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First-principles calculations of tunneling conductance
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Based on the embedding Green function method, we present a formula to calculate the current through a
tunnel barrier. In contrast to the Landauer equation, our approach incorporates not only the contribution of
propagating bulk states but also tunneling from localized states. As a first example, field emission from Cu
surfaces and electronic transport in a Cu-vacuum-Cu system are presented.
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l. INTRODUCTION Landauer-Buttiker formuf4-25for evaluating the tunnel cur-

Tunneling of electrons through a potential barrier is a sub!€nt from states extended in the whole system. In addition we
ject in elementary quantum mechanics. Nevertheless, ele€Xplicitly incorporate the contribution of localized states to
tron tunneling within one-electron theory is an essential conthe total current. When a localized surface state formed in a
cept relevant to a number of technological applications sucgemi-infinite bulk system on one side of the potential barrier
as field-emitting devicestunnel devices using magnetic tun- is coupled to an energy continuum at the other side, it be-
nel junctions> those using semiconductor heterostructdres,comes a resonance, and the tunnel current from this state to
and scanning tunneling microscopyVith the advance in the energy continuum can be estimated from its lifetime. It
experimental techniques to control the structure of those dewill be shown that both contributions to the tunnel current
vices on the atomic scale, there is an increasing demand @an be expressed naturally in terms of the embedding poten-
establishing a theoretical framework for evaluating the tundial invented by Inglesfield®2’ Furthermore, we will show
nel current microscopically in terms of the electronic struc-that the two contributions can be seamlessly integrated into a

ture of realistic materials. single formula by carefully choosing the surface on which
In this paper we restrict ourselves to the one-electron apthe current is calculated. _
proximation within the density-functional thedty,without The plan of the paper is as follows. In Sec. Il we begin

considering many-body effects such as the Coulombvith the definition of the embedding potential and formulate
blockade?® Previous first-principles calculations of the tun- the tunneling conductance in the language of the embedding
nel current are classified into those based on the scatterirfgeory?®#’In Sec. lil we apply the same formula for realistic
theory'®17 and those based on the perturbation theory initi-materials. Results are presented of the first-principles calcu-
ated by Bardeeff-23In the former, tunneling is described as lation of field-emission currents from low-index Cu surfaces
a scattering process in which an incident electron wave i&nd the electronic transport in a Cu-vacuum-Cu system. Fi-
scattered by a barrier potential located between two sempally, a summary is given in Sec. IV. We use the Hartree
infinite bulk systems. The tunnel current is evaluated fromatomic units throughout the paper unless otherwise stated.
the transmission amplitude of scattered electron waves using

the Landauer-Biittiker formuf:2°In the latter, two systems Il. THEORY
on both sides of the potential barrier are treated as decoupled _ _
in the initial state, and the probability for electrons to tunnel A. Embedding potential

through the potential barrier is calculated by perturbation We consider tunneling of electrons through a potential
theory using Fermi's golden rule. As an advantage of nonbarrier ) separating the left half spadg and the right one
perturbative theory, the scattering approach can treat botWi;. The z axis is chosen such that the asymptotic regions of
tunneling and ballistic conduction regimes, while the appli-V, andVg correspond t@=—« andz= +o, respectivelysee
cability of the perturbation approach is limited to small tun- Fig. 1). Within the one-electron approximation, electron
neling rates. As a disadvantage, the Landauer-Buttiker for-
mula fails to incorporate the contribution to the tunnel
current from localized(surface states on one side of the
potential barier to an energy continuum on the other side of
the barrier, whereas there is no distinction between localized
and extended states in Bardeen’s perturbation treattfent.

