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We study analytically the effect of the chemical disorder produced by displacement cascades in a stoichio-
metric L12 alloy under irradiation. A continuum kinetic model is proposed to describe the coupled evolution
under irradiation of the specific area covered by antiphase boundaries and of the volume fraction of the
domains belonging to the four translation variants of theL12 structure. Combining this description with
existing mean-field results for the order-disorder transition under irradiation, we construct a steady-state dy-
namical phase diagram, where the control parameters are the cascade size and the irradiation-induced disor-
dering rate. Three stable steady states are predicted: long-range ordered, disordered, and a state of patterning of
order. This analytical phase diagram is in good agreement with the one constructed from kinetic Monte Carlo
simulations. The present analytical model indicates that patterning of chemical order should be a general
phenomenon in irradiated ordered structures, provided that the cascade size is large enough for the annealing
of disordered zones to form additional antiphase domains.
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I. INTRODUCTION

In a previous paper,1 hereafter referred to as Part 1, we
have employed kinetic Monte Carlo(KMC) simulations to
study the evolution and the steady-state properties of the
field of chemical order in a binary alloy subjected to sus-
tained irradiation. The irradiation conditions are chosen such
that they lead to the formation of dense displacement cas-
cades, and thus to the introduction of disordered zones.
These disordered zones result from forced atomic mixing in
the cascades, and the size and the degree of disordering vary
with the mass and energy of the irradiation projectile. As
reviewed in Part 1,1 disordered zones have been character-
ized experimentally using dark-field transmission electron
microscopy(DF-TEM) imaging, and specific details of the
disorder produced by energetic cascades have been investi-
gated by molecular dynamics(MD) simulations. The impor-
tant points in the context of this work is that cascade sizes
range from a few to about ten nanometers, and that the cas-
cade destroys any preexisting long-range order(LRO), while
some short range order(SRO) may form during the cooling
phase of the cascade.

For theL12 model binary alloy studied in Part 1, at the
stoichiometric compositionA3B, three stable microstructures
of order are identified under steady-state conditions: long-
range ordered, disordered with some SRO, and patterns of
order. The last microstructure is comprised of well-ordered
domains with a finite average size, and these domains belong
in equal proportions to the four translation variants of the
L12 structure. In contrast, the LRO state contains only one
macroscopic variant. The dynamical stability of the three
steady states is determined by three irradiation parameters,
namely the irradiation temperature, the number of pairs of
atom exchanged in a cascade,b, and the cascade introduction
rateGc, or equivalently the ballistic pair exchange frequency,
Gb=b3Gb. In the results reported in Part 1, simulations were
performed at constant temperature, and a dynamical phase

diagram was built, which yields the domain of stability of the
three steady states in thesGb,bd plane. A remarkable feature
of this diagram is that, for patterning of order to take place,
the cascade size has to exceed a threshold value. The exis-
tence of a threshold is related to the effect of the cascade size
on the reordering path of a disordered zone. For large zones,
reordering proceeds in two stages. First, new ordered do-
mains form in the disordered zone and grow until they fill the
whole volume initially disordered by the cascade. These new
domains then shrink and disappear by the inward motion of
antiphase boundaries(APBs) that form between the sur-
rounding matrix and these small domains. By contrast, small
disordered zones are directly annealed by the inward migra-
tion of the matrix-disordered zone interface, and thus they do
not lead to the formation of antiphase domains. In the ab-
sence of this key component, patterns of order are not ob-
served at steady state in the KMC simulations.

In the present work, we derive in Secs. II and III an ana-
lytical model to study the transition from a patterning state,
which lacks long-range order, to a long-range ordered state.
In Sec. IV we combine these results with an ordered-
disordered boundary built by applying earlier mean field re-
sults. This combination makes it possible to construct an
analytical steady-state phase diagram, which is then com-
pared to the one determined by KMC simulations in Part 1.

II. INTERFACE AND VOLUME RATE EQUATIONS IN
THE ABSENCE OF IRRADIATION

Our goal in Secs. II and III is to establish a simple model
that captures the proper physics to reproduce the dynamical
competition between the long-range ordered state and the
patterning state. In Sec. II, we first build this model in the
absence of irradiation, and in Sec. III we extend this model
by including irradiation contributions.

