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Projection force density methods, based on the surface Green’s function approach, are employed to obtain
analytical expressions for the elastic interaction and self-relaxation energies of coherently strained conical
islands. These results are used to evaluate the island chemical potential as the basis for coarsening models and
a stability analysis of elastically interacting quantum dot arrays.
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I. INTRODUCTION

_ o u(r,2) = fdzr’Gij(r —rz22)| o[- VL)),
The formation of coherently strained islands on surfaces 2120
during thin film deposition is an attractive means of fabricat- (2.1)

ing nanostructure arrays for possible applications in novel

quantum dot devicesHowever, for many applications, is- Here o;;” is the stress tensor in the planar heteroepitaxial

Ian? size tumfo(;mlt): |sdc$|cil Itf|s ;[hereftf)lre of centtr:al |:nb le i ] are 3D indices, and is the 2D index. The first-
portance 1o understand the k€y faclors intiuencing the sta Iorder correction to the strain energy eqtiéls

ity and dynamical evolution of arrays during coarserfng.
In this regard, it is known that elastic interactions between

0)

islands can significantly influence the coarsening kinetics AEY = lderfi(r)ui(r)
and thermodynamic stability of quantum dot arr&§3315 2
In this paper, we present a detailed derivation of analytical
expressions for the elastic self-relaxation and interaction en- sz fdzr [~V ()]o

ergy between surface islands of a conical shape. These re-
sults facilitate the derivation of the island chemical potential
which has been used to investigate the dynamics of strained XGj(r=r";z2') |,
island coalescenée and the metastability of ultradense z=0
arrays®® The present work fully addresses the approxima-
tions underlying the basic expressions of the cone model anghere f;(r) = 0'(0)[ -V ,£(r)] is the projected force density at
highlights the techniques employed to derive the resultshe surface From this point onward, we will only calculate
which serves as a template for extension of the analysis tquantities defined on the surface, i.e.,zat0 and will con-
other, nonconical, quantum dot geometries. sequently omit the argumeant
In the heteroepitaxial system where both the substrate and
the deposited material are cubic semiconductors, the lattice
Il. FORMULATION OF THE PROBLEM mismatch is isotropic, and the stress tensor in the planar film

Consider the elastic self-relaxation and interaction energ)?g) equals
of a system of three-dimension@D) islands which elasti-
cally interact via the strained substrate. We assume that the 0= Y €00, (2.3
islands and substrate/wetting layer have equal elastic con- a 7,700 '
stants and that the tilt angle of the island side fadets
surface O<< /4. It is further assumed all materials are elas-whereY is the Young’s modulusy is the Poisson ratio, and
tically isotropic so that we can employ the surface Green'sy is the lattice mismatch. The integrand in Eg.2) is non-
function G;; for an isotropic solid® zero only on the projected side surfaces of the islands. By
In the approximation of shallow islands, it is convenientdecomposing each integral in E@.2) into the sum of the

o= VgLt (2.2

to describe the shape and the arrangement of the islands Imtegrals over projected surfaces of individual islands, and by
the surface profile functior=¢(r), wherer=(x,y) is the  substituting Eq(2.3) into Eqg.(2.2), one obtains the energy
displacement fieldy(r) can be expanded in power series

overV{. The zero-order term is the displacement field in theAEe= EI o\ 1

two-dimensional2D) position vector. Then the approxima- as follows:
tion of shallow islands implies tha¥ ¢| < 1. Thus, the elastic
Y 2
) f dzrf A '[Vad(r)]Gp(r =17:0,0)
-V . .
approximation of the flat surface. The first-order term is A A
given by’ X[VgL(r')] (2.49
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Y \2 5 ) 1+vp P1 2m P2
+2 1 f d rf dTr'[Vad(r)] Einter= _Wof drlrlf(rl)f d‘Plf drar ¢(rp)
ij<iNE TV A A| ™ 0 0 0
XGp(r = 150,00V 5L(r")]. 2.4b 2 1
A )[Vpl(r)] (2.4b Xf de, 5 3.5
Every term in the single sum of Eq2.49 is the elastic 0 [R+r1-1

relaxation energy of a giverth island of projected areé;,
whereas every term in the double sum of E2.4b) is the
elastic interaction energy between ftile and thejth island.
The Green'’s tensor on the surface is giveA®by

