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The electronic structure of the Cus332d and Cus221d surfaces is obtained by the self-consistent screened
Korringa-Kohn-Rostocker method. Angle-resolved photoemission spectroscopy(ARPES) spectra for the
Shockley-type surface states at binding energiesø0.5 eV are calculated within the one-step formalism and
found to be in good agreement with experimental data. There is a parabolic band, asymmetrically displaced to
the boundary of the surface Brillouin zone. We show that the asymmetry occurs only in the ARPES spectra,
whereas the underlying surface band structure is symmetric and explain the asymmetry of the ARPES spectra
by analyzing the surface state wave function.

DOI: 10.1103/PhysRevB.70.085413 PACS number(s): 68.47.De, 73.20.At, 79.60.2i

I. INTRODUCTION

Vicinal surfaces are generated by cutting a crystal along a
plane which is close to, but not exactly parallel to a plane
with low Miller indices. In particular, the vicinal surfaces of
the Cus111d surface to be studied in this paper are defined by
their surface normaln i fi , i , i −1g, with i =2,3. Thesurface
normal thus forms the small miscut anglea with the [111]
direction, resulting in a surface that resembles a periodic
pattern of skew terraces—which may be viewed as “pieces”
of (111) surface—and steps, see Fig. 1. Such surfaces are of
interest, because the steps represent a periodic perturbation
for the electrons, leading to large supercells. The effect of
this supercell formation will be most pronounced for the sur-
face states1 which are known to exist2,3 on the(111) surfaces
of noble metals. The electrons in these surface states may be
viewed as forming a low-density two-dimensional electron
gas, an appealing system to study various quantum-
mechanical effects. In fact, the possibility of manipulating
this two-dimensional electron gas by deliberately placing
“corrals” of atoms on a(111) surface has attracted consider-
able attention.4 Compared to these perturbations by relatively
few adsorbed atoms, which can be studied only by site-
selective probes such as tunneling microscopes, the periodic
array of steps on the vicinal surfaces offers the advantage
that a macroscopic number of electrons is affected by them,
whence methods like angle-resolved photoemission spectros-
copy (ARPES) can be used to study their effect on the sur-
face states. In fact, quite a number of ARPES studies of
vicinal Cu surfaces has been performed over the last years.5–9

It is the purpose of the present paper to add insights from a
theoretical study. We present results from a self consistent
electronic structure calculation for the Cus332d and Cus221d
surfaces and a discussion of the surface states and their spec-
tral properties. In the following Sec. II we give a brief tech-
nical overview of the calculation and define the physical
quantities to be studied. In Sec. III we present and discuss
the results of the calculation and their physical implications,
and Sec. IV concludes with a brief summary.

II. METHOD

The calculation of the photocurrent was performed within
the framework of the one-step model. Building on previous

work by Caroli et al.,10 who started out from the Keldysh
formalism,11 Feibelman and Eastman12 derived the following
expression for the the photocurrent at the positionR, as-
sumed to be remote from the surface

jsRd ~
1

2pi
E dr8E drF.sr8,R,edp

3Osr8dG+sr8,r,e − vdOsrdF.sr,R,ed

=− Qsm − ed
1

p
IFE dr8E drfOsr8dF.sr8,R,edgp

3Grsr8,r,e − vdOsrdF.sr,R,edG . s1d

Here Gr and G+ denote the so-called retarded and Keldysh
Green’s functions, respectively, which are related by

G+sr8,r,ed = − 2iQsm − edIGrsr8,r,e − vd, s2d

with m the chemical potential of the solid. The retarded
Green’s function in turn is a solution of the equation

sH − edGrsr8,r,ed = − dsr8 − rd, s3d

where it is understood that the energye has a small positive
imaginary part.

Neglecting local field corrections the operatorsOsrd in

Eq. (1) can be written asOsrd=−i"aÂ ·=, wherea andÂ are
the magnitude and polarization vector of the screened vector
potential inside the solid. In principle these should be calcu-

FIG. 1. A vicinal surface.
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lated for given direction of the incident light from the
Fresnel equations.13 Since it will be seen, however, that the
dependence of the ARPES intensity from the surface state on

Â is very simple, whence no intricate variation with the di-
rection of the incident light is to be expected, and since we
are not interested in calculating absolute intensities, we have
omitted this calculation.