The purpose of the present paper is to develop a method
for evaluating the tunnel current from both extended and
localized states by applying a single formula. From a view
point of the way of solving the Schrédinger equation, our FIG. 1. Setup used for the calculation of tunnel currents. Poten-
method belongs to the scattering formalism in which a po+ial barrierQ) separates two semi-infinite bulk systerig,and V.
tential barrier and two semi-infinite bulk systeetectrodes  The tunnel current is evaluated & a boundary surface between
on both sides are treated as a whole. Also, we adopt thg, andVg.
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wave functions with energy satisfy the Schrédinger equa- respectively?1” In addition, the spectral function may have
tion S-function-like peaks corresponding to surfa@aterface

1 _ states on the real energy axis. As is seen from(ky.they
[-28+u(n) - €]am =0. (D) correspond to zeros of the determinddite)| whereS =3,

Here v(r) denotes the one-electron potential defined in thet2r. It is to be noted that the decomposition @into the
entire space. Another quantity that we will heavily use in thisSum ofp_andpg is not adequate for those poles, since both

paper is the Green function J_EL andJXg vanish in the energy gap region where surface
[_ 10y o(F) - e]G(r =S —1) @ (interfacg states appear.
2 ) 1 -
Several Green functions corresponding to different boundary B. Landauer-Bittiker formula
conditions can be defined. Hereaft€r,is understood to ex- In the ballistic regime in which the electron mean free

press the retarded Green function defined in the whole spacgath is much larger than the thickness@f the tunneling

satisfying the outgoing boundary conditionszat+=. The  congductance can be expressed by the Landauer-Biittiker
imaginary part of such a Green function is related to theqg myla24.25

spectral functiondensity matriy of the system by

1
P(r,r’,e)=—£§G(r,r’,e), 3 FLB(E):ZT% )% @

Green functions fulfilling other boundary conditions will be Wheret;; is the transmission coefficient betweey, an in-
distinguished by putting a subscript @ cident channel with energy in V,, and ¢g;, a transmitted

In order to calculate the tunneling conductance, we definéhannel inVg, both of which are normalized such that they
S, a two-dimensiona(2D) surface separating, andVg. S  Ca&rTy unit current toward the right. In the past the same for-
may be either a plane or a curved surface. For the time beinghula was derived by a number of authors using linear re-
we do not specify the position & Scan be either to the left, SPonse theorié$** and nonequilibrium Green-function
or to the right, or in the middle of the potential barferwe  techniques:—’ Recently, Wortmanret al*>* reformulated
begin with the definition of the embedding potential intro- EG- (7) using the embedding technique as
duced by Inglesfield®?” Consider a Green functioGy at 5
energye defined inVg with a vanishing normal derivative on I'g(e)=—=THGIZ G I3R], (8)
Sand the outgoing boundary conditionzat +oc. The surface ™
inverse ofGg on S, which will be denoted by, is called
the embedding potential for the right half spaég >y re-
lates the value and normal derivative Sof any solution of
Eqg. (1), which is defined inVg and satisfies the outgoing
boundary condition at= +«, by

where all the matrices are defined & Here we give a
simplified derivation of the earlier equation. To this end, we
notice that the left spectral function can be written®as

1 *
pLxX €= =3 3 [tbe 00 Tt b ()], (9)
Tnp(X) =2 J X' SR(x,X’, &) b(X'), 4) e
S

where the sum over runs through incident channel;
where the surface normalpoints inward toVg. In the same ~ While those ovew and v run through not only propagating

way we defineS, , the embedding potential for the left half Put also evanescent solutions of Ed) toward z= +o. We
spaceV,. define an expectation value of the normal component of the

By using a Green-function matching technigt® or us- ~ Current operator of$ by
ing the cusp condition of the Green functigfhone can show

easily that the Green functioB(x,x’,e) on S can be ex- J,, = lf [dry InPryr — Onr, PRy 10X
pressed using the embedding potentials by 2i)s
1 1 x
G=G Gr= , 5 ZZJ Pr,(X)TZR(X,X") R, (X" )dxdx",  (10)
LGL+GR R 2L+2R () S R R R

where we omit for simplicity the arguments of the Greenyhere we used Eq4) in the second 1iné® The value ofJ,,,,
multiplication onS. From Eq.(5) one sees that the spectral when eithergg, or ¢g,s is an evanescent state. When both
function onS can be decomposed into the left spectral func-are propagating waves, we adopt the eigenchannel normal-
tion p_ and the right ongg, with each defined by ization J; = 8;,. Combining Eqs(9) and(10) yields
1 1
==-GJ3. G, =—GJI3sG'. 6 ~ 1 * 1
A=ZOTHG . PR TG © 2T I%al = 5 S Gde =5 S I (1)
i/ 1]
pL and pg express the contribution of propagating waves in- '
cident from z=—x and z=+« to the spectral function, Thus, we have
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faster than the tunneling from those states into the energy

