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Dense displacement cascades produced by irradiation with energetic particles lead to the formation of
disordered zones in chemically ordered alloys. At temperatures below the order-disorder transition, these
disordered zones, whose sizes range from a few to several nanometers, are annealed out by thermally activated
atomic migration. Under sustained irradiation, the competition between these two dynamics may drive the
system into various steady states of order. Kinetic Monte Carlo simulations are employed to identify these
steady states in a model binary alloy that forms anL12 ordered phase at equilibrium. Besides the expected
long-range ordered and disordered steady states, a new state is observed, where the microstructure is comprised
of well-ordered domains of finite size. This steady-state patterning of order is identified by direct visualizations
of the configurations, and by using an effective fluctuation-dissipation formula to analyze the behavior of the
fluctuations of order upon approaching the long-range ordered steady state. It is shown that the patterning state
becomes stable only when the disordered zones exceed a threshold size. Above this threshold size, reordering
of cascade-induced disordered zones proceeds in two stages: new antiphase domains form first, and then shrink
to the benefit of the matrix. This two-stage reordering is at the origin of the dynamical stabilization of patterns
of order. The present results, which indicate that ion-beam processing could be used to synthesize ordered
nanocomposites with tunable sizes, call for specific experimental tests.
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I. INTRODUCTION

Materials irradiated with energetic particles are dissipa-
tive systems since energy continuously flows from the envi-
ronment into these materials.1 Under appropriate external
forcing, dissipative systems display the remarkable ability to
self-organize into patterns.2,3 In the case of irradiated mate-
rials, patterns of structural defects, such as voids, bubbles,
dislocation loops, and stacking fault tetrahedra, have been
observed and modeled in the past three decades.4,5 In most
cases, a necessary condition for pattern formation is that ir-
radiation leads to the formation of dense displacement cas-
cades. These displacement cascades induce an asymmetry in
the production of clustered vacancies and interstitials, and
this asymmetry plays a fundamental role in the onset of
patterning.5

Displacement cascades are also remarkable in the sense
that they introduce at least two new length scales in the de-
scription of irradiated materials. Indeed, a cascade extends
over a distanceL, and atoms in this cascade undergo forced
relocations following a distribution that possesses a charac-
teristic relocation distance,R. We have shown that the exis-
tence of this relocation range, and the resulting finite-range
atomic mixing, introduce a nonlocal term in the kinetic equa-
tion that describes the evolution of the composition field.6 In
the case of an alloy system that would decompose into two
phases at equilibrium, the competition between short-range
thermally activated decomposition and finite-range forced
mixing can lead to the dynamical stabilization of composi-
tional patterns. These patterns form only whenR exceeds a
critical valueRc, and the maximum characteristic scale of the
patterns is bounded by 4pRc. In the present work we employ
kinetic Monte Carlo simulations to demonstrate that the cas-

cade size,L, can lead to similar patterning reaction, albeit for
the degree of chemical order. In a companion paper, we in-
troduce an analytical model to study this patterning of
chemical order.7

Let us first recall some important characteristics of the
disordered zones created by displacement cascades in or-
dered alloys. These zones have been studied experimentally
using superlattice reflections to form dark-field transmission
electron microscopy(DF-TEM) images. Results have been
reported for several alloys(see Ref. 8 for a review), includ-
ing Cu3Au,9–11 Ni3Al,11 Zr3Al,12 which all form anL12 or-
dered structure, on Cu3Pd,13 which forms a D022 ordered
structure, and Fe3Al,13 which forms a D03 ordered phase.
The aspect ratio and size distribution of the disordered zones,
which appear as dark regions in superlattice DF-TEM im-
ages, have been studied as a function of the mass and the
energy of the projectile, and as a function of the irradiation
temperature. Average diameters range from 3 to 10 nm in
Cu3Au,8,10and from 5 to 9 nm for Ni3Al.11 As the projectile
energy increases, the size of the disordered zones saturates
because of the formation of subcascades. It is difficult, from
these experimental results, to quantify the amount of chemi-
cal disorder achieved in the zones. Molecular dynamics
(MD) simulations, which have been extensively used to ana-
lyze disordered zones produced by dense displacement
cascades,14–19 provide a direct measure of this disordering,
although the interatomic potentials used in the simulations
may affect the results somewhat. Nevertheless, in all studies
of cascades initiated with primary knock-on atom(PKA) en-
ergies exceeding 1 keV, there is a well-defined zone where
the long-range order(LRO) parameter is essentially zero.14

The extension of these zones, which will be identified as the
disordered zones in the remaining of the article, coincide
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reasonably well with the experimental values given above.
We note that the disordered zones may display some short-
range order(SRO).14,15The degree of SRO is often found to
increase from a low value at the center to a moderate or high
value near the periphery of the disordered zone. This short-
range order is more pronounced in cascades initiated in
Ni3Al than in Cu3Au, most likely because of the larger mix-
ing forced by the cascade in Cu3Au and because of the lower
ordering energy in this alloy.15

The goal of the present work is to study the long-time
evolution of an ordered alloy undergoing sustained irradia-
tion, under irradiation conditions that produce disordered
zones. The kinetic Monte Carlo(KMC) technique makes it
possible to simulate such an alloy over long physical times,
unlike MD, while retaining the full information on temporal
and spatial atomic correlations, unlike phase field models.
While KMC simulations have been used previously to study
the dissolution of ordered precipitates in the presence of
cascades20 and the reordering kinetics after the introduction
of disordered zones,21 we are not aware of any study con-
cerned with the long-time microstructures resulting from the
dynamical competition between irradiation-induced cascade
disordering and thermally activated reordering. In Sec. II, we
present the modelL12 alloy selected for the simulations, as
well as the details of the KMC simulations. Results obtained
upon varying the rate of introduction of the disordered zones
and the cascade size are given in Sec. III for stoichiometric
alloys, and in Sec. IV for nonstoichiometric alloys. These
results are then discussed in Sec. V.

