to reproduce the brittle failure of silicon
carbide under tensile load.12–14A modification of Tersoff po-
tential has indeed been proposed by Tanget al.,9 consisting
of scaling the original interaction cutoff upon the actual glo-
bal deformation. Nonetheless, the present calculations are
based on the original form of the potential for two reasons:
(i) the modification does not apply to nonhomogenous sys-
tems containing cracks and inclusions,(ii ) we are interested
in tensile-strained system atT=0 K in which case the modi-
fication is less relevant.

Two kinds of defects were studied in the present work,
namely a microcrack and an inclusion. To find their equilib-
rium configurations in the bulk monocrystal we first per-
formed a series of structural relaxations by a standard
damped dynamics method. The convergence was controlled
by monitoring the maximum atomic force and stress compo-
nents, and the system was considered fully relaxed for
atomic forces below 0.01 eV Å−1. Thesab stress tensor of a
system atT=0 K is in principle defined as

sab =
1

V

]U

]eab

s1d

whereU is the internal energy of the system andeab is the
strain tensor for the Cartesian coordinatesa andb.15 Within
the Tersoff force model it is possible to cast the internal
energyU of the system into a sum of single-site energiesni

FIG. 1. Geometry, orientation,
crystal structure, and dimension of
the simulation cell. Both the crack
(C) and the cylindrical inclusion
(I) are shown as well.
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U = o
i

ni = o
i
Ho

j

fVRsr ijd − bijVAsr ijdgJ , s2d

wherei and j label atoms,r ij is the distance between atomi
and j , bij = ffzg is the Tersoff bond-order functional withz
=okÞi,jgsr ij ,r ikd. In Eq. (2) VR represents the two-body re-
pulsive potential, whileVA is the two-body attractive one.6

By means of Eqs.(1) and(2) we easily get an expression for
the sab in terms of atomic stressessab,i

sab =
1

N
o

i
SV

N
D−1 ]ni

]eab

=
1

N
o

i

sab,i , s3d

once we attribute to any atom the same volumeV/N. Such
an attribution is in principle correct for homogeneous sys-
tems only; nonetheless, we adopt the definition given in Eq.
(3) even in the present investigation where cracks and inho-
mogeneities are found. We heuristically prove the reliability
of this assumption by verifing that the resulting atomistic
data agree with the elastic continuum theory(see Sec. III).
Furthermore, we remark that a similar approach was succes-
fully applied by Cleriet al.16 for the case of a crack tip in
metal.

For any pairi- j of interacting atoms we calculate the av-
erage atomic stress 1/2ssab,i +sab,jd and we attribute it to
the average atomic position of the selectedi- j atom pair. We
will refer to such a quantity as the local stress tensor
s̄absx,y,zd. For the present plane strain condition they di-
rection is not relevant, therefore, we can average

sabsx,zd =
1

Ly
E

0

Ly

s̄absx,y,zddy, s4d

and accordingly define the stresssabsx,zd in x-z plane. In the
following we will focus our investigation on such plane-
averaged stress tensorsabsx,zd.

III. RESULTS

A. Isolated crack in silicon carbide

First of all we studied a stable microcrack in strained
b-SiC monocrystal. To insert the microcrack we cut a num-
ber of bonds across the shuffle(111) plane in a perfectb
-SiC monocrystal homogeneously strained at 8 % in thez
direction, similarly to the procedure described by Cleriet
al.16 This direction has been chosen since the(111) shuffle
surface inb-SiC is that of minimum energy10 and, therefore,
a crack in the(111) shuffle plane is the most likely to occur.
The front of the crack is parallel to they axes(see Fig. 1)
and, due to the periodic boundary conditions along they
direction, it extends through the whole sample. The half
lengtha of the microcrack measured along thex direction is
about 18 Å[the uncertainty in the measurement ofa is re-
lated to the atomic resolution and corresponds to the distance

between two adjacents112̄d planes]. In response to the ap-
plied load the microcrack turns into an elliptical Griffith-like
hole.17 However, for the given geometry and loading condi-
tions no crack propagation is observed during any of the
simulations. This feature is not an artifact; rather, we selected
those conditions to ensure stability.18

A map of the stressszzsx,zd in thex-z plane is represented
in Fig. 2 for a fully relaxed configuration at 8 % strain. Dif-
ferent tones of gray represent the tensile(light gray) and
compressive(dark gray) stress, respectively. The terms ten-
sile and compressive are referred to the asymptotic stress
valueszz

` (mid-gray tone at the left and right extreme of Fig.
2). We first point out that numerical data qualitatively exhibit
the stress enhancement at the crack tip as expected from
elementary theory of linear elastic fracture mechanics
(LEFM).2 Figure 2 shows that the present atomistic simula-
tion correctly predicts the formation of two tensile lobes that
extend outward from the crack tips. This feature is clearly
shown by the bottom panel of Fig. 2, where isostress contour
plots are reported. On the contrary, along the edges of the
cut, two compressive lobes are formed.

