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Dielectric resonance bandgap and localized defect mode in the periodically ordered metallic-dielectric com-
posite networks are investigated by the Green’s function formalism. Several band gaps with the zero density of
states are shown in the spectrum of dielectric resonances. We find that most of the eigenmodes have an
extended field distribution, which is represented by the inverse participation ratio(IPR). Moreover, the defect
modes with high values of IPR are fallen into the resonance bandgaps and their positions are very sensitive to
the admittance of the defect. The field of these defect modes is very localized around the defect. Finally, we
discuss the influence of defect modes to the optical responses.
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Periodical structure of crystals leads to the bandgap of
electron energy controlling the conductivity of certain mate-
rials. Following this, a semiconductor is fabricated. In the
periodically ordered dielectric structure or a photonic crystal,
photonic bandgaps are used to tailor the properties of light,
namely, some frequencies of lights can transmit the materials
while others are completely forbidden.1 In the locally reso-
nant sonic crystals, there exist spectral gaps that forbid some
frequencies acoustic wave propagation.2 Therefore, the peri-
odical arrays always suppress some of the eigenmodes, while
enhance others, forming the bandgap of the eigenmodes.
Based on this idea, in this paper, the properties of dielectric
resonances in the periodically arranged metallic-dielectric
nano-structure composite are investigated.

Recently, people start to study the properties of metallic
photonic crystals possessing the negative dielectric constant
or metallic components.3–5 Various metallic-dielectric photo-
nic crystals are fabricated.6,7 The bandgaps of transmittance
spectrum and the defect mode are very different from the
general photonic crystal where only the positive dielectric
constants exist.8–11 For the composite materials, there are
some quasistatic dielectric resonances due to the simulta-
neously existing positive and negative admittance.12,13When
resonance happens, the fields are localized within or around
the impurity metallic clusters.14–16 These resonances were
found not only in the isolated clusters,14–16 but also in vari-
ous disordered composites,17,18 and in the periodically struc-
tured nanometer materials.3 In the present, instead of the
bandgap of light transmittance, we study the bandgap of di-
electric resonance in a periodically ordered metallic-
dielectric composite network.

To model the resonant properties of composite materials,
we developed Green’s function formalism(GFF) in a binary
and three-component network.14,17 GFF is used to calculate
the resonance spectrum and local field distribution at reso-
nance for a cluster with arbitrary geometry embedded in the
infinite network, as well as for a periodically ordered
metallic-dielectric composite. Consider a binary square net-
work, where the impurity metallic clusters with the admit-
tancee2 in each bond are embedded in the otherwise homo-
geneous infinite networks with the admittancee1 in each

bond. The Kirchhoff equations of electrostatic Green’s func-
tion Fx,0 reads14

o
ysxd

ex,ysFx,0 − Fy,0d = dx,0, s1d

with the admittanceex,y=ey,x. The microstructure of impurity
metallic clusters is completely mapped by the Green’s matrix

M̃ in the clusters subspace, whereM̃x,y=ozPCsydsGx,y−Gx,zd
andGx,y is the Green’s function of Laplace operator on the

infinite square. The eigenvaluesss=1/s1−e2/e1dd of M̃ form
the dielectric resonance spectrum. Dielectric resonances(or

eigenvalues ofM̃) are independent of the external sources,
but closely related to the geometric structure of impurities,
so they are also called geometric resonances. In a binary
metallic-dielectric network, the resonances lie in the range12

0øsø1.

SinceM̃ maps the microstructure of the impurity metallic
clusters and its eigenvalues determines the values of reso-
nances, these dielectric resonances are also called geometric

resonances. For the random composites, the elements ofM̃
are randomly distributed. The level spacings of their eigen-
values(or resonances) obey the poisson distribution for the
very dilute composites and Gaussian distribution for the per-
colating composites.18 However, due to the periodical struc-
ture of the impurity admittancee2, there exists many equal

elements inM̃, so the symmetry ofM̃ is modified. Now, the
distribution of the dielectric resonances does not obey the

laws of random matrix theory. And the modification ofM̃
suppresses some dielectric resonances, while denses others,
leading to the occurrence of the resonance bandgaps.

As shown in Fig. 1, the periodically ordered impurity me-
tallic arrays with the admittancee2 in each bond are embed-
ded in an otherwise homogeneous dielectric network with
admittancee1, forming a two-dimensional(2D) metallic-
dielectric array. Instead of the transmittance properties, here
we discuss its dielectric resonance in the quasistatic limit. In
a 2D square network, several one-dimensinal(1D) metallic-
dielectric arrays are checked, but no dielectric resonance
bandgap is found. In the 2D arrays, we noted that for the
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symmetric unit cell only three resonance bandgaps are
shown. While, in Fig. 1, the highly unsymmetric unit cell is
chosen and five resonance bandgaps are obtained. Further
numerical calculations indicate that the bandgap of dielectric
resonances still exist in the 2D photonic crystals, where the
dielectric constants has two dimensional periodicity but the
structure is in fact three dimensional. In this figure, the in-
terval of each unit cell at two directions is 4 bonds. For a
535 periodical metallic-dielectric array, there are 25 cells,
totally 100 metallic bonds. So except the trivial eigenvalues
0 and 1, there are 100 nontrivial resonances withins0,1d.
Our numerical calculations also indicate that the symmetry
of unit cell and the interval among the cells determine the
number and width of the bandgaps.

For a 535 periodical metallic-dielectric array shown in
Fig. 1, we calculate the density of eigenstates(DOS) of these
100 dielectric resonances. We set the interval of resonances
Ds=0.02 and the statistics regionsP s0,1d. As shown in Fig.
2, from 0 to 1, we find 5 resonance bandgaps with the zero
DOS in the resonance spectrum. The first gap is started from
the zero and the largest gap is ended to 1.0. The largest
bandgap is froms=0.3340 to s=0.5765. The relation
oDs·DOS=1 is satisfied. For a random composite, the reso-
nances are randomly distributed within the areasP s0,1d and
level spacing of resonances has the general statistical

features.18 While, for a periodically ordered metallic-
dielectric structure, in the quasistatic limit, we find the di-
electric resonance bandgap.

When dielectric resonance happens, the local field is lo-
calized within and around the impurity metallic arrays. We
employ the residue of the electrical potential to remove the
infiniteness. Near resonance, it reads14

ResiduesFx,0d =
1

e2
So

yPC

L̃m,yG̃y,0DSo
zPC

Mx,zR̃m,zD , s2d

whereR̃m andL̃m are themth normlized right and left eigen-

vectors of the Green’s matrixM̃, and Mx,z=oyPCszd sGx,z

−Gx,yd. We use the inverse participation ratio(IPR)19 of right
eigenvector to represent the local field distribution of each
resonance. The calculation of IPRsRnd is limited in the non-
trivial eigenstates. Instead of the transmittance of light in a
photonic crystal, here for each resonance, IPR is used to
represent the localization of field. Figure 3 displays the IPRs
of right eigenvectors of the above 535 metallic-dielectric
array. It is seen that most of IPRs are distributed within the
valuess0.015,0.060d, belonging to the same order. While, in
the percolating composite network, the values of IPR are
distributed in the large period and are more randomly.20 It
implies that in a periodically ordered metallic-dielectric array
the local fields near resonances have about the same degree
of localization. Then, for a 535 metallic-dielectric array
with 100 dielectric resonances, we have checked the local
field distribution of about 20 resonances. Numerical calcula-
tions indicate that most of the eigenmodes have the extended
local field. To have an instructive description, using Eq.(2),
we calculate residues of the typical local field distribution
and illustrate it by a three-dimensional(3D) plot, as shown in
Fig. 4, where s=0.3073 and the corresponding IPR
=0.045 92. We observe that the local field is almost uni-
formly extended in the whole sample. In a random compos-
ite, local field at resonance is either localized within a small
area, say a “hot spot,” or uniformly extended through the
whole sample.16,20 We note that at DOS=0 the local field is
not zero, but a superposition of all the eigenmodes, calcu-
lated by Eq.(16) in Ref. 14.

In a photonic crystal, due to the impurities, the defect
modes are fallen into the photonic bandgap.1 These kinds of
defect modes are also reported in a metallic photonic
crystal.21 Then, in view of dielectric resonances, how about

FIG. 1. Schematic diagram of a periodically arranged metallic-
dielectric array. The defect cell is marked by the stripes.

FIG. 2. Density of states of dielectric resonances for a 535
array. The statistical interval isDs=0.02.

FIG. 3. IPR of the right eigenvectors for a 535 array.
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the defect modes of a metallic photonic crystal? In a 535
metallic-dielectric array, a defect with admittancee3 in each
bond is shown as stripes in Fig. 1. Instead of directly chang-
ing e3, we introduce the difference admittance ratioh,17 de-
fined ash=se3−e1d / se2−e1d. When h=1, no defect exists.
Figure 5 displays the defect modes of dielectric resonance
with h=0.5 andh=0.6. Because each unit cell includes 4
metallic bonds, for each case, 4 defect modes are shown in
the bandgap of dielectric resonances. We find that these de-
fect modes have very large values of IPR, i.e., these eigen-
modes possess a very localized field distribution. For a fixed
h, when we move the defect from the corner to center, no
obvious change is observed in the IPR spectrum. However,
the positions of defect modes are very sensitive to admit-
tance of the defect. The results are shown in Fig. 5(a) with
h=0.5 and Fig. 5(b) with h=0.6. The small change ofh
makes the 3rd defect modes jump from the 2nd bandgap into
the 3rd one. Correspondingly, this defect only has a very
weak influence to the IPR of other eigenmodes.

Then, we investigate the local field distribution of defect
modes forh=0.5 andh=0.6. For these 8 defect modes, we

find that the field is localized within and around the defect.
while, away from the defect, the field is very smoothly dis-
tributed. In a random composite, we also reported the very
localized field distribution or a “hot spot.”16,20 However,
away from the “hot spot,” the field is extended,20 not smooth.
Figure 6 displays the local field distribution of a typical de-
fect mode forh=0.6, wheres=0.1792 and IPR=0.273 23.
Compared to Fig. 4, the field of a defect mode is very local-
ized within a small area, but do not have a high intensity. So
a single defect may not have much influence on the optical
properties of the whole metallic-dielectric array.

Consider a metallic-dielectric array in an infinite square
network with a point sources0,0d, the effective linear and
nonlinear optical responses are given by22 ee=oa eau]Fau2
andxe=oa xau]Fau4. The coefficientsee andxe indicate that,
when resonance happens, how the energy are concentrated in
the impurity metallic clusters. We employ Drude free elec-
tronic model to compute the optical responses of a metallic
photonic crystal. The admittancee2 of the impurity metallic
bonds is defined ase2=1−fvp

2/vsv+ igdg, wherevp<1016 is
the plasma frequency,g=0.01vp a damping constant and
e1=1.77. The defect admittancee3 is given by the relation
e2=e0+hse1−e0d.17 In Fig. 7, only the effective linear re-
sponses are considered, and the similar features as shown in
the nonlinear responses.

Figure 7 displays the imaginary part(or absorption)
of effective linear optical responses of a 535 metallic-
dielectric array for the different admittance ratioh. The
solid curve illustrates the optical responses of a metallic
photonic crystal without the defect, i.e.,h=1. While the
dotted and dashed curves give the optical responses of
the metallic-dielectric array with a single defect for
h=0.5 andh=0.6, respectively. It is shown that 5 bandgaps
of dielectric resonances are separated by several absorption
peaks. There is a proper correspondence between the IPR
of right eigenvectors and the optical responses. Forh=0.5,
we observe the weak optical responses corresponding to
the defect modess=0.1517 ands=0.4282. As well as for
h=0.6, the optical responses of defect modes are obtained at
s=0.1792,s=0.3650 ands=0.5124. At last, due to the influ-
ence of defect modes, the intensity of each absorption peak
has very little change, as expected from its local field distri-
bution.

FIG. 4. Typical local field distribution near resonances. Here
s=0.3073 and the corresponding IPR=0.045 92.

FIG. 5. The localized defect modes for(a) h=0.5 and (b)
h=0.6.

FIG. 6. Typical local field distribution of a defect mode. Here
h=0.6, s=0.1792, and IPR=0.27323.
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It is known that forh=0.5 and 0.6 the value of dielectric
resonance is still limited in the intervals0,1d. However,
when h is negative or is much larger than 1, the range of
dielectric resonances will become wide. Correspondingly, the
defect modes with negativeh or largeh will have a different

effect in the IPR spectrum and in the optical responses.
Moreover, if the cell defect is replaced by a line defect or
others, the defect modes will modify the IPR of right eigen-
modes and optical responds very well.

In summary, we first investigate the dielectric resonance
bandgap and defect mode in a periodically ordered metallic-
dielectric composite network. Using Green’s function for-
malism, we have found several band gaps with the zero den-
sity of states in the resonance spectrum, as well as in the
inverse participation ratios(IPR) representing the local field
distribution of eigenstates. The localized defect modes are
shown in the IPR spectrum and their positions are very sen-
sitive to the admittance of the defect. Finally, for a single cell
defect, we discuss the influence of defect modes to the opti-
cal responses.
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