II. KINETIC MONTE CARLO SIMULATIONS

The A1−cBBcB model alloy selected for the present study
has been previously investigated by Abinandananet al.22 The
thermodynamics and the kinetics of this alloy, which under-
goes L12 ordering, are already well characterized.22 The
equilibrium phase diagram is identical to the one given in
Fig. 3 in Ref. 22. In this model,A andB atoms interact by
first and second nearest-neighbor pair interactions«i j

skd (k
=1,2 andi , j =A,B). The ordering energies’ first and second
nearest neighbors areV1=2«AB

s1d −«AA
s1d −«BB

s1d =−0.160 eV and
V2=2«AB

s2d −«AA
s2d −«BB

s2d =0.064 eV. These parameters are such
that the phase diagram closely resembles that of Ni–Al for
Ni-rich compositions. The use of a nonzeroV2 also over-
comes the problem met when only first nearest-neighbor in-
teractions are used, which results in the existence of zero-
energy antiphase boundaries(APBs) between the four
translation variants of theL12 structure.23 At the L12 sto-
ichiometric composition, cB=0.25, the A1−L12 order-
disorder transition occurs at a temperatureT=0.155 eV. Un-
less stated otherwise, all simulations are performed at T
=0.09 eV and forcB=0.25. At this temperature, theA1
−L12 two-phase domain extends fromcB<0.10 to cB
<0.20.

The simulations are based on a kinetic model where atom
migration can proceed by two processes acting in parallel,
the thermally activated migration of vacancies and the forced
exchanges of nearest-neighbor atoms in displacement cas-
cades. A detailed description of the model used for thermal

diffusion can be found in Refs. 22 and 24. TheA and B
atoms occupy sites on a rigid face-centered cubic(fcc) lattice
containingL3L3L sites, withL=64 or 128, and with peri-
odic boundary conditions. A single vacancy is placed in the
system, and the frequency of atom-vacancy exchange is de-
termined using standard rate theory. The activation energy is
given by the energy required to break the bonds between the
jumping atom and its surrounding, less the energy recovered
when the atom is placed at the saddle-point position. The
vacancy migrates with an attempt frequencyn0=1014 s−1,
and the average of migration energies in pure elements is
arbitrarily set atEm,v=0.8 eV. This value is used to deter-
mine the contribution of the migrating atom to the saddle-
point energy, and it thus sets the time scale for thermal mi-
gration. Unless stated otherwise, simulations are carried out
with a lattice sizeL=64. WhenL=128 is used to check
finite-size effects, the cascade frequency is rescaled to ac-
count for the change in vacancy concentration with the sys-
tem size.25

The forced mixing and disordering produced by displace-
ment cascades is introduced by forcing exchanges of atoms
in the cascade. In the present model, four parameters are
used to specify this forced mixing. The first parameter is the
rate of introduction of cascade per atom,Gc. Three param-
eters are then used to characterize a cascade: the spatial ex-
tension of the cascade, the relocation distance of atoms in the
cascade, and the fraction of atoms undergoing exchanges in
the cascade, which is referred to as the cascade density. For
simplicity, the volume of the cascade is assumed to be
spherical, and only one cascade size is used during each
KMC run. These simplifications do not affect the generality
of the results. The cascade density has been set to 80% in
this work, unless specified otherwise, to produce zones
where the degree of LRO is near zero when cascades are
initiated in a perfectly ordered matrix. We will show, how-
ever, that a 50% cascade density, which retains about half of
the long-range order parameter of the matrix, leads to sig-
nificantly different results. In the following, we characterize
the cascade size by the number of forced pair exchanges in
one cascade,b. For example, for a spherical cascade contain-
ing 10 000 atoms, using an 80% density, 8000 distinct atoms,
e.g.,b=4000 atom pairs, are exchanged at once. The cascade
size is varied fromb=1, which in fact corresponds to irra-
diation without cascade, tob=4002, which corresponds to a
cascade diameter of<6 nm in Ni3Al. As for the relocation
range, forced exchanges are performed between nearest-
neighbor atoms, in order to prevent this parameter from in-
ducing compositional patterns. The short range used here for
forced exchanges is indeed below the critical value for pro-
ducing such patterns.26,27Finally, it is useful to introduce the
ballistic jump frequency,Gb=b3Gc, which is a measure of
the disordering rate. In the radiation damage community, 2Gb
is referred to as the number of replacements par atom per
second.1 The present kinetic model does not include intersti-
tials, sources and sinks for point defects, and elastic effects.
The possible role played by these effects is discussed in Sec.
IV.

The time evolution of the system is built using a
residence-time algorithm,22,24 where the frequency of va-
cancy exchanges is weighted against the frequency of cas-
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cade formation. One of the two kinds of events is randomly
chosen according to their relative probabilities, and time is
updated as the inverse of the sum of the individual frequen-
cies.

Simulation results are analyzed using complementary
methods, encompassing direct visualization of the configura-
tions, determination of the size and number of ordered clus-
ters belonging to any variant, and calculation of the spheri-
cally averaged structure factor, centered either on a Bragg
peak or on anL12 superlattice position.27 For direct visual-
ization of the configurations, a local degree of order,hsr id, is
defined ashsr id=s1−cBd2sa2−a1d2, wherea1 anda2 are the
first and second nearest-neighbor Warren-Cowley short-
range order parameters around a central site atr i,
respectively.28 It is easy to check thathsr id ranges from 0 for
a random local environment to 1 for a perfectL12 environ-
ment. An alternative way of visualizing the ordered regions,
which also makes it possible to identify the four variants of
the L12 ordered structure, is to display onlyB atoms, using
four colors(or four different symbols), one for each simple
cubic sublattice aB atom may belong to. A global degree of
order of a configuration,h, is measured by taking the square
root of the average structure factor integrated from 0.8ks to
1.2ks, where ks=h100j is the k vector of the superlattice
reflections, and by normalizing this value so thath=1 corre-
sponds to a perfectly long-range ordered stoichiometric alloy.
Before integrating the structure factor, a background inten-
sity is subtracted.23 h, which is mostly a measure of the
degree of LRO, may include some contribution from the
SRO. However, as discussed in Sec. III C, the relative LRO-
to-SRO contribution scales with the diffracting volume
raised to the power one-half; the contribution of the SRO can
thus be quantified, and reduced, by increasing the simulation
cell size.

