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I. INTRODUCTION

Tunneling of electrons through a potential barrier is a sub-
ject in elementary quantum mechanics. Nevertheless, elec-
tron tunneling within one-electron theory is an essential con-
cept relevant to a number of technological applications such
as field-emitting devices,1 tunnel devices using magnetic tun-
nel junctions,2,3 those using semiconductor heterostructures,4

and scanning tunneling microscopy.5 With the advance in
experimental techniques to control the structure of those de-
vices on the atomic scale, there is an increasing demand in
establishing a theoretical framework for evaluating the tun-
nel current microscopically in terms of the electronic struc-
ture of realistic materials.

In this paper we restrict ourselves to the one-electron ap-
proximation within the density-functional theory,6,7 without
considering many-body effects such as the Coulomb
blockade.8,9 Previous first-principles calculations of the tun-
nel current are classified into those based on the scattering
theory10–17 and those based on the perturbation theory initi-
ated by Bardeen.18–23In the former, tunneling is described as
a scattering process in which an incident electron wave is
scattered by a barrier potential located between two semi-
infinite bulk systems. The tunnel current is evaluated from
the transmission amplitude of scattered electron waves using
the Landauer-Büttiker formula.24,25 In the latter, two systems
on both sides of the potential barrier are treated as decoupled
in the initial state, and the probability for electrons to tunnel
through the potential barrier is calculated by perturbation
theory using Fermi’s golden rule. As an advantage of non-
perturbative theory, the scattering approach can treat both
tunneling and ballistic conduction regimes, while the appli-
cability of the perturbation approach is limited to small tun-
neling rates. As a disadvantage, the Landauer-Büttiker for-
mula fails to incorporate the contribution to the tunnel
current from localized(surface) states on one side of the
potential barier to an energy continuum on the other side of
the barrier, whereas there is no distinction between localized
and extended states in Bardeen’s perturbation treatment.18

The purpose of the present paper is to develop a method
for evaluating the tunnel current from both extended and
localized states by applying a single formula. From a view
point of the way of solving the Schrödinger equation, our
method belongs to the scattering formalism in which a po-
tential barrier and two semi-infinite bulk systems(electrodes)
on both sides are treated as a whole. Also, we adopt the

Landauer-Büttiker formula24,25 for evaluating the tunnel cur-
rent from states extended in the whole system. In addition we
explicitly incorporate the contribution of localized states to
the total current. When a localized surface state formed in a
semi-infinite bulk system on one side of the potential barrier
is coupled to an energy continuum at the other side, it be-
comes a resonance, and the tunnel current from this state to
the energy continuum can be estimated from its lifetime. It
will be shown that both contributions to the tunnel current
can be expressed naturally in terms of the embedding poten-
tial invented by Inglesfield.26,27 Furthermore, we will show
that the two contributions can be seamlessly integrated into a
single formula by carefully choosing the surface on which
the current is calculated.

The plan of the paper is as follows. In Sec. II we begin
with the definition of the embedding potential and formulate
the tunneling conductance in the language of the embedding
theory.26,27In Sec. III we apply the same formula for realistic
materials. Results are presented of the first-principles calcu-
lation of field-emission currents from low-index Cu surfaces
and the electronic transport in a Cu-vacuum-Cu system. Fi-
nally, a summary is given in Sec. IV. We use the Hartree
atomic units throughout the paper unless otherwise stated.

II. THEORY

A. Embedding potential

We consider tunneling of electrons through a potential
barrierV separating the left half spaceVL and the right one
VR. Thez axis is chosen such that the asymptotic regions of
VL andVR correspond toz=−` andz= +`, respectively(see
Fig. 1). Within the one-electron approximation, electron

FIG. 1. Setup used for the calculation of tunnel currents. Poten-
tial barrierV separates two semi-infinite bulk systems,VL andVR.
The tunnel current is evaluated onS, a boundary surface between
VL andVR.

