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Dielectric resonance bandgap and localized defect mode in a periodically ordered
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Dielectric resonance bandgap and localized defect mode in the periodically ordered metallic-dielectric com-
posite networks are investigated by the Green’s function formalism. Several band gaps with the zero density of
states are shown in the spectrum of dielectric resonances. We find that most of the eigenmodes have an
extended field distribution, which is represented by the inverse participation(i@Rp. Moreover, the defect
modes with high values of IPR are fallen into the resonance bandgaps and their positions are very sensitive to
the admittance of the defect. The field of these defect modes is very localized around the defect. Finally, we
discuss the influence of defect modes to the optical responses.
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Periodical structure of crystals leads to the bandgap obond. The Kirchhoff equations of electrostatic Green’s func-
electron energy controlling the conductivity of certain mate-tion F, o read$*
rials. Following this, a semiconductor is fabricated. In the
periodically ordered dielectric structure or a photonic crystal, > &y(Fxo=Fyo = &0, 1)
photonic bandgaps are used to tailor the properties of light, v
namely, some frequencies of lights can transmit the materialith the admittance;, , = ¢, ,. The microstructure of impurity
while others are completely forbiddérin the locally reso-  metallic clusters is completely mapped by the Green’s matrix
nant sonic crystals, there exist spectral gaps that forbid SOME in the clusters subspace, whev,, ==, _y)(Gyy~Gy.)

frequencies acoustic wave propagatféFherefore, the peri- . , .
odical arrays always suppress some of the eigenmodes, Whiﬂind Gy is the Green’s function of Laplace operator on the

enhance others, forming the bandgap of the eigenmode#finite square. The eigenvalus&=1/(1-¢,/€)) of M form

Based on this idea, in this paper, the properties of dielectrithe dielectric resonance spectrum. Dielectric resona(mes

resonances in the periodically arranged metallic-dielectriigenvalues oM) are independent of the external sources,

nano-structure composite are investigated. but closely related to the geometric structure of impurities,
Recently, people start to study the properties of metallicso they are also called geometric resonances. In a binary

photonic crystals possessing the negative dielectric constanietallic-dielectric network, the resonances lie in the rahge

or metallic components® Various metallic-dielectric photo- 0<s<1.

nic crystals are fabricatetf. The bandgaps of transmittance  gjncem maps the microstructure of the impurity metallic

spectrum and the defect mode are very different from they,sters and its eigenvalues determines the values of reso-

general photonic crystal where only the positive dielectricances, these dielectric resonances are also called geometric

constants exist!! For the composite materials, there are ces. For the random composites. the elemerii of
some quasistatic dielectric resonances due to the simultdSonances. For P N o
neously existing positive and negative admittatic€When are randomly distributed. The Ievgl spacings Of. their eigen-
resonance happens, the fields are localized within or aroun\éa‘lues.(or resonangesobey the poisson d|§tr|b_ut|on for the
the impurity metallic cluster¥~16 These resonances were very dilute composites and Gaussian dlstnbut!on_for the per-
colating composite& However, due to the periodical struc-

found not only in the isolated clusteYs;16but also in vari- " Fthe impurity admittan there exists man |
ous disordered composité&t8and in the periodically struc- 'r€ 0 the Impurity a ance,, there exisis many equa

tured nanometer materialsin the present, instead of the €lements inM, so the symmetry ol is modified. Now, the
bandgap of light transmittance, we study the bandgap of didistribution of the dielectric resonances does not obey the
electric resonance in a periodically ordered metallic-laws of random matrix theory. And the modification bf

dielectric composite network. suppresses some dielectric resonances, while denses others,
To model the resonant properties of composite materialdeading to the occurrence of the resonance bandgaps.
we developed Green’s function formaligi@FP in a binary As shown in Fig. 1, the periodically ordered impurity me-

and three-component netwotk!’ GFF is used to calculate tallic arrays with the admittance, in each bond are embed-
the resonance spectrum and local field distribution at resaded in an otherwise homogeneous dielectric network with
nance for a cluster with arbitrary geometry embedded in theadmittancee;, forming a two-dimensional2D) metallic-
infinite network, as well as for a periodically ordered dielectric array. Instead of the transmittance properties, here
metallic-dielectric composite. Consider a binary square netwe discuss its dielectric resonance in the quasistatic limit. In
work, where the impurity metallic clusters with the admit- a 2D square network, several one-dimensii&l) metallic-
tancee, in each bond are embedded in the otherwise homodielectric arrays are checked, but no dielectric resonance
geneous infinite networks with the admittanegin each  bandgap is found. In the 2D arrays, we noted that for the

1098-0121/2004/19)/0921014)/$22.50 70092101-1 ©2004 The American Physical Society



BRIEF REPORTS PHYSICAL REVIEW B0, 092101(2004)

0.090

0.0754

0.060

0.0454

IPR

0.030+

0.015+

0.000 T T
0.0 0.2 04 s 0.6 0.8 1.0

FIG. 3. IPR of the right eigenvectors for ax% array.

features’® While, for a periodically ordered metallic-
FIG. 1. Schematic diagram of a periodically arranged metallic-dielectric structure, in the quasistatic limit, we find the di-
dielectric array. The defect cell is marked by the stripes. electric resonance bandgap.

When dielectric resonance happens, the local field is lo-
symmetric unit cell only three resonance bandgaps argalized within a}nd around the impurity me'tallic arrays. We
shown. While, in Fig. 1, the highly unsymmetric unit cell is _emp_loy the residue of the eIe(_:trlcaI potential to remove the
chosen and five resonance bandgaps are obtained. FurttBfiniteness. Near resonance, it reetds
numerical calculations indicate that the bandgap of dielectric 1 o _
resonances still exist in the 2D photonic crystals, where the Residue(Fy o) = —(E LmvyGy'())(E Mx,sz,z>v (2)
dielectric constants has two dimensional periodicity but the €2\yec zeC
structure is in fact three dimensional. In this figure, the in- ~ ~ . . .
terval of each unit cell at two directions is 4 bgonds. For awhereRm andLy, are themth noLmllzed right and left eigen-
5% 5 periodical metallic-dielectric array, there are 25 cells,vectors of the Green's matri#, and My ;=2 ¢ (G,
totally 100 metallic bonds. So except the trivial eigenvalues-Gy,). We use the inverse participation rafi®R)*® of right
0 and 1, there are 100 nontrivial resonances witlinl). eigenvector to represent the local field distribution of each
Our numerical calculations also indicate that the symmetryesonance. The calculation of IFR) is limited in the non-
of unit cell and the interval among the cells determine therivial eigenstates. Instead of the transmittance of light in a
number and width of the bandgaps. photonic crystal, here for each resonance, IPR is used to

For a 5xX5 periodical metallic-dielectric array shown in represent the localization of field. Figure 3 displays the IPRs
Fig. 1, we calculate the density of eigensta@®S) of these  of right eigenvectors of the abovex3% metallic-dielectric
100 dielectric resonances. We set the interval of resonancesray. It is seen that most of IPRs are distributed within the
As=0.02 and the statistics regisre (0,1). As shown in Fig.  values(0.015,0.060, belonging to the same order. While, in
2, from 0 to 1, we find 5 resonance bandgaps with the zerthe percolating composite network, the values of IPR are
DOS in the resonance spectrum. The first gap is started fromlistributed in the large period and are more randofhly.
the zero and the largest gap is ended to 1.0. The largesnplies that in a periodically ordered metallic-dielectric array
bandgap is froms=0.3340 to s=0.5765. The relation the local fields near resonances have about the same degree
>As-DOS=1 is satisfied. For a random composite, the resoef localization. Then, for a &5 metallic-dielectric array
nances are randomly distributed within the asea(0,1) and  with 100 dielectric resonances, we have checked the local
level spacing of resonances has the general statisticéield distribution of about 20 resonances. Numerical calcula-

tions indicate that most of the eigenmodes have the extended
— T T local field. To have an instructive description, using E),
we calculate residues of the typical local field distribution
] and illustrate it by a three-dimension@D) plot, as shown in
i Fig. 4, where s=0.3073 and the corresponding IPR
=0.045 92. We observe that the local field is almost uni-
formly extended in the whole sample. In a random compos-
] ite, local field at resonance is either localized within a small
] i area, say a “hot spot,” or uniformly extended through the
] wﬂ [ whole sampld®2°We note that at DOS=0 the local field is

Density of states
N w ~ O -] ~

not zero, but a superposition of all the eigenmodes, calcu-
lated by Eq.(16) in Ref. 14.
In a photonic crystal, due to the impurities, the defect
modes are fallen into the photonic banddafhese kinds of
FIG. 2. Density of states of dielectric resonances for>a% defect modes are also reported in a metallic photonic
array. The statistical interval i4s=0.02. crystal?! Then, in view of dielectric resonances, how about

0 y T T
0.0 0.2 0.4 0.6 0.8 1.0

092101-2



BRIEF REPORTS PHYSICAL REVIEW B0, 092101(2004)

=0.1792)
o
S
s

=
EE=

2 0.0005

£ 0.0000 1] “-«

n

S .0.0005 I“;! 0

©

2 Lz 0
& 20.0010 ‘j;‘i:gg: #

N
S
b
)\
)
§
N
SN
i
]
h
¥

FIG. 4. Typical local field distribution near resonances. Here

FIG. 6. Typical local field distribution of a defect mode. Here
s=0.3073 and the corresponding IPR=0.045 92.