III. KMC RESULTS AND ANALYSIS FOR
STOICHIOMETRIC ALLOY

In this section we present the simulation results obtained
for stoichiometric compositioncB=0.25. We start by follow-
ing the thermal recovery process after one large cascade is
initiated in an initially long-range ordered alloy. We then
identify three steady states that are stable under sustained
irradiation with dense cascades. Finally, we construct a dy-

namical phase diagram that yields the domain of stability of
these steady states.

A. Reordering after one cascade

Figure 1 shows the evolution of an initially perfectly
long-range ordered alloy after one large and dense cascade
(b=8000, density=80%). As the simulation is performed at
T=0.09 eV, a temperature below the critical temperature, the
disordered zone is annealed out by the migration of the va-
cancy. Direct visualization of the configurations reveals the
existence of two distinct stages. In the first stage, the disor-
dered zone reorders into small clusters that belong to the four
variants available in anL12 structure. The presence of do-
mains belonging to the four variants is also confirmed by
displaying B atoms with four colors, one for each simple
cubic sublattice(see Fig. 1 in Ref. 29). In the second stage,
these small-ordered domains shrink and disappear by motion
of antiphase boundaries, to the benefit of the matrix. These
two stages are clearly identified by measuring the number of
B atoms that belong either to the matrix or to small ordered
clusters(see Fig. 2 in Ref. 29). This plot also reveals that the
two stages overlap. Once the first stage is over, here after
<0.0038 s, the radius of the reordered zone shrinks with
time as t1/2 (see Fig. 3 in Ref. 29), in agreement with the
Allen-Cahn theory.30

Even though we are interested in dense cascades in this
work, we stress that when the cascade is dilute, typically for
a fraction of exchanged atoms of 50% or less, the relaxation
of the system is very different. For such dilute cascades(see
Fig. 4 in Ref. 29), the reordering does not lead to the forma-
tion of antiphase domains. Instead, the cascade zone is cut
into several small and irregular disordered zones. These
zones reorder directly by the inward migration of their
boundary with the ordered matrix, and no new domains are
created.

We now return to the case of dense cascades. Antiphase
domains appear only when the cascade size is large enough
for them to form during the migration of the vacancy within
the disordered zone. For the generic parameters used in our
simulations, this minimum cascade size is aroundb=100.
Under sustained irradiation conditions, one anticipates that,
if the average time between two cascades is shorter than the
time required to fully anneal the previous cascade(t<0.1 s
here), but longer than the time necessary to reorder the dis-

FIG. 1. {111} maps of the local degree of orderhsrd of instantaneous configurations after the introduction of one large dense cascade
(b=8000, density=80%,T=0.09 eV, system size 643): (a) t=0 s;(b) t=0.0038 s;(c) t=0.0232 s;(d) t=0.0861 s. White corresponds to fully
ordered and black to fully disordered sites.
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ordered zone(t<0.04 s here), an unusual microstructure
may develop, comprised of well-ordered domains whose
sizes, however, remain finite. Such a microstructure is indeed
observed in the following section.

B. Steady states under sustained irradiation

We now turn to the steady states that are stabilized by
sustained irradiation with dense cascades. To ensure that the
system has reached steady state, simulation times are run
long enough so that initially fully disordered and fully or-
dered states give statistically identical results. For large cas-
cade sizes, three distinct steady states are identified by direct
visualization of the configurations, as illustrated in Fig. 2. At
low flux [Fig. 2(a)], the alloy remains long-range ordered,
i.e., there is only one macroscopic variant, which may how-
ever contain small isolated antiphase domains. At high flux
[Fig. 2(c)], the system is mostly disordered, although it may
possess some short-range order. At intermediate flux[Fig.
2(b)], there is a new state in the sense that the alloy is locally
well ordered, but all four variants are present in domains of
finite size. This state thus corresponds to a patterning of the
order parameter. The presence of the four variants is further
confirmed by displayingB atoms with a color code(see Fig.
5 in Ref. 29). For small cascade sizes, and in particular in the
limiting case whereb=1, no patterning of order can be de-
tected at steady state.

C. Dynamical phase boundaries and phase diagram

We now construct the boundaries delimiting the domains
of stability of the steady states identified in Sec. III B. There
are two kinds of boundaries: from LRO to a non-LRO state,
i.e., either to the state of patterning of order or to the disor-
dered state, and from the patterning state to the disordered
state.

The transition from the LRO phase to a non-LRO phase is
determined using the standard method of inspection of the
structure factor intensity,Iskd, at the superlattice positions,
k =k*.27 This intensity scales with the system size in the
LRO phase, while in the patterning and disordered states it is
independent of the system size(see an example in Fig. 6 in
Ref. 29). Alternatively, the transition can also be determined

by counting the number ofB atoms that belong to each of the
four translation variants: the LRO phase contains one, and
only one, macroscopic cluster. In the absence of LRO, theB
atoms are evenly distributed among the four variants. This
second approach yields transition frequencies identical to
those determined by monitoring the superlattice intensity.

