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The adiabatic temperature changeDT is studied theoretically in perovskite oxides such as La1−xCaxMnO3

crystals. We use a two-parameter phenomenological model which accounts for electron-phonon coupling. The
model predicts the linear dependence ofDT on magnetic fieldDH if only the electronic specific heat is
accounted for. In order to determine the peak value ofDT at TC it is enough to measure the magnetization vs
the magnetic field. The calculated quantities are discussed in the context of various measurements.
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The application of an external magnetic field to magnetic
materials such as perovskite manganites causes a change of
their internal energy. If the magnetic field is applied adiabati-
cally (thermal isolation of the material) the material changes
its temperature. This adiabatic temperature changeDT upon
the application of a magnetic fieldH is the basic parameter in
the thermodynamics of the Carnot cycle. Another important
parameter is the magnetic entropy changeDSM. The determi-
nation of both parameters attracted considerable research
interest1–4 due to application in the refrigeration technology,
making it more efficient and ecological. WhileDSM can sim-
ply be derived from a magnetization measurement, the deter-
mination of DT is associated with considerable
difficulties.2,5–9Therefore, in publications on the magnetoca-
loric effect often only the determination ofDSM is
reported.10–14In this paper, we analyze the theoretical aspects
of a DT calculation. In ferromagnetic materials an adiabatic
temperature changeDT is largest at the critical temperature
TC, where application of a magnetic field influences strongly
the electronic configuration change. In this analysis we use
the two-level phenomenological model of both abrupt and
continuous phase transitions described previously.15 A start-
ing point in this model is a single pair Mn3+-Mn4+ of neigh-
boring ions entering the Mn3+-O2−-Mn4+ chain. At T=0 K,
theeg electron occupies the bonding stateubl. In this state the
eg electron is equally distributed between twod3z2−r2 orbitals
of both Mn ions. With the increase of temperature the ground
state admixes the nonbonding(excited) stateucl. This is the
dx2−y2 state located on any of two Mn ions. In thermal equi-
librium, the electron distributionn is determined by a mini-
mization of the free energy with respect ton, which gives15

n =
1

1

g
expS tR− 2«n + 2mH

kBT
D + 1

, s1d

wheretR is the product of the hopping integralt between Mn
ions multiplied by the Huang-Rhys factorR, « is the Jahn-
Teller energy,m is the magnetic moment,g=2 accounts for
the configurational degeneracy of stateucl andkB is the Bolt-
zmann constant. Equation(1) includes electron-phonon inter-
action and, hence, the energy gap between ground and ex-
cited states depends onn itself. Thus, Eq.(1) is a self-

consistent equation for the partition function.
The ferromagnetic-to-paramagnetic phase transition is as-

sociated with a change of the electron configuration due to a
breakdown of the adiabatic approximation. In a narrow tem-
perature range aroundTC, the spectrum of valence electron
levels is stepwise changed so that the various physical prop-
erties of the material are influenced. We assume that the lat-
tice heat capacity and the lattice vibrational entropy are
changed much less pronounced than the corresponding elec-
tronic quantities and we take them as constants averaged at
TC. The electronic entropyS can be directly obtained from
the expression for the free energy and is given as15

SsH,Td = − kBf− n ln g + n ln n + s1 − ndlns1 − ndg. s2d

In Fig. 1 the functionSsH ,Td is shown. In the two-level
scheme, the distribution function is correctly described
within the range 0ønø1/2. Taking in Eq.(1) n=1/2 one
obtains the critical temperatureTC expressed in terms of the
model parameters. We use the previous values of model pa-
rameters«=289 cm−1 andtR=392 cm−1. They were adjusted

FIG. 1. The entropySas a function of an applied magnetic field
H and temperatureT. The critical temperature is marked by the
TC-TC line. The rectangle 1-2-3-4 containing two isotherms and two
isentropic lines represents the Carnot cycle.

PHYSICAL REVIEW B 70, 092405(2004)

1098-0121/2004/70(9)/092405(4)/$22.50 ©2004 The American Physical Society70 092405-1



to reproduce the critical temperatureTC<210 K for a
La0.8Ca0.2MnO3 crystal and to reproduce the value of the
specific heat atH=0.16 The adiabatic path forn=1/2 is a
straight line denoted byTC−TC in Fig. 1. Similar straight
lines can be drawn for othern,1/2 values. The line
TC−TC projected on theT−H coordinate plane gives directly
the temperature change at various critical pointsTC vs H.