7=0.6,5=0.1792, and IPR=0.27323.

the defect modes of a metallic photonic crystal? In:a% find that the field is localized within and around the defect.
metallic-dielectric array, a defect with admittanegin each ~ While, away from the defect, the field is very smoothly dis-
bond is shown as stripes in Fig. 1. Instead of directly changtfibuted. In a random composite, we also reported the very
ing €3, we introduce the difference admittance ratid’ de- localized field distribution or a “hot spot®2° However,
fined asy=(es—e;)/ (e,—€;). When =1, no defect exists. away from the “hot spot,” the field is thendéﬁnotsmpoth.
Figure 5 displays the defect modes of dielectric resonancEigure 6 displays the local field distribution of a typical de-
with »=0.5 and»=0.6. Because each unit cell includes 4 fect mode for»=0.6, wheres=0.1792 and IPR=0.273 23.
metallic bonds, for each case, 4 defect modes are shown frompared to Fig. 4, the field of a defect mode is very local-
the bandgap of dielectric resonances. We find that these died within a small area, but do not have a high intensity. So
fect modes have very large values of IPR, i.e., these eigerf Single defect may not have much influence on the optical
modes possess a very localized field distribution. For a fixedfroperties of the whole metallic-dielectric array.
7, when we move the defect from the corner to center, no ConSIdgr a met_alllc-dlelectrlc array in an |nf!n|te square
obvious change is observed in the IPR spectrum. HoweveR€Work with a point sourcé0,0), the effective linear and
the positions of defect modes are very sensitive to admitfonlinear optical responses are giverrby.=X,, €,|dF |
tance of the defect. The results are shown in Fi@) ith ~ andxe=, XaldF|*. The coefficientss, and ) indicate that,
7=0.5 and Fig. B) with »=0.6. The small change of when resonance happens, how the energy are concentrated in
makes the 3rd defect modes jump from the 2nd bandgap int'€ impurity metallic clusters. We employ Drude free elec-
the 3rd one. Correspondingly, this defect only has a veryronic model to compute the optical responses of a metallic
weak influence to the IPR of other eigenmodes. photonic crystal. The admi;[tan&g of the impurity metallic
Then, we investigate the local field distribution of defectonds is defined ag=1-[w;/ w(w+iy)], w_herewpzlole IS
modes fory=0.5 and%=0.6. For these 8 defect modes, we the plasma frequencyy=0.0lw, a damping constant and
€,=1.77. The defect admittancg is given by the relation

0.6 — e;= €yt 7(€;—€).r" In Fig. 7, only the effective linear re-

0.5. @ n=0.5 ] sponses are considered, and the similar features as shown in
the nonlinear responses.
m”“' 1 Figure 7 displays the imaginary pator absorption
a 0.3 - of effective linear optical responses of ax® metallic-
_o.z- ] dielectric array for the different admittance ratip The
solid curve illustrates the optical responses of a metallic
0.1 ’ m * L photonic crystal without the defect, i.ep=1. While the
0.0 r r dotted and dashed curves give the optical responses of
0.5 ® n=0.6 ] the metallic-dielectric array with a single defect for
7n=0.5 and»=0.6, respectively. It is shown that 5 bandgaps
o 0.4 i of dielectric resonances are separated by several absorption
0 0.3 - peaks. There is a proper correspondence between the IPR
0.2] ] of right eigenvectors and the optical responses. #90.5,
we observe the weak optical responses corresponding to
0.1 ‘ “ M i the defect modes=0.1517 ands=0.4282. As well as for
0.0 r . L 7n=0.6, the optical responses of defect modes are obtained at
00 02 04 08 08 10 $=0.1792,5=0.3650 ancs=0.5124. At last, due to the influ-

ence of defect modes, the intensity of each absorption peak

has very little change, as expected from its local field distri-
bution.

FIG. 5. The localized defect modes fg¢a) »=0.5 and (b)
7=0.6.
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' ' ) effect in the IPR spectrum and in the optical responses.
] Moreover, if the cell defect is replaced by a line defect or

0.5 others, the defect modes will modify the IPR of right eigen-

modes and optical responds very well.

In summary, we first investigate the dielectric resonance
bandgap and defect mode in a periodically ordered metallic-
dielectric composite network. Using Green's function for-
malism, we have found several band gaps with the zero den-
4 1 sity of states in the resonance spectrum, as well as in the
inverse participation ratiodPR) representing the local field
distribution of eigenstates. The localized defect modes are
i shown in the IPR spectrum and their positions are very sen-
sitive to the admittance of the defect. Finally, for a single cell
defect, we discuss the influence of defect modes to the opti-
cal responses.

Optical responses
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FIG. 7. The imaginary parts of the effective linear optical re-
sponses for a X5 array. The calculations are modeled by the
Drude model. Herep=1.0, 0.5, and 0.6.
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