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We have measured the temperature dependence of the reversible magnetization of a four-layered cuprate
TIBa,CaCuyOy (TI-1234) for the Hllc axis, which has the highest superconducting transition tempergjafe
almost 130 K among the four-layered cuprates. The reversible magnetization was analyzed by using the
high-field scaling theory and the Hao-Clem model. It was found that in the critical region afiQuio-
dimensional fluctuations dominate. This enhanced 2D behavior can be naturally explained by selective doping
model, where doping levels of the inner and outer gpf@anes in a unit cell are different. From these analyses,
various thermodynamic parameters, such as the coherence length, the penetration depth, the critical fields, and
the Ginzburg-Landau parameter were obtained.
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I. INTRODUCTION known that critical current densityJ.) and irreversibility

. - . field (H;;) of the single TI-O layer compounds are relatively
Experimentally, it is known that the superconducting tran higher than that of the double TI-O layers for 13

sition temperaturdT,) for multiayered high. supercon- 'tl'herefore for the application, the single TI-O layer com-

ductors does not monotonically increase with the number o X Er
. . _ pound is more promising compared to the double TI-O layer
;:%S l;yz:zn';nhfgiz'rﬁ:ga;e; V\s"r:r:ru?:;ﬁtrrl;s?;’tg%tehegn- compound. However, these single TI-O layered compounds
paf=4. AP 9 have not been studied in detail due to the lack of phase pure
gral expectation thar, INCreases while Increases, suggest- samples. The toxicity and high vapor pressure of th&Jl
ing that the charge. carrers yvereF not distributed equally has prevented one from synthesizing phase pure Tl-based
every C_,uq p]ane W'th'n a “T“t celf. . ... compounds. Using a high pressure technique,dial. suc-
The inequivalent distribution of the charge carriers in dif- cessfully synthesized high quality TI-1234 with=128 K’
Iae;eg:im(élrjﬂ%orplf n_e:ngvgi_bcaosrggmh?% bgu trget}escvl\ji-t’r\lnMR The T, of this sample is higher than the, of 115 K of the
_3p 4 and 5 Acgcordin t0 this ex gerircnen? the Iocal—holeeamer sample&.The increase of, was due to very careful
o X 9 perin ' preparations of a carbon-free precursor. Because of the
doping levelsN, can be dnfferent on the inner square planesabove—mentioned reasons, even the basic superconducting
(IP) and the outer pyramidal plane®P). For compounds parameters of a TI-1234 superconductor, such as the charac-

with n=3 where CuQ planes in a unit cell consist of one IP [ .. " :

and two OP'sN(IP) and N,(OP) are almost the same and terlstlp lengthg & and)), the critical fields(H; andH,), and

both exhibit | timal hol tents. On the other h dthe Ginzburg-Landau parameterhave not been reported on
oth exhibit nearly optimal hole contents. On the other hand,, phase pure TI-1234.

for compounds witm=4 or 5, OP is predominantly in an In this paper, basic superconducting parameters are ob-

gverddopc(:ad state wtrllile“II? remain%,eitfhtehr oggmal dorf Lt’r?derfained after the analysis of the reversible magnetization of
oped. Lonsequently, "MICroscopit, of the and otthe e grain-aligned high quality TI-1234 in magnetic fields ap-

IP differ from each other by this selective doping. Thus, the . ; _ ; -
compound withn=3 shows the maximurii, and the com- plied parallel to thec axis. Ullah-Dorsey’s scaling thecty

ds withn=4 h | T al th duced int and the Hao-Clem modélwere used in the analyses. From
pounds withn=4 have lowerlc, along with a reduced Inter- -y, oo analyses, we found that a two-dimensional nature is
layer coupling. This proposes that a reductionTin with

increasingn is associated with an increase AN, =N(OP) pronounced for this four-layered TI-1234, which is a natural

. . consequence of the selective doping.
—=Ng(IP). Quite recently, the coexistence of the superconduc- g ping

tivity and the antiferromagnetism in Hg-1245 was observed
in the NMR experiment. This revealed that one of the IP and
OP became extremely underdoged.