Alternatively, the transition from the LRO to a non-LRO
state can be determined by measuring the steady-state degree
of order h as a function of the ballistic jump frequency. In
the absence of irradiation, the transition is clearly of first
order (not shown here), with a discontinuity fromh=0 to
h=0.66 at the transition temperatureT=0.155 eV. In the
presence of ballistic jumps, for all cascade sizes studied here,
the order parameter displays a clear discontinuity at the tran-
sition Gb=Gb,c, and this transition is thus of first order(see
Fig 3). For b=1, the discontinuity is smaller, as seen in Fig.
3, and the transition is weakly of first order.

We now turn to the boundary between the patterning state
and the disordered state. The identification of this boundary
is not straightforward, as the disordered state evolves con-
tinuously into the patterning state. AsGb is reduced so as to
drive the alloy from disordered steady states to patterned
steady states, we did not observe any discontinuity of the
superlattice structure factor, either in intensity or in shape.
The patterning state could in fact be described as a macro-
scopically disordered phase with order fluctuations that are
abnormally coherent, intense, and long-lived. We propose
here to define the state of patterning of order from the char-
acteristics of the spatial fluctuations of order.

There is no exact theory that can describe the behavior of
fluctuations near an equilibrium first-order transition, anda
fortiori near a nonequilibrium first-order transition. Far from
the transition, however, fluctuation-dissipation relationships
provide us with quantitative expressions for pair correlation
functions. While these expressions have been first derived
using mean-field approximations, a general derivation can be
obtained once it is assumed that there exists a grand potential
for the system at hand.31 For a binary alloy, a configuration is
fully determined by the knowledge of the occupation func-
tion for theB species on all lattice sites, and one defines the
thermodynamic average of this function on siten ascn. The
Helmhotz free-energy functionalF is decomposed asF=F0

FIG. 2. {111} maps of the local degree of orderhsrd at steady
state under irradiation with large dense cascade(b=4002, density
=80%, T=0.09 eV, system size 643) at increasing disordering fre-
quency:(a) Gb=1 s−1; (b) Gb=10 s−1; (c) Gb=100 s−1. White corre-
sponds to fully ordered and black to fully disordered sites. Note the
small isolated antiphase domains in(a), and the newly created cas-
cade in the lower right corner of(b).

FIG. 3. Global order parameterh vs Gb for b=1, andb=384.
System size is 1283. The inset is the same data in semilog plot. Both
transitions are of first order, but forb=1, the discontinuity is small.
Lines are only guides for the eye.
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+F, whereF0=b−1Snfcn ln cn+s1−cndlns1−cndg is the ideal
solution contribution toF—or the noninteracting part ofF,
andF is interacting part, which contains all many-body-type
interactions, including all entropy contributions beyond the
point entropy. Taking advantage of a fluctuation-dissipation
relationship, the Fourier transform of the Warren-Cowley
pair correlation function,askd, in the disordered state, is re-
lated toF through

askd =
kBT

kBT − cBs1 − cBdSs2dsk,Td
, s1d

whereSs2dsk ,Td is the Fourier transform of]2F /]ci]cj. The
latter matrix is simply the stability matrix with respect to
concentration fluctuations. We now restrict our discussion to
k =k*. In the high temperature limit,Ss2dsk * , Td reaches a
constant valueSs2dsk * d. The high-temperature regime of Eq.
(1) predicts therefore thataskd should diverge atkBTs

=cBs1−cBdSs2dsk * d, and Ts is commonly referred to as the
ordering instability temperature. In our Monte Carlo simula-
tions, we can directly measureaskd since, by definition, it is
related to the structure factor of a configurationIskd, through
askd= Iskd /cBs1−cBd. As first proposed by Cook,32 though
within a mean-field context, a plot ofcBs1−cBdT/ Isk * d vs T
should yield a linear regime with slope unity at high tem-
perature, and the intercept of this linear regime with the tem-
perature axis definesTs. This linear regime is indeed ob-
served experimentally33 and in computer simulations34 for
alloys at thermodynamic equilibrium.

We first validate this method on our alloy system by re-
stricting ourselves to equilibrium situationssGb=0d, at tem-
peratures above the order-disorder transition temperature. As
seen in Fig. 4, a linear regime is clearly identified at high
temperature, and the slope, 0.94±0.01, is in very good agree-
ment with the predicted value. The instability temperature
determined from the linear extrapolation isTs=0.149 eV.
Upon approaching the transition temperature, one observes
in the plot Fig. 4 a downward curvature, which is due to
heterophase fluctuations, andIsk * d diverges at Tc

=0.155 eV. The fact thatTc.Ts is typical of first-order tran-
sition, whereasTc=Ts is expected for a second-order transi-
tion. The ratioTs/Tc takes a value of 0.961, in excellent
agreement with the value of 0.962 obtained by Chen and
Cohen for theA1-L12 transition in Cu3Au.33

In a mean-field approximation with pairwise atomic inter-
actions, Eq.(1) reduces to the well-known Krivoglaz-Clapp-
Moss (KCM) formula,28,35 as Ss2dsk ,Td=Vskd, the Fourier
transform of the pairwise atomic interactions. In this ap-
proximation, the linear regime identified at high tempera-
tures in a plot such as Fig. 4 should extend all the way down
to the transition temperature, and the mean-field interpreta-
tion of Ts is that it is the temperature at which the disordered
alloy becomes unstable with respect to long-range ordering.
While the terminology of ordering instability is widely
spread, one should be aware that, in Monte Carlo simula-
tions, no transition from a nucleation and growth regime to a
spinodal ordering regime has been observed upon crossing
the T=Ts value.22,34,36We stress, however, that here we de-
fine Ts from the high temperature regime, and therefore it is
not restricted by a mean-field approximation.