In classical thermodynamics1,2 the adiabatic temperature
changeDT is obtained from the condition of zero entropy
change as a function ofH andT. DT is given as

DT = −E
0

H T

CV
S ] M

] T
D

H

dH, s3d

where M =ms1−2nd is the magnetization per ion and
CVsTd=Ts]S/]TdV. In statistical physics the electronic
entropy is expressed by means of the electron distribution
function. It is seen from Eq.(2) that the adiabatic condition
SsH ,Td5constant can be replaced bynsH ,Td=const. There-
fore, the condition for the adiabatic process can be written as

dn= S ] n

] T
D

H

dT+ S ] n

] H
D

T

dH ; 0. s4d

Taking into account Eq.(1) and calculating the respective
derivatives in Eq.(4) one arrives at

dT=
2mT

tR− 2«n + 2mH
dH. s5d

It follows from Eq. (1) that

−
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Integrating Eq.(5) and using(6) one obtains

DT = −
2m

kBlnF n

gs1 − ndG
E

0

H

dH. s7d

The last equation is equivalent to Eq.(3), provided only the
electronic specific heat is accounted for. Figure 2 shows the
adiabatic temperature change vsH for various initial tem-
peraturesT at H=0. As we mentioned after Eq.(2), Fig. 2
can be obtained directly by seeking for the isentropic lines.

Recently, Pecharskyet al.3,4 proposed an approximation

DT = −
T

CV
E

0

H S ] M

] T
D

H

dH. s8d

DT was determined following this approximation in Refs.
6 and 7 for La2/3sCa,Pbd1/3MnO3 and La1−xSrxMnO3 (with
x=0.1, 0.125, 0.175, and 0.3) crystals, respectively. In fact,
the approximation(8) can be obtained directly from Eq.(3)
by averaging the ratioT/CV and taking it off the integral.
Indeed, when the transition is not steep, the heat capacity is
well approximated by the lattice capacity alone and the ratio
T/CV can be averaged over a fairly large temperature range
(see Fig. 2 in Ref. 4 and Fig. 4 in Ref. 6). However, such
transitions are of minor interest because they possess but a

small magnetocaloric effect. The magnetocaloric effect is
pronounced for steep or abrupt transitions. Then, in the re-
gion aroundTC the electronic heat capacity is comparable to
or larger than the lattice heat capacity(for example, see Fig.
3 in Ref. 9). Taking into account the explicit expression for
the entropyS, one can calculate the electronic contribution to
the heat capacityCV

CVsTd = TS ] S

] T
D

V

= stR− 2«n + 2mHd
dn

dT
, s9d

Fig. 3 shows a hill of the electronic heat capacity aroundTC,
calculated with the parameters for the La0.8Ca0.2MnO3 crys-
tal. Indeed, aroundTC the heat is used to change the elec-
tronic configuration and this produces the large peak in the
total heat capacity. In this case approximation(8) is not ap-
plicable. Moreover, this approximation suggests that the
form of DT is the same as that ofDSM. On the other hand,
the relation(7) indicates that the shape ofDT is given by the
function kBlnfn/ sgs1−ndg. This function is the derivative of

FIG. 2. The isentropic temperature changeDTsH ,Td vs H for
various initial temperaturesT at H=0 for La0.8Ca0.2MnO3s crystal.

FIG. 3. The electronic specific heatCV for the La0.8Ca0.2MnO3

crystal.
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S over n. Therefore, Eq.(7) can be written in an equivalent
form

dS

dn
DT = 2mDH. s10d

Assuming that atTC, CV,electronicùCV,lattice, the effect of the
lattice onDT can be roughly accounted for by the correction
factor f =1/f1+CV,lattice/CV,electronicg. This factor was omitted
from the consideration presented in Fig. 2. The result is simi-
lar to ultralow-temperature cooling in paramagnets,17 where
DT/DH=const(see Fig. 4). In drawing Figs. 1–3 and 5 , we
set spinS=2. In fact, at very low temperatures some ferro-
magnetic materials exhibit a magnetic moment which is
smaller than that following from the theoretical estimation.
These findings are related to various imperfections of the
materials. Therefore, an effective value of spinS should be
estimated from the magnitude of the magnetization for the
particular material.