Tl-based cuprates constitute one of the largest chemical The TI-1234 was prepared in high-pressure conditions.
families of highT. superconductors, forming two distinct The detailed process of sample preparation is given
structure series with the general formulas elsewher€. This compound has a tetragonal structure
TIBa,Ca,.1Cu,Osns5  [TI-12(n-1)n] for single-TI-O-  (P4/mmm with lattice parametersa=b=3.849 A andc
layered and TBaCa,_;Cu,Osna [TI-22(n-1)n] for  =19.005 A. The Farrell methd8was employed in order to
double-TI-O-layered compound¢n=1-4). So far it is make ac-axis-aligned sample. The powder was aligned in an

Il. EXPERIMENTS
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PP over point of the magnetization that is a typically feature of
high-T,, cupraté>'316was observed. The crossover point

%u:; g occurs atT*=125.2 K and 4rM* (T)=-2.04 G. and this
sl ~§ P g . i was due to the enhanced positional fluctuation of vortices, as

Terg £ LB predicted by Bulaevskiet all’

g8 ¢ £ l = 8 l In the vortex fluctuation model, free energy consists of

= > 0

c

two parts. One is due to the static structure of vortices and
the other is the contribution from the positional fluctuation of

] vortices. In this framework, the derivative of magnetization
....... . is

- 26

4nM (G)
A

u!
D‘D—D—D—D—D—D—D—Dfﬂ—ﬂf

-6 _D*D,—D———D‘—’D"—D— ..... 4
M &o _ 32r%kg_
= 1 -g(T)] with g(T) = T™2(T),
0 20 40 60 80 100 120 dlnH 327r2>\§b(T)[ 9(m] 9(m) s (1)
T(K) (1)

FIG. 1. Temperature dependence of zero-field-coglesver ~ Wheres is the effective interlayer spacing amfg is the flux
curve) and field-cooled magnetizatignpper curvgat 10 Oe. Inset:  quantum. The temperatufié in this model is determined as
XRD for grain-aligned T1-1234. Thd0l) reflections are predomi- 9(T*)=1 and the corresponding magnetization is
nant in the XRD pattern, which confirms that these grains are well

oriented along the axis. M* (T*)= kBj In 77_f (2)
St Ve

epoxy with an external magnetic field of 7 T at room tem'wheren and « are constants of order unity.

perature. The alignment was confirmed by the x-ray diffrac- o high-field scaling theory suggested by Tesaheti
tion. All the peaks in the inset of Fig. 1 were indexed as,4| 1819 4150 predictedM * (T*)=KsT*/ s, in a quasi-2D
(0(_")’ indicating that the grains are well alig.ned. along the system. However, the calculated valsién this theory was
axis. Figure 1 shows the low field magnetization at 10 O&qnq to be larger than the crystallographic interlayer spac-
parallel to thec axis. The transition temperaturg, was ing. This discrepancy was due to the high field approxima-
found to be 128 K. o tion and could be mediated by using a theoretical result of

The temperature dependence of the magnetization Wgg,shele\2% which calculated the contribution of the fluctua-
measured by using a superconducting quantum interferenggy, 1 the magnetization by considering higher Landau lev-
device magnetometeMPMS-XL, Quantum design The g5 | this case, the magnetization at the crossing point be-
zero-fle_ld-cooled and field-cooled magnetization for the eXtomesM* (T*)=(kgT*/ Shy)m.,, where m, ~0.346. Using
ternal field range of 1 £H<5 T were measured. the values ofM* and T* from our data, we calculated
=1.78 nm, which is comparable to the crystallographic inter-
layer spacing. The largeindicates that TI-1234 has a strong
two-dimensional2D) superconducting character.

Figure 2 shows the temperature dependence of the revers- Another indication of the 2D nature of the four layer Tl-
ible magnetization #M(T) for various magnetic fields ap- 1234 is from the high field scaling law proposed by Ullah-

plied parallel to the axis. As shown in this figure, the cross- Dorsey. According to Ullah-Dorséyin the critical region
aroundT, the scaling form for magnetization is given by

Ill. RESULTS AND DISCUSSION

OF T 1 ' T
< 47™M T-T.(H)
SF 8" = [A—°n } (3)
S f” o (TH) (TH)
'10 - g 02 Z 20T S
A5F £ F 3 SZT ad whereF is a scaling functionA is the temperature and field
20F V5 S 7 ] independent coefficient, and the exponenis 2/3 for 3D
) s TTST s SKO T o3 ] and 1/2 for 2D. The inset of Fig. 2 shows the data scaled by
= 25F ¥ mranprm a0tk Sxg o 3 . g :
= : Ogng £d —e—1T 3 the 2D scaling. For each field, all data collapsed onto a single
< -30F OOV?Z’AA;"O/O £ —Z—ZT E curve, consistent with the 2D nature of TI-1234. This analy-
-85 | SRS F :v:ﬁ 3 sis givesT,=128 K and the slopelH,/dT,=-2.24 T/K
40 F OonvaﬁOf g o 5T A nearT.. The 3D scaling was not satisfactory.
45k OOO:VVV,AAA - 3 Far away fromT,, the effects of thermal fluctuations are
N S ,&fVVVA?A,a‘jO. dnff'. ] less important. In this regime, we used the Hao-Clem model
70 80 90 100 110 120 130 to analyze the reversible magnetization. Using this model,
T (K) several important thermodynamic parameters were obtained.