Let us now move to a more quantitative study of the
crack-induced stress field. LetsXC,ZCd be the coordinates of
the center of the crack. We calculated the stress along a hori-
zontal line for valuesx.XC and z=ZC. The corresponding
stressszzsXd data are represented as open circles in Fig. 3 as
function of reduced unitsX=sx−XCd /a. The asymptotic be-
havior of szzsXd for both X→1 andX→` are nicely fitted
by a functionAsX−BdD+C. We find, however, that two dif-
ferent exponentsD are necessary to describe the whole set of
data. In the near vicinity of the crack tips1,X,4d, the
stress diverges as the inverse of the square root of the dis-
tancesD,−0.5d. The fitting curve is represented as a conti-
nous line in Fig. 3 and is unable to fit data at a distance
greater thenX=4. As the distance from the crack tip in-
creasessX.4d, theszz stress decays according to a different
power law with exponentD,−2. The fit is represented in
Fig. 3 as a dashed line. Far away from the crack tip the
asymptotic value of the stressszz tends to the external ap-
plied loadszz

` =0.23 eV Å−3.
According to LEFM, the stress field produced by a sharp

crack the under the remote loadszz
` and contained in a large

plate of length 2a was calculated by Inglis in Ref. 2 to be

szzsxd = szz
` X
ÎX2 − 1

,5 szz
` 1
Î2sX − 1d

whenX =
x − XC

a
→ 1+

szz
`S1 +

1

2

1

X2D whenX =
x − XC

a
→ ` 6 ,

s5d

where the relevant asymptotic trends are explicitely reported
on the right terms. We conclude that the atomistic simula-
tions correctly reproduce the asymptotic far and near-field
power laws predicted by LEFM.

In order to test the quantitative agreement between the
atomistic data and the Inglis formula, we plot in Fig. 4 the
quantityS=szzsXdÎX2−1/szz

` as a function ofX. According
to Eq.(5) we expect a straight line, as indeed proved by Fig.
4 up to a distance of about 200 Å. Such an excellent agree-
ment stands for the reliability of the present atomistic simu-
lation and, in particular, of Eq.(3). Nevertheless, Fig. 4 de-
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serves a more detailed analysis. In order to match LEFM
equations to atomistics it is necessary to introduce an effec-
tive semilength of the cracka s27 Åd that does not corre-
spond to the actual dimension of the cut(that we remark was
as small as 18 Å). We found that the effective length corre-
sponds approximately to the sum of the real length to the
extension of the region where the local stress is higher than
0.3 eV/Å−3. At such stress valuesb-SiC mechanical re-
sponse is strongly nonlinear. A possible origin for such a
discrepancy could be attributed to our definition of stress that
does not take into account local volume deformation and
attributes the same local volume to each atom[see Eq.(1)].
However in the near vicinity of the crack, bonds are elon-
gated and atomic volumes are expanded; this correction, in
turn, would reduce the stress at the crack tip, and the differ-
ence between the actual dimension of the crack and the ef-
fective parameter would accordingly increase. Furthermore,
the discrepancy would be stronger at the crack tip and would
vanish far from it. In conclusion, we exclude artifacts in our
stress definition. On the other hand, we remark that some
approximations, as follows, are present in LEFM:(i) the
crack is assumed sharp, as the limiting configuration of an
elliptic hole when the shorter half axis approaches zero;(ii )
the crack faces are traction free; and(iii ) linearity is assumed
everywhere. None of these assumptions is indeed verified at

the atomic level. This is a source of conceptual difference
between continuum and discrete analysis, and we propose
this latter to be more physically sound. In any case, by means
of Fig. 4 we can state that, although some(or even any) basic
assumption of LEFM is not strictly fulfilled, we can recon-
cile atomistics with continuum analysis by a proper renor-
malization of the crack length.