PHYSICAL REVIEW B 70, 085409(2004)

1098-0121/2004/70(8)/085409(8)/$22.50 ©2004 The American Physical Society70 085409-1



wave functions with energye satisfy the Schrödinger equa-
tion

f− 1
2D + vsrd − egfsrd = 0. s1d

Here vsrd denotes the one-electron potential defined in the
entire space. Another quantity that we will heavily use in this
paper is the Green function

f− 1
2D + vsrd − egGsr,r8,ed = − dsr − r8d. s2d

Several Green functions corresponding to different boundary
conditions can be defined. Hereafter,G is understood to ex-
press the retarded Green function defined in the whole space,
satisfying the outgoing boundary conditions atz= ±`. The
imaginary part of such a Green function is related to the
spectral function(density matrix) of the system by

rsr,r8,ed = −
1

p
IGsr,r8,ed, s3d

Green functions fulfilling other boundary conditions will be
distinguished by putting a subscript toG.

In order to calculate the tunneling conductance, we define
S, a two-dimensional(2D) surface separatingVL and VR. S
may be either a plane or a curved surface. For the time being,
we do not specify the position ofS. Scan be either to the left,
or to the right, or in the middle of the potential barrierV. We
begin with the definition of the embedding potential intro-
duced by Inglesfield.26,27 Consider a Green functionGR at
energye defined inVR with a vanishing normal derivative on
Sand the outgoing boundary condition atz= +`. The surface
inverse ofGR on S, which will be denoted bySR, is called
the embedding potential for the right half spaceVR. SR re-
lates the value and normal derivative onS of any solution of
Eq. (1), which is defined inVR and satisfies the outgoing
boundary condition atz= +`, by

]nfsxd = 2E
S

dx8SRsx,x8,edfsx8d, s4d

where the surface normaln points inward toVR. In the same
way we defineSL, the embedding potential for the left half
spaceVL.

By using a Green-function matching technique28,29 or us-
ing the cusp condition of the Green function,30 one can show
easily that the Green functionGsx ,x8 ,ed on S can be ex-
pressed using the embedding potentials by

G = GL
1

GL + GR
GR =

1

SL + SR
, s5d

where we omit for simplicity the arguments of the Green
functions and the product of Green functions implies matrix
multiplication onS. From Eq.(5) one sees that the spectral
function onS can be decomposed into the left spectral func-
tion rL and the right onerR, with each defined by

rL =
1

p
GISLG* , rR =

1

p
GISRG* . s6d

rL andrR express the contribution of propagating waves in-
cident from z=−` and z= +` to the spectral function,

respectively.31,17 In addition, the spectral function may have
d-function-like peaks corresponding to surface(interface)
states on the real energy axis. As is seen from Eq.(5), they
correspond to zeros of the determinantuSsedu whereS;SL

+SR. It is to be noted that the decomposition ofr into the
sum ofrL andrR is not adequate for those poles, since both
ISL andISR vanish in the energy gap region where surface
(interface) states appear.

B. Landauer-Büttiker formula

In the ballistic regime in which the electron mean free
path is much larger than the thickness ofV, the tunneling
conductance can be expressed by the Landauer-Büttiker
formula,24,25

GLBsed =
1

2p
o
i,j

utij u2, s7d

where tij is the transmission coefficient betweenfLi, an in-
cident channel with energye in VL, and fRj, a transmitted
channel inVR, both of which are normalized such that they
carry unit current toward the right. In the past the same for-
mula was derived by a number of authors using linear re-
sponse theories32,33 and nonequilibrium Green-function
techniques.34–37 Recently, Wortmannet al.30,38 reformulated
Eq. (7) using the embedding technique as

GLBsed =
2

p
TrfGISLG*ISRg, s8d

where all the matrices are defined onS. Here we give a
simplified derivation of the earlier equation. To this end, we
notice that the left spectral function can be written onS as

rLsx,x8,ed =
1

2p
o

i
o
n,n8

ftinfRnsxdg*ftin8fRn8sx8dg, s9d

where the sum overi runs through incident channelsfLi
while those overn andn8 run through not only propagating
but also evanescent solutions of Eq.(1) toward z= +`. We
define an expectation value of the normal component of the
current operator onS by