Fg(e)=2 Trip T3g]= 2] pLX, X", €)TZR(X",X, €)dXdX",  continuum in the tip(STM) or in the vacuum(FE), which
S may be justified for metallic substrates. With this assump-
(12 tion, the contribution of a surface state to the tunneling con-

which is seen to coincide with E@8) using Eq.(6). Need- ductance is given Hy

less to sayl' g can be expressed also as BRI, ] by 1
exchangingR andL. I'y(e) = —dle-€) =2y de- €, (16)

As an application, let us consider field emissi¢it) of 4
electrons from a metal electrode. In this cage) consists of  \heree andy denote the center and half width at half maxi-
a crystal potential representing a semi-infinite metal eleCryym of the resonance peak, respectively. To proceed, we
trode(V,), a surface potential barrier, and a linearly decreaspeeq to expresy in the language of embedding theory.
ing potential in the vacuuniVg). We takeS as a plane lo- First, we give an intuitive derivation, though it is not nec-
cated slightly outside the outermost atomic layer and assumgssarily rigorous. Let us denote the wave function of a local-
that the potential barrier to the right 8fdepends only on the jzed surface state in the limit of=0 corresponding to en-
z coordinate. Then, noting that the embedding potential for gyqy & by ¢s Its coupling to the energy continuum in the
one-dimensionallD) potential barrier can be written as right half space can be expressed as a chang&éhon S.

k. We write 3 (e) =2°(€) + A3 (€), where3%(e) is the sum of the
ISR(X' X, €) :f €T3 (e)), (13)  two embedding potentials whep=0. Since the negative of
(2m) the embedding potential is a “potential energy” acting on
with €, =e—|k[?/2, one has surfaceS, the energy shift of this surface state is given by

first-order perturbation theory as

k
FLB(G) = ZJ %pL(klkag)jER(el)r (14) .

. Aeg=-— f d(X)AS (X', X, &) p(x)dxdx”.  (17)
wherep, (k,k, €) in Eq. (14) denotes the diagonal component S
of the Fourier transform of the left spectral function 8n
The earlier equation coincides with an extended version o
the Fowler-Nordheim theor§p4!

hen AY, is switched on, surface-state poles on the real
nergy axis shift to the lower half of the complex energy
plane. Thusyy is estimated from the imaginary energy of the
dk pole, i.e.:
1—‘I:N(e) = f WPL(klkle)vz(ea k)DO(€J_)/21 (15)
— * N~ ’ 0 ’
if 233 is replaced byv,Dy/2, whereD, is the electron V—L hs(X)ITZR(X', X, €) Ppe(X)dxdx’, (18)
tunneling probability within the Wenzel-Kramers-Brillouin
(WKB) approximation and, is the normal component of the where we made use of the facts tHe, (e)=J33(€)=0 in
electron velocity. It should be emphasized, however, that difthe energy range of the resonance and that the embedding
ferently from such an approximate equation, EtR) holds  potential is permutable with respectxaandx’.
for any rapidly varying three-dimension@D) potential bar- A more rigorous derivation of is to determine the shift
rier £). of a zero of the determinant. To the lowest order, we have

1302+ Aeg) + AS (2 + Aey)

0/ 0
30(&d) + {%Aes+ Az(eg)] ‘
Jde

C. Tunnel current from surface states

A drawback of the Landauer-Biittiker formula is that it
fails to account for the tunnel current from localized surface

(interfacg states. This is known to make a significant contri- 739(&)
bution to the total current in scanning tunneling microscopy =Tr] 30 (€0 { & Ae.+ A3 (0 ] =0. (19
(STM)® and field emissio’*2 To be concrete, let us con- ad(€s) de s (&) (19

sider an interface between a semi-infinite crystal occupying 0 ] o )