The so-called low-energy electron diffraction(LEED)
stateF.sr ,R,ed in Eq. (1) is defined by

F.sr,R,ed = e−ik·r +E dr8e−ik·r8Vsr8dGrsr8,r,ed. s4d

Thereby,k=Îe and the vectork points towardsR.
The Green’s functionGr can be obtained by means of the

Korringa-Kohn-Rostoker(KKR) method.14 In our version of
the KKR formalism, all space is divided into Wigner-Seitz
spheres, which are centered on the positions of the nuclei.
Within the sphere around the basis atoml in the unit cell
No. j we decompose the position vectorr as follows:

r = Rj + rl + r,

where Rj denotes the position of the unit cell andrl the
position of the atom within the unit cell(so thatRj +rl is the
position of the nucleus) andr the distance from the center of
the sphere. Note that for a system with a surface the “unit
cell” refers to the group of two-dimensional translations
which leave the surface invariant—the unit cell thus in prin-
ciple has an infinite extension in the direction perpendicular
to the surface.

A quantity of interest then is the Fourier transform of the
Green’s function

Gl8,lsr8,r,k̃,ed =
1

No
i,j

e−i k̃·sRi−Rjd

GrsRi + rl8 + r8,Rj + r l + r,ed, s5d

whereN denotes the number of two-dimensional unit cells

and k̃ is a two-dimensional vector in the surface Brillouin
zone—this Fourier transform contains information only

about the wave functions with wave vectork̃. Next, we in-
troduce the angular-momentum resolution

Gl8,lsr8,r,k̃,ed = o
l,m

o
l8,m8

gl8,l
sl8,m8d,sl,mdsr8,r,k̃,ed

Yl8,m8sr̂8dYl,msr̂d. s6d

The partial spectral density in the spherel then is defined as

rl
sl,mdsk̃,ed = −

1

p
E

0

RWS

Igl,l
sl,md,sl,mdsr,r,k̃,edr2dr, s7d

where RWS denotes the radius of the Wigner-Seitz sphere
(which in principle may depend onl). It may be viewed as
the probability that an electron occupying the state with

wave vectork̃ and energye can be found in the the celll and
in the angular-momentum channelsl ,md (more precisely it is

the mean probability for all states with wave vectork̃ and
energye). The spectral density will be frequently used to

discuss the character of the state in question. For example, its
variation withl gives direct information about the real-space
location of the wave function.

The Green’s functionGr was obtained by our self-
consistent layer code based on the screened KKR method.
This differs from the standard version of the KKR method14

in that the “free” Green’s function is replaced by the Green’s
function for a “reference medium” with a piecewise constant
potential.15 To be more precise, the potential for the refer-
ence medium is taken to be large and positive(6 Ryd in the
present case) inside the muffin-tin spheres and zero in be-
tween. For the energiese of interest the corresponding
Green’s function then decays exponentially in real space and
can be obtained by diagonalizing suitably chosen finite clus-
ters (consisting in our case of three to five shells around a
given atom). The method has been described in detail in Ref.
16. To perform the integrations over the two-dimensional
Brioullin zone we used the special point method. For the
present application 72 points in the irreducible wedge turned
out to be sufficient. We fulfill the boundary conditions nu-
merically using the decimation technique.

In a first step we evaluated the Green function, the charge
density, the potential, and the Fermi energy for the bulk sys-
tem by imposing the appropriate boundary conditions. To
treat the systems with surfaces in a second step we assumed
that 20–40 layers, depending on the surface orientation, are
perturbed(intermediate region). In this region we determine
the charges self-consistently, whereas to the deeper layers we
attribute the bulk charges. For simplicity the atoms were as-
sumed to be at their bulk positions and the relaxations of
bond lengths and angles at the surface17 were neglected. One
may expect that the relatively small relaxations will have
only a small influence on the ARPES spectra. We employ
Broyden’s formalism to reach self-consistency after 50–100
iterations and maintain charge neutrality in each step by in-
tegrating the Green’s function up to the appropriate energy
along a rectangular path in the complex energy plane. It is
reassuring that the difference between the self-consistent
Fermi energy for the surface and the self-consistent bulk
Fermi energy turned out to be negligible in all cases. In a
third step we use these self-consistent potentials to calculate
the Green’s functions entering the photocurrent and LEED
state on a dense energy mesh parallel to the real axis with
imaginary parts of 0.03 eV in the occupied range and
0.03 eV for the LEED states.

Since the single-particle formalism for the Green’s func-
tion does not contain any damping mechanism, the LEED
state does not decay inside the solid. This is unrealistic be-
cause the photoelectrons do have a finite mean-free path, and
to simulate this effect we have modified the wave function of
the LEED state inside the solid according to

F.sr,R,ed → e−uzu/zF.sr,R,ed, s8d

where z is the distance from the surface and the “decay
length” z=20 a.u. The calculated ARPES spectra are practi-
cally insensitive to the choice ofz within a range of
0–100 a.u.. The combination of one-step formalism for the
photocurrent and a KKR-like scheme to obtain the self-
consistent Green’s functions has been applied previously
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with considerable success to an analysis of the ARPES spec-
tra of cuprate superconductors.18–20

III. RESULTS

We now proceed to a discussion of the ARPES
spectra and as a first step we consider in more detail the ideal
Cus111d surface. Figure 2 shows the ARPES spectra in the
G-K-L-U-X plane of that surface—the parabolic band of the
surface state can be clearly recognized. The polarization de-
pendence of the spectrum is very pronounced: only for an
electric field perpendicular to the surface(corresponding
to grazing incidence andp polarization) is there any appre-
ciable ARPES intensity—in agreement with experiment.21

The spectra in Fig. 2 refer to that case. Fitting a parabola
to the maxima of the intensity yields an effective mass
of mp=0.434me, the bottom of the band is at
eB=−0.15 eV—Baumbergeret al.8 obtained the valuesmp

=0.41s2dme and eB=−0.391 eV from their experimental
spectra. While the calculated effective mass agrees well with
the experimental value, the binding energy atG ,eB, is clearly
off the mark. Here it should be noted, that the surface state
has a low density of states—even a slight inaccuracy in the
calculated charge transfer from bulk to surface will therefore

lead to a rather substantial change of the occupation of the
surface band—which will in turn lead to an inaccuracy ofeB.
One may expect that the accuracy ofeB can be improved by
taking into account the nonspherical part of the potential, i.e.,
by relaxing the muffin-tin approximation. The muffin-tin ap-
proximation clearly is least justified for the atoms near the
surface. At present, however, we have not implemented this.

To characterize the nature of the surface state in more
detail, Fig. 2 also shows the layer-resolved spectral density,

rl
sl,mdsk̃ ,ed. Here,l gives the label of the atomic layer in the

z direction. Figure 2 shows that the state in question is a
surface state of predominants-p character. Interestingly the
character of the wave function in the first “vacuum layer”
changes to a predominants character. Fitting the peak inten-
sities inside the solid by the exponential lawIszd=Ae−z/L,
where z denotes the depth of the layer below the surface,
yields the decay lengthL=4.94 a.u.—the distance between
successive layers isaz=a/Î3=3.94 a.u.

Also of interest is thephaseof the wave function of the

surface state. Omitting the Bloch factorei k̃·Rj, the wave func-
tion Ck̃,esrd can be expanded inside the Wigner-Seitz sphere
l as follows:

Ck̃,esrd =
1

ÎN
o
l,m

cl,m
l sk̃,edYl,msr̂dRl

lsrd, s9d

where the radial wave functionsRl
lsrd are normalized ac-

cording toe0
RluRl

lsrdu2r2dr=1. The coefficientscl,m
l sk̃ ,ed can

be extracted from the KKR-Green’s function. Fork̃=G,
where they are purely real, and the energye where the spec-
tral density and ARPES spectrum have their maximum, they
are shown in Fig. 3. Only the coefficients fors- and pz-like
character have an appreciable amplitude, which immediately
explains why for nearly normal emission this state gives ap-
preciable ARPES intensity only for light polarized in thez
direction. There is moreover a clear oscillation from layer to
layer, i.e., the phase of the wave function of the surface state
oscillates with layer number. This is consistent with the
notion21 that the surface state is composed predominantly of
bulk states with momenta near the zone boundary momen-
tum L=s2p /ads 1

3 , 1
3 , 1

3
d of the bulk Brillouin Zone(BZ) of

Cu. The oscillation of the phase of the wave function also

FIG. 2. Left: Calculated ARPES spectrum in theG-K-L-U-X

plane of the Cus111d surface. The polarization vectorÂ of the in-
cident light is perpendicular to the surface. To give a more
continuous dispersion, the Fermi factorQsm−ed has been omitted.

The distance ink̃ space between the individual spectra isdk

=0.014sa.u.d−1. Right: Layer-resolved spectral densityrl
sl,mdsk̃ ,ed at

k̃=G (i.e., the bottom of the surface state band).

FIG. 3. Wave function expansion coefficientscl,m
l sk̃ ,ed for the

surface state atG. The figure shows only thes- and pz-like ampli-
tudes, which are the dominant ones in the wave function, for
graphical reasons thes-like coefficients have been multiplied by
s−1d.
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explains the resonant enhancement of the photoemission in-
tensity from the Cus111d-surface state for specific photon
energies.21 Any wave vectork in for which the oscillation of
the plane waveeikr is commensurate with that of the surface
state, obviously must obeyk=fs2n+1dp /azg with integern.
Using the expressionEkin=s"2k2/2md−V0 for the kinetic en-
ergy of the final state(with V0=13.5 eV),22 we obtain the
photon energies where a resonant enhancement of the
ARPES intensity should occur

"v =
"2

2m
S s2n + 1dp

az
D2

− V0 − eF. s10d

With a Fermi energy ofeF=−4.5 eV this gives"v<0 for
n=0—consistent with the fact thatkF is very nearly equal to
the distanceG-L. For n=1 on the other hand, we obtain
"v=69 eV, which is very close to the experimental reso-
nance energy reported by Louieet al.21 These authors gave a
more sophisticated treatment using an approximate wave
function for the surface state, but the physical reason for the
resonance is constructive interference between the spatial os-
cillations of the surface state and the final state wave func-
tion. As will be seen later, precisely the same resonance oc-
curs also for the vicinal surfaces, albeit shifted to a higher
Brillouin zone.

Finally, we address the width of the peaks in the ARPES
spectrum. As already mentioned, the energies in the KKR
calculation have to be given a small imaginary part—this is
necessary, to ensure the numerical stability of the procedure.
Failure to choose a sufficiently large imaginary part results in
negative spectral weight and negative ARPES intensity. The
width of the peaks in Fig. 2 then are determined by this

“technical broadening” and thus have no real physical sig-
nificance. Summarizing the data presented so far, we may
say that we obtain a clear ARPES signal from a surface state
with predominantlys-pz character, with a decay length of
L<1.2az into the interior of the solid and with an oscillatory
behavior as a function of layer index that is consistent with
momenta near theL point of the bulk BZ of Cu.

After this, we proceed to the vicinal surfaces. Figure 4

FIG. 4. Schematic plot of the rectangular surface Brillouin zone

for the Cus332d and Cus221d surfaces showing the twok̃ meshes
used for the calculation of ARPES spectra.

FIG. 5. Calculated ARPES spectra for the
vicinal surfaces. The figures show the spectra for

the k̃ points marked by circles in Fig. 4, the se-
quence from bottom to top being indicated by the

arrows on the respectivek̃ meshes in Fig. 4.
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summarizes the geometry of the rectangular surface Brillouin
zone as well as the orientation of the coordinate system with
respect to the surface steps for the Cus332d and Cus221d
surfaces. TheM̄ point is given byfp / l ,0g, where l is the
distance between the surface steps, which can be expressed
in terms of the miscut anglea as l =az/sinsad, see Fig. 1.

Figure 4 also shows the twok̃ meshes for which ARPES
spectra have been calculated. The ARPES spectra themselves

are shown in Fig. 5 for bothk̃ meshes. Again, there is appre-
ciable intensity only for grazing incidence, and the spectra in
Fig. 5 refer to this case. There is overall agreement with the
experimental results:5–8 for the mesh 1(i.e., perpendicular to
the steps) a parabolic band is seen forkx.0, reaching its

minimum at the respectiveM̄. This band also can be seen

along the cut throughM̄ in they direction. Table I shows the
effective massesmeff obtained by a parabolic fit to the ener-

gies of maximum ARPES intensity for eachk̃ point. The
agreement with the experimental values of Baumbergeret al.
for the Cus332d surface is quite good, whereas the values for
the Cus221d surface differ appreciably. It should be noted,
that the peaks are rather broad fors221d—this may explain
some of the discrepancy.

As was the case for Cus111d, the binding energy of the
band minimum is not reproduced well by our calculation.
This implies in particular, that the upward shift of the band
bottom with increasing miscut angle6–8 is not reproduced
correctly by our calculation. As already discussed earlier, this
probably stems from small inaccuracies in the calculated
charge transfer from bulk to surface.

Another feature which is consistent with experiment is the
increase of the peak width with increasing tilt angle of the
surface away from(111)—see Fig. 5, where the peak width
for the Cus221d surface is discernably larger than that for
Cus332d. The full width at half maximum in the calculated
spectra is 0.17 eV for Cus332d and 0.27 eV for Cus221d, the
experimental values found by Baumbergeret al.8 are 0.28
and 0.48 eV, respectively. The KKR method actually gives
directly the Green’s functionGsr ,r8 ,ed of the electrons,
which means that the peak widths in Fig. 5 are really “cal-
culated” and not inserted by hand. As mentioned in Sec. II,
for technical reasons the energiese for which Gsr ,r8 ,ed is
calculated, have to be given a small imaginary part—the cor-
responding broadening of the peaks, however, is much
smaller than the one in Fig. 5. This can be seen from Fig. 2
for the s111d surface, where the peak width is really deter-
mined solely by this technical broadening. The much stron-
ger broadening for the stepped surfaces thus reflects a true

physical effect. Our “pure single particle formalism” neglects
any interaction effects between electrons or between elec-
trons and phonons(or plasmons for the photoelectrons).
Since we are dealing with an ideal crystal, variations of the
step length or lattice imperfections at the steps are ignored as
well. The only possible mechanism within our band-theory
formalism is hybridization of the surface state with bulk
states. As will be shown later, the data indeed are very con-
sistent with this explanation. An appreciable fraction of the
experimentally observed broadening of the surface states
thus can be attributed to this hybridization.

We now discuss the ARPES spectra in more detail. The
pronounced asymmetry of the ARPES spectra under the
exchangekx→−kx obviously reflects the asymmetry of the
stepped surface. In fact, the ARPES spectra seem to suggest
that the entire surface state band is simply shifted towards
the projection of theL point of the bulk band structure
onto the surface normaln.5 This picture, however, is not

really correct: Fig. 6 shows the spectral densityrl0sk̃ ,ed,
with l0 the surface layer for momentak̃ in the mesh 1 of Fig.
4. This might be viewed as the surface band structure
weighted by the probability for an electron in the respective
state to be in the topmost layer of atoms. Comparison
with Fig. 5 shows that this band structure indeed coin-
cides with the ARPES spectrum forkx.0, but in addition
contains a symmetric band portion forkx,0, which is not
seen in the ARPES spectra. For the cut along thex direc-
tion, rskd is completely symmetric under the exchange
kx→−kx and thus does not at all reflect the asymmetry intro-

TABLE I. Effective masses for the vicinal surfaces in units of
the electron mass. The experimental values have been taken from
Ref. 8.

332scalcd 332sexpd 221scalcd 221sexpd

mx 0.487 0.45(3) 0.317 0.49

my 0.467 0.423

my/mx 0.96 0.87(7) 1.33 1.05(12)

FIG. 6. Partial spectral densityrl0
sl,mdsk̃ ,ed for the topmost layer

of the Cus332d and Cus221d surfaces. The momentak̃ belong to the
mesh 1 in Fig. 4 and are arranged in the same order as in Fig. 5.
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duced by the surface steps(see Fig. 1). In fact, rskd is sym-
metric under the exchangekx→−kx not due to any spatial
symmetry(which does not exist anyway) but due to time-
reversal symmetry. In the present case, where there is no
magnetic field and spin-orbit coupling is neglected, the spin
of the electron does not enter the Schrödinger equation.
Since the Hamiltonian constructed by local density approxi-
mation is purely real, the complex conjugate of each solution
of the Schrödinger equation must be a solution to the same
eigenvalue, whence the eigen energies fork̃ and −k̃ must be
identical. The asymmetry of the ARPES spectra thus cannot
be due to the asymmetry of the underlying band structure—
rather it must have its origin in the photoemission process
itself.

To understand the mechanism leading to this asymmetry,

let us consider the wave functionCk̃,esrd neark̃=M̄. To be-

gin with, we note that right atM̄ the wave function must be
purely real. Next, since we are at the zone boundary, the
wave function must change sign when going from one unit
cell to the neighboring one in thex direction—whence the
wave function has opposite sign at the two atoms 1 and 18 in
Fig. 7(a). On the other hand, one may expect that the phase
along the row of atoms 1→5 in Fig. 7(a) remains constant—
this would correspond to a propagation along the corre-
sponding “piece of (111) surface” with momentumki

=s0,0d. This is the energetically most favorable way to
propagate parallel to a(111) surface, so we expect it should

be realized at the band minimumM̄. Next, assuming that in

the direction parallel to[111] the surface state atM̄ has the
same oscillations in sign as the surface state on the Cus111d
surface(see Fig. 3) we arrive at a picture for the phases of
the wave function as schematically shown in Figure 7(b):
oscillating in sign along the[111] direction and more or less

constant within the planes of atoms perpendicular to[111].
This simple picture is in fact corroborated by Fig. 8, which
corresponds to Fig. 3 for the Cus111d-surface state and

shows the wave function coefficientscl,m
l sk̃ ,ed. The sign of

the wave function oscillates if one moves along the[111]
direction, whereas it stays constant in the plane of atoms
perpendicular to[111]. The wave functions for both, the

Cus332d and Cus221d surface state at the respectiveM̄ are
quite consistent with the schematical picture in Fig. 7(b).

The same picture holds true for the wave functions near

−M̄ (because −M̄ is in fact identical toM̄). Then, for ARPES

nearM̄, where thek vector of the final state is tilted towards
the [111] direction, the planes of constant phase of the pho-
toelectron’s wave function approximately match those of the
wave function of the surface state, see Fig. 7(c). The contri-
butions from the individual atoms within one plane perpen-
dicular to[111] therefore add up more or less constructively
and we expect a strong signal in ARPES. For emission near

−M̄ on the other hand, the wave vector of the photoelectron
is tilted away from[111] and the phases do not match—see
Fig. 7(d)—whence, we expect destructive interference be-
tween the constributions from the different surface atoms and
thus no appreciable ARPES signal. This simple picture is in
fact confirmed by an analysis of the contributions from the

individual atoms to the calculated photocurrent atM̄ and

−M̄. The asymmetry of the ARPES intensity thus is caused

FIG. 7. Mechanism leading to the asymmetry of the ARPES
spectrum.

FIG. 8. Expansion coefficientscl,m
l sk̃ ,ed of the surface state

wave function atk̃=M̄ for the Cus332d and Cus221d surface. The
combinationssl ,md=s and sl ,md=pz are given, which have the
largest weight in the wave function. The convention for the assign-
ment of the layer indicesl for the two different surface geometries
is indicated in the top part of the figure.

R. EDER AND H. WINTER PHYSICAL REVIEW B70, 085413(2004)

085413-6



by the different angle between the photoelectron wave vector

and the terrace normal atM̄ and −M̄.
We now want to use this picture for the surface state wave

function to determine those photon energies, where the

ARPES cross sections at either theM̄ point itself or one of

the umklappsM̄ +Gi, with Gi a reciprocal lattice vector of
the surface Brillouin zone, is resonantly enhanced. We ex-
pect this to happen when the wave vector of the photoelec-
tron is exactly parallel to the[111] direction. We start with
the expression

"v = Ekin − m =
"2k2

2m
− V0 − m, s11d

where Ekin is the energy of the photoelectron “inside” the
solid. In order to have matching between the wave fronts of
the plane waveeikr and the phases of the surface state, we
must havek i s111d, or k' /ki=cotsad. Since we also require

ki=fs2n+1dp / lg (so as to be atM̄ plus a reciprocal lattice
vector), the photon energies where the final state wave func-
tion matches the phase oscillations of the surface state are
given by

"v =
"2

2m
S s2n + 1dp

l
D2

f1 + cot2sadg − V0 − m. s12d

Since, however,az/ l =sinsad, this becomes

"v =
"2

2m
F s2n + 1dp

az
G2

− V0 − m, s13d

i.e., the same condition as for the resonant enhancement of
the surface state intensity as for the Cus111d state, Eq.(10)!
Since we have seen there that forn=1, corresponding to a
photon energy of"v=69 eV, we had a strong resonant en-
hancement of the intensity, we expect that the same will
occur for any vicinal surface, with the sole difference that the

surface state band must be observed around theM̄-umklapp

kx=3p / l, rather than atM̄ itself. The resonantly enhanced
image of the surface state thus is shifted to a higher Brillouin
zone. It should be noted that for this photon energy we have
in fact a kind of ”double” resonance: the wave fronts of the
photon energies are parallel to the planes of constant phase
of the inital state wave function, while at the same time there
is the same constructive interference between oscillations in
[111] direction as for the Cus111d surface itself.

To date most studies of surface states on vicinal surfaces
have been carried out using photon energiesø22 eV5–8 and
in these studies the surface state has been observed only at

M̄ =p / l. Let us therefore estimate the photon energy where
the crossover to the point 3p / l is expected. We expect this to
happen when the wave vectors of the two final states with
kx=p / l and kx=3p / l form the same angle with the[111]
direction. With the length of the wave vector being given by
k=Îs2m/"2ds"v−V0−md this condition is equivalent to

1

2
SarcsinSp

kl
D + arcsinS3p

kl
DD = a, s14d

with a the miscut angle. Numerical solution yields"v
=35 eV for both vicinal surfaces. Based on the earlier argu-
ments one would expect that for this photon energy the
“original” band atp / l and the “umklapp” at 3p / l have ap-
proximately equal intensity, with the umklapp gaining versus
the original for higher photon energies. Precisely this behav-
ior has indeed been observed recently by Loboet al.9 At a
photon energy of 70 eV the parabolic surface state band can
be seen only atkx=3p / l, with a considerably enhanced in-
tensity, as compared to 27 eV. At a photon energy of 40 eV
both the original band atkx=p / l and the umklapp atkx
=3p / l can be seen, with the original band having somewhat
larger intensity. The earlier estimate of 35 eV for the “cross-
over” thus appears somewhat too simple minded. Apart from
that, however, the behavior is exactly as expected on the
basis of the earlier considerations, thus confirming our pic-
ture of the surface state wave function.

Ortegaet al.6 have inferred a change of the character of
the wave function from step-modulated to terrace-modulated
from their ARPES data, which is driven by a loss of phase
coherence over the terrace lengthl. One may expect that
such a loss of phase coherence should also suppress the reso-
nance at 70 eV, because for phase pattern in Fig. 7(a) a defi-
nite phase between the atoms 1 and 18 is crucial.

Next, we consider the electronic structure in somewhat
greater detail, and in particular address the mechanism lead-
ing to the broadening of the peaks. Figure 9 shows the layer-

resolved spectral densityrlsk̃ ,ed for the two vicinal surfaces.
For the layers forming the terraces adjacent to the vacuum,
one can recognize the predominantlyp-like spectral density
corresponding to the surface state. The surface state quickly
fades away as one moves into the solid, and at a depth of
ù3az below the actual surface(measured in[111] direction)
additional states of mixedp-d character appear. These states
are absent in the spectral density for the ideal Cus111d sur-
face, see Fig. 2. Their real-space location at severalaz below
the actual surface suggests that they are bulk-related, i.e.,
they are bulk states with wave vectorsk along one of the
“rods”

kszd = k̃i + Gi +
2pz

a
n, s15d

whereGi is one of the reciprocal lattice vectors of the sur-

face Brillouin zone. Were it only for conservation ofk̃i dur-
ing the ARPES process, all states withk along these rods
could contribute to the ARPES spectra. It should be noted,
that the fact that none of these states actually does contribute
to the ARPES spectra at"v=22 eV is probably not due to
the fact that they are “too deep” inside the solid—actually
the distance of the respective layers of atoms from the sur-
face is onlyù2az=8 a.u., much less than the typical mean-
free paths of the photoelectrons. Rather, these bulk states
obviously have inappropriate wave vector components per-
pendicular to the surface.
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Baumbergeret al.8 have suggested, that the hybridization
between the surface state and these bulk-related states is the
reason for the finite width of the surface state bands, which
increases monotonically with the miscut angle.8 Similarly,
Ortegaet al. have proposed, that mixing between surface
state and bulk states near the neck of the bulk Cu Fermi
surface is responsible for the crossover from surface-
modulated to terrace-modulated wave functions. The layer-
resolved spectral density in Fig. 9 is consistent with such a
mixing between surface states and bulk states in the follow-
ing sense: Whereas the surface state on the Cus111d surface
has only a very minor admixture ofd character for all layers
(see Fig. 2) the surface states on Cus221d and Cus332d
have—with the exception of the atoms adjacent to the
vacuum—a very strong admixture ofd character. Since the
bulk-derived features also show strongd character, this indi-
cates some mixing between these states.

Even clearer evidence for such bulk-surface mixing, how-
ever, comes from the line shape of the spectral density curves
in Fig. 6. Figure 10 shows the layer-resolved spectral density

for M̄ on an enlarged scale, so as to make line shapes better
visible. In the topmost layer(corresponding to the atom at
the “edge” of the step) the densities for thes, pz, and
d3z2−r2-like densities show the typical asymmetric Fano line-
shape: the combination of a moderate slope at the high en-
ergy side of the peak, and a steep slope and a near zero of the
curve at the low-energy side. This is particularly clear for the
s-like spectral density, less clear ford3z2−r2 where it is some-

times masked by additional features at lower energies. Such
a line shape originates precisely from the mixing between a
discrete level(in the present case: the surface state with a
fixed k̃i) and the continuum(here: the bulk states along the
“rod” belonging tok̃i) and thus is clear evidence for a damp-
ing mechanism due to surface state—bulk state hybridiza-
tion. Interestingly thes and d3z2−r2-like spectral density be-
come increasingly featureless as one moves away from the
edge atom—this confirms, that the main mechanism of the
broadening is hybridization with bulk states at the step edge
atoms.

Figure 10 shows another interesting feature of the surface
state: right at the step edge, there is very littlepz-like inten-
sity, but instead a rather strong peak in thepx-like spectral
density. In other words, thep component of the surface state,
which usually is nearly parallel to the surface normal, seems
to “tilt” at the step edges and orient itself parallel to the

surface. Fork̃ points along thex direction the wave function
must have definite parity under reflection by thesx,zd plane,
hence, thep component must be either mixedpx-pz or pure
py. The surface state obviously corresponds to thepx-pz mix-
ture, and the anglefl which the respectivep orbital in the

FIG. 9. Layer-resolved spectral densityrlsk̃ ,ed at k̃=M̄ for the
vicinal surfaces. The sequence of layers is the same as indicated in
the top part of Fig. 8. The layers within one bracket therefore are at
the same distance(measured along the[111] direction) from the
surface.

FIG. 10. (Color online) Layer-resolved spectral density for the
edge atom(topmost panel) and the next two atoms along the
terrace.

R. EDER AND H. WINTER PHYSICAL REVIEW B70, 085413(2004)

085413-8



atoml is forming with thex axis can be calculated from the

expansion coefficientscl,m
l sk̃ ,ed:

fl = arctanF cpz

l sk̃,ed

cpx

l sk̃,ed
G . s16d

Figure 11 shows the orientation of thep orbitals for the

surface state atM̄ obtained in this way. It can be seen nicely
that thep orbital right at the step edge tilts so as to bridge the
step and connect the two terraces. Thep orbitals on the ter-
race atoms themselves, on the other hand, form a zig-zag
pattern. Figure 11 also shows the sum

pl = ucs
lsk̃,edu2 + ucpx

l sk̃,edu2 + ucpz

l sk̃,edu2. s17d

Interestingly, this shows that the amplitude of the wave func-
tion is not significantly reduced at the step edge—with the
exception of the atom next to the step edge, where it is some-
what enhanced, there is in fact hardly any variation over one
terrace. These results have two implications: first, the tilting
of the p orbital on the step edges implies that the decay of
the wave function as one moves from the surface into the
vacuum is stronger at the step edge than on the terraces. This

may explain the results of Sanchezet al.,23 who have re-
ported a depression of the density of states at the edge atoms
measured by scanning tunneling microscopy. Second, the re-
sult that the amplitude of the surface state is not reduced at
the step edge does not support the notion that the step edges
act as repulsive potentials for the surface state. Rather, the
tilting of the p orbitals away from the ideal[111] direction
implies a loss of kinetic energy for the motion perpendicular
to the terraces, i.e., in the[111] direction. When going along
the[111] direction, the nearest neighbors of a given atomi in
the next layer of atoms form an equilateral triangle which
has the projection of atomi as its center of gravity. In this
situation, the hybridization of thep orbital on atomi with the
s and p orbitals on these three atoms is optimal, if thep
orbital points in the[111] direction. Exactly this situation is
realized for the surface state on the Cus111d surface atG.
The tilting of thep orbitals on the vicinal surfaces away from
the [111] direction then implies a deviation from this optimal
situation, which must lead to a loss of energy from the mo-
tion in the [111] direction. This may explain the experimen-

tally observed upward shift of the band minimum atM̄ with
increasing miscut angle—in fact, the average tilt angle is
larger for the Cus221d than for the Cus332d surface. There is
no indication that the step edges act as a repulsive potential
for the surface state.

IV. CONCLUSION

To summarize, we have presented results from a self-
consistent surface electronic structure calculation for the
Cus332d and Cus221d vicinal surfaces of Cu. The calculated
ARPES spectra are in good agreement with experiment,
the effective masses deduced from the spectra and the calcu-
lated peak widths are in reasonable agreement with experi-
mental data. The surface state wave function has predomi-

nantly s-pz character and atM̄ it shows a very simple phase
pattern, propagating essentially with momentum(0,0) along
the terraces and oscillating in sign between atomic layers in
the [111] direction. Based on these properties we can readily
resolve the apparent discrepancy between an asymmetric
ARPES spectrum and a necessarily symmetric band struc-
ture, as well as the fact that the resonant enhancement of the
ARPES intensity at 70 eV observed for the(111) surface also
occurs for the vicinal surfaces, but with the resonantly en-
hanced image of the surface state being shifted to a higher
Brillouin zone. The main mechanism of the broadening of
the surface state is mixing with bulk states of predominantly
s-d3z2-r2 character, which takes place at the step edges. The
“tilting” of the z orbital in the surface state from being nearly
parallel to the surface normal on the terraces to being nearly
parallel to the surface may explain the reduction of tunneling
current at the step edges, as observed in scanning tunneling
microscopy.

FIG. 11. Top. Direction of the respectivep component in the

surface state atM̄. The tilt angles of the orbitals have been obtained
from Eq. (16). Bottom: the amplitudepl for the atoms of one
terrace.
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