Jnn8 =
1

2i
E

S

ffRn
* ]nfRn8 − ]nfRn

* fRn8gdx

= 2E
S

fRn
* sxdISRsx,x8dfRn8sx8ddxdx8, s10d

where we used Eq.(4) in the second line.30 The value ofJnn8
is independent of the shape and position ofS, and vanishes
when eitherfRn or fRn8 is an evanescent state. When both
are propagating waves, we adopt the eigenchannel normal-
ization Jjj 8=d j j 8. Combining Eqs.(9) and (10) yields

2TrfrLISRg =
1

2p
o
inn8

tin
* tin8Jnn8 =

1

2p
o

i j

utij u2. s11d

Thus, we have
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GLBsed = 2 TrfrL ISRg = 2E
S

rLsx,x8,edISRsx8,x,eddxdx8,

s12d

which is seen to coincide with Eq.(8) using Eq.(6). Need-
less to say,GLB can be expressed also as 2TrfrRISLg by
exchangingR andL.

As an application, let us consider field emission(FE) of
electrons from a metal electrode. In this case,vsrd consists of
a crystal potential representing a semi-infinite metal elec-
trode(VL), a surface potential barrier, and a linearly decreas-
ing potential in the vacuum(VR). We takeS as a plane lo-
cated slightly outside the outermost atomic layer and assume
that the potential barrier to the right ofSdepends only on the
z coordinate. Then, noting that the embedding potential for a
one-dimensional(1D) potential barrier can be written as

ISRsx8,x,ed =E dk

s2pd2eiksx8−xdISRse'd, s13d

with e'=e− uku2/2, one has

GLBsed = 2E dk

s2pd2rLsk,k,edISRse'd, s14d

whererLsk ,k ,ed in Eq. (14) denotes the diagonal component
of the Fourier transform of the left spectral function onS.
The earlier equation coincides with an extended version of
the Fowler-Nordheim theory,39–41

GFNsed =E dk

s2pd2rLsk,k,edvzse,kdD0se'd/2, s15d

if 2ISR is replaced byvzD0/2, whereD0 is the electron
tunneling probability within the Wenzel-Kramers-Brillouin
(WKB) approximation andvz is the normal component of the
electron velocity. It should be emphasized, however, that dif-
ferently from such an approximate equation, Eq.(12) holds
for any rapidly varying three-dimensional(3D) potential bar-
rier V.

C. Tunnel current from surface states

A drawback of the Landauer-Büttiker formula is that it
fails to account for the tunnel current from localized surface
(interface) states. This is known to make a significant contri-
bution to the total current in scanning tunneling microscopy
(STM)5 and field emission.41,42 To be concrete, let us con-
sider an interface between a semi-infinite crystal occupying
VL and the semi-infinite vacuumVR. Without a tip(STM), or
without an applied electric field(FE), discrete surface states
may appear below the vacuum levelsISR=0d in the energy
gaps of the band structure of the crystalsISL=0d. As stated
before, their energies are determined by the condition
uSsedu=0sS=SL+SRd. Now, when a tip approaches the sur-
face (STM), or when an external electric field is applied
(FE), these surface states couple with the energy continuum
in the right half space and become surface resonances with a
finite lifetime t. We assume that the resupply of electrons
into them via electron-electron interactions proceeds much

faster than the tunneling from those states into the energy
continuum in the tip(STM) or in the vacuum(FE), which
may be justified for metallic substrates. With this assump-
tion, the contribution of a surface state to the tunneling con-
ductance is given by42

Gssed =
1

t
dse − esd = 2g dse − esd, s16d

wherees andg denote the center and half width at half maxi-
mum of the resonance peak, respectively. To proceed, we
need to expressg in the language of embedding theory.

First, we give an intuitive derivation, though it is not nec-
essarily rigorous. Let us denote the wave function of a local-
ized surface state in the limit ofg=0 corresponding to en-
ergy es

0 by fs. Its coupling to the energy continuum in the
right half space can be expressed as a change inSsed on S.
We writeSsed=S0sed+DSsed, whereS0sed is the sum of the
two embedding potentials wheng=0. Since the negative of
the embedding potential is a “potential energy” acting on
surfaceS, the energy shift of this surface state is given by
first-order perturbation theory as

Des = −E
S

fs
*sx8dDSsx8,x,es

0dfssxddxdx8. s17d

When DS is switched on, surface-state poles on the real
energy axis shift to the lower half of the complex energy
plane. Thus,g is estimated from the imaginary energy of the
pole, i.e.:

g =E
S

fs
*sx8dISRsx8,x,es

0dfssxddxdx8, s18d

where we made use of the facts thatISLsed=ISR
0sed=0 in

the energy range of the resonance and that the embedding
potential is permutable with respect tox andx8.

A more rigorous derivation ofg is to determine the shift
of a zero of the determinant. To the lowest order, we have

uS0ses
0 + Desd + DSses

0 + Desdu

= US0ses
0d + F ] S0ses

0d
] e

Des + DSses
0dGU

=TrHSadj
0 ses

0dF ] S0ses
0d

] e
Des + DSses

0dGJ = 0, s19d

where Sadj
0 sed is the adjoint matrix ofS0sed and we used

uS0ses
0du=0 in the third line. Since the Green function onS in

the limit of g=0, G0sed=sS0d−1sed=Sadj
0 sed / uS0sedu, can be

written as

G0sed =
fssxdfs

*sx8d
e − es

0 , s20d

in the neighborhood ofes
0, Sadj

0 ses
0d in Eq. (19) is seen to be

identical withfssxdfs
*sx8d except for a constant]uS0ses

0du /]e.
Thus, Eq.(19) reads
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FE
S

fs
*sx8d

] S0sx8,x,es
0d

] e
fssxddxdx8GDes

= −E
S

fs
*sx8dDSsx8,x,es

0dfssxddxdx8. s21d

Here we utilize a property of the embedding potential26

E
S

fs
*sx8d

] SL
0ses

0d
] e

fssxddxdx8 =E
VL

ufssrdu2dr , s22d

E
S

fs
*sx8d

] SR
0ses

0d
] e

fssxddxdx8 =E
VR

ufssrdu2dr . s23d

Adding the earlier two equations for each side and noting the
normalization conditioneufssrdu2dr =1, one finds that the co-
efficient ofDes on the left-hand side of Eq.(21) equals unity.
Thus, Eq.(21) coincides with Eq.(17).

By substituting Eq.(18) in Eq. (16), we obtain

Gssed = 2E
S

ffssxdfs
*sx8ddse − esdgISRsx8,x,eddxdx8.

s24d

As it should be,Gssed evaluated by the earlier equation does
not depend on the position ofS. Now, we adopt an approxi-
mate expression of the spectral function in the energy range
of a surface resonance

rsx,x8,ed = fssxdfs
*sx8ddse − esd. s25d

Strictly speaking, Eq.(25) is exact only in the limit ofg=0.
However, its use for a finiteg may be justified for the present
purpose, since the spectral function possesses a sharp peak
centered ates and its integrated weight in the energy range of
the resonant peak deviates fromfssxdfs

*sx8d only by an
amount of the order ofDSsesd, as far asfssxd has a signifi-
cant amplitude onS.

When a surface state couples with the energy continuum
in VR, the resultant surface resonance is described as a part of
the right spectral functionrR, while rL remains to be zero in
the energy gap of the crystal. Thus, from Eqs.(24) and(25)
with r replaced byrR, one has

Gssed = 2E
S

rRsx,x8,edISRsx8,x,eddxdx8. s26d

This equation is valid only for narrow energy windows cor-
responding to surface resonances. Except for these energies,
Gssed should vanish, while the right-hand side of Eq.(26)
does not necessarily. However, one can make use of the fact
that electron wave functions incident fromz= +` decay in-
side the potential barrierV except for resonance energies. So
far, we have not specified the position of the boundary sur-
faceS betweenVL andVR. Now, we choose to positionS on
the left side of the potential barrierV. In this case, one may
expect thatrR.0 on S if the amplitude of electron wave
functions incident fromz= +` becomes sufficiently small
before reachingS. Roughly speaking, the condition for this
may be exps−2kLd!1, wherek is the decay constant inV of

a wave function incoming fromz= +` andL denotes thick-
ness ofV. With this assumption, Eq.(26) may be a very
good approximation ofGssed in Eq. (24) for all the energies.

D. Formula for both bulk and surface currents

In the preceding subsections we discussed the tunneling
currents from bulk and surface states. Now, as a tunneling-
conductance formula that can account for both the contribu-
tions, we propose

Gsed = 2 Trfr ISRg=2E
S

rsx,x8,edISRsx8,x,eddxdx8.

s27d

Using the definitions forGLBsed and Gssed as given in Eqs.
(12) and (26), respectively, Eq.(27) is rewritten as

Gsed = GLBsed + Gssed. s28d

The assumption thatr=rR+rL used here is valid as we con-
sider a finite coupling of the surface states to the energy
continuum at the right side of the barrier. AsGLBsed=0 for
the energies of the surface resonances, Eqs.(27) and (26)
obviously give the same contribution of these states to the
conductance. At energies in which a continuum of states is
available at both sides, i.e., wheneverGLBsedÞ0, the pro-
posed formula contains an extra contribution Eq.(26). As
described in the preceding subsection, this additional contri-
bution can be tuned to practically vanish by positioningS at
the left side of the barrierV, where the charge density due to
the states incident fromz= +` becomes negligibly small.

To demonstrate this, we consider simplified 1D potential
barriers for which the embedding potentials,SR andSL, can
be analytically calculated. As the first example we take a
rectangular potential barrier

vszd = H 0 szø 0,zù Dd
ev s0 ø zø Dd.

s29d

In Fig. 2(a) we plot the ratio of the proposed formula Eq.
(27) to the Landauer-Büttiker formula Eq.(12) at three en-
ergies as a function of thez coordinate ofS, whereev andD
are chosen, as an example, as 0.5 and 5 a.u., respectively. As
GLBsed does not depend on the position ofS, the variation of
these lines originates from thez dependence of Eq.(27). For
a 1D model, the ratio is given by G /GLB =1
+rRsz,z,ed /rLsz,z,ed with z being the position ofS. Since
rR=rL at z=D /2 for any symmetric potential barrier, all the
lines pass through the point(2.5, 2). Main contributions to
rRsz,z,ed and rLsz,z,ed behave in the barrier region as
exps+2kzd and exps−2kzd with k=Î2sev−ed, respectively.
As a result,G /GLB diverges as exps+4kzd in the barrier re-
gion. As expected, near the left end of the barrier(z,0), the
ratio G /GLB may be regarded practically as unity. Hence, one
may use Eq.(27) to calculate the tunnel current from ex-
tended bulk states.

As the second model, we consider field emission from a
1D step potential
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vszd = H0 szø 0d
ev − Fz szù Dd.

s30d

Figure 2(b) shows the calculatedG /GLB as a function of the
z coordinate ofS, whereev andF are taken, as an example,
as 0.5 and 0.01 a.u., respectively. Since the width of the po-
tential barrier increases with decreasinge, G remains to be
identical withGLB further into the vacuum with decreasinge.
Again, Eq.(27) agrees withGLB nearly perfectly ifS is lo-
cated near the left edge of the potential barriersz,0d.

Very interestingly, G /GLB in Figs. 2(a) and 2(b) also
shows sharp peaks on the left side of the potential barrier.
This can be understood as follows: To the left of the barrier,
rLsz,z,ed can be written asfs1−Rd2+4R sin2skz+hdg /k
where R and h denote the reflection amplitude and phase
shift of a plane wave incoming fromz=−` and carrying unit
current, expsikzd /Îk with k=Î2e, whereasrRsz,z,ed=s1
−R2d /k is constant. Thus, the ratiorRsz,z,ed /rLsz,z,ed has
peaks with a heights1+Rds1−Rd and a half width at the half
maximum,Dz=s1−Rd / s2kÎRd with a period ofp /k. As R
→1, the peaks behave like ad function. We emphasize, how-
ever, that this singular behavior is an artifact of a constant
potential inVL where both incoming and reflected waves are
single plane waves. For realistic 3D systems, the reflected
wave corresponding to a Bloch wave incident fromz=−` is

a superposition of many Bloch and evanescent waves. Fur-
thermore, a single Bloch wave consists of many plane waves.
Thus, it does not happen that the amplitudes of the incident
and reflected waves cancel each other completely on all the
points onS.

Equation(27) conforms with an intuitive picture of the
tunneling current as it is written as a product of two quanti-
ties, i.e.,rsx ,x8 ,ed, a measure of the number density of elec-
trons on the left side of the potential barrier, andISR, a
quantity related to the probability for an electron onS to
tunnel from the left to the right side of the barrier. In such a
picture, it is plausible that there is no distinction between the
current expression due to bulk states and that due to surface
states. Using a 1D potential model, Soven, Plummer, and
Kar42 showed that the FE current from surface states can be
expressed by the same equation as that from bulk states. In
their treatment, the width of a surface resonance,g, was
estimated from the phase shift of a plane wave incident from
z= +`. The present result may be regarded as a generaliza-
tion to 3D arbitrary potential barriers of their result.

Given the tunneling conductanceGsed, the total tunnel
current fromVL to VR can be calculated as

J = 2E
mR

mL

Gsedde, s31d

wheremL andmRsmL.mRd are the chemical potentials in two
semi-infinite systems,VL andVR, respectively, and the pref-
actor 2 accounts for electron spin.

To conclude this section, we summarize advantages of the
present formulaGsed in Eq. (27): (i) Differently from GLB, G
contains both bulk and surface contributions to the tunnel
current. Regarding the bulk component,G becomes identical
with GLB if rR.0 onS. (ii ) Differently from Bardeens’ trans-
fer Hamiltonian approach,G is nonperturbative as far as the
tunneling current from bulk states is concerned.(iii ) G relies
on no approximation of the tunneling probability such as the
WKB approximation.

III. RESULTS

As a first application of Eq.(27) to a realistic system, we
consider field emission from Cus001d and Cus111d surfaces.
Recently, Ohwakiet al.43 reported a first-principles calcula-
tion of field emission from those surfaces. In their work, the
tunnel current from extended bulk states and that from sur-
face states were computed separately using Eqs.(8) and(16),
while we will evaluate them at once using Eq.(27).

We determine the electronic structure of a semi-infinite
crystal surface exposed to a strong electric field within the
local density approximation7 by employing a surface-
embedded Green-function method combined with the full-
potential linearlized-augmented-plane-wave technique.44–46

In this method, one considers explicitly the surface region
with a finite thickness,b1øzøb2, and the effects of the
semi-infinite substrate and the semi-infinite vacuum are in-
corporated via complex embedding potentials acting on two
embedding surfaces,z=b1 andz=b2. Two outermost Cu lay-
ers are included in the embedded region and the embedding

FIG. 2. Gsed /GLBsed as a function of thez coordinate ofS. (a)
Rectangular potential withev=0.5 a.u. andD=5 a.u. (b) Field
emission from a 1D step potential withev=0.5 a.u. andF
=0.01 a.u. Small numbers near each line indicate electron energye.
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plane on the vacuum side is placed at a position where the
charge density becomes negligibly small. The embedding po-
tential of the substrate is generated from the complex band
structure16 of Cu, while that for the vacuum in the presence
of an electric field is expressed in terms of the Airy
functions.41,43

Once the self-consistent charge density and potentials are
determined by a standard iteration procedure, we evaluate
the tunnel current using Eq.(27). We chooseS, the surface
separatingVL andVR, as a planez=bs located slightly on the
vacuum side of the muffintin(MT) spheres of the top Cu
layer. The embedding potentialSR on S is computed by per-
forming an additional embedded Green-function calculation
in a smaller region,bsøzøb2. In doing so, one imposes the
same embedding potential expressed in terms of the Airy
functions onz=b2, while the von Neumann boundary condi-
tion with a vanishing normal derivative is imposed onz=bs.
By definition, SR is obtained as the surface inverse of this
Green function onS.26 Since the volumebsøzøb2 contains
no MT spheres, one can use a plane-wave basis set for this
additional embedding calculation. Due to the translational
symmetry in the plane, the tunneling conductance in the
present case can be written as

Gsed =
A

s2pd2E
SBZ

Gse,kddk, s32d

wherek denotes a 2D wave vector in the surface Brillouin
zone (SBZ) and A is the surface area. The equation corre-
sponding to Eq.(27) is

Gse,kd = 2 Trfrse,kdISRse,kdg, s33d

whererse ,kd and SRse ,kd are thek-resolved spectral func-
tion and embedding potential defined onS, respectively.
Both matrices are expanded onS with a basis sethk+gj,
where g is a 2D reciprocal lattice vector according to the
translational symmetry in the plane. Thus, calculating the
trace in Eq.(33) is reduced to summation over two sets of
2D reciprocal lattice vectors. The total field-emission current
is obtained by integratingGsed up to the Fermi energy of the
substrate,eF.

The inset of Fig. 3 shows the calculated planar average of
the self-consistent potentialvsrd for Cus001d. The field
strengthF is given byF=4ps, wheres, surface charge per
unit area, is taken as 10−3 a.u. This corresponds toF
=0.65 V/Å. For the case of Cus001d, there are no occupied
surface state close to the Fermi energy, and the field-
emission current originates from bulk states in the Cu 4s
band. The current-density distribution as a function of 2D

wave vectork exhibits a single sharp peak centered atḠsk
=0d as in the case of the free-electron model. The solid line
in Fig. 3 shows the energy distribution of the field-emission
currentGse ,kd at k=0, which was computed using Eq.(33)
on the planez=bs indicated by a vertical line in the inset. For
comparison we also evaluated the Landauer-Büttiker for-
mula,GLBse ,kd, which is obtained by replacingrse ,kd in Eq.
(33) by thek-resolved left spectral functionrLse ,kd. On the
vertical scale of Fig. 3,GLBse ,kd andGse ,kd agree perfectly

and are not distinguishable from each other. This implies that
our assumption thatrL@rR actually holds on the planez
=bs.

Next we consider the Cus111d surface. As was shown by
Ohwaki et al.,43 the field-emission current from Cus111d is
dominated by that from a partially occupied surface band
that appears in the energy gap at theL point of the Cu band
structure. The surface band has a minimum atk=0 and ex-
hibits nearly quadratic dispersion withk. In the presence of
an electric field, it becomes a surface resonance with a finite
lifetime. At the same time its position shifts gradually down-
ward with increasing field strength. Since there are no bulk
states neareF at smallk, the bulk current from Cus111d is
much smaller than that for Cus001d.

To calculate the tunnel current from this surface band us-
ing Eq. (16), Ohwakiet al.43 estimated the half width of the
resonance at the half maximum,g, by plotting the surface-
layer density of states on very dense energy mesh points.
This was an extremely time-consuming work, since the
width of the resonanceg was only of the order of
10−6–10−4 eV. In the present work we only have to integrate
Eq. (33) up to the Fermi energy to obtain the tunnel current
from both bulk and surface states. Though this is easier than
evaluating the resonance width by hand, one still needs a
dense energy mesh to be able to integrate the narrow surface
resonance. To avoid this inconvenience, we propose to intro-
duce an artificial broadening to the spectral function in Eq.
(33) by replacingrse ,kd by

r̃sx,x8,e,kd = −
1

p
IGsx,x8,e + id,kd. s34d

The use ofr̃se ,kd may be justified as far asISRse ,kd in Eq.
(33) varies very little on the energy scale ofd.

In Fig. 4 we show the calculated tunneling conductance

Gse ,kd at Ḡsk=0d for Cus111d as a function of energye for
three broadening parameters,d=10−4, 5310−4, and 10−3 a.u.
The field strength corresponds tos=10−3 (a.u.) The main
peak in the figure corresponds to the surface resonance in the

FIG. 3. k-resolved tunneling conductanceGse ,kd at k=0 for
Cus001d as a function of energy relative to the Fermi leveleF (solid
line). The dashed line is calculated with a broadening parameterd
=5310−4 a.u. in the spectral function. The field strengthF=4ps,
wheres is chosen as 10−3 a.u. The inset shows the planar average
of the potential energy. The vertical solid line in the inset indicates
the position ofS.
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energy gap of the Cu band structure. In order to show the
contribution of bulk states to the tunnel current, we show the
same functionGse ,kd with a magnified scale in the inset of
Fig. 4. Though negligible as compared with the surface-
resonance peak, one sees that bulk states contribute to the
tunneling conductance up to the lower edge of the energy

gap atḠ. In the inset we also show the Landauer-Büttiker
formula GLBse ,kd, which is seen to vanish identically in the
energy gap. By integrating the surface-resonance peak, as the
tunnel current atk=0 we obtain 2.50310−7, 2.55310−7, and
2.65310−7 a.u., ford=10−4, 5310−4, and 10−3 a.u., respec-
tively. These values are in good agreement with 2g=2.48
310−7 a.u., which was estimated from the width of the sur-
face resonance without introducing an artificial broadening,
although discrepancy increases slightly with increasingd.
The resonant peak in Fig. 4 can be integrated with a much
coarser energy grid thang. Thus, calculating the tunnel cur-
rent from surface states becomes much easier by introducing
d.0. The value ofd should be determined by balancing the
numerical accuracy and computational amount.

Regarding the tunnel current from bulk states, one does
not need to introduce such a broadening of the spectral func-
tion. However, since we would like to evaluate the tunnel
currents from bulk and surface states at the same time using
Formula Eq.(27), it may be worth examining the effect ofd
on the bulk current. To see this, we show in Fig. 3Gse ,k
=0d for Cus001d calculated with a broadening parameterd
=5310−4 a.u. by a dashed line. By integrating this curve up
to the Fermi level, one obtains the tunnel current which is
overestimated only by 2% as compared with that calculated
without a broadening(solid line).

As a further example we consider tunneling of electrons
from a planar Cus001d electrode through a vacuum layer
with thickness 13.6 a.u. into another Cus001d electrode. In
this calculation we have chosen no additional surfaceS
within the vacuum barrier but used the left embedding plane
z=b1 within the Cu electrode to evaluate Eq.(28) to avoid
extra computational efforts and to demonstrate the validity of
the discussion in Sec. II D for a 3D example. Figure 5 shows
the tunneling probability of electrons with normal incidence

sk=0d calculated with the Landauer-Büttiker formalism as
well as that obtained according to Eq.(28) with an additional
factor 2p. In the energy range shown, the electronic structure
of Cu has only single band ofsp electrons and the tunneling
probability increases exponentially until dropping to zero at
the band edge at 1.46 eV. The transmission obtained from
the two formulas agrees perfectly except for a small discrep-
ancy at the high transmission values, which is expected as
the additional contribution of 2TrfrRISRg can no longer be
neglected for a high transmissive junction. However, one
should note that this deviation only occurs for very high
tunneling rates.

IV. SUMMARY

In this paper we presented an efficient method to evaluate
the tunnel current flowing between semi-infinite bulk sys-
tems separated by a potential barrier. Based on the embed-
ding approach of Inglesfield, we derived not only the con-
ductance due to tunneling of electrons from an energy
continuum on one side to that on the other side of the poten-
tial barrier but also the conductance due to tunneling of elec-
trons from localized states on one side to an energy con-
tinuum on the other side of the barrier. The former was
obtained by reformulating the Landauer-Büttiker formula,
while the latter was derived by expressing the lifetime of
resonant states in terms of the embedding potential. Although
they are based on different physics and assumptions, we have
shown that both contributions can be seamlessly integrated
into a single formula by carefully choosing the surface on
which the tunnel current is evaluated. As a first application
we calculated the field-emission current from Cu surfaces
and the electronic transport in a Cu-vacuum-Cu system.

ACKNOWLEDGMENTS

This work was supported by the NAREGI Nanoscience
Project, Ministry of Education, Culture, Sports, Science and
Technology, Japan. D.W. thanks the Japan Science and Tech-
nology Agency for support.

FIG. 4. k-resolved tunneling conductanceGse ,kd at k=0 for
Cus111d as a function of energy relative to the Fermi leveleF. The
solid, dashed, and dotted lines correspond tod=10−3, 5310−4, and
10−4 a.u., respectively. The second solid line in the inset, which
vanishes in the energy gap, is the Landauer-Büttiker formula
GLBse ,kd.

FIG. 5. Transmission probabilities according toGLB (solid) and
G (dashed) for a Cus001d /vacuum/Cus001d tunnel junction atk
=0 as a function of the electron energyeseF=0d.
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