V, and the semi-infinite vacuuVi. Without a tip(STM), or ~ Where 234(e) is the adjoint matrix of~%e) and we used
without an applied electric fieldFE), discrete surface states [2°(e2)|=0 in the third line. Since the Green function &iin
may appear below the vacuum lev6Ez=0) in the energy the limit of y=0, G%(e)=(2°)(e)=33(e)/[%(e)|, can be
gaps of the band structure of the crystak, =0). As stated  Wwritten as

before, their energies are determined by the condition ;

I3(e)]=0(==3, +2r). Now, when a tip approaches the sur- o) = $<(X) Ps(X") 20
face (STM), or when an external electric field is applied e-e

(FE), these surface states couple with the energy continuum

in the right half space and become surface resonances withia the neighborhood o0&, Egdj(eg) in Eq. (19) is seen to be
finite lifetime 7. We assume that the resupply of electronsidentical with¢g(x) ¢ (x’) except for a constam{2%(e2)|/ de.
into them via electron-electron interactions proceeds mucfrhus, Eq.(19) reads
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O(y’ 0
l f ¢;(X’)M¢S(x)dxdx’ } A€
s Jde

=- J D (X VAS (X' X, ) p(x)dxdx".  (21)
S

Here we utilize a property of the embedding pote#tial

0, 0
f ¢;(x’>%¢s<x>dxdx’= J [¢dn)far, (22
s € A
0,0
f ¢;<x'>%¢s(x>dxdx': f [edn)far. (23
s € VR
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a wave function incoming frorz=+o andL denotes thick-
ness of(). With this assumption, Eq.26) may be a very
good approximation of ((€) in Eq. (24) for all the energies.

D. Formula for both bulk and surface currents

In the preceding subsections we discussed the tunneling
currents from bulk and surface states. Now, as a tunneling-
conductance formula that can account for both the contribu-
tions, we propose

Ie)=2 Tip JER]=2f p(X,x",€)T2r(X',X, €)dxdx’.
s

(27)

Adding the earlier two equations for each side and noting the

normalization conditiorf|¢4(r)|?dr=1, one finds that the co-
efficient of Aeg on the left-hand side of E@21) equals unity.
Thus, Eq.(21) coincides with Eq(17).

By substituting Eq(18) in Eqg. (16), we obtain

I'y(e) = ZJ [$s(X) B(x") S~ € JTZR(X' X, )dxax”.
S

(24)

As it should be]'(e) evaluated by the earlier equation does
not depend on the position & Now, we adopt an approxi-

mate expression of the spectral function in the energy rang

of a surface resonance
p(X,X',€) = Po(X) e(X') e~ €. (25)

Strictly speaking, Eq(25) is exact only in the limit ofy=0.
However, its use for a finit¢ may be justified for the present

purpose, since the spectral function possesses a sharp pq%
centered at and its integrated weight in the energy range of

the resonant peak deviates from(x)gzs;(x’) only by an
amount of the order oA3(ey), as far asp¢(x) has a signifi-
cant amplitude ors.

When a surface state couples with the energy continuum

in Vg, the resultant surface resonance is described as a part
the right spectral functiopg, while p, remains to be zero in
the energy gap of the crystal. Thus, from E@?) and(25)
with p replaced bypg, one has

I'(e) = ZJ prOX X", €)TZR(X', X, e)dxdX . (26)
S

This equation is valid only for narrow energy windows cor-

Using the definitions fol" z(€) andI'y(e) as given in Egs.
(12) and(26), respectively, Eq(27) is rewritten as

I'(e) =T g(e) + 's(e). (28)

The assumption thai=pr+p, used here is valid as we con-
sider a finite coupling of the surface states to the energy
continuum at the right side of the barrier. Asg(e)=0 for
the energies of the surface resonances, E2j8. and (26)
obviously give the same contribution of these states to the
conductance. At energies in which a continuum of states is
gvailable at both sides, i.e., wheneugrz(e) # 0, the pro-
posed formula contains an extra contribution E26). As
described in the preceding subsection, this additional contri-
bution can be tuned to practically vanish by positionSgt
the left side of the barrief), where the charge density due to
the states incident fromm= +o becomes negligibly small.
To demonstrate this, we consider simplified 1D potential
riers for which the embedding potentialg, and,, can
be analytically calculated. As the first example we take a
rectangular potential barrier

