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I. INTRODUCTION

The formation of coherently strained islands on surfaces
during thin film deposition is an attractive means of fabricat-
ing nanostructure arrays for possible applications in novel
quantum dot devices.1 However, for many applications, is-
land size uniformity is critical. It is therefore of central im-
portance to understand the key factors influencing the stabil-
ity and dynamical evolution of arrays during coarsening.2–15

In this regard, it is known that elastic interactions between
islands can significantly influence the coarsening kinetics
and thermodynamic stability of quantum dot arrays.10–13,15

In this paper, we present a detailed derivation of analytical
expressions for the elastic self-relaxation and interaction en-
ergy between surface islands of a conical shape. These re-
sults facilitate the derivation of the island chemical potential
which has been used to investigate the dynamics of strained
island coalescence15 and the metastability of ultradense
arrays.13 The present work fully addresses the approxima-
tions underlying the basic expressions of the cone model and
highlights the techniques employed to derive the results
which serves as a template for extension of the analysis to
other, nonconical, quantum dot geometries.

II. FORMULATION OF THE PROBLEM

Consider the elastic self-relaxation and interaction energy
of a system of three-dimensional(3D) islands which elasti-
cally interact via the strained substrate. We assume that the
islands and substrate/wetting layer have equal elastic con-
stants and that the tilt angle of the island side facets(or
surface) q!p /4. It is further assumed all materials are elas-
tically isotropic so that we can employ the surface Green’s
function Gij for an isotropic solid.16

In the approximation of shallow islands, it is convenient
to describe the shape and the arrangement of the islands by
the surface profile functionz=zsr d, where r =sx,yd is the
two-dimensional(2D) position vector. Then the approxima-
tion of shallow islands implies thatu¹zu!1. Thus, the elastic
displacement fielduisr d can be expanded in power series
over¹z. The zero-order term is the displacement field in the
approximation of the flat surface. The first-order term is
given by17

ui
s1dsr ,zd = U E d2r 8Gijsr − r 8;z,z8dU

z8=0
s ja

s0df− ¹azsr 8dg.

s2.1d

Here si j
s0d is the stress tensor in the planar heteroepitaxial

film, i , j are 3D indices, anda is the 2D index. The first-
order correction to the strain energy equals18

DEel
s1d = U1

2
E d2r f isr duisr d

=
1

2
E d2r E d2r 8f− ¹azsr dgsai

s0d

3Gijsr − r 8;z,z8dUz=0

z8=0

s jb
s0df− ¹bzsr 8dg, s2.2d

where f jsr d=s ja
s0df−¹azsr dg is the projected force density at

the surface. From this point onward, we will only calculate
quantities defined on the surface, i.e., atz=0 and will con-
sequently omit the argumentz.

In the heteroepitaxial system where both the substrate and
the deposited material are cubic semiconductors, the lattice
mismatch is isotropic, and the stress tensor in the planar film
sai

s0d equals

sai
s0d =

Y

1 − n
«0dai , s2.3d

whereY is the Young’s modulus,n is the Poisson ratio, and
«0 is the lattice mismatch. The integrand in Eq.(2.2) is non-
zero only on the projected side surfaces of the islands. By
decomposing each integral in Eq.(2.2) into the sum of the
integrals over projected surfaces of individual islands, and by
substituting Eq.(2.3) into Eq. (2.2), one obtains the energy
as follows:

DEel = o
i

1

2
S Y

1 − n
D2E

Ai

d2rE
Ai

d2r 8f¹azsr dgGabsr − r 8;0,0d

3f¹bzsr 8dg s2.4ad
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+ o
i
o
j,i
S Y

1 − n
D2E

Ai

d2rE
Aj

d2r 8f¹azsr dg

3Gabsr − r 8;0,0df¹bzsr 8dg. s2.4bd

Every term in the single sum of Eq.(2.4a) is the elastic
relaxation energy of a givenith island of projected areaAi,
whereas every term in the double sum of Eq.(2.4b) is the
elastic interaction energy between theith and thej th island.
The Green’s tensor on the surface is given by16

Gabsr − r 8;0,0d =
1 + n

pY
F s1 − nddab

ur − r 8u
+ n

sr − r 8dasr − r 8db

ur − r 8u3 G .