A detailed description of the method was given in Ref. 10.

FIG. 2. Temperature dependence of the reversible magnetization Figure 3 and the inset of Fig. 3 show the temperature
in the field range of 1 EH=<5 T applied parallel to the axis. ~ dependence of the thermodynamic critical fiéit}) and the
Inset: Two-dimensional scaling of the magnetization aroTg(tH). Ginzburg-Landau parametéxk), respectively. The solid-line
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FIG. 3. Temperature dependence of thermodynamic critical field FIG. 4. Temperature dependence of the penetration depth)
H,(T) from theoretical fitting. The solid line represents the two-fluid for T1-1234 obtained from the experiment. Dashed and solid lines

model. The inset shows temperature dependence of tharacted ~ 'ePresent\(T)=A(0)/[1~(T/To)*["? and the BCS clean, respec-
from the Hao-Clem model. tively. Magnetization -4M’(H)=-47M/\J2H(T) versus H’

=H/ V“EHC(T). Solid line represents the universal curve derived from

represents the two-fluid model fdd,, which yieldsH,(0)  the model of Hacet al. with x=99.7.

=1.01 T andT,=130.8 K. Thex(T) is nearly constant ak  \yhere k,/x is 1.26 in the clean and 1.20 in the dirty limit.
=99.7 up to T=116 K (=0.91T,) but rapidly increases H_,(0) was 207 T, which corresponds ,(0)=1.26 nm in
above this temperature due to the large thermal fluctuationgjean limit and 197 T and,,(0)=1.29 nm in the dirty limit.
This anomalous behavior is consistent with the high fieldthese values are very much consistent with that of high field
scaling by Ullah-Dorsey. scaling.

If the value_of x is correctly chosen, the Hao-Clem Figure 4 shows the magnetic penetration dépti(T)] in
m_ode?1—23 predicts that —4M(H) curves are scaled by T1.1934 that was obtained using the relation(T)
V2H(T). The inset of Fig. 4 shows the expg_rimental data and- [ ol 2mH(T)TY2, along with the theoretical calculations
the theoretical curve of —AM’(H)=—-47M/v2H(T) versus ot different models. The solid line and the dotted line repre-
H'=H/V2H(T) with k=99.7. All the data are clearly col- gent the BCS clean limit calculation and an empirical for-
lapsed onto a single curve. _ mula, defined by\(T)=\(0)/[1-(T/T)?"2 respectively.

Employing the values oH(0) and « obtained from the =~ As shown in this figure, these models reasonably fit the ex-
Hao-Clem model, we calculated several thermodynamic paperimental data. As a result, the derived valuengf(0) is
rameters. Using the relation 0fHe(T)=v2«Hc(T), 156 nm with T,=130.5 K for the BCS clean limit and
(dHg,/dT)7 =2.23 T/K was obtained. According to 150 nm withT,=130 K for the empirical formula.
the Werthamer-Helfand-Hohenberg  formifla Hg,(0) Table | summarizes superconducting parameters of TI-
=0.5758«,/ K)TC|dHC2/dT|TC, H.(0) can be estimated, 1234 as well as those of other four-layer superconductors

TABLE I. Thermodynamic parameters of three four-layer superconductors deduced from the reversible

magnetization.
TIBa,CaCuyOy HgBaCaCu,O19+5 CuBgaCa&Cu,01y-5
Te (K) 128 (Low field) 125 117
130.5(BCS)
K 99.7 102 127
—(dHgo/dTo)1¢ (T/K) 2.23 2.2 2.3
2.24(scaling
H.(0) (T) 1.02 1.1 0.9
He2(0) (T) 207 205 196
&ap(0) (nm) 1.26 1.27 1.28
Nap(0) (nm) 156 157 198
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Hg-1234 (Ref. 25 and Cu-1234(Ref. 11) for comparison. superconducting parameters were obtained from the Hao-
Before the synthesis of the high quality TI-1234 supercon-Clem model and scaling of the high field magnetization. The
ductor, theT, andH, of Hg-1234 were the best among the fluctuation-induced magnetization shows a pronounced two-
four layer superconductors. However, as shown the Table Himensional behavior, which is a natural consequence of the
the T, of T1-1234 is now the highest. The enhancidin inequivalent charge distribution within a unit cell.

T1-1234 may be due to the high charge carrier density de-

duced from the penetration depth as shown in the table.
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