0

v(z)={6

v

(z=0,z=D)

(0=sz=D). (29

of

In Fig. 2a) we plot the ratio of the proposed formula Eg.
(27) to the Landauer-Buttiker formula E@l2) at three en-
ergies as a function of thecoordinate ofS, wheree, andD

are chosen, as an example, as 0.5 and 5 a.u., respectively. As
I' g(e) does not depend on the position$®fthe variation of
these lines originates from tleedependence of E¢27). For

a 1D model, the ratio is given byIl'/T'g=1

responding to surface resonances. Except for these energie®r(Z.Z,€)/p(z,2,€) with z being the position o Since

I's(e) should vanish, while the right-hand side of H6)

pr=p. atz=D/2 for any symmetric potential barrier, all the

does not necessarily. However, one can make use of the fafes pass through the poi2.5, 2. Main contributions to

that electron wave functions incident froos +o decay in-

pr(z,z,€) and p (z,z,€) behave in the barrier region as

side the potential barrig® except for resonance energies. So€xp(+2«z) and exp—2«z) with x=2(e,~¢€), respectively.
far, we have not specified the position of the boundary surAs a result,I'/T' g diverges as expg-4«z) in the barrier re-

face S betweenV, andVg. Now, we choose to positio on
the left side of the potential barri€b. In this case, one may
expect thatpr=0 on S if the amplitude of electron wave
functions incident fromz=+ becomes sufficiently small
before reachinds. Roughly speaking, the condition for this
may be exp-2«L) <1, wherex is the decay constant i of

gion. As expected, near the left end of the bar¢er 0), the
ratio['/T" g may be regarded practically as unity. Hence, one
may use Eq(27) to calculate the tunnel current from ex-
tended bulk states.

As the second model, we consider field emission from a
1D step potential
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6 a superposition of many Bloch and evanescent waves. Fur-
thermore, a single Bloch wave consists of many plane waves.
5¢ Thus, it does not happen that the amplitudes of the incident
and reflected waves cancel each other completely on all the
@ 4r points onS.
= 3 Equation(27) conforms with an intuitive picture of the
~ T tunneling current as it is written as a product of two quanti-
ol i ties, i.e.,p(x,x’, €), a measure of the number density of elec-
trons on the left side of the potential barrier, ahlg, a
1 ! guantity related to the probability for an electron 8nto
tunnel from the left to the right side of the barrier. In such a
0 picture, it is plausible that there is no distinction between the
(@) current expression due to bulk states and that due to surface
states. Using a 1D potential model, Soven, Plummer, and
6 Kar*? showed that the FE current from surface states can be
expressed by the same equation as that from bulk states. In
5 their treatment, the width of a surface resonangewas
" estimated from the phase shift of a plane wave incident from
@ [ z=+o. The present result may be regarded as a generaliza-
= 3l tion to 3D arbitrary potential barriers of their result.
~ Given the tunneling conductandé(e), the total tunnel
2l current fromV, to Vi can be calculated as
ML
1 J= ZJ I'(e)de, (31
MR
o 1 1 L . . .
2.5 0.0 25 5.0 whereu, andug(w > ug) are the chemical potentials in two
(b) z (a.u.) semi-infinite systemsy, and Vg, respectively, and the pref-
actor 2 accounts for electron spin.
FIG. 2. I'(¢)/I' g(e) as a function of the coordinate ofS. (a) To conclude this section, we summarize advantages of the