We return to the case of an alloy under irradiation, for
which we would like to analyze the fluctuations of order in a
way similar to Eq.(1) and Fig. 4. In 1984, Martin37 showed
that, in a mean-field approximation and in the absence of any
cascade effect, the steady-state concentration profile reached
under irradiation is equivalent to the one reached at equilib-
rium, albeit at a higher effective temperatureTeff=Ts1
+Gb/ kGthld, wherekGthl is an average atomic jump frequency
for thermally activated jumps.38 Vaks and co-workers39,40

generalized this result by deriving an effective KCM for-
mula, both for decomposition and ordering transformations.
This effective KCM relationship is simply the equilibrium
one evaluated at the effective temperature,Teff. An alterna-
tive way of studying order fluctuations under irradiation re-
lies on the use of the stochastic mean-field potential that
governs dynamical phase stability.41–43 Assuming the exis-
tence of a nonequilibrium fluctuation-dissipation relation-
ship, the second derivative of this potential with respect to
the order parameter, evaluated in the disordered phase, yields
a direct measure of the fluctuations atk =k*. A straightfor-
ward calculation of this derivative for theA1-L12 stochastic
potential43 indicates again that the fluctuations are identical
to the ones of an equilibrium system evaluated at the effec-
tive temperature,Teff.

We thus propose to analyze order fluctuations under irra-
diation by assuming that, atk =k*, Eq. (1) still provides a
valid framework if evaluated at the effective temperature,
Teff. Under irradiation, transitions between steady states can
be induced by varying the temperature or the ballistic jump
frequency,Gb. We consider the case where the irradiation
temperature is held constant, as in the present simulations.
ReplacingT by Teff in Eq. (1), in the largeGb limit, one now
defines the ballistic frequency for ordering instability,Gb,s

cBs1 − cBdsGb + kGthld
Isk * d

= Gb − Gb,s. s2d

From the KMC simulation data, in order to perform a plot
of cBs1−cBdsGb+kGthld / Isk * d vs Gb, one needs to determine
kGthl. A self-consistent use of the effective temperature crite-
rion would use the value ofkGthl in the fully disordered state,
which can be analytically calculated and takes the value
kGthld<499 s−1 for the present irradiation temperature. This

FIG. 4. cBs1−cBdT/ Isk* d vsT for equilibrium transition(system
size 643). k* is the superlattice diffraction peak forL12 structure.
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value agrees very well with the one obtained from KMC
simulations,kGthld,KMC<505 s−1, by calculating the vacancy
diffusion coefficient in an alloy irradiated at a very high bal-
listic frequency,Gb=500. Inserting these values into Eq.(2)
leads to linear plots, but not with a slope unity. The origin of
this failure resides in the fact that, near the transition, the
short-range order present in the alloy suppresses significantly
the thermally activated migration of the vacancy, through
higher activation energies and correlated jumps. AsGb/ kGthl
represents a measure of the relative forcing intensity of the
alloy, ignoring the effect of the SRO onkGthl results in an
underestimation of the relative forcing intensity. Measure-
ments of vacancy diffusion coefficients in the disordered
phase near the transition reveal thatkGthl varies very slowly
with Gb. The simplest correction is thus to assume that, for
each cascade sizeb, kGthl takes a constant value that reflects
the effect of SRO on the vacancy migration. Forb=1, for
instance, an average value ofkGthlb=1,KMC<277 s−1 is mea-
sured for 70 s−1øGbø120 s−1. If we now use this value to
build the plot suggested by Eq.(2), a linear regime is found,
with a slope 1.02. For practical reasons, instead of relying on
the kGthl values measured through vacancy diffusion coeffi-
cients, which have error bars of several percent, we letkGthl
be a fitting parameter so that the slope of the linear regime is
1. For b=1, for instance, this modified procedure leads to
kGthlb=1,fit=267 s−1, and a well-defined linear regime is ob-
tained, as seen in Fig. 5. The ordering instability ballistic
frequency in this case is determined to beGb,s=47.8 s−1.
Similarly to the equilibrium case, a downward curvature is
observed just aboveGb,c, and the behavior is typical of clas-
sical first-order transitions.

We now turn to the case of large cascade size. The ex-
pected linear behavior is still observed for largeGb values, as
seen in Figs. 6 and 7. The behavior near the transition fre-
quency, however, differs from the one observed for the ther-
mal case or forb=1. An upward curvature is clearly visible
upon approaching the transition, and the ordering instability
frequency determined by the extrapolation of the linear fit,
Gb,s, is now greater than the transition frequency,Gb,c. We
propose to define the state of patterning of order as the re-
gime whereGb,c,Gb,Gb,s. The interpretation of the unusual
inequality Gb,c,Gb,s is that, in this interval of ballistic fre-

quencies, the high-Gb behavior predicts that the alloy should
be unstable towards ordering, but complex atomic correla-
tions have prevented the stabilization of the LRO phase, sta-
bilizing instead a state with strong and persistent fluctuations
of order. This picture is consistent with our direct observa-
tions of the dynamical stabilization of well-ordered domains
that do not coarsen, as seen in Fig. 2(b).

This above analysis of the KMC results is used to build a
dynamical phase diagram(see Fig. 8). This diagram displays
three noticeable features.

(i) There is a minimum cascade size for the patterning of
order to be possible. This threshold value is aroundb=100.

(ii ) The patterning-disorder boundary does not depend
strongly on the cascade size. It only shifts fromGb,s=47.8 for
b=1 to Gb,s=17.9 forb=4002.

(iii ) The LRO-patterning boundary, for low-flux values,
approaches a power-law behavior with an exponent<−1.5.

IV. KMC RESULTS AND ANALYSIS FOR
NONSTOICHIOMETRIC ALLOYS

In Sec. III we have shown that, when the cascade size
exceeds a threshold value, patterns of chemical order can

FIG. 5. cBs1−cBdsGb+kGthld / Isk* d vs Gb for b=1 (system size
643). k* is the superlattice diffraction peak forL12 structure.kGthl is
an average thermal atomic jump frequency.