Applying Eq. (7) for two critical points(wheren=1/2)
one obtainsDT=TC,H−TC,H=0=2mH /kBln g. This gives the
possibility to estimate the upper limit ofDT from the mag-
netization measurements only because the second-order
phase transition takes place atn=1/2, independent of the
value of the magnetic field. The first-order phase transitions
occur atnø1/2.15 Our model does not account for the con-
centration dependence ofDT. Equation(7) indicates a linear
dependence ofDT vs DH. This is simply a consequence of
Eq. (1) which predicts a linear relationship betweenTC and
H. Such linear dependence was observed for MnAs in Ref.
18 and a nearly linear dependence for La0.65Ca0.35MnO3 in
Ref. 19. Using the data from Ref. 6, we plotDT vs H for
La2/3sCa,Pbd1/3MnO3, where a linear dependence is approxi-
mately reproduced. To determineDT, magnetic and calori-
metric measurements are required. Bohigaset al.5 deter-
mined the peak value ofDT to be 2.1 K atH=3 T in a
La0.6Ca0.4MnO3 crystal with TC=260 K. Assuming a linear
scaling of DT with H, this givesDT=0.49 K in the field
0.7 T. This is in good agreement with the maximum tem-
perature change of 0.5 K for the field 0.7 T as obtained in

Ref. 9 for direct temperature measurements in a
La0.6Ca0.4MnO3 crystal. For the La0.8Ca0.2MnO3 crystal with
TC=213 K, we obtained DT=7.5 K at H=3 T, using
f =1/2. Whencomparing the theoretical estimation with ex-
perimental data one should also take into account an inho-
mogeneity of crystals which remarkably decreases the peak
value ofDT.

Conventionally the total entropy is considered as a sum of
separate entropies: magnetic(spin), electronic, and lattice
contributions.2 According to the used model the correlation
between spins in the Mn3+−O2+−Mn4+ chain is entirely due
to Coulomb interaction(the energiestR and «). We do not
assume direct coupling between the total spins on the neigh-
boring Mn ions. We treat the spins as the local entities. Since
the value of observed magnetization can be expressed in
terms of the total local spins, we use the effective spin
(S=2 or 3/2) in the final numerical calculations. Equation
(2) represents both the spin and electron entropies which are
not separable.

In Fig. 5 we show the magnetic entropy change calculated
using Eq.(2) without involving any additional parameters.
We note a resonable agreement with measurements presented
in Fig. 2 of Ref. 12.

The change of theeg electron states during the phase tran-
sition results in a small modification of the phonon spectrum.
This modification influences the lattice heat capacity and en-
tropy. We assume that the lattice free energy of each pure
phase can be described by the Debye model separately. The
estimation of the phonon modificationDv with volume DV
is based on the Grűneisen assumptionDv /v=−gDV/V,
whereg<1−2 is a coefficient independent of the frequency
v. Since the Grűneisen assumption also concerns the Debye
cutoff frequencyvD and"vD=kBQ, one has

DQ

Q
= − g

DV

V
, s11d

whereQ is the Debye temperature. To compare the calcula-
tions and measurements it is necessary to calculate the lattice

FIG. 4. The linear dependence ofDT vs H drawn from data in
Ref. 6.

FIG. 5. The magnetic entropy changeDSM =SsT,Hd−SsT,H
=0d vs T for H=1, 2, 3, 4, 5 T.
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entropySD and lattice heat capacityCVD
20 weighted by the

electron distribution function, i.e.,

Sav = s1 − ndSDsQFd + nSDsQPd,

CVav = s1 − ndCVDsQFd + nCVDsQPd, s12d

whereQF and QP are the Debye temperature for the ferro-
magnetic and paramagnetic spin phase, respectively. Equa-
tion (12) couples the electronic and lattice subsystems. For
the La2/3Ca1/3MnO3 crystal the volume change was deter-
mined to be aroundDV/V=1.5310–3 (see Figs. 2 and 6 in

Ref. 21). AssumingQF=528 K [as for the La0.8Ca0.2MnO3
(Ref. 16)] one findsQP<526 K. Then the direct calculations
show that thedSav /dT and dCVD/dT possess the negligible
change atn=1/2. This result is in agreement with observa-
tion of the total heat capacity shown in Fig. 1 of Ref. 16,
where was used approximationQF=QP.

To summarize, we calculated the adiabatic temperature
changeDT directly from Eq.(7). We thus propose a simple
method for an estimation of the maximumDT at the critical
points, solely based on magnetic measurements. This proce-
dure should be helpful in searching for new materials appli-
cable for refrigeration technology.
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