s2.5d

III. ELASTIC INTERACTION ENERGY BETWEEN TWO
CONICAL ISLANDS

Consider the interaction energy of two islands, i.e., a
single term from the double sum of Eq.(2.4b). By substitut-
ing the Green’s tensor from Eq.(2.5) into the integrand and
integrating by parts, one obtains

Einter =
1 + n

1 − n

1

p
Y«0

2E
Ai

d2rzsr dE
Aj

d2r 8zsr 8d
1

ur − r 8u3
.

s3.1d

If the distance between the two islands is much larger
than the lateral size of the island, one can remove the term
ur −r 8u−3 from the integral. The remaining integrals will then
give the product of two volumes and

Einter =
1 + n

1 − n

1

p
Y«0

2V1V2
1

R3 , s3.2d

whereR is the distance between the centers of the bases of
two islands. This result gives the interaction energy in the
dipole-dipole approximation.

It is convenient to introduce the following quantity:

W0 =
Y

1 − n
«0

2, s3.3d

which is the elastic strain energy density in a flat uniformly
strained film. Then, the interaction energy given by Eq.(3.1)
reduces to

Einter =
1 + n

p
W0E

Ai

d2rzsr dE
Aj

d2r 8zsr 8d
1

ur − r 8u3
.

s3.4d

We note here that, for a dense array of islands, the dipole-
dipole approximation is no longer valid, and it is important
to know the accurate expression for the interaction energy of
two closely spaced islands.

To evaluate the interaction energy of two axially symmet-
ric islands, it is convenient to introduce polar coordinates,r1,
w1 for the first island, andr2, w2 for the second island. Then
the interaction energy Eq.(3.4) reduces to

Einter =
1 + n

p
W0E

0

r1

dr1r1zsr1dE
0

2p

dw1E
0

r2

dr2r2zsr2d

3E
0

2p

dw2
1

uR + r 1 − r 2u3
. s3.5d

Here r1 and r2 are radii of the island bases. If one
first integrates overw1 andw2, this will provide the interac-
tion energies between two rings. Further integration overr1
and r2 will give the interaction energy between the two
cones.

To evaluate the integral in Eq.(3.5) we employ the useful
expression

1

ur − r 8u
= o

m=−`

` E
0

`

dkJmskrdJmskr8dexpfimsw − w8dg

s3.6d

given by Rickman and Srolovitz.19 Here r and r8 are the
radii of the two points,w andw8 are the polar angles of the
two points, andJm is a Bessel function of orderm. The
derivation of Eq.(3.6) is provided in Appendix B. The inte-
gral of Eq. (3.6) can be evaluated19 using tables of
integrals,20

1

ur − r 8u
= Reo

m=0

` s2 − dm0dGSm+
1

2
D

Gsm+ 1dGS1

2
D expfimsw − w8dgS r,

m

r.
m+1D

3 2F1Sm+
1

2
,
1

2
;m+ 1;sr,/r.d2D , s3.7d

where r, sr.d is the smaller(larger) of r and r8, 2F1fm

+ 1/2 , 1/2 ;m+1;sr, / r.d2g is a hypergeometric function,
and Re means the real part.

To evaluate the integral of Eq.(3.5), it is useful to con-
sider the expansion ofur −r 8u−3 similar to Eq.(3.7). We note
that

1

ur − r 8u3
= ¹2 1

ur − r 8u
, s3.8d

and write down the Laplacian in polar coordinates

¹2 =
1

r.

]

] r.
Sr.

]

] r.
D +

1

r.
2

]2

] w2 . s3.9d

Expanding the hypergeometric function2F1fm+ 1
2 , 1

2 ;m
+1;sr, / r.d2g in power series oversr, / r.d2,
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2F1Sm+
1

2
,
1

2
;m+ 1;sr,/r.d2D = o

p=0

` GSm+
1

2
+ pDGS1

2
+ pDGsm+ 1d

GSm+
1

2
DGS1

2
DGsm+ 1 + pdGs1 + pd

S r,

r.
D2p

, s3.10d

substituting Eq.(3.10) into Eq. (3.7), and applying the Laplacian from Eq.(3.9), one obtains the following expansion:

1

ur − r 8u3
= Reo

m=0

` s2 − dm0dGSm+
1

2
D

Gsm+ 1dGS1

2
D expfimsw − w8dgS r,

m

r.
m+3D

3o
p=0

` GSm+
1

2
+ pDGS1

2
+ pDGsm+ 1d

GSm+
1

2
DGS1

2
DGsm+ 1 + pdGs1 + pd

fs2p + m+ 1d2 − m2gS r,

r.
D2p

= 4Reo
m=0

` s2 − dm0dGSm+
1

2
D

Gsm+ 1dGS1

2
D expfimsw − w8dgS r,

m

r.
m+3D

3o
p=0

` GSm+
1

2
+ pDGS1

2
+ pDGsm+ 1d

GSm+
1

2
DGS1

2
DGsm+ 1 + pdGs1 + pd

Sp +
1

2
DSp +

1

2
+ mDS r,

r.
D2p

= 4Reo
m=0

` s2 − dm0dGSm+
1

2
D

Gsm+ 1dGS1

2
D expfimsw − w8dgS r,

m

r.
m+3Do

p=0

` GSm+
3

2
+ pDGS3

2
+ pDGsm+ 1d

GSm+
1

2
DGS1

2
DGsm+ 1 + pdGs1 + pd

S r,

r.
D2p

.

s3.11d

Now we substitute Eq.(3.11) into the integrand of Eq.(3.5) and integrate overw1. In this integration the smaller of the two
radii r, is the radius of the ringr1, and the largerr. is the distance between the center of the first ring and the current point
on the second ring, i.e.,r.= uR−r 2u. After the integration overw1, only the axially symmetric part(with m=0) of the expansion
in Eq. (3.11) remains. This integral equals

I1 =E
0

2p

dw1
1

ur − r 8u3
= 4s2pd

GS1

2
D

Gs1dGS1

2
DS

1

r.
3 Do

p=0

` GS3

2
+ pDGS3

2
+ pDGs1d

GS1

2
DGS1

2
DGs1 + pdGs1 + pd

S r1

r.
D2p

= 4s2pdo
p=0

` 3 GS3

2
+ pD

GS1

2
DGs1 + pd4

2

r1
2p

r.
2p+3 = s2pdo

p=0

` 3 GS3

2
+ pD

GS3

2
DGs1 + pd4

2

r1
2p

r.
2p+3 . s3.12d

We note again thatr. in Eq. (3.12) is the distance between the center of the base of the first ring and the current point on the
second ring. To perform the second integration over the position of the point on the second ring in Eq.(3.5), i.e., overw2, it
is necessary to expand 1/r.

2p+3 in each term of the series in Eq.(3.12) in a way similar to expansions in Eqs.(3.7) and(3.11).
To carry out such an expansion, we again note thatr.= uR−r 2u, whereR is the vector connecting the centers of two disks, and
r 2 is the vector connecting the center of the second disk with the current point on the disk. Then using the identity
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1

uR − r 2u3+2p =
1

32 3 52 3 ¯ s2p + 1d2s¹2dp+1 1

uR − r 2u1

=
1

22p3 1

3

2
3

5

2
3 ¯ Sp +

1

2
D4

2

s¹2dp+1 1

uR − r 2u1

=
1

22p3 GS3

2
D

GS3

2
+ pD4

2

s¹2dp+1 1

uR − r 2u1
=

1

22p3 GS3

2
D

GS3

2
+ pD4

2

s¹2dp 1

uR − r 2u3
, s3.13d

and substituting the expansion ofuR−r 2u−3 from Eq. (3.11) into Eq. (3.13), we obtain

1

uR − r 2u3+2p =
1

22p3 GS3

2
D

GS3

2
+ pD4

2

s¹2dp34Reo
m=0

` s2 − dm0dGSm+
1

2
D

Gsm+ 1dGS1

2
D expfimsF − w2dg

3S r2
m

Rm+3Do
q=0

` GSm+
3

2
+ qDGS3

2
+ qDGsm+ 1d

GSm+
1

2
DGS1

2
DGsm+ 1 +qdGs1 + qd

S r2

R
D2q4 . s3.14d

HereF is the polar angle of the vectorR, andw2 is the polar angle corresponding to the current point on the ring. Since we
aim to integrate overw2, we need only axially symmetric terms withm=0. Keeping these terms only, we replace the Laplacian
by its symmetric part¹2→R−1s] /]RdRs] /]Rd. Thus, Eq.(3.14) reduces to