FIG. 6. cBs1−cBdsGb+kGthld / Isk* d vs Gb for b=384 (system
size 643). k* is the superlattice diffraction peak forL12 structure.
kGthl is an average thermal atomic jump frequency(see the text for
definition). Note thatGb,c is smaller thanGb,s.

FIG. 7. cBs1−cBdsGb+kGthld / Isk* d vs Gb for b=4002 (system
size 643). k* is the superlattice diffraction peak forL12 structure.
kGthl is an average thermal atomic jump frequency(see the text for
definition). Note thatGb,c is smaller thanGb,s.
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spontaneously form in a stoichiometric alloy, i.e., forcB
=25%. Similar patterning should also be possible in nonsto-
ichiometric alloys. In addition, nonstoichiometric alloys may
also undergo compositional patterning, as composition and
chemical order are coupled by thermodynamics and
kinetics.44 We consider here two compositions, with 23% and
12% B atoms. The latter composition lies inside the equilib-
rium two-phase field atT=0.09 eV, while the former com-
position lies within the single-phaseL12 field. In both cases,
we anticipate that the excessA atoms will segregate at the
antiphase boundaries, leading to inhomogeneities of the
composition field. Patterning of order is still analyzed with
the generalized fluctuation-dissipation approach using Eq.
(3), while we study compositional patterning by monitoring
the structure factor centered aroundk =0: a peak for a non-
zero wave vector is the signature of compositional
patterning.26

A. Alloy with cB=0.23

All the simulations for this alloy are run with a 1283 sys-
tem in order to increase thek-space resolution for the analy-
sis of the structure factor. For large cascade size,b=4002 in
Fig. 9, a distinctive peak is found near the Bragg peak, forGb
values ranging between 2 and 50 s−1. This peak, which at-
tests to the presence of a characteristic length scale for com-
position heterogeneities, disappears betweenGb=50 s−1 and
Gb=60 s−1.

For the same cascade sizeb=4002, the patterning-
disorder boundary, determined by plottingcBs1−cBdsGb

+kGthld / Isk * d vs Gb (see Fig. 7 in Ref. 29), is located at
Gb,s=13.4 s−1, while the LRO-patterning transition takes
place atGb,c=2 s−1. Note that in the plot used to determine
Gb,s the KMC data remain above the linear regime for ballis-
tic frequencies up toGb<40 s−1. We thus conclude that com-
positional patterning and patterning of order take place over
a similar range of ballistic jump frequencies. Similar results
and conclusion were obtained forb=384.

For small cascade size, e.g.,b=5, no peak could be de-
tected near the Bragg position(see Fig. 8 in Ref. 29), even
for a ballistic jump frequencyGb=37 s−1, i.e., just above the
order-disorder transition boundary,Gb,c=36.0 s−1. We con-
clude that compositional patterning does not take place for
b=5. Patterning of order was not observed either forcB
=0.25, in agreement with the results reported in Sec. III.
Similar results and conclusion were reached forcB=0.23 and
b=35.

B. Alloy with cB=0.12

Figure 10 shows maps of the chemical order parameter in
an alloy with cB=0.12 under sustained irradiation withb
=4002, which corresponds to a cascade size of 6 nm. This
particular composition has been chosen because it is close to
the compositions used in the experimental works of Nelson
et al.45 and Schmitzet al.46 The map ofh2, rather thanh, is
shown for more direct comparison with dark-field transmis-
sion electron microscopy images. Several finite-size ordered
domains are present, regardless of the initial state. The large
majority of these precipitates consists of a single variant. The
precipitate size is around 6–10 nm withGb=0.05 s−1, and
3–5 nm with Gb=0.1 s−1. Composition maps(not shown
here) indicate that the ordered precipitates are significantly
enriched inB species, with compositions close to 25%. For
Gb=0.05 s−1, the structure factor near the Bragg peak dis-
plays a clear maximum at smallk values, which constitutes
an additional proof of compositional patterning. In this re-
gime, the resulting microstructure is thus comprised of
B-rich ordered domains, embedded in a disordered matrix
that is depleted inB species. ForGb=0.1 s−1, this maximum
in Iskd near the Bragg peak is not always observed in the
configurations explored at steady state, indicating that, at this
Gb value, the system is close to the transition between the
patterning and the disordered states.

FIG. 8. Dynamical phase diagramsT=0.09 eVd. The threshold
for patterning of order isb<100. For a givenb, the cascade sizeL
is obtained using Ni3Al atomic density.

FIG. 9. Structure factorIskd spherically averaged around the
Bragg peakk =0 at steady state forcB=0.23 withb=4002(system
size 1283).

FIG. 10. Maps of the square of the local degree of order,hsrd2

(averaged over 30 fcc cells) at steady state forcB=0.12 with b
=4002:(a) Gb=0.05; (b) Gb=0.1. System size is 1283.
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V. DISCUSSION

We first discuss the case of stoichiometric alloys. For
dense and large cascades, KMC simulations indicate that ir-
radiation can stabilize a steady-state microstructure com-
prised of well-ordered domains of finite size. This patterning
of order is rationalized by following the annealing of the
disordered zone produced by one cascade in a long-range
ordered matrix. This annealing proceeds in two stages: first
the formation of new ordered domains in the initially disor-
dered zone, and second the elimination of these domains by
migration of their APBs. If the characteristic time for cascade
initiation is between the characteristic times for these two
stages, the initially long-range ordered matrix is destabilized
by the repeated introduction of new ordered domains, lead-
ing to an equal proportion of all order variants, four in the
case of theL12 structure. Yet, on a local scale, the alloy is
well ordered because the cascade frequency is not high
enough to destroy the chemical order.