In the patterned state, the four translation variants of the
L12 phase are found in equal proportions, i.e., the specific
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volumes occupied by each variant are equalVi,v=1/4 where
i =1,4 labels the variants—note that here we neglect the vol-
ume occupied by disordered regions and by APBs. By con-
trast, in the long-range ordered state the microstructure is
dominated by one variant. We will thus identify the transition
from the patterned to the LRO state by determining the con-
ditions whereVi,v=1/4 ceases to be a stable solution of the
kinetic equations. As seen later, the specific area covered by
APBs,Sv, enters the kinetic equation we derive forVv,i. We
therefore need at least two variables,Vi,v andSv, to charac-
terize the order field. We will show that this description is
sufficient to capture the transition from patterning to LRO,
although these two variables do not specify all the character-
istics of the microstructure, in particular they do not contain
any direct information on the connectivity of the domains.
For the sake of simplicity, we first derive the volume and
interface kinetic equations for an ordered structure that pos-
sesses only two variants, e.g., theB2 structure in a bcc lat-
tice. The results are then generalized to structures with more
than two variants, including theL12 structure.

We first consider the rate of evolution of the area covered
by APBs. This interface kinetic equation has already been
derived by Allen and Cahn2 to study domain growth during
isothermal annealing. We recall here the important steps of
this derivation, as we will propose a related treatment to
derive the volume equation. Starting from a time-dependent
Guinzburg-Landau description for the relaxation rate of the
order parameter, Allen and Cahn showed that the local ve-
locity of an APB separating the two variants of the ordered
structure is proportional to a mobility,M, times the local
mean curvature of the APB,K, which is defined asK=K1
+K2, whereK1 andK2 are the principal curvatures:

v = MsK1 + K2d. s1d

By convention, the mean curvature in Eq.(1) is positive
when the interface is concave on the side toward which the
normal to the interface is directed. Equation(1) shows that a
spherical antiphase domain should shrink and disappear. A
geometrical relationship is then used to relate an elemental
area of APB,dS, and its changedsdSd during a timedt:

dsdSd = − svdtdsdSdsK1 + K2d. s2d

The integration of Eq.(2) and use of Eq.(1) yields a differ-
ential equation for the temporal evolution ofS:

dS

dt
= − M E sK1 + K2d2dS. s3d

Allen and Cahn introduce then an averaged squared mean
curvature:

Km
2 = ksK1 + K2d2l =

1

S
E sK1 + K2d2dS, s4d

so that the specific area of APBs,Sv, obeys the relation

dSv

dt
= − MKm

2 Sv. s5d

Finally, under the assumption that the microstructure is char-
acterized by only one length scale,Sv and Km should be

proportional to each other:Km
2 =fSv

2. Substituting this rela-
tionship in Eq. (5), one obtains the classical Allen-Cahn
equation. The integration of this equation with respect to
time indicates that the change ofsSvd−2 is linear with time. It
also predicts that a spherical antiphase domain shrinks at a
rate such that its interfacial area decays linearly with time.
This kinetics is indeed well obeyed in our KMC simulations
(see Ref. 29 in Part 1). We note that at temperatures lower
than the one considered here, point defect trapping may pro-
duce long-lived transient with different exponents.3

We now turn to the derivation of the volume equation.
Following an approach similar to the one reviewed above, a
geometrical equation, analogous to Eq.(2) is obtained for the
change of an infinitesimal volume of variant 2,dV2, during a
time dt:

dsdV2d = − vdtdS= − MKdtdS. s6d

By convention, the normal of the interface is chosen to point
into the variant 2, and as a result, whenK is positive,dsdV2d
is negative, as expected. Integration of this equation over a
macroscopic volume leads to

dV2

dt
= − M E sK1 + K2ddS. s7d

During the nucleation, growth, and coarsening of ordered
domains in an isothermally annealed alloy, all variants
should be found in equal proportion, until the domains reach
a size where, because of finite size effects, one variant domi-
nates the microstructure. It is therefore expected that, before
the manifestation of finite size effects, the probability distri-
bution of local mean curvatures,psKd, is an even function of
K. This property has indeed been observed in numerical
simulations relying on a time-dependent Guinzburg-Landau
(TDGL) equation.4,5 These simulations also indicate that
psKd is centered aroundK=0. The RHS of Eq.(7) can be
re-expressed withpsKd as eKdS=SeKpsKddK. As long as
psKd remains an even function, the integral on the right-hand
side of Eq. (7) is zero, and the volume fractions of each
variant do not change with time. When finite size effects
become noticeable, fluctuations lead to the development of a
small asymmetry inpsKd. This asymmetry increases with
time and thus one variant grows at the expense of the other.
V2,v=1/2 should therefore be an unstable solution of Eq.(7).