Here p; and p, are radii of the island bases. If one
first integrates ovep,; and ¢,, this will provide the interac-
tion energies between two rings. Further integration ayer

1+v| (1-v)6,5 . (r=r")(r=r")g and r, will give the interaction energy between the two
G.s(r —r’;0,0) = v
B 7Y |I‘—I"| |I’—I"|3 cones. _ .
To evaluate the integral in E¢3.5) we employ the useful
(2.9 expression
Ill. ELASTIC INTERACTION ENERGY BETWEEN TWO 1 - * .
CONICAL ISLANDS = 2| dkdy(knInkrexdim(e - ¢')]
m=- J 0
Consider the interaction energy of two islands, i.e., a (3.6)

single term from the double sum of E@.4b). By substitut-

ing the Green’s tensor from E.5) into the integrand and ) )
integrating by parts, one obtains given by Rickman and Srolovit®. Herer andr’ are the

radii of the two pointsgp and ¢’ are the polar angles of the
_ltvlo o > s two points, andJ,, is a Bessel function of ordem. The
Einter= 1- ,,WYsofA_ d rg(r)f drd(r )|r —r')¥ derivation of Eq.(3.6) is provided in Appendix B. The inte-
' A gral of Eq. (3.6) can be evaluatéd using tables of
(3.1 integrals?®

If the distance between the two islands is much larger

than the lateral size of the island, one can remove the term 1
e (2 - 5mo)r m+ -

[r —r’|73 from the integral. The remaining integrals will then 1 _ rm
give the product of two volumes and = Re>, exdim(e - ¢')] [
™ T(m+1r| = -
1+v1l , 1 2
Einter= 7 —YegV1Vo—;, (3.2
1- var R 1 1
. . X JE—— . 2 )
whereR is the distance between the centers of the bases of 2F1<m+ 2 M* Lilrr>) > S

two islands. This result gives the interaction energy in the
dipole-dipole approximation.

It is convenient to introduce the following quantity: wherer_ (r-) is the smaller(argep of r andr’, ,F;[m
+1/2,1/2;m+1;(r-/r-)?] is a hypergeometric function,
W, = Y &3, (3.3  and Re means the real part.
1-v To evaluate the integral of E@3.5), it is useful to con-
sider the expansion df —r’|~3 similar to Eq.(3.7). We note

which is the elastic strain energy density in a flat uniformly

strained film. Then, the interaction energy given by 8q1) that
reduces to
1 1
1+v 1 — 2
Einter:_Wof dzr{(r)f dr' e ) 3. [ v Ir=r'|’ 3.8
w A A r=r’|

(34 and write down the Laplacian in polar coordinates
We note here that, for a dense array of islands, the dipole-
dipole approximation is no longer valid, and it is important
to know the accurate expression for the interaction energy of V2= ii( i) ii (3.9
two closely spaced islands. Crooara\ Tars ) r2ag? '

To evaluate the interaction energy of two axially symmet-

ric islands, it is convenient to introduce polar coordinates,
¢, for the first island, and,, ¢, for the second island. Then Expanding the hypergeometric functiogFy[m+3,3;m

the interaction energy E@3.4) reduces to +1;(r</r>)2] in power series ovefr _/r-)?,
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1 1
11 ) o F(m+§+p>r<5+p)r(m+ 1) e\
Fa|m+ 2. ime L) => :

> 7T (3.10
r m+ > r > (m+1+pl(1+p)

r-

substituting Eq(3.10 into Eq.(3.7), and applying the Laplacian from E¢3.9), one obtains the following expansion:

1 o (2_5m0)r(m+}) rm

T Re>, exgdim(e - @’)](m—<+3)

IF=rF e e 1)r<}> =
2

1 1
w F<m+ > + p)F(E + p)F(m+ 1)
X2

P=0 F<m+ %)F(%)F(m+ 1+p)(1+p)

r_\2°
[(2p+m+1)?- mzl(r—<>

>

w (2- 5,“0)F<m+ })
=4ReD,

™0 T(m+ 1)r<5)

explim(¢ - ¢’)](r|rrn—f3)

>

F( +1+ )F<}+ )F 1
o m 5 p > p|I'(m+1) ( 1)( 1 )(r<>2p
p+§ p+=+m|{—

X2

p=0 F<m+ %)F(%)F(m+ 1+p)(1+p)

r

%0 (2 - 5n-0)1—‘<m+ %)
= 4ReD,

™0 P(m+ 1)r<5)

(m o\ F<m+:—23+p>l“<g+p)l“(m+1) \%
exmmw—qo')](m—;)i W (—<)
- p:°r<m+5>r(5>r(m+1+p)F(1+p)

r-

(3.11

Now we substitute Eq3.11) into the integrand of Eq.3.5) and integrate ovep;. In this integration the smaller of the two
radii r - is the radius of the ring,, and the larger-. is the distance between the center of the first ring and the current point
on the second ring, i.ex,. =|R—r,|. After the integration ovegp,, only the axially symmetric pattvith m=0) of the expansion
in Eq. (3.11 remains. This integral equals

I\ F<g+p)I‘<g+p>F(l) 2
= dg01|_—,3 = 4(277)—(—3) > I
0 r—r’'| NS oo (1)1 r-
B —

2
3 2 3 2
| rGe) [ o B [
=42m) >, 1 23 = (22 2073 (3.12
p=0 F<§>F(l+p) = p=0 F(§>F(l+p) =

We note again that. in Eq.(3.12 is the distance between the center of the base of the first ring and the current point on the
second ring. To perform the second integration over the position of the point on the second rind3rbEde., overe,, it

is necessary to expandr£7*3 in each term of the series in E.12 in a way similar to expansions in Eq&.7) and(3.11).

To carry out such an expansion, we again note thatR—r,|, whereR is the vector connecting the centers of two disks, and

r, is the vector connecting the center of the second disk with the current point on the disk. Then using the identity
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1 _ 1 (v 1
IR=r,[3*% 32X 52X ---(2p+1)? IR—r,
1 1 2
por (VZ)p+l 1
2% 3 5 ( 1) IR=r
— >< —_ >< v p+ -
2 2 2
[ 3 | 3\ |2
1 F(E) 1 1 F(E) 1
= — | (V)P == | —= | (VI)P———, 3.13
Z| (22) T R 2 200) T R=rp (319
2 p | 5 p
and substituting the expansion |&-r,|™3 from Eq.(3.11) into Eq.(3.13, we obtain
3\ | 1
R P® 2% 3 1\ (V)P| 4Re2 exfim(® - ¢)]
2 m=0
f— + f—
F(2+p>_ I'(m 1)F<2)
3 3
m o\ F(m+—+q)F(—+q)F(m+ 1) )
ry 2 2 ry\<d
R™3 E E . (3.14)

=0 F(m+ %)F(%)F(m+ 1+qgl(1+q)

Here ® is the polar angle of the vect®, and ¢, is the polar angle corresponding to the current point on the ring. Since we
aim to integrate ovep,, we need only axially symmetric terms with=0. Keeping these terms only, we replace the Laplacian
by its symmetric par¥/?— R Y(d/ JR)R(d/ JR). Thus, Eq.(3.14) reduces to

3 2
F(E +q> r%q

2q+3
F( )F(1+q)

3 2
(3
1 _) N2 (Ei d +terms withm # 0 (3.19
IR—r,[3% 2% F<§+p) RdR dR . .
2

J]=

Applying the symmetric part of the Laplacigntimes in Eq.(3.15, we obtain

3) |7 3 2
1 1 F(E) °“ F<§+q> 3 .
m = 2% 3— 42 N [(Zq + 3) e (2q +2p+ l)]szszJra + terms withm # 0,
TG ] el

3 = 3 q+2p+3
r(= a=0 F(—)Fl
I <2+p>_ o) Td+a

3) |? 3 1

T o oo et} o

= 3 % 3 R2q+2p+3 +terms withm # 0,
rS+p = FEF(1+q) Fq+

3 2 3
F - o0 F _+q 2 2
2 2 1 raa ,
= —F/— E ——— q+ q+p+§ RZ— +terms withm # 0,

3) |7 3\ 2
F(E) o0 F(q'l' p+ E) r2q
=l 773 > 3 qu"229+3 +terms withm # 0. (3.19
(3+0) | 7 (3 rava

085416-4



ELASTIC INTERACTION AND SELF-RELAXATION...

Now let us substitute the expansion in £8.15) into Eqg.
(3.12 and integrate ovep,. Then the term wittm=0 will be

multiplied by (27), and the other terms will vanish. Hence,

2m 2m 1
I :f d(pf dpr——3
? 0 2 0 l|r‘r K
3 2
1_‘ —_
<2+p>
3
r=|ra
B
3\ |? 3\ |?
T(é) F(q+p+5> 12 29

<3 ) (1) R2q+2p+3'
r E+p r > I'(1+q)

(3.17
Further straightforward simplification yields

3 2
F(E + p+q> r2pr2q

20+2p+3 "

=(2m)?> >

p=0q=0

l,=(2m)2> >

p=0a=0 F(3>F(p+ (g +1)

(3.18

It is now convenient to change the order of summation, and
to introduce a new variable=p+q. Then the outer summa-
tion will be carried out overs, from 0 toe, and the inner

summation will be carried out over from O tos. Hence,
zi i | riry® ]2
I,=(2m)
2 Sl ST+ DI (s-p+1)

3 2
ry-+
2|

3 R3+$'
i

(3.19

2
The surface profile of the cone is
{(r)=tan 9y Ap1 o= (3.20

By substituting Eqs(3.19 and (3.20 into Eg. (3.5), we
obtain the interaction energy

r), if ppo>r.

1+v
Einter= TWO(ZW)Z(tan )

<(tan 93 {E { : T

po LT (p+DI(s-p+1)

p1
Xj drl(Pl_rl)rl ZPJ drz(Pz_rz)r1+2(S p)}
0

0

2
F(; +s> 1
X 3 T (3.2
F(E)

PHYSICAL REVIEW B 70, 085416(2004)

Evaluation of the integrals ovey andr, yields

1+

3 3

v p1pP
Einter= Wo(27r)2—1—2(tan 1)

T 6 6

php5 P T
IN'p+DI'(s-p+1)

X (tan az)E 2 {

3
2

p+§) (s—p+1)(s—p+§>

2 2

N w

X
(p+1)
3 2
F<§+S> 1
7 | = (3.22
f3) |©

It is convenient to express the interaction energy in terms of
island volumes. By substituting; ,= (37 1cot 9 ,V; 3

into EqQ.(3.22 one obtains the interaction energy in the fol-
lowing form:

(3.23

1+ 1 _(p1.p2
Einier= WovlszaF( +

R'R

HereF (74, 7,) gives the correction factor with respect to the
interaction energy of two remote islan@i&q. (3.2)] and is
given by

* 2
772
F , =
()= 2 F<§) 2 F<p+1>r<s—p+1>}
2

X

3
2
3)o-peals-pe)

The correction factor is equal to unity i, — 0 and7,— 0,
and E;r approaches the interaction energy obtained in the
dipole-dipole approximation.

A N w

(p+Dlp
(3.24

IV. ELASTIC SELF-RELAXATION ENERGY OF A
CONICAL ISLAND

Consider now the elastic relaxation of a single cone, i.e., a
single term from the sum in E@2.49. Inserting Eqs(2.5)
and (3.3 in Eq. (2.49 gives
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AEge= 21 i Zwofdz fdzr n (r)[ (L= 9)d M' M(k;r)=JdZRR‘lé(r—R)na(R)exri—ik 1), (4.79
MM) @y
Ir=r’| Gap(k) = JdZR{ -V Vﬁ|R|}exp( ik -R). (4.79

whe_rena(r) is the surface projection of the n_ormal vector. In Tg calculate the integral of Eq4.79 we note that for an
the integrand of Eq4.1) we make the substitution island having a conical shape, the surface projection of the
normal vector
(r=r)yr=r")g a4
r=r' P r-r|

_ _ R
VoVgr=r'[. (4.2 na(R):E“tan 9. (4.9

Then, inserting Eqi4.2) into Eq.(4.1), one obtains the elas- Substituting Eq(4.8) into Eq. (4.7 and denoting the polar
tic relaxation energy as follows: angle in theR space as, and the polar angle in the space

as ¢, one obtains

1 +v 2 2 ~ * 2 —1 Ra
AEge= Wo dr [ dr'ny(r) N, k;r)=| dRR| deR&(r-R)tan ﬁE
0 0
) i _
XLr_—aﬁ A —r’|}nﬁ(r’). (4.3) Xexd - ikR coge - ¢)]. (4.9

We now calculate the Fourier transform of tkecomponent

o ] N ) ) of the normal vectofa=1). The integration in Eq4.9) over
Now, it is convenient to partition the integration oveand R is trivial. and the integral reduces to

r' in Eq. (4.3 into an integration over radii and angles. This

procedure yields 2n

/~\/X(k;r) =tan ﬂf de cos ¢ exd—ikr cog¢ - )].
0

Wof drrf dr'r’J(r,r’), (4.9 (4.10

Introducing a new variabley=¢—¢, the integral of Eqg.
(4.10 reduces to

11 v
AEself 2 1-vp

where the quantity(r,r’) is proportional to the elastic inter-

action betweertwo rings ~ am _
Nyk;r)y=tand | dy codx+ ¢)exd—ikr cosy].
0

2w 2
J(r,r') = f d(pf de'n, r){| |—vV 2Vglr (4.1D
After performing a standard transformation
—r'|}nﬁ(r’). (4.5 cogy+ ) =cosycosy—sinysiny, (4.12
We now Fourier transform all quantities in the integrandand substituting this expression into &4.11), the integrand

of Eq.(4.5) and, afterwards, calculate the integrakispace. becomes a sum of the even and the odd functioris@s y).
For this purpose, we write the integral of E@.5 as the The integral of the odd function vanishes, and the remaining

double integral over the entire 2D space integral yields
- 2
* * 2m 2m Ny(k;r)=tan 9 cos J dy cos y exfd - ikr cos x]
J(r,r’)=f dRRJ dR’R’J dqof de’ 8(r - R) x V], dxcosxexd X
0 0 0 o
Oy =i tanJ cos dy exd - ikr cos
XRINR)| =£— -V V4R -R/| wd(k) X ex Xl
IR-R’|
XngRHR S = R). (4.6) =i tanﬁcosw(ZTr)d(k )Jo(kr)
It should be noted that, in E¢.6) RandR’ are variables of =—itand cosy(2m)J;(kr)
the integration, whereasandr’ are parameters. We intro- _ Ky
duce the Fourier transformations =-itan 19?(277)310«)- (4.13

085416-6
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The Fourier transform of thg-component of the normal
vector can be calculated in the same way. Finally, one ob- A

tains

N (k:r)=—i(2mtan ﬁk—;‘Jl(kr). (4.14)

To carry out the Fourier transformation in E@L.7h), we
note that

1 2
deREexp(—ik ‘R)= % (4.153
2 . 2w
dRRexp(—lk-R)——F (4.15b

(see Appendix A By substituting Eq(4.15) into Eq.(4.7b),

one obtains
k k
B(k) |: aB v k2 :|

The double integral in the real space in E4.6) can be
written as the integral in thk space

(4.16

d*k ~ o ~
J(r,r’):f (277)2[Na(k;r)] Gap(KING(K;r"). (4.17

By substitutingﬂ/a(k;r) from Eq. (4.14 and Eaﬁ(k) from
Eq. (4.16) into Eq.(4.17), one obtains

K,
dkktan 1?—

Jr,r’)= (277)2 (kf)—

(2m

k k k
x[aaﬁ— V%}tan ﬁ—le(kr’). (4.18

The integration ovewy is trivial and yields(2). Thus, the
integral of Eq.(4.18 reduces to

J(r,r’) = (2m?[tan 9]%(1 — v) f ’ dkJy(kr)Jy(kr"). (4.19
0

This integral has been calculated in Sec.[Hee Eq.(3.7),
the term in the sum witlm=1]. Hence,

J(r,r") = (2mtan 9%(1 - »)