A key ingredient in the dynamical stabilization of patterns
of order is the formation of new ordered domains in the
disordered zone created by the cascade. If the cascade is too
small or too dilute, the presence of the long-range ordered
matrix prevents new domains from nucleating, thus making
it impossible to stabilize patterns of order. The kinetic pa-
rameters of an alloy may also influence this first stage, as
they dictate the path of the vacancy, and thus the kinetics of
formation of stable ordered domains in a disordered matrix.
In general, however, vacancy migration energy is smaller in
a disordered phase than in an ordered one, and this favors the
transient formation of new domains. KMC simulations were
performed for the same alloy considered in this work, except
using a different set of kinetic parameters, where«AA

s1d =«BB
s1d

and «AV
s1d =«BV

s1d. Two-stage annealing of disordered zones and
patterning of order were observed for that alloy as well.

It is somewhat remarkable that this two-stage reordering
has not yet been reported in the literature, to the best of our
knowledge. In fact, using KMC simulations where thermally
activated jumps proceed by direct exchange of atoms, Abro-
meit and Matsumura21 explicitly reported that no new or-
dered domains formed upon annealing of cascade-induced
disordered zones in anL12 structure. We believe that this
difference must be due to the fact that the cascades modeled
in that work were too dilute or too small. In the limiting case
where the disordered zones are very large and dense, one
should always observe the formation of antiphase domains,
regardless of the mechanism responsible for atom migration.
Two additional relevant elements should be mentioned. First,
once a cascade has formed, vacancies are predominantly
found inside the cascade core, whereas interstitials are found
at the periphery of the cascade.19 Second, according to the
MD simulations reviewed in the Introduction, the disordered
zones produced by cascades, while lacking long-range order,
exhibit significant short-range order. These two effects,
which were not included in the present simulations, should
favor the formation of new ordered domains.

Direct visualization of the configurations only allows for a
qualitative assessment of the presence of patterns of order.
Here, we propose a quantitative approach based on the analy-
sis of the spatial fluctuations of order, by evaluating a

fluctuation-dissipation relation at an effective temperature. It
is interesting to note that the concept of an effective tempera-
ture has been proposed in other driven systems, e.g., for
“jammed” granular systems.47,48 We note, however, that, in
case of irradiation with finite relocation range,6,39 the concept
of an effective temperature becomes questionable, asTeff
would be a function of the wave vectork. It is then more
appropriate to use the concept of effective interactions. We
have not tested whetherTeff, which is here only considered at
k =k*, is indeed independent ofk. We also note that other
methods may exist to identify the state of patterning of order,
for instance by analyzing the temporal fluctuations of the
order parameter. These points are left for future work.

The main results of this work are best summarized in a
dynamical phase diagram(see Fig. 8). As the cascade size
increases, the domain of stability of the patterned state be-
comes larger. This trend can be simply understood by con-
sidering the effect of the cascade size on the characteristic
time scales of the two-stage reordering process. Onceb is
larger than the size of a stable ordered nucleus, the cascade
size no longer plays a significant role in the first stage, and
the boundary between patterned and disordered states should
be almost independent ofb. This expectation is in good
agreement with our quantitative analysis. The boundary be-
tween patterned and LRO states, however, should display a
clear b dependence, since, for a fixed volume of disorder
initially introduced, the time for the annealing of antiphase
domains increases with their size, in agreement with the clas-
sical Allen-Cahn kinetics. In the companion paper, we show
analytically that, in the limit of large cascade sizes, the LRO-
patterned state boundary should follow a power law with a
−3/2 exponent.7 This analytical result is in excellent agree-
ment with the present KMC results. The dynamical phase
diagram also indicates that there exists a minimum cascade
size for patterning of order to become possible. This thresh-
old value, hereb<100, is not an absolute valueper se, and
it should depend significantly on several parameters. The ra-
tionalization offered here suggests in particular that the
threshold size will increase when temperature increases, or
when the cascade density decreases.

In the limiting caseb=1, no patterning is ever observed in
the simulations, and the order-disorder transition has become
a weak first-order one. We note that within the framework of
the Landau theory, theA1-L12 transition cannot be of second
order, as the third Landau-Lifshitz requirement is not
satisfied.49

We are not aware of any experimental observations of
patterning of order that would directly correspond to the
KMC results presented here. Ni3Al and Cu3Au alloys would
be good candidates for such studies, and various TEM tech-
niques could be used to image the ordered domains. Follow-
ing the analysis developed in this work, x-ray or neutron
diffuse scattering experiments could be used for a quantita-
tive assessment of patterning of order, by recording the in-
tensity of the structure factor at the superlattice positions at
steady state for various irradiation fluxes or for various irra-
diation temperatures. In the present KMC simulations, the
vacancy concentration is fixed, independently of the ballistic
jump frequency. In analyzing experiments, however, one
would have to take into account the enhancement of the ther-
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mally activated atomic mobility under irradiation by the su-
persaturation of point defects.

A generalization of the present results offers a simple ra-
tionalization for puzzling experimental results reported for
the Ni4Mo alloy under irradiation. Ni4Mo displays the re-
markable property of possessing two competing ordered
states with different symmetry, commonly referred to as the
LRO and SRO states. Under irradiation with 1 MeV elec-
trons, i.e., in the absence of displacement cascades, only one
ordered phase is found at steady state.50 Under ion irradia-
tion, however, there exists a temperature range where the
LRO and SRO states coexist dynamically at steady state.51

By extending the present KMC results to the Ni4Mo alloy, it
is expected that the disordered zones produced by displace-
ment cascades during ion irradiation would first reorder ac-
cording to the SRO symmetry, as is observed during thermal
annealing of a completely disordered state.52 For intermedi-
ate rate of introduction of cascades, one would then expect
the stabilization of patterns of coexisting LRO and SRO
states. More experimental work is required, though, to deter-
mine the spatial distribution of the two ordered states when
they coexist dynamically.