In systems undergoing thermal annealing, the volume
equation, Eq.(7), does not provide any new information, and
the interface equation, Eq.(5), is sufficient to model the evo-
lution of the domain microstructure. For an alloy under irra-
diation, we will use the volume equation to track the transi-
tion from the patterned state to the LRO state. Indeed, in the
patterned stateV2,v=1/2 is astable solution, whereas it is
unstable in the LRO state, just as in a finite-size thermal
system. In order to proceed further, we need to obtain an
evaluation of the integral in Eq.(7) at the onset of asymme-
try between the two ordered variants. This integral is difficult
to evaluate, as the exact distributionpsK ,td is unknown. We
introduce here an approximation to evaluate this integral for
a microstructure that is initially mostly symmetric, i.e.,V2,v
<1/2. We decomposepsK ,td into a symmetric and an asym-
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metric component, and we assume that the asymmetric com-
ponent is infinitesimally small:psKd=p+sKd+«p−sKd, where
0,«!1. We note that, sincepsKd is a normalized distribu-
tion, i.e., epsKddK=1, a similar relationship holds also for
p+sKd up to first order in«; in contrast,p−sKd is not normal-
ized and insteadep−sKddk=0. The integral on the RHS of
Eq. (7) now reads as

E KdS= SE
−`

+`

KpsKddK = 2«SE
−`

0

Kp−sKddK. s8d

Because of the statistical nature of the componentsp+sKd and
p−sKd, we now assume that, except for a sign difference, they
follow a similar K-dependency:

p−sKd < − p+sKd, for K , 0,

p−sKd < p+sKd, for K . 0. s9d

In Eq. (9), by convention, we have assumed that the small
asymmetry ofpsKd favors the positive values ofK, i.e.,
p−sKd.0 for K.0; this implies that the volume fraction of
the variant 2 will decrease with time. The assumption leading
to Eq. (9) allows us to relate the last integral in Eq.(8) for
p−sKd to a similar integral, but now involvingp+sKd. In order
to evaluate this integral, we assume without loss of general-
ity that p+sKd follows a Gaussian distribution of zero mean
and variances.6 The integral in Eq.(8) can now be re-
evaluated:

E
−`

0

Kp−sKddK = −E
−`

0

Kp+sKddK =
s

Î2p
. s10d

The integral identified in the interface equation, Eq.(3), can
also be calculated in terms ofs.

E K2dS= SE
−`

+`

K2p+sKddK = Ss2. s11d

By identification with Eq.(4), we haves2=Km
2 , and the vol-

ume equation, Eq.(7), can now be rewritten as

dV2

dt
= − 2M

«S
Î2p

Km. s12d

In the last equation,«S can be interpreted as the amount of
interfacial area involved in the development of the asymme-
try of psKd. The last step is to express this quantity in terms
of the excess volume of the variant two. For that purpose, let
us decompose«S into a sum of areadSi. Following the as-
sumption made by Allen and Cahn that there is only one
length scale that characterizes the microstructure, we have
«S=oidSi ~oiKidVi, whereKi is the local curvature anddVi
is the excess(or lack) of volume occupied by the variant
two. Finally, we assume thatKi anddVi are uncorrelated so
that «Sv~Kms1/2−V2,vd. The evolution of the volume frac-
tion of the variant two is finally given by

dV2,v

dt
= − C1MS1

2
− V2,vDKm

2 = − C1fMS1

2
− V2,vDSv

2,

s13d

whereC1 andf are positive dimensionless constants. We see
that Eq. (13) has the two expected properties for an alloy
undergoing annealing in the absence of irradiation:V2,v
=1/2 is always a steady-state solution, but this solution is
unstable. Equation(13) thus predicts that, after a finite an-
nealing time, a finite size system will always reach the LRO
state. It is also worth mentioning that, from a dimensional
analysis standpoint, the termsM andSv

2 are expected in Eq.
(13).

In the case of a structure withN.2 variants, the above
derivation of the volume equation can be easily generalized
by isolating the one variant that will grow in the latest stage
of the annealing, and by recognizing that the remainingN
−1 variants are statistically equivalent. Therefore, one only
needs to focus on APBs separating the leading variant, say
variant one, from any shrinking variant, say variant two, and
follow step by step the above derivation given for the case
N=2. Defining nowSv as the specific APBs area between the
variants one and two, andKm

2 as the averaged square mean
curvature of these APBs, the interface and volume equations
become

dSv

dt
= − MfSv

3,

dV2,v

dt
= − C2MS 1

N
− V2,vDfSv

2, s14d

whereC2 is a dimensionless positive constant. In particular
in the following sections we will use these equations for the
L12 structure, for whichN=4.

III. INTERFACE AND VOLUME EQUATIONS IN THE
PRESENCE OF IRRADIATION

From simple geometrical considerations, we derive in this
section the contributions to the interface and volume equa-
tions of the disordered zones produced by displacement cas-
cades. This derivation is performed under two assumptions:
(i) the disordered zones are large enough for their reordering
to introduce new antiphase domains, and(ii ) the ballistic
jump frequency is small enough so that, overall, the micro-
structure is well ordered and the volume covered by disor-
dered regions is negligible. We will return to these two as-
sumptions in Sec. IV when constructing the dynamical phase
diagram. In order to facilitate the comparison with the KMC
results reported in Part 1, we focus the present derivation on
the L12 ordered structure, but the extension to other ordered
structures is straightforward. Since theL12 structure has four
translation variants, a spherical disordered zone of radiusr
produces on average four new domains, each occupying a
quarter of the disordered volume. Furthermore, we assume
for simplicity that interfaces between the four new domains
are along equatorial planes of the sphere. Under these con-
ditions, each cascade creates 6pr2 interface, of which 5pr2
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corresponds to new APBs. Meanwhile, the same cascade de-
stroys 4pr3Sv /3 of APBs that may have existed in the sphere
before the initiation of the displacement cascade. The cas-
cade radius can be expressed in terms of the cascade sizeb,
the cascade density −80% in our KMC simulations, and the
atom densityr:

0.803
4

3
pr3r = 2b. s15d

For a fcc crystal, the atom density isr=4/a3, wherea is the
lattice parameter. Taking into account the two above effects,
we can write the interface equation with the contributions
due to irradiation:

dSv

dt
= − fMSv

3 + Ab−1/3Gb − r−1GbSv, s16d

whereA=5ps0.834pr /3d−2/3, and Gb is the ballistic atom
exchange frequency.

The contribution of the disordering and reordering of the
cascade to the volume equation is straightforward, as each
cascade, on average, destroys a volume of variant two pro-
portional toV2,v, and replaces it by one quarter of the cas-
cade volume. The resulting volume equation, with both ther-
mal and irradiation contributions, is given by

dV2,v

dt
= − C2MS1

4
− V2,vDfSv

2 + S1

4
− V2,vDr−1Gb. s17d

IV. STEADY-STATE SOLUTIONS AND DYNAMICAL
PHASE DIAGRAM

Steady-state solutions of the interface and volume equa-
tions satisfy

dSv

dt
= − fMSv

3 + Ab−1/3Gb − r−1GbSv = 0,

dV2,v

dt
= − C2MS1

4
− V2,vDfSv

2 + S1

4
− V2,vDr−1Gb = 0.

s18d

From the above volume equation, we see that the solution
V2,v=1/4 changes from stable to unstable when

Sv =Î Gb

C2Mrf
. s19d

Substituting Eq.(19) into the steady-state solution of the
interface equation Eq.(18) yields the relationship satisfied at
the patterning-LRO instability boundary:

b = S C2Ar

1 + C2
D3S Gb

C2Mrf
D−3/2

. s20d

We stated at the beginning of Sec. III that, for the deriva-
tion of the patterning-LRO boundary, we used two assump-
tions. The first one is that the cascade size is large enough for
the reordering to proceed in two stages and to lead to the

formation of antiphase domains. Below a certain cascade
size,bc, this assumption is no longer valid, as the reordering
proceeds directly by the migration of the matrix-zone inter-
face. Eq.(20) is thus only valid forbùbc. When b,bc,
patterning is no longer possible, and upon increasing the bal-
listic exchange frequency, the LRO steady state is destabi-
lized to the benefit of the disordered steady state. This order-
disorder boundary can be calculated starting from the TDGL
kinetic model used by Allen and Cahn in the derivation of
Eq. (1), and extending this model by adding the disorder
produced by displacement cascades. Here, in order to take
advantage of specific results available in the literature, we
consider instead mean-field Bragg-Williams kinetic models.
In the Bragg-Williams approximation, a mean-field point ap-
proximation, correlations of atomic occupancies on lattice
sites are ignored. We note that a Guinzburg-Landau or Cahn-
Hilliard free-energy functional can be easily derived from a
Bragg-Williams approximation.7 In the context of our study,
the main result already obtained from Bragg-Williams ki-
netic models for alloys under irradiation is that the instability
boundary from the disordered steady state to the long-range
order steady state is only a function ofGb.

8 This boundary
corresponds thus to a vertical line in thesGb,bd plane. This
result is based on a Fokker-Planck approximation of the mas-
ter equation that describes the temporal evolution of the dis-
tribution probability of the degree of order. This approach
makes it possible to take into account the fact that the bal-
listic exchanges taking place during the displacement cas-
cade are highly correlated in time.8 The above result, which
was obtained for anA2-B2 transition, is valid for other or-
dered phases as well, since the disorder-order instability only
involves the first moment of the Fokker-Planck expansion,
and this first moment is only proportional tob3Gc, i.e., to
Gb. The ballistic exchanges forced by a cascade are also
strongly correlated in space, but these correlations cannot be
taken into account in a point approximation.

The resulting analytical dynamical phase diagram is
shown in Fig. 1. We note the existence of three regions. At
high Gb values, the disordered state is locally stable(region
labeled “D”); at lowerGb values and for large cascade sizes,
the disordered state is unstable toward ordering, and the pat-
terned state is locally stable(region labeled “P”); finally, at
low Gb values and for small cascade sizes(region labeled
“LRO” ), the disordered state is unstable toward ordering and
the patterned state is either unstable(for b.bc) or not physi-
cally accessible(for b,bc). We note that the second ap-
proximation used in the derivation of the patterning-LRO
boundary is fulfilled: as this boundary is always to the left of
the disorder-order instability line, the disordered zones pro-
duced by displacement cascades will re-order, and it was
thus legitimate to ignore disordered regions in the derivation
of the volume equation, Eq.(13).

V. DISCUSSION

The dynamical phase diagram constructed in Fig. 1 is
based on instability boundaries. A complete determination of
this phase diagram would require the construction of the glo-
bal stability boundaries for the first-order transitions between
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the LRO state and the patterned state or the disordered state.
This would require the use of global stability criteria,8–10 a
difficult task that is beyond the goal of the present work. We
expect, and we will show in the next paragraph, that the
instability lines constructed here offer already a very good
prediction of the topology of the full dynamical phase dia-
gram. In particular, not too close to a boundary in the dia-
gram Fig. 1, the most stable steady states in the regions
labeled “D,” “LRO,” and “P” are expected to be the disor-
dered state, the long-range ordered state, and the state of
patterning of order, respectively.

We now compare this analytical phase diagram to the one
constructed in Part 1 from KMC results, i.e., Fig. 8 of Part 1.
The two phase diagrams share a similar topology, with three
distinct regions. We note that the existence of a minimum
cascade size for the stabilization of patterns of order is not a
prediction of the analytical model, but it is rather a direct
consequence of the observation that a two-stage reordering is
required for a possible stabilization of these patterns. Now
regarding the patterning-LRO boundary, the remarkable re-
sult is that a power law with the −3/2 exponent predicted by
Eq. (20) describes very well the KMC boundary. The second
remarkable result is that the disorder-patterning instability
line is only slightly shifted to lowerGb values asb increases.
As stated in Sec. IV, mean field models using the Bragg-
Williams approximation predict that this boundary should be
vertical, i.e., only dependent ofGb. One published work re-
lying on a pair approximation for theA2-B2 transition, how-
ever, predicts a finite suppression of the ballistic exchange
frequency for the ordering instability in the largeb limit, of
about 15% atT<0.23Tc.

11 While this result cannot be di-
rectly transposed in a quantitative way to the presentA1
-L12 transition, it is consistent with the trend observed in the
KMC diagram, Fig. 8 in Part 1: the instability line shifts
from Gb=47.8 s−1 for b=1 to Gb=17.9 s−1 for b=4002. De-
spite the good qualitative agreement between the two phase

diagrams, we did not attempt to compare them quantitatively
for several reasons. First, for a given set of atomic interac-
tions, the Bragg-Williams approximation is well known to
largely overestimate the equilibrium order-disorder transition
temperature, and to fail to reproduce the general topology of
the composition-temperature phase diagram. Second, there
are several unknown parameters in the equations derived
here. The constantC2 in Eqs.(17)–(20) depends on the exact
geometry of the APBs. The constantf, which links the av-
erage curvature to the specific APB area, is unknown, as well
as the exact value ofbc. One may estimate or determine all
these unknown quantities from the KMC simulations, but
this approach would defeat the purpose of performing an
independent quantitative test of the analytical phase diagram.
It is nevertheless useful to estimate from the model the larg-
est patterns of order that can be stabilized for a given cascade
size. To that end we combine Eqs.(19) and (20), and we
expressSv at the patterning-LRO transition in terms of the
radius of the cascade size,r and of numerical constants:

Sv =
5 3 21/3

4 3 0.8
·

C2

1 + C2
·

3

r
. s21d

We can estimate numericallySv in the following way. If we
assume that the microstructure is comprised of spherical do-
mains of radiusRd, it follows that Sv=3/Rd. We can then
deduce from Eq.(21) that the maximum domain radius in the
patterning regime is proportional to the cascade size. The
exact proportionality constant betweenr andRd is a function
of C2, which is itself a constant of the order of unity. When
C2 is of the order of unity, Eq.(21) yields Rd< r /2. On the
other hand, an upper estimate forRd is obtained by lettingC2
be large compared to one, which yieldsRd< r. We can there-
fore conclude that the model predicts that the maximum size
of the patterns of order is equal to the cascade size, multi-
plied by a geometrical factor close to unity. This result is
fully consistent with the patterning mechanism discussed in
the paper. As reviewed in the introduction, the cascade size
ranges typically from a few to about 10 nm, and the patterns
of order should therefore be at the same nanometer scale.

The present model can be directly generalized to other
order-disorder phase transitions, at least when the ordering
reaction can be described by a one-dimensional order param-
eter, e.g., theA2-B2 or theA1-L10 transitions. It is therefore
expected that patterning of order under irradiation is a ge-
neric phenomenon. Nevertheless, one motivation for study-
ing in detail theA2-B2 and theA1-L10 transitions is that the
number of ordering variants in theB2 andL10 structures is 2
and 6, respectively. This could influence the connectivity of
the domains in the patterning state, which could in turn affect
the stability of this state. Finally, the KMC and analytical
phase diagrams offer specific predictions that can be tested
by carefully designed experiments, as discussed in Part 1.
Besides testing the existence of the state of patterning of
order, it would be particularly insightful to investigate
whether there is a minimum cascade size for this patterning
state to be stabilized under irradiation. In such experiments,
the cascade size would be varied by adjusting the mass and
the energy of the projectiles used for irradiation.12

FIG. 1. Generic analytical steady state phase diagram in the
sGb,bd plane with log-log scales for anL12 stoichiometric binary
alloy irradiated at a temperature below its equilibrium order-
disorder transition,Tc. “LRO” stands for long-range ordered steady
state. The boundaries correspond to instability lines, from “Pattern-
ing” to “LRO,” “Disordered” to “LRO,” and “Disordered” to “Pat-
terning.” Gb,c refers to the ballistic jump frequency at the “Disor-
dered” to “LRO” transition, andbc to the threshold cascade size for
patterning to be possible.
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VI. CONCLUSION

We have modeled the effect of the disordered zones intro-
duced by displacement cascades on the evolution of the field
of chemical order in a binary alloy under irradiation. Using a
continuum description, we have derived a kinetic equation
for the volume fraction of the various variants of an ordered
structure. By combining this volume equation with the clas-
sical Allen-Cahn equation for the evolution of the antiphase
area, we have identified a transition from a steady state that
is locally ordered but lacks long-range order to a long-range
ordered steady state. We have used this transition, as well as
existing mean-field results for the ordering instability, to con-
struct a dynamical steady-state phase diagram for a stoichio-
metric L12 alloy. From this analytical phase diagram, three
possible steady states are expected, long-range ordered, dis-
ordered with some short-range order, and a state of pattern-
ing of order. The domain of stability of these three regions is
in good agreement with a phase diagram built from KMC
simulations. The analytical model predicts that the cascade
size at the transition from long-range order to patterning of
order scales assGbd−3/2, which is in excellent agreement with
the KMC results. Mean-field results in the Bragg-Williams
approximation predict that the ordering instability boundary
is a function of the disordering rate,Gb, but not of the cas-

cade sizeper se. KMC results indicate that the ordering in-
stability transition is in fact somewhat shifted to lower dis-
ordering rates as the cascade size increases, in agreement
with a kinetic mean-field model based on a statistical ap-
proximation better than the point approximation. The present
analytical treatment makes it possible to generalize the re-
sults obtained by KMC simulations in Part 1, and to propose
that the dynamical stabilization of patterns of order is a gen-
eral phenomenon under irradiation, as long as the disordered
zones produced by the displacement cascades are large
enough to result in the transient formation of antiphase do-
mains during their thermal annealing.
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