B. Isolated diamond inclusion in silicon carbide

As a prototype of a hard inclusion we consider the case a
diamond fiber inserted into ab-SiC matrix as a pure chemi-
cal defect with no bond reconstruction or buckling at the
interface(i.e., coherent with the crystalline matrix). This as-
sumption is validated by recent experimental results of Pecz
et al.19 where, by implanting carbon atoms inb-SiC at high
temperature, the formation of coherent diamond inclusions
with size of about,3 nm was shown. We selected a cylin-
drical region whose axis is parallel to they coordinate and
with radiusR=1 nm. We then replaced the atoms of the cy-
lindrical portion of the crystal by the same number of carbon
atoms to represent the cross-section of an infinite fiber along
the y direction. Because the C-C bond is 12 % smaller than
the Si-C bond, the inclusion gives rise to a sizeable deforma-
tion field in the SiC matrix that, at variance with the crack

FIG. 2. Top panel: stress map
szzsx,zd of a stable crack of semi-
lengtha=18 Å in strainedb-SiC.
The applied tensile strain is«zz

=8 %. Light gray represents ten-
sile stress, dark gray represents
compressive stress. Bottom panel:
isostress contour plot(units of
eV Å−3) for the same crack. We
clearly observe the formation of a
stress dipole, with enhanced stress
at the two crack tips. Note that
only a small portion of the simu-
lation cell is represented for sake
of clarity. Such a portion corre-
sponds to a length of 14 nm and
8 nm in the x and z directions,
respectively.
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case, can be studied without applying any load. A map of the
stress fieldszzsx,zd for the unstrainedb-SiC monocrystal
sezz=0d is represented in Fig. 5. Light gray corresponds to
high tensile stress. It is worth noting that the stress field close
to the carbon inclusion has a quadrupole shape; the top and
bottom lobes are regions of tensile stress because along the
[111] direction the softer Si-C bonds of the host matrix are
pulled by the stronger C-C bonds of the inclusion. The right
and left lobes of theb-SiC matrix undergo to compressive
stress because there the local Si-C bonds are shortened to
match the C-C bonds of diamond inclusion(see also Fig. 5,
bottom panel for the corresponding isostress contour plots).
The total stress induced in the matrix increases with the ra-
diusR of the inclusion. It has been proved that when a criti-
cal radius is reached, the formation of lattice damage at the
interface (amorphization at the interface) is energetically

favored.19 The critical radius is, moreover, expected to de-
crease if an external load is applied. Our calculations prove
that, in agreement with the experimental findings, a coherent
2 nm large inclusion under a strain of 8 % is stable, i.e., no
defects are formed at the matrix/inclusion border.

As for the diplacement fielduszd, we consider an inclu-
sion in an unstrainedb-SiC sample. Letzi be the coordinate
of a given ith atom for a perfectb-SiC monocrystal. Letzi8
be the coordinate of the same atom when the diamond inclu-
sion is present and forces have been fully relaxed. Finally, let
sXI ,ZId be the coordinate of center of the circular section
corresponding to the inclusion. We measure the atomic dis-
placement fielduzszid=zi8−zi along a vertical line(x=XI and
z.ZI) starting at the center of the inclusion; the distance is
measured in reduced unitsZ=sz−ZId /R. The results of such
calculations are reported in Fig. 6 as open circles. It can be

FIG. 3. Stress componentszzsXd as a function
of the distanceX from the crack tip in reduced
units X=sx−XCd /a, open circles represent atom-
istic data, continous line represents a,X−0.5

trend, while dashed line represent the,X−2

behavior.

FIG. 4. Plot of the S
=szzsXd /szz

`ÎX2−1 function dis-
tance from the crack tip in re-
duced units X=sx−XCd /a. Full
line: theoretical LEFM prediction;
open circles: present atomistic
data.
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pointed out that the displacement is a decreasing function of
the distance, as expected. In order to find out the decaying
behavior, data are fitted by theAsZ−BdC+D function of the
distance, obtaining a power law with exponentC,−1. This
result is nicely in agreement with the theory of elasticity in
the case of a spherical elastic inclusion in a homogeneous
medium. According to Eshelby20 the displacement decreases
asymptotically as the inverse square of the distance,1/Z2.
For an infinite fiber, similarly to the electrostatic case of a
spherical point charge versus an infinite charged line, the
asymptotic decrease has a different power law due to the
different dimensionality and corresponds, in fact, to the in-
verse of the distance,1/Z.

C. Interaction between a microcrack and a hard inclusion
in silicon carbide

In order to study the interaction between the microcrack
and the inclusion, we performed several calculations in

FIG. 5. Top panel: stress mapszzsx,zd of b-SiC containing a diamond inclusionsa=10 Åd. Bottom panel: isostress contour plot(units
of eV Å−3) for the same inclusion. We clearly observe the formation of a quadrupole structure with tensile stress enhanced at the top and
bottom lobes and depleated at the left and right lobes. Note that only a small portion of the simulation cell is represented for the sake of
clarity. Such a portion corresponds to a length of 14 nm and 8 nm in thex andz directions, respectively.

FIG. 6. Atomic displacementuzsZd (units of equilibriumb-SiC
lattice constant 4.32 Å) as a function of the distance from the in-
clusion, measured in reduces unitsZ=sz−ZId /R. Open squares: ato-
mistic data; dashed line: fitting curve,Z−1.
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FIG. 7. Top panel: energy of
strained b-SiC sezz=8 %d con-
taining a stable crack and a dia-
mond inclusion as a function of
the relative distance for a vertical
crack-inclusion alignment; bottom
panel: the same for horizontal
alignment.

FIG. 8. Top panel: stress mapszzsx,yd of b-SiC containing both a diamond inclusionsR=10 Åd and a stable cracksa=18 Åd at the
distance of 5.5 nm. Bottom panel: isostress contour plot(units of eV Å−3) for the same system. Note that only a small portion of the
simulation cell is represented for the sake of clarity. Such a portion corresponds to a length of 18 nm and 10 nm in thex andz directions,
respectively.
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which we varied the relative distance between the two de-
fects. The distance is measured with respect to the defect
centerssXC,ZCd and sXI ,ZId. The starting point for any run
was a b-SiC monocrystal containing the carbon inclusion
relaxed at zero load. The system was then strained by the
application of constant tractions(corresponding to 8 % of
tensile strain in perfectb-SiC) and again fully relaxed. At
this stage the crack was inserted into the system as explained
above. We inserted the microcrack always in a(111) shuffle
plane, at different distances from the inclusion, along two
different alignments: in the case of horizontal alignment
(hereafter referred to as H) the microcrack was put at differ-
ent distances along the horizontal linesx,z=ZId as indicated
in Fig. 7 (bottom); in vertical alignment geometry(hereafter
referred to as V) the distance was varied along the vertical
line sx=XI ,zd as indicated in Fig. 7(top). The energy of a
system containing both the inclusion and the microcrack is
reported in the same figure for both alignments. Being the
inclusion an infinite fiber, our result is expressed as energy
per unit length of fiber.

Let us first consider case H. As the distance between the
microcrack and inclusion decreases, the energy of the system
lowers. This result indicates that there exists an attraction
basin between the two objects. As no bond rearrangement
occurs(the defects are spatially separated at all the distances
considered), we can further conclude that such an energy
basin has to be attributed to the interaction between the stress
fields of the microcrack and of the hard inclusion. When the
relative distance of the two defects is about 5.5 nm, opposite

stress lobes interact with an energy gainDE,1.5 eV Å−1.
The relative map of the stress is represented in Fig. 8; the
region corresponding to the highest tensile stress(delimited
by the the isostress contourszz=0.27 eV Å−3, as indicated in
Fig. 8, bottom panel) at the right crack tip is made smaller by
the compressive lobe of the inclusion. At the same time, the
isostress contourszz=0.25 eV Å−3 (corresponding to a lower
value of tensile stress) turns out to be extended all around the
inclusion. The maximum depth of the attraction basin is
reached when the crack tip and the inclusion are separated by
just few Ångströms and the defects are nearly in contact
sDE,12 eV Å−1d. In case V we find a similar attraction ba-
sin, however, the interaction is now stronger(although more
short range) and the calculated energy basin has the depth
DE,18 eV Å−1.

The present analysis does not demonstrate whether the
interaction between the defects is additive or whether the
regime is linear. If this is not the case, we say that there is a
defect of linearity. For example, we may investigate the pos-
sible defect of linearity of the stress field, namely, the differ-
ence between the stress field when both defects are present
and the sum of the stress fields of the two isolated defects.
Let us consider Fig. 9(bottom panels) where the stress com-
ponentszzsxd is measured along thex direction keepingz
=ZI =ZC (case of horizontal alignment) and for two different
relative crack-inclusion distances, namely,,15 nm(left) and
,5.5 nm (right). First of all we observe that at the smaller
crack-inclusion distance, the stress at the right crack tip de-
creases. This clearly indicates that the inclusion is able to
affect the stress intensification at the tip in agreement with a

FIG. 9. Bottom panels: stress
componentszz

CIsxd along the line
connecting the crack tip to the in-
clusion, when their distance is
,15 nm (left) and ,5.5 nm
(right). Top panels: corresponding
defect of linearitysnl

CI of the stress
field.
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possible toughening mechanism. We also prove that such an
effect falls beyond the linear regime. Let us define the total
stress as the stress that is calculated when both the crack and
the inclusion are present in the system. We can compare the
total stress with the one calculated in a system containing
just one crack or just one inclusion and accordingly define
the defect of linearitysnl

CIsxd of the zz component of the
stressszz

CIsxd as

snl
CIsxd = fszz

CIsxd − szz
` g − fszz

Csxd − szz
` g − fszz

I sxd − szz
` g,

s6d

where the uniform stress backgroundszz
` is subtracted from

each contribution(one can define similar quantity for any
component of stress and strain, butszz is the most relevant
for the actual geometry). According to Eq.(6), snl

CIsxd should
vanish if the interaction of the two defects is purely additive.
Furthermore,snl

CIsxd obviously depends on the relative dis-
tance between the two defects. The actual result is presented
in Fig. 9 (top panels) and clearly indicates that for an inter-
acting pair of crack inclusion under tensile loading, the me-
chanical response(stress field) falls beyond the linear re-
gime. At the crack tips the defect of linearity exhibits two
negative peaks that tend to reduce the tensile stress.snl

CIsxd
actually corresponds to a few percent of the total stress
szz

CIsxd when the crack-inclusion distance is small. Such a
deviation may not be considered negligible because its role
may be relevant near the stress stability threshold of a system
containing a crack. Furthermore, its contribution may be im-
portant when several crack-inclusion pairs are present in the
system.

Let us finally consider thesnl
CIsxd profiles corresponding

to different relative distances between the crack and the dia-
mond inclusion. If we scale them by a factor depending upon

the relative distance, we find thesnl
CIsxd profiles shown in

Fig. 10. There we have normalized numerical data so that the
height of the peaks at the right tip of the crack were the
same. The behavior ofsnl

CIsxd is represented by a function
vanishing everywhere, but for two rather localized regions
corresponding to the positions of the crack and the inclusion.
Accordingly, we cast the defect of linearitysnl

CIsxd in the
following form:

FIG. 10. Defect of linearitysnl
CIsxd profiles

corresponding to four relative distancesd be-
tween the crack and the inclusion. Full line:d
=22.2 nm; long dashed line:d=16.6 nm; short
dashed line:d=11.1 nm; dotted line:d=5.5 nm
(see text).

FIG. 11. Scaling functionssdd appearing in Eq.(7) versus rela-
tive distanced measured in reduced unitsuXC−XIu /R. Points are the
scale factors calculated so to get results shown in Fig. 10.
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snl
CIsxd = ssuXI − XCudfgCsx − XCd + gIsx − XIdg, s7d

wheressuXI −XCud is a scaling function only dependent on the
relative distanced= uXI −XCu, while the last factor is the sum
of two suitable functions localized at the defect positions. A
detailed analysis of the two functions will be presented else-
where; here we only remark thatgCsx−XCd exhibits two
negative peaks at the crack tips whilegIsx−XId is negative in
the interior of the inclusion. A plot of the scaling function
ssdd versus the distanced shows a power-law behavior as
can be verified in Fig. 11, where filled squares represent
present data in a log-log plot. Accordingly we can state that
the scaling function decays as inverse of the square of the
relative distance of the crack and the inclusionssuXI −XCud
,uXI −XCu−2. This leads to an important qualitative result,
namely the total stress field can be formulated by means of
the following constitutive formulation:

szz
CIsxd = szz

Csxd + szz
I sxd +

fgCsx − XCd + gIsx − XIdg
uXI − XCu2

. s8d

This result is one step toward a continuum nonlinear model
for the stress of an interacting crack-inclusion couple that is
inferred fully from atomistic analysis.

IV. CONCLUSIONS

The interaction between a microcrack and a hard diamond
inclusion inb-SiC has been studied by means of molecular
dynamics. It has been proved that the basic features of elas-
ticity theory are reproduced even at the atomic scale, both for
the crack stress field and for the inclusion displacement field,
provided that a renormalization of some basic quantity of
continuum theory is suitably defined. By means of a quanti-
tative investigation on the potential energy landscape, we
have further demonstrated that at small crack-inclusion dis-
tances the elastic energy of the system decreases effectively,
i.e., it is energetically more stable. Furthermore the tensile
stress at the crack tip decreases due to the presence of the
inclusion. Such atomic-scale results are consistent with the
possible proposed toughening mechanism according to
which the diamond inclusion is able to reinforce theb-SiC
crystal. The interaction between the stress fields of the crack
and the inclusion has been also investigated in detail; devia-
tion from a simple linear behavior is indeed observed. Fi-
nally, it is found that nonlinearity increases according to the
inverse of the square of relative distance between the crack
tip and the hard inclusion(fiber).
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