We now turn to nonstoichiometric alloys. Patterning of
order, combined with segregation or wetting at APBs, leads
to compositional patterning, even for alloy compositions in-
side the equilibriumL12 field scB=23%d. For dilute alloys
scB=12%d, patterning of order leads to formation of small
ordered precipitates embedded in a disordered matrix. This
kind of microstructure is in fact very similar to the ones
reported by Nelsonet al.45 and by Schmitzet al.46 in Ni-
irradiated Ni–Al alloys with Al concentrations of 11.5% and
12%, respectively. In these works, patterning of order could
potentially have been induced indirectly by a compositional
patterning.27 This alternative explanation, however, is less
convincing since the maximum characteristic scale of the
patterns would then be bounded by 4pRc,

6 which translates
into 3.6 nm for Ag–Cu.53 On the other hand, when patterning
of order is directly induced by cascade zone reordering, the
size of ordered domains is bounded by the cascade size,
which can extend up to 10 nm.19 Additional experimental
work is required to characterize these microstructures at the
nanoscale.

It is interesting to stress the similarities between the
present results and our previous work on the effect of the
forced atomic relocation range in displacement
cascade.6,26,27,53As mentioned in the Introduction, this range,
as it exceeds a critical value, can directly lead to composi-
tional patterning, and indirectly to patterning of order when
one of the two phases involved in the decomposition displays
an ordering tendency. The effect of the cascade size identi-
fied in the present work is complementary to that of the
relocation range, in the sense that it can directly induce pat-
terning of order, and indirectly compositional patterning in
nonstoichiometric alloys. In both cases, the relevant length
scale has to exceed a critical value for patterning to become
possible. In both cases, stable steady-state patterns emerge
continuously from a disordered and homogeneous state, until
reaching a maximum scale, where the alloy undergo a dis-
continuous dynamical transition to a phase that possesses
long-range order. We also note that in both cases the indirect

effects are brought about by the thermodynamic coupling of
the composition field and of the chemical order field. We
were able to rationalize compositional patterning induced by
relocation range by showing analytically that the forced mix-
ing introduces effective long-range repulsive interactions be-
tween species, which were competing with the physical
short-range attractive interactions. At least from a qualitative
perspective, we can here again invoke a similar concept for
patterning of order. The present patterns of order share simi-
larities with long period structures and incommensurate
phases, which are commonly reproduced by using competing
interactions with different ranges. A formal mathematical
treatment to derive these effective interactions in the case of
patterning of order, however, is currently lacking.

Several simplifications have been used in the present
KMC simulations. First, interstitials have been ignored,
whereas they could contribute to disordering, through ran-
dom recombination,54 or to reordering, in particular at low
temperature.55 Although these contributions would add com-
plexity, it appears that they would not affect the main result
that patterning of order becomes possible when cascades are
large and dense. Second, vacancies are treated as conserva-
tive species, with a fixed vacancy concentration. The use of a
fixed vacancy concentration is motivated by the fact that
point defects reach their steady-state concentration much
faster than the chemical order. As we use ana priori imposed
vacancy concentration, the time scale and the fluxes given in
the simulations cannot be directly compared to experimental
values. For comparison with these values, the time scale
should be rescaled by the actual point defect concentration
under irradiation, which can be estimated using rate
equations.1,37 The absence of sources and sinks for point de-
fects implies that there are no net chemical fluxes in our
simulation cells. It is well documented that these fluxes,
combined with the irreversibility of the point defect elimina-
tion reaction, can induce compositional patterning, and, as a
consequence, patterning of order in alloy systems with order-
ing tendency.56 The microstructure of such patterns, how-
ever, is directly linked to that of the sinks. For the moder-
ately elevated temperatures considered here, the sink
separation distance should thus be at least an order of mag-
nitude larger than the scale predicted in the present simula-
tions. The confirmation of the mechanism identified in this
work for patterning of order thus requires a combined analy-
sis of the patterns of order and of the microstructure of the
irradiated material. Finally, stress effects were not considered
in the simulations. As elastic interactions are long range, they
are susceptible to alter the scale of patterns of order. One
way to minimize elastic interactions is to choose an alloy for
which theA1 andL12 phases are lattice matched, e.g., the
nimonic PE 16 superalloy.

Finally, we propose that irradiation-induced patterning of
order could be used for the synthesis of functional nanocom-
posites. In particular, the extension of the present results to
the Fe–Pt and Co–Pt alloy systems suggests that nanocom-
posites comprised ofL10 and disordered phases could be
obtained by processing alloys withcPt<30% to 40% under
carefully chosen irradiation conditions. These conditions
would be such that they retain theL10 phase, which has a
high ordering energy in these systems, but would disorder
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the L12 phase. Nanocomposites ofL10 FePt or CoPt, which
are hard magnetic phases, and ofA1, a soft magnetic phase,
have been proposed as very good candidates for exchange-
spring magnets, producing permanent magnets with en-
hanced energy products.57–59

VI. CONCLUSION

We used kinetic Monte Carlo simulations to study the
effect of the size of disordered zones produced by displace-
ment cascades on the steady states stabilized in anL12 or-
dered alloy under irradiation. We observed that one large and
dense disordered zone reorders following a two-stage pro-
cess, involving first the transient formation of small and new
ordered domains, followed by the shrinkage of these do-
mains to the benefit of the matrix. Under sustained irradia-
tion conditions, for large enough disordered zones, three
steady states are found. In addition to the expected long-
range ordered state and disordered state, a state of patterning
of order is identified. A dynamical phase diagram is con-
structed, which yields the domain of stability of these three
states. The boundary between the patterned and the disor-
dered states is determined from the structure of the fluctua-

tions of order, by using a fluctuation-dissipation relationship
evaluated at an effective temperature. While the present work
offers rationalization for some experimental results on
Ni4Mo and Ni–Al alloys, systematic experiments are sug-
gested to test the present predictions. It is also suggested that
irradiation-induced patterning of order could be used to syn-
thesize functional nanocomposites, in particular, exchange-
spring magnets.
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