1

uR − r 2u3+2p =
1

22p3 GS3

2
D

GS3

2
+ pD4

2

S 1

R

d

dR
R

d

dR
Dp34o

q=0

` 3 GS3

2
+ qD

GS1

2
DGs1 + qd4

2

r2
2q

R2q+34 + terms withmÞ 0. s3.15d

Applying the symmetric part of the Laplacianp times in Eq.(3.15), we obtain

1

uR − r 2u3+2p =
1

22p3 GS3

2
D

GS3

2
+ pD4

2

34o
q=0

` 3 GS3

2
+ qD

GS1

2
DGs1 + qd4

2

fs2q + 3d ¯ s2q + 2p + 1dg2 r2
2q

R2q+2p+34 + terms withmÞ 0,

= 3 GS3

2
D

GS3

2
+ pD4

2

3o
q=0

` 3 GS3

2
+ qD

GS3

2
DGs1 + qd4

2

FSq +
3

2
D¯ Sq + p +

1

2
DG2 r2

2q

R2q+2p+34 + terms withmÞ 0,

= 3 GS3

2
D

GS3

2
+ pD4

2

o
q=0

` 3 GS3

2
+ qD

GS3

2
DGs1 + qd4

2

3GSq + p +
3

2
D

GSq +
3

2
D 4

2

r2
2q

R2q+2p+3 + terms withmÞ 0,

= 3 GS3

2
D

GS3

2
+ pD4

2

o
q=0

` 3 GSq + p +
3

2
D

GS3

2
DGs1 + qd4

2

r2
2q

R2q+2p+3 + terms withmÞ 0. s3.16d
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Now let us substitute the expansion in Eq.(3.15) into Eq.
(3.12) and integrate overw2. Then the term withm=0 will be
multiplied by s2pd, and the other terms will vanish. Hence,

I2 =E
0

2p

dw2E
0

2p

dw1
1

ur − r 8u3

= s2pd2o
p=0

`

o
q=0

` 3 GS3

2
+ pD

GS3

2
DGs1 + pd4

2

33 GS3

2
D

GS3

2
+ pD4

2

3 GSq + p +
3

2
D

GS1

2
DGs1 + qd4

2

r1
2p r2

2q

R2q+2p+3 .

s3.17d

Further straightforward simplification yields

I2 = s2pd2o
p=0

`

o
q=0

` 3 GS3

2
+ p + qD

GS3

2
DGsp + 1dGsq + 1d4

2

r1
2pr2

2q

R2q+2p+3 .

s3.18d

It is now convenient to change the order of summation, and
to introduce a new variables=p+q. Then the outer summa-
tion will be carried out overs, from 0 to `, and the inner
summation will be carried out overp from 0 to s. Hence,

I2 = s2pd2o
s=0

` Ho
p=0

s F r1
pr2

s−p

Gsp + 1dGss− p + 1dG2J
33GS3

2
+ sD

GS3

2
D 4

2

1

R3+2s . s3.19d

The surface profile of the cone is

zsrd = tanq1,2sr1,2− rd, if r1,2 . r . s3.20d

By substituting Eqs.(3.19) and (3.20) into Eq. (3.5), we
obtain the interaction energy

Einter =
1 + n

p
W0s2pd2stan q1d

3stan q2do
s=0

` Ho
p=0

s F 1

Gsp + 1dGss− p + 1dG2

3 E
0

r1

dr1sr1 − r1dr1
1+2pE

0

r2

dr2sr2 − r2dr2
1+2ss−pdJ

33GS3

2
+ sD

GS3

2
D 4

2

1

R3+2s . s3.21d

Evaluation of the integrals overr1 and r2 yields

Einter =
1 + n

p
W0s2pd2r1

3

6

r2
3

6
stan q1d

3stan q2do
s=0

` 5o
p=0

s F r1
pr2

s−p

Gsp + 1dGss− p + 1dG2

3

3

2

sp + 1dSp +
3

2
D

3

2

ss− p + 1dSs− p +
3

2
D6

33GS3

2
+ sD

GS3

2
D 4

2

1

R3+2s . s3.22d

It is convenient to express the interaction energy in terms of
island volumes. By substitutingr1,2=s3p−1cot q1,2V1,2d1/3

into Eq. (3.22) one obtains the interaction energy in the fol-
lowing form:

Einter =
1 + n

p
W0V1V2

1

R3FSr1

R
;
r2

R
D . s3.23d

HereFsh1,h2d gives the correction factor with respect to the
interaction energy of two remote islands[Eq. (3.2)] and is
given by

Fsh1,h2d = o
s=0

` 53GS3

2
+ sD

GS3

2
D 4

2

o
p=0

s F h1
ph2

s−p

Gsp + 1dGss− p + 1dG2

3

3

2

sp + 1dSp +
3

2
D

3

2

ss− p + 1dSs− p +
3

2
D6 .

s3.24d

The correction factor is equal to unity ifh1→0 andh2→0,
and Einter approaches the interaction energy obtained in the
dipole-dipole approximation.

IV. ELASTIC SELF-RELAXATION ENERGY OF A
CONICAL ISLAND

Consider now the elastic relaxation of a single cone, i.e., a
single term from the sum in Eq.(2.4a). Inserting Eqs.(2.5)
and (3.3) in Eq. (2.4a) gives
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DEself =
1

2p

1 + n

1 − n
W0E d2r E d2r 8nasr dF s1 − nddab

ur − r 8u

+ n
sr − r 8dasr − r 8db

ur − r 8u3 Gnbsr 8d, s4.1d

wherenasr d is the surface projection of the normal vector. In
the integrand of Eq.(4.1) we make the substitution

sr − r 8dasr − r 8db

ur − r 8u3
=

dab

ur − r 8u
− ¹a¹bur − r 8u. s4.2d

Then, inserting Eq.(4.2) into Eq. (4.1), one obtains the elas-
tic relaxation energy as follows:

DEself =
1

2p

1 + n

1 − n
W0E d2r E d2r 8nasr d

3F dab

ur − r 8u
− n¹a¹bur − r 8uGnbsr 8d. s4.3d

Now, it is convenient to partition the integration overr and
r 8 in Eq. (4.3) into an integration over radii and angles. This
procedure yields

DEself =
1

2p

1 + n

1 − n
W0E

0

r

drrE
0

r

dr8r8Jsr,r8d, s4.4d

where the quantityJsr ,r8d is proportional to the elastic inter-
action betweentwo rings

Jsr,r8d =E
0

2p

dwE
0

2p

dw8nasr dF dab

ur − r 8u
− n¹a¹bur

− r 8uGnbsr 8d. s4.5d

We now Fourier transform all quantities in the integrand
of Eq. (4.5) and, afterwards, calculate the integral ink space.
For this purpose, we write the integral of Eq.(4.5) as the
double integral over the entire 2D space

Jsr,r8d =E
0

`

dRRE
0

`

dR8R8E
0

2p

dwE
0

2p

dw8dsr − Rd

3R−1nasRdF dab

uR − R8u
− n¹a¹buR − R8uG

3nbsR8dR8−1dsr8 − R8d. s4.6d

It should be noted that, in Eq.(4.6) R andR8 are variables of
the integration, whereasr and r8 are parameters. We intro-
duce the Fourier transformations

Ñask ;rd =E d2RR−1dsr − RdnasRdexps− ik · r d, s4.7ad

G̃abskd =E d2RFdab

uRu
− n¹a¹buRuGexps− ik ·Rd. s4.7bd

To calculate the integral of Eq.(4.7a) we note that for an
island having a conical shape, the surface projection of the
normal vector

nasRd =
Ra

R
tan q. s4.8d

Substituting Eq.(4.8) into Eq. (4.7a) and denoting the polar
angle in theR space asw, and the polar angle in thek space
asc, one obtains

Ñask ;rd =E
0

`

dRRE
0

2p

dwR−1dsr − Rdtan q
Ra

R

3expf− ikR cossw − cdg. s4.9d

We now calculate the Fourier transform of thex–component
of the normal vectorsa=1d. The integration in Eq.(4.9) over
R is trivial, and the integral reduces to

Ñxsk ;rd = tanqE
0

2p

dw cosw expf− ikr cossw − cdg.

s4.10d

Introducing a new variablex;w−c, the integral of Eq.
(4.10) reduces to

Ñxsk ;rd = tanqE
0

2p

dx cossx + cdexpf− ikr cosxg.

s4.11d

After performing a standard transformation

cossx + cd = cosx cosc − sin x sin c, s4.12d

and substituting this expression into Eq.(4.11), the integrand
becomes a sum of the even and the odd functions ofscosxd.
The integral of the odd function vanishes, and the remaining
integral yields

Ñxsk ;rd = tanq coscE
0

2p

dx cosx expf− ikr cosxg

= i tan q cosc
d

dskrdE0

2p

dx expf− ikr cosxg

= i tan q coscs2pd
d

dskrd
J0skrd

= − i tan q coscs2pdJ1skrd

= − i tan q
kx

k
s2pdJ1skrd. s4.13d
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The Fourier transform of they-component of the normal
vector can be calculated in the same way. Finally, one ob-
tains

Ñask ;rd = − is2pdtan q
ka

k
J1skrd. s4.14d

To carry out the Fourier transformation in Eq.(4.7b), we
note that

E d2R
1

R
exps− ik ·Rd =

2p

k
, s4.15ad

E d2RR exps− ik ·Rd = −
2p

k3 s4.15bd

(see Appendix A). By substituting Eq.(4.15) into Eq.(4.7b),
one obtains

G̃a,bskd =
2p

k
Fdab − n

kakb

k2 G . s4.16d

The double integral in the real space in Eq.(4.6) can be
written as the integral in thek space

Jsr,r8d =E d2k

s2pd2fÑask ;rdg* G̃abskdÑbsk ;r8d. s4.17d

By substitutingÑask ; rd from Eq. (4.14) and G̃abskd from
Eq. (4.16) into Eq. (4.17), one obtains

Jsr,r8d = s2pd2 1

s2pd2s2pdE
0

`

dkk tan q
ka

k
J1skrd

2p

k

3Fdab − n
kakb

k2 Gtan q
kb

k
J1skr8d. s4.18d

The integration overc is trivial and yieldss2pd. Thus, the
integral of Eq.(4.18) reduces to

Jsr,r8d = s2pd2ftan qg2s1 − ndE
0

`

dkJ1skrdJ1skr8d. s4.19d

This integral has been calculated in Sec. III[see Eq.(3.7),
the term in the sum withm=1]. Hence,

Jsr,r8d = s2pd2ftan qg2s1 − nd

3S r,

r.
2 D GS3

2
D

Gs2dGS1

2
D 2F1F3

2
,
1

2
;2;S r,

r.
D2G .

s4.20d

SubstitutingJsr ,r8d from Eq. (4.20) into the expression
for the elastic relaxation energy given by Eq.(4.4) yields

DEself =
1

2p

1 + n

1 − n
W0s2pd2ftan qg2s1 − nd

3 E
0

r

drrE
0

r

dr8r8S r,

r.
2 D1

22F1S3

2
,
1

2
;2;sr,/r.d2D .

s4.21d

It is possible to split the domain of integration in the
double integral overr and r8 in Eq. (4.21) into two subdo-
mains, wherer . r8 in one subdomain, andr , r8 in the other
subdomain. The two integrals are equal, andDEself from Eq.
(4.21) equals twice the integral over one subdomain. By in-
troducing variablesr.=r, andr,=r8, Eq. (4.21) reduces to

DEself = 2s2pds1 + ndW0ftan qg2E
0

r

dr.r.

3E
0

r.

dr,r,S r,

r.
2 D1

22F1S3

2
,
1

2
;2;sr,/r.d2D .

s4.22d

Now, by introducing the variablet=sr, / r.d2, it is possible to
write the double integral in Eq.(4.22) as the integral overr.

and t:

DEself = s2pd2s1 + ndW0ftan qg2

3
1

2

1

2
E

0

r

dr.r.
2 E

0

1

dtt1/2
2F1S3

2
,
1

2
;2;tD .

s4.23d

An important feature of Eq.(4.23) is that the inner and outer
integrals are uncoupled. The outer integral equalss1/3dr3.
By substituting the expression for the volume of the cone

V =
1

3
tan qpr3 s4.24d

in Eq. (4.4), one obtains

DEself = s1 + ndtan qW0VJ, s4.25d

where

J =E
0

1

dtt1/2
2F1S3

2
,
1

2
;2;tD . s4.26d

V. NUMERICAL FACTOR IN THE ELASTIC
RELAXATION ENERGY

To evaluate the numerical factorJ in Eq. (4.26), we sub-
stitute the series expansion of the hypergeometric function

2F1
s 3

2 , 1
2 ;2 ;td in the integrand. Hence,
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J =E
0

1

dto
p=0

` GS3

2
+ pDGS1

2
+ pDGs2d

GS3

2
DGS1

2
DGs2 + pdGs1 + pd

tp+1/2

= o
p=0

` GS3

2
+ pDGS1

2
+ pDGs2d

GS3

2
DGS1

2
DGs2 + pdGs1 + pd

1

p +
3

2

. s5.1d

Numerical evaluation of this series sum yields

J = 1.059. s5.2d

It is interesting to compare this result with the result for the
volume elastic relaxation of a square-based pyramid obtained
by Duportet al..21 The elastic relaxation energy of a pyramid
equals

DEself = −
4

p
s1 + ndsÎ2 − 1df1 + lns1 +Î2dgW0V tan q.

s5.3d

Numerical evaluation of the analytic expression given by Eq.
(5.3) yields

DEself = − 0.9922s1 + ndW0V tan q. s5.4d

The two numerical factors, one for a pyramid from Eq.(5.4),
and the other for a cone from Eq.(5.2) are very close, as
expected.

VI. ISLAND TOTAL ENERGY AND CHEMICAL
POTENTIAL

The total formation energy of an island labeledi is the
sum of the surface and strain energyEi,total=DEi,surf+DEi,el
the effects of surface stress and the energy of the island
edges being neglected.5 For a conical island,

DEi,surf= pri
2fgsqidsecqi − gs0dg =

3

2
bVi

2/3, s6.1d

wheregsqid and gs0d are the surface energies of the tilted
surface of the island and of the flat surface of the wetting
layer, respectively, withb=2p1/33−1/3scot qid2/3fgsqidsecqi

−gs0dg.
The elastic energy is comprised of the self-relaxation en-

ergy and the interaction energy of theith island with all other
islands j . HenceDEi,el=DEi,self+o jÞiEi,inter

s jd , whereEi,inter
s jd is

the interaction energy between islandsi and j . From Eqs.
(3.23) and (4.25) we have

DEi,el = − aJ tan qiVi +
a

p
o
jÞi

ViVj

Rij
3 FS ri

Rij
,

r j

Rij
D , s6.2d

wherea=s1+ndW0 andRij is the distance between the cen-
ters of the bases of the islandsi and j .

To model the kinetics of Ostwald ripening or
coarsening4,9,11,12,15,22–24it is important to know the chemical
potential of the islandi defined by

mi = V
] Ei,total

] Vi
, s6.3d

whereV is the atomic volume. The chemical potential has
contributions corresponding to each of the energy terms dis-
cussed above,

mi = mi,surf+ mi,self+ o
jÞi

mi,inter
s jd . s6.4d

From Eq.(6.1), mi,surf=VbVi
−1/3, and from Eq.(4.25), mi,self

=−VaJ tan qi. The termmi,inter
s jd is the contribution to the

chemical potential of islandi due to its interaction with is-
land j , and is given by

mi,inter
s jd = VU ] Ei,inter

s jd

] Vi
UVj=const

tansqid=const

tansq jd=const

. s6.5d

By substituting the interaction energy from Eq.(3.23) into
Eq. (6.5), and by using the identity

] Fshi,h jd
] Vi

=
1

Vi

dri

ri

dVi

Vi

dhi

hi

dri

ri

hi
] Fshi,h jd

] hi
, s6.6d

one obtains

mi,inter
s jd = V

a

p
Vj

1

Rij
3 FFS ri

Rij
;

r j

Rij
D +

1

3
GS ri

Rij
;

r j

Rij
DG .

s6.7d

Here

FIG. 1. The functionFsh1,h2d.

SHCHUKIN et al. PHYSICAL REVIEW B 70, 085416(2004)

085416-8



GS ri

Rij
;

r j

Rij
D ; hi

] Fshi,h jd
] hi

= o
s=0

` 53GS3

2
+ sD

GS3

2
D 4

2

3 o
p=0

s

2pF hi
ph j

s−p

Gsp + 1dGss− p + 1dG2

3

3

2

sp + 1dSp +
3

2
D

3

2

ss− p + 1dSs− p +
3

2
D6 .

s6.8d

The functionsFshi ,h jd andGshi ,h jd are defined for

0 ø hi ø 1, 0ø h j ø 1, hi + h j ø 1, s6.9d

and can be evaluated over the entire domain of definition and
stored in the form of a look-up table to be accessed in simu-
lations of island ripening kinetics. Calculated values forF
andG are displayed in Figs. 1 and 2, respectively. The func-
tion F indicates the factor by which the interaction energy
deviates from the dipole-dipole approximation[Eq. (3.23)].
It converges over the entire domain of definition indicated in
Eq. (6.9). For remote islands, whenh1,2→0, F equals unity
and the dipole-dipole model is a good approximation. As the
islands tend to touchsh1+h2→1d, F increases rapidly, di-
verging from the dipole-dipole approximation. The results
for the functionG are divergent forh1→1.

VII. CONCLUSIONS

We have employed projection force density methods and
the surface Green’s function for isotropic solids to obtain

elastic self-relaxation and interaction energies for coherently
strained conical islands. These expressions are used to evalu-
ate the island chemical potential which can form the basis for
models of strained island coarsening15 and stability.13 The
work could be further extended, for example, to investigate
island shape transformations in the presence of elastic inter-
actions and the influence of island interactions on the spatial
variation of the adatom chemical potential. The advantage of
the method proposed in the present paper in dynamical simu-
lations of island evolution is that with a suitable tabulation of
functions, the effect of elastic interactions can be included
using a simple look-up table.
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APPENDIX A

This appendix contains some useful Fourier transforma-
tions employed in the analysis. Consider

E d2r
1

r
exps− ik · r d =E

0

`

drr
1

r
E

0

2p

dw exps− ikr coswd

= 2pE
0

`

drJ0skrd =
2p

k
. sA1d

Thus,

FH1

r
J =

2p

k
. sA2d

Consider now

Fhrj ; E d2r r exps− ik · r d. sA3d

The integral(A3) diverges, but can be regarded as a gener-
alized function. We note that

¹2r =
1

r
S d

dr
r

d

dr
rD =

1

r
. sA4d

Now, writing the same identity for Fourier transforms, we
obtain

Fh¹2rj = − k2Fhrj = FH1

r
J . sA5d

By substituting Eq.(A2) into Eq. (A5), we finally obtain

Fhrj = −
2p

k3 . sA6d

FIG. 2. The functionGsh1,h2d.
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APPENDIX B

By using Eq.(A2), we write ur −r 8u−1 as the inverse Fou-
rier integral

1

ur − r 8u
=E

0

` dkk

s2pd2

2p

k
E

0

2p

dc expfik · sr − r 8dg

=E
0

` dk

2p
E

0

2p

dc expfikr cossw − cdg

3expfikr8cossw8 − cdg. sB1d

Herew, w8, andc are polar angles of the position vectorsr ,
r 8, and the wave vectork, respectively. Now we expand each
of the exponentials in the integrand of Eq.(B1) in a Fourier
series

expfikr cossw − cdg = o
m=−`

`

amexpsimcd. sB2d

We find the coefficientsam of the expansion Eq.(B2) as
follows:

am =
1

2p
E

0

2p

dc expfikr cossw − cdgexpf− imcg

=
1

2p
exps− imwdE

0

2p

dc expfikr cossw − cdg

3expfimsw − cdg = expf− imcgJmskrd. sB3d

By substituting the coefficientsam from Eq. (B3) and by
performing integration overc, one obtains Eq.(3.6).
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