(4.20

PHYSICAL REVIEW B 70, 085416(2004)

o= 5 g Wo(2m ltan 9L )
., 31
fdrrfdrr( )ZZF(ZZZ(F /f>)>

(4.21)

It is possible to split the domain of integration in the
double integral over andr’ in Eq. (4.21) into two subdo-
mains, where >r' in one subdomain, and<r’ in the other
subdomain. The two integrals are equal, &t from Eqg.
(4.2)) equals twice the integral over one subdomain. By in-
troducing variables- =r, andr_=r’, Eq. (4.2]) reduces to

AEse”: 2(277)(1 + V)Wo[tan 'ﬂ]zfp
0

Xfr>drr<r> F(S 2(r/r)>
o 22 V= )

(4.22

drore

Now, by introducing the variable=(r_/r-)?, it is possible to
write the double integral in Eq4.22) as the integral over-.
andt:

AEg= (2m)2(1 + v)W[tan 97?
31
X—— 1/2 (_ - . )
j dror f dtt''s ,F > 2
(4.23

An important feature of Eq4.23) is that the inner and outer
integrals are uncoupled. The outer integral equals)p®.
By substituting the expression for the volume of the cone

1
V= gtan Smp° (4.29
in EqQ. (4.4), one obtains
AEg;= (1 + v)tan 9WyV.7, (4.29
where
31
dtt!2 F <—,—- -r). 4.2
J= f '3 (4.26)

V. NUMERICAL FACTOR IN THE ELASTIC
RELAXATION ENERGY

To evaluate the numerical factgfin Eq. (4.26), we sub-

SubstitutingJ(r,r’) from Eq. (4.20) into the expression stitute the series expansion of the hypergeometric function

for the elastic relaxation energy given by E4.4) yields

,F1(2,2:2;0) in the integrand. Hence,

085416-7
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3 1 JIE;
F( p>F<—+p)F(2) = Q= (6.3
f th 2 2 P12 W
0 p=0
F(z) ( )F(Z *pIL+p) where() is the atomic volume. The chemical potential has
contributions corresponding to each of the energy terms dis-

. F(§ + p)l“(l + p)F(Z) cussed above,

2 2 1

=2 g (5.1) 0
p=0 F(é)F(é)F(Z +p)'(1+p)p+ E M= M surf T Miself T E Mi,Jimer- (6.4)
J#i

Numerical evaluation of this series sum yields 13
~ From Eq.(6.1), uisurf= QB\f{ and from Eq(4.29), u seif
J=1.059. 52 =-0adtan ;. The term ] |)nter is the contribution to the

It is interesting to compare this result with the result for thechemical potential of island due to its interaction with is-
Iamdj and is given by

volume elastic relaxation of a square-based pyramid obtaine
by Duportet al.?! The elastic relaxation energy of a pyramid

equals - E
() = ZEiinter|y o
. _ (6.5)
i,inter &VI tan,=const

tans)=const

4 - -
AEser==—(1+2)(\2 = D[1+In(1+ 2 WV tan 0.

5.3

-3 By substituting the interaction energy from E®.23 into
Numerical evaluation of the analytic expression given by EqEq. (6.5), and by using the identity
(5.3 yields

AEger=— 0.99221 + )W,V tan 9. (5.4) dpi dni
The two numerical factors, one for a pyramid from Egj4), oFCmm) _ 1 i m Mﬁ’ (6.6)
and the other for a cone from E¢5.2) are very close, as Vv Vi dVv; dpi x
expected. V P
VI. ISLAND TOTAL ENERGY AND CHEMICAL one obtains
POTENTIAL

The total formation energy of an island labeleds the _ a, 1 P p 1 (p p
sum of the surface and strain enemyi=AE; syt AE; o Mi(,Ji)rlter:Q F( ' EL) 3G( R,l —L)
the effects of surface stress and the energy of the island R‘l ! i R
edges being neglectéd-or a conical island, (6.7)

3
AE; qui= mp[ 1) sea, — y(0)] = EﬁV?B, (6.)  Here

where y(¥;) and y(0) are the surface energies of the tilted
surface of the island and of the flat surface of the wetting

layer, respectively, withB=2733"13(cot )% y(9;)secd; 6o
-$0)].

The elastic energy is comprised of the self-relaxation en- e
ergy and the interaction energy of thb |sland with all other  — 441~
islandsj. HenceAE; ¢=AE; self+zj¢|E| inter WhereEIJI)nter is :_

w

the interaction energy between islandand j. From Egs.
(3.23 and(4.25 we have

2.

AE o= - aJtan 9V, + =3, MF(#—“) . (6.2

’ Ti7 R O\Ry'Ry
wherea=(1+v)W, andR;; is the distance between the cen-
ters of the bases of the islandsndj.

To model the kinetics of Ostwald ripening or
coarseninfy®11.12.1522-24 is important to know the chemical
potential of the island defined by FIG. 1. The functionF (7, 1,).
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elastic self-relaxation and interaction energies for coherently
strained conical islands. These expressions are used to evalu-
ate the island chemical potential which can form the basis for
models of strained island coarsenif@nd stability*® The
work could be further extended, for example, to investigate
island shape transformations in the presence of elastic inter-
actions and the influence of island interactions on the spatial
variation of the adatom chemical potential. The advantage of
the method proposed in the present paper in dynamical simu-
lations of island evolution is that with a suitable tabulation of
functions, the effect of elastic interactions can be included
using a simple look-up table.
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APPENDIX A

This appendix contains some useful Fourier transforma-
tions employed in the analysis. Consider

)

1 Ll 1 2
s p_sp 2 fdzr—exp(—ik-r)zf drr—J de exp(—ikr cos )
% E 2p i 7 :| r 0 rJo
o0 LI(p+DI(s-p+1) . o
=2 drdo(kr) = —. Al
3 3 WJO rJo(kr) K (A1)
2 2
X 3 3\ |- Thus,
(p+ 1)<p+—) (s—p+ 1)(3- p+ —)
2 2 1 >
Flop=2" (A2)
(6.9 " K
The functionsF(7;, ;) andG(;, 77;) are defined for Consider now
O<=7p<1, Osy<1, p+y<1, (6.9 F{r}zfdzrrexp(—ik-r). (A3)

and can be evaluated over the entire domain of definition and

stored in the form of a look-up table to be accessed in simuThe integral(A3) diverges, but can be regarded as a gener-
lations of island ripening kinetics. Calculated values For alized function. We note that

andG are displayed in Figs. 1 and 2, respectively. The func-

tion F indicates the factor by which the interaction energy V2 = 1(—r—r> _1 (Ad)
deviates from the dipole-dipole approximatifig. (3.23)]. r\dr dr re

It converges over the entire domain of definition indicated in

Eq. (6.9). For remote islands, whes, ,— 0, F equals unity ~ Now, writing the same identity for Fourier transforms, we
and the dipole-dipole model is a good approximation. As theobtain

islands tend to touclin;+7,— 1), F increases rapidly, di-

verging from the dipole-dipole approximation. The results _ )1
for the functionG are divergent forp; — 1. RV} = -k} = F{F} (A5)

VIl CONCLUSIONS By substituting Eq(A2) into Eq. (A5), we finally obtain

We have employed projection force density methods and Firl = (A6)
the surface Green’s function for isotropic solids to obtain K3
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APPENDIX B o
exdikr code— )= > ayexpimy). (B2)

By using Eq.(A2), we write|r —r’|"! as the inverse Fou- =
rier integral
We find the coefficients,, of the expansion Eq(B2) as

1 (7 dkk 27?7 . , follows:
il L 2mp kf dyexdik - (r =r’)]

0 2

= dk (27 anm= zif dyy exdikr cog ¢ — ¢) lexd — imy]
:f er dy exdikr cog¢ - )] TJo

0 0

1 ) 2 -
xexdikr'cod¢’ — )]. (B1) = gexp(- ime) fo dyr explikr cod¢ - )]

Here ¢, ¢’, and ¢ are polar angles of the position vectors sexdim(o - 1= extd— imuld—(kr B3
r’, and the wave vectdq, respectively. Now we expand each Xim(e = ¢)1= ex = imy (ko). B3
of the exponentials in the integrand of E&1) in a Fourier By substituting the coefficients,, from Eq. (B3) and by
series performing integration ovey, one obtains E¢(3.6).
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