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The magnetic coupling constants of KCuF3, Sr2CuO2Cl2, La2CuO4, La2NiO4, K2NiF4, KNiF3, NiF2,
KMnF3, and MnF2 are calculated with a hybrid density functional, in which 35% of the nonlocal Hartree-Fock
exchange is mixed in the general gradient approximation to the density functional theory. The theoretical
magnetic coupling constants for these materials with different structures, spins, and magnetic orderings are in
good agreement with experiment. Our results improve significantly over the so-called B3LYP hybrid density
functional, which usually overestimates the magnetic coupling constants by about 50%. However, the energy
gaps from the B3LYP functional are in better agreement with experiment than the hybrid functional with 35%
Hartree-Fock exchange, which means that within the current scheme of hybrid density functionals different
functionals are needed to better predict different properties of materials.
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I. INTRODUCTION

The discovery of high temperature superconductors has
caused great interest in the correlated electronic systems. The
parent compounds of high temperature superconductors and
some transition metal oxides have antiferromagnetic(AFM)
insulating ground states. For example, La2CuO4 has a two-
dimensional AFM ordering in the CuO2 plane and weak in-
terlayer magnetic coupling. The low-lying excited states of
these magnetic materials are generally described by the
Heisenberg Hamiltonian

Ĥ = o
i,j

Jij Ŝi · Ŝj , s1d

whereŜi andŜj are the spin operators on sitesi and j , Jij the

magnetic coupling constant betweenŜi and Ŝj. J can be ex-
tracted from the total energy differences of different mag-
netic states of Eq.(1). There are several theoretical methods
for calculating the magnetic coupling constants with differ-
ent precisions. In the cluster approach the Heisenberg Hamil-
tonian can be solved for a cluster with two magnetic sites to
get the total energies of various magnetic states, and the total
energies of the real materials can be obtained by configura-
tion interaction methods.1

In the periodic approach the total energies of materials are
calculated with unrestricted Hartree-Fock(UHF) and various
approximations to density functional theory, such as local
density approximation(LDA ) and generalized gradient ap-
proximation (GGA). Since a Slater’s determinant is not an
eigenstate of the Heisenberg Hamiltonian, the coupling con-
stants are extracted from the total energy differences between
different magnetic phases of the Ising Hamiltonian

ĤIsing = o
i,j

Jij Ŝiz · Ŝjz. s2d

In the Ising Hamiltonian there are no transverse fluctuations
of spins, which have important effects on the magnetic prop-
erties of materials. It seems a rude approximation to use the

Ising Hamiltonian to extract the magnetic coupling con-
stants. However, it is shown that in some cases the mappings
between the Ising and the Heisenberg Hamiltonians justify
the extracting of magnetic coupling constants with the Ising
Hamiltonian.2–5

For a general spin dimer it is proved that the highest spin
(HS) state is an eigenstate of both the Heisenberg and the
Ising Hamiltonians with the same eigenvalue and that the
eigenvalue of the Ising Hamiltonian for the broken symmetry
(BS) spin state is the same as the expectation value of the
Heisenberg Hamiltonian for the same BS spin state.5 Since
the Heisenberg Hamiltonian has not exactly been solved for
dimensions above one, it is not possible to build a general
mapping between the Heisenberg and the Ising Hamilto-
nians. However, some theoretical results from the cluster ap-
proach based on the Heisenberg Hamiltonian suggest thatJ
is a local quantity; good results can be obtained with a clus-
ter containing only two magnetic sites.1

The UHF approach can recover only about 30% of the
experimental values of magnetic coupling constants. For
some strongly correlated electronic systems, such as CoO,
FeO, and parent compounds of high temperature cuprate su-
perconductors, LDA and GGA could not predict the correct
ground states. So, the application of LDA and GGA in cal-
culating the magnetic coupling constants is limited. In the
applicable cases the magnetic coupling constants from LDA
and GGA approaches are often significantly overestimated.
The so-called B3LYP hybrid density functional method
could correctly predict the ground states of strongly corre-
lated electronic systems.6–9 However, the B3LYP magnetic
coupling constants are usually 50% larger than the experi-
mental ones.

Dai and Whangbo suggested a method for calculating
magnetic couping constants within the density functional
theory on the basis of transition state concept.10 By expand-
ing the total energies of the HS and BS states around the
transition state the difference of total energies of the HS and
BS states are calculated with orbital energies which are ob-
tained by a single calculation. The theoretical results for
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Rb2MnF5 and Cs2MnF5 are in much better agreement with
experiment than the usual total-energy-difference method.
The theoretical values deviate from the experimental ones by
about 20%. The problem with the method is that self-
consistent convergences are not reached for some materials,
such as Na2MnF5, Li2MnF5, andsNH4d2MnF5.

10

Recently, I. de P. R. Moreiraet al.have studied the effects
of the Hartree-Fock(HF) exchange on the electronic struc-
ture and magnetic couplings in NiO by changing the percent-
age of HF exchange in the B3LYP hybrid functional.11 It is
found that 35% HF exchange mixed in the GGA density
functional gives a reasonably balanced description of some
structural, electronic, and magnetic properties of NiO. NiO
has a three-dimensional AFM ordering with ferromagnetic
(111) planes and alternating spins in neighboring planes. In
this paper we apply the hybrid density functional with 35%
HF exchange to several materials with different structures,
spins, and magnetic orderings, i.e., La2CuO4, La2NiO4,
Sr2CuO2Cl2, KCuF3, KMnF3, KNiF3, K2NiO4, MnF2, and
NiF2. KCuF3 is a one-dimensional antiferromagnet.
La2CuO4, La2NiO4, and Sr2CuO2Cl2 are usually thought of
as two-dimensional square Heisenberg antiferromagnets.
KMnF3 and KNiF3 have ferromagnetic(111) planes and al-
ternating spins in the neighboring planes. In MnF2 and NiF2
the magnetic coupling between the next nearest magnetic
ions are not negligible compared with the one between the
nearest magnetic ions. Our results show that the theoreticalJ
values extracted from the total energy differences obtained
with the hybrid density functional with 35% HF exchange
are in good agreement with experiment.

II. CALCULATION METHOD

The hybrid density functional used in the present work
and in Ref. 11 is a variant of the so-called B3LYP hybrid
density functional. In the B3LYP hybrid density functional
the HF exchange energy is mixed into the total energy func-
tional of GGA.6 The argument for mixing the HF exchange
into the exchange-correlation energy is based on the adia-
batic connection formula.6 The weights for the gradient-
corrected correlation energy, local exchange energy, and the
nonlocal HF exchange were determined by a linear least-
squares fitting of the thermochemical properties of some at-
oms and molecules to experiments. Twenty percent of the
nonlocal HF exchange gives theoretical results in good
agreement with experiment. In the B3LYP scheme the
Perdew-Wang12 gradient-corrected correlation energy, which
was used in the original work of Becke,6 is replaced by Lee-
Yang-Parr correlation energy.13

The admixture of HF exchange has important effects on
the electronic and magnetic properties of materials, espe-
cially for correlated electronic systems. It has been realized
that the success of the B3LYP functional in strongly corre-
lated antiferromagnetic materials results from the reduction
of the self-interaction due to the introduction of HF ex-
change. However, the removal of self-interaction is not
enough to get good results for highly correlated systems. A
better correlation energy is also essential to take the correla-
tion effects into account. The successful application of the

method to semiconductors, where self-interaction is not im-
portant, indicates that the B3LYP hybrid functional has a
better correlation energy than LDA and GGA have.

In this paper the percentage of the nonlocal HF exchange
has been changed from 20% in the B3LYP approach to 35%.
The calculations are carried out with theCRYSTAL package.14

The basis vectors for expanding the Kohn-Sham orbitals are
linear combinations of atom-centered Gaussian basis sets.15

In the calculations on KCuF3, 60 and 80 points in the irre-
ducible part of the first Brillouin zone were used for the
ferromagnetic and antiferromagnetic states, respectively. For
La2CuO4, La2NiO4, and Sr2CuO2Cl2, 59 and 105 points were
used for ferromagnetic and antiferromagnetic phases, respec-
tively. For the other materials, a shrinking factor of 8 has
been adopted for forming a regular reciprocal mesh in the
first Brillouin zone. We adopt 7, 7, 7, 7, and 14 as the inte-
gral tolerances to obtain high precision in monoelectronic
and bielectronic integrals. The total energy convergence
threshold exponent is set as 7. Supercells have been built to
take the antiferromagnetic orderings into account. For com-
parisons, B3LYP calculations were also carried out with the
same basis sets and precisions.

III. RESULTS AND DISCUSSION

For La2CuO4, La2NiO4, and Sr2CuO2Cl2 the antiferro-
magnetic ordering is mainly of two-dimensional character.
The interlayer magnetic coupling is about two orders of mag-
nitude weaker than the intralayer one. Due to the Jahn-Teller
distortion of CuF6 the Cu-Cu distance along thec-axis is
shorter than the Cu-Cu distance in theab plane. KCuF3 is of
one-dimensional antiferromagnetic ordering along thec-axis
with weak ferromagnetic coupling in theab plane. Our cal-
culations show that both B3LYP and the hybrid density func-
tional with 35% HF exchange can correctly predict that the
antiferromagnetic states are lower than the ferromagnetic
states for all the materials studied in this paper.

For materials with leading nearest neighbor magnetic cou-
pling constants the coupling constants can be obtained from
the difference of total energies of ferromagnetic and antifer-
romagnetic phases,DE=Js2Z. DE is the energy difference
per magnetic ion,Z the nearest number of magnetic ions(
Z=2 for KCuF3 andZ=4 for the other three materials). s is
the spin, 5

2 for Mn, 1 for Ni, and 1
2 for Cu. In Table I the

magnetic coupling constants from the hybrid density func-
tional with 35% HF exchange are compared with UHF,
B3LYP, and experimental results. The experimental lattice
parameters are used in the calculations. For MnF2 and NiF2
the supercells and equations reported in Ref. 16 are adopted
to extract the nearest and next nearest magnetic coupling
constants. The lattice parameters of Sr2CuO2Cl2, La2CuO4,
La2NiO4, and untwisted KCuF3, K2NiF4, KMnF3, KNiF3,
MnF2 and NiF2 are taken from Refs. 17–25 respectively.
From Table I one can see that magnetic coupling constants
from the hybrid density functional with 35% HF exchange
are in good agreement with experiment. As for other mag-
netic materials UHF approach recovers only about 30% of
the experimental values. B3LYP results are about 50% larger
than the experimental ones. The magnetic coupling constants
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from the hybrid density functional with 35% HF exchange
are comparable to the results of cluster approaches, in which
sophisticated configuration interaction calculations are used
to extractJ directly from the Heisenberg Hamiltonian for
clusters containing two magnetic ions.1,36 The cluster ap-
proaches give magnetic coupling constants of 31.28 meV for
untwisted KCuF3,

36 119.5 and 144.8 meV for Sr2CuO2Cl2
and La2CuO4, respectively.1

The reason for the underestimation of magnetic coupling
constants by UHF is well-known. The kinetic exchange
mechanism in the Hubbard model gives magnetic coupling
constantJ= t2/U, wheret andU are the transfer integral and
the on-site Coulomb interaction, respectively. In the UHF
approach the correlation effects have been ignored, which
leads to a largeU and a smallJ. For the B3LYP hybrid
density functional the mixing of nonlocal HF exchange has
greatly reduced the self-interaction inherent in the usual
LDA and GGA approximations to the density functional
theory. This mechanism enables B3LYP to correctly predict
that the ground states of some strongly correlated electronic
systems are antiferromagnetic insulators, such as parent com-
pounds of high temperature superconductors, for which LDA
and GGA give nonmagnetic metallic ground states. The
B3LYP functional presents significant improvement over
UHF in describing the electronic properties of materials,
such as energy gaps and core level energies. However, the
B3LYP results of magnetic coupling constants did not im-

prove much over the UHF ones. The above results indicate
that the correlation energy in the hybrid density functional
with 35% HF exchange is better than that in the B3LYP
functional in describing magnetic properties of materials.

To see if the hybrid density functional could also be used
for studying other properties of materials, the energy gaps
from the hybrid density functional containing 35% HF ex-
change are shown in Table II. They are larger than the ex-
perimental and B3LYP results. This is also the case for other
materials, such as NiO. The energy gaps of some semicon-
ductors and strongly correlated electronic systems predicted
by B3LYP density functional are usually in good agreement
with experiment.40 The 20% HF exchange in the B3LYP
density functional is obtained by fitting the theoretical results
of atomization energies, ionization potentials, proton affini-
ties, and total atomic energies of some atoms and molecules
to experiment. These properties are related to the electronic
properties. Especially, the ionization potential is directly re-
lated to the orbital energies of electrons. This is the reason
why the energy gaps from the B3LYP functional, which is
obtained by optimizing the coefficients with respect to the
electronic properties, are in good agreement with experi-
ment. The systematic deviation of B3LYP magnetic coupling
constants from experiment means that its coefficients, espe-
cially the weight coefficient representing the percentage of
nonlocal HF exchange, are not the optimum set of param-
eters for studying magnetic properties of materials. The re-
sults shown in Table I suggest that 35% HF exchange is
especially suitable for calculating the magnetic coupling con-
stants of magnetic materials. The theoretical results of mag-
netic coupling constants and energy gaps from the two hy-
brid density functionals suggest that to get better theoretical
predictions on a specific property of materials different per-
centage of HF exchange is needed.

IV. CONCLUSION

The hybrid density functional with 35% HF exchange can
correctly predict that ground states of KCuF3, Sr2CuO2Cl2,
La2CuO4, La2NiO4, K2NiF4, KNiF3, NiF2, KMnF3, and

TABLE I. The magnetic coupling constants(in milli-electron
volt) from UHF, B3LYP, and the hybrid density functional with
35% HF exchange are compared with experimental results of
Sr2CuO2Cl2, La2CuO4, untwisted KCuF3, La2NiO4, KNiF3,
K2NiF4, and NiF2.

UHF B3LYP 35% HF Exp.

Sr2CuO2Cl2 27.95, 26.21a 189.83 121.60 125b

La2CuO4 36.1c 205.34 133.55 128,d 135e

KCuF3 7.9f 57.13 31.67 32.2–35.0g

La2NiO4 9.2c 40.65 27.51 30h

KNiF3 2.57i 14.86 9.32 8.75j

K2NiF4 5.39k 15.38 9.74 8.27–8.96j

NiF2sJ1d −0.400l −0.592 −0.0357 −0.0273j

NiF2sJ2d 0.223l 2.91 1.63 1.72j

KMnF3 0.214i 1.36 0.950 0.64j

MnF2sJ1d −0.206l −0.120 −0.0581 −0.0545j

MnF2sJ2d 0.0734l 0.627 0.408 0.304j

aReference 26.
bReference 27.
cReference 4.
dReference 28.
eReference 29.
fReference 30.
gReference 31.
hReference 32.
iReference 33.
jReference 34.
kReference 35.
lReference 16.

TABLE II. The energy gaps(in electron volt) of the antiferro-
magnetic insulating ground states from UHF, B3LYP, and the hy-
brid density functional with 35% HF exchange are compared with
experimental results of Sr2CuO2Cl2, La2CuO4, La2NiO4, and un-
twisted KCuF3.

Sr2CuO2Cl2 La2CuO4 La2NiO4 KCuF3

UHF 15.9a ,17b ,17b 17.7c

B3LYP 2.52 2.17 2.62 3.93

35% HF 4.85 4.38 4.30 7.01

Exp. 1.65d 2.0e ,4f

aReference 26.
bReference 4.
cReference 30.
dReference 37.
eReference 38.
fReference 39.
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MnF2 are antiferromagnetic insulators. The magnetic cou-
pling constants for the nine materials which have different
structures, spins, and magnetic orderings, obtained from the
hybrid density functional improved significantly the B3LYP
results and are in good agreement with experiment. How-

ever, 35% HF exchange gives larger energy gaps than
B3LYP and experimental results. Within the current scheme
of hybrid density functionals different percentages of HF ex-
change are needed to obtain more accurate results of differ-
ent properties of materials.
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