Rectangular potential withe,=0.5 a.u. andD=5 a.u. (b) Field present formuld’(e) in Eq. (27): (i) Differently fromI' g, I’
emission from a 1D step potential witlk,=0.5au. andF  contains both bulk and surface contributions to the tunnel
=0.01 a.u. Small numbers near each line indicate electron erergy crrent. Regarding the bulk componefitbecomes identical
with I' g if pg=0 onS. (ii) Differently from Bardeens’ trans-
(z<0) fer Hamiltonian approacH;, is nonperturbative as far as the
v@=) Fz (z=D). (30)  tunneling current from bulk states is concerngid) I relies
on no approximation of the tunneling probability such as the
Figure 2b) shows the calculateﬂ/l",_B as a function of the WKB approximation.
z coordinate ofS, wheree, andF are taken, as an example,
as 0.5 and 0.01 a.u., respectively. Since the width of the po-
tential barrier increases with decreasiagl’ remains to be IIl. RESULTS

identical withI' g further into the vacuum with decreasieag As a first application of Eq(27) to a realistic system, we
Again, Eq.(27) agrees withl', g nearly perfectly ifSis lo-  consider field emission from ©@01) and C111) surfaces.
cated near the left edge of the potential bar(er 0). Recently, Ohwakeet al#3 reported a first-principles calcula-
Very interestingly, I'/T' g in Figs. 2@ and 2b) also o of field emission from those surfaces. In their work, the
shows sharp peaks on the left side of the potential barriegnne| current from extended bulk states and that from sur-

This can be understood as follows: To the left of the barrlerface states were computed separately using @and(16)
pL(z.z,€) can be written as[(1-R)??+4Rsirf(kz+n)]/k  \yhile we will evaluate them at once using HE7).

where R and 7 denote the reflection amplitude and phase e determine the electronic structure of a semi-infinite
shift of a plane wave incoming from=—o and carrying unit  crystal surface exposed to a strong electric field within the
current, expikz)/\k with k=12e, whereaspr(z,2,6=(1  |ocal density approximatidn by employing a surface-
-R?)/k is constant. Thus, the ratjex(z,z,€)/p.(z,2,€) has  embedded Green-function method combined with the full-
peaks with a heightl +R)(1-R) and a half width at the half potential linearlized-augmented-plane-wave technfo®.
maximum, Az=(1-R)/(2kVR) with a period of/k. AS R In this method, one considers explicitly the surface region
—1, the peaks behave like&unction. We emphasize, how- with a finite thicknessp;<z<b,, and the effects of the
ever, that this singular behavior is an artifact of a constansemi-infinite substrate and the semi-infinite vacuum are in-
potential inV, where both incoming and reflected waves arecorporated via complex embedding potentials acting on two
single plane waves. For realistic 3D systems, the reflectedmbedding surfaceg=b, andz=b,. Two outermost Cu lay-
wave corresponding to a Bloch wave incident fram-= is  ers are included in the embedded region and the embedding
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plane on the vacuum side is placed at a position where the ' '
charge density becomes negligibly small. The embedding po-
tential of the substrate is generated from the complex band
structuré® of Cu, while that for the vacuum in the presence
of an electric field is expressed in terms of the Airy
functions?*143 i

Once the self-consistent charge density and potentials are
determined by a standard iteration procedure, we evaluate
the tunnel current using E@27). We chooseS, the surface
separating/, andVpg, as a plane=b located slightly on the 15 4 05 0
vacuum side of the muffintifMT) spheres of the top Cu Energy (eV)
layer. The embedding potentiak on Sis computed by per-
forming an additional embedded Green-function calculation FIG. 3. k-resolved tunneling conductand&e k) at k=0 for
in a smaller regionbss 7< bz_ In doing so, one imposes the Cu(001) as a function of energy relative to the Fermi leel(solid
same embedd|ng poten“al expressed |n terms Of the Alri)ne) The dashed line is calculated with a broadening param%ter
functions onz=b,, while the von Neumann boundary condi- =5X% 10“.1 a.u. in the spectral funct.ion. The field strengik 47o,
tion with a vanishing normal derivative is imposed prb,. ~ Whereo is chosen as Mau. The inset shows the planar average
By definition, S is obtained as the surface inverse of thig of the p_o_tentlal energy. The vertical solid line in the inset indicates
Green function or6.2° Since the volumd,<z=<b, contains € Position ofS
no MT spheres, one can use a plane-wave basis set for this
additional embedding calculation. Due to the translationaRnd are not distinguishable from each other. This implies that
symmetry in the plane, the tunneling conductance in theur assumption thap, > pr actually holds on the plane
present case can be written as =bs.

Next we consider the G1l) surface. As was shown by
Ohwaki et al.*3 the field-emission current from Cl11) is
dominated by that from a partially occupied surface band
that appears in the energy gap at thpoint of the Cu band
wherek denotes a 2D wave vector in the surface Brillouin structure. The surface band has a minimunk=a0 and ex-
zone(SB2) and A is the surface area. The equation corre-hibits nearly quadratic dispersion with In the presence of

ry
T
=)

0) (10° a.u.)
. Energy (eV)

F(e,R
3

I'(e) =

e JSBZ T'(e,k)dk, (32)

sponding to Eq(27) is an electric field, it becomes a surface resonance with a finite
lifetime. At the same time its position shifts gradually down-
I'(e,k) =2 Trip(e,k)T2R(€,K)], (33 ward with increasing field strength. Since there are no bulk

states neakg at smallk, the bulk current from C{11) is
much smaller than that for C001).

To calculate the tunnel current from this surface band us-
h is & 2D reci | latt ‘ ding to. th ing Eq.(16), Ohwakiet al.43_estimated the half width of the
whereg 1s a reciprocal 1atlice vector according 10 e oo, ance at the half maximurg, by plotting the surface-

translgtional symmetry in the plane. Thus, calculating thqayer density of states on very dense energy mesh points.
trace in Eq.(33) is reduced to summation over two sets of This was an extremely time-consuming work, since the

2D reciprocal lattice vectors. The total field-emission currenRNid,[h of the resonancey was only of the order of
is obtained by integratin§(e) up to the Fermi energy of the 10-10* eV. In the present work we only have to integrate

substrateg. : .

. . g. (33) up to the Fermi energy to obtain the tunnel current
The inset O.f Fig. 3 ShOW_S the calculated planar average &fom poth bulk and surface states. Though this is easier than

the Self'CQHS'_Stent potential(r) for Cu(001). The field evaluating the resonance width by hand, one still needs a

strengthF is given byF =40, whereo, surface charge per jense energy mesh to be able to integrate the narrow surface

unit area, is taken as IDa.u. This corresponds t&  esonance. To avoid this inconvenience, we propose to intro-

=0.65 V/A. For the case of GQ01), there are no occupied ,ce an artificial broadening to the spectral function in Eq.

surface state close to the Fermi energy, and the f|eld(33) by replacingp(e,k) by

emission current originates from bulk states in the Gu 4

band. The current-density distribution as a function of 2D

wave vectork exhibits a single sharp peak centered &k

=0) as in the case of the free-electron model. The solid line

in Fig. 3 shows the energy distribution of the field-emissionThe use ofo(e,k) may be justified as far &&g(e,k) in Eq.

currentI'(e,k) at k=0, which was computed using E®3)  (33) varies very little on the energy scale &f

on the plane=b; indicated by a vertical line in the inset. For  In Fig. 4 we show the calculated tunneling conductance

comparison we also evaluated the Landauer-Biittiker forf'(e,k) atI'(k=0) for Cu(111) as a function of energy for

mula,I' g(€,k), which is obtained by replacing(e,k) in Eq.  three broadening parametess; 104, 5x 1074, and 10° a.u.

(33) by thek-resolved left spectral functiop (e,k). On the  The field strength corresponds to=10"° (a.u) The main

vertical scale of Fig. 3I' g(e,k) andI'(e,k) agree perfectly peak in the figure corresponds to the surface resonance in the

wherep(e, k) and2g(e,k) are thek-resolved spectral func-
tion and embedding potential defined & respectively.
Both matrices are expanded @with a basis sefk+g},

1
p(x,x",e,k) ==—=TG(X,x",e+i5kK). (34)
o

085409-6



FIRST-PRINCIPLES CALCULATIONS OF TUNNELING. PHYSICAL REVIEW B 70, 085409(2004)

6 T T 012 _I T T T R T i
= P
=
8 -
7 Q
o
c
S i
3
. E
w
g i
O 1 1 1 1 1
0 -0.5 0 0.5 1 1.5
Energy (eV) Energy (eV)
FIG. 4. k-resolved tunneling conductand&e,k) at k=0 for FIG. 5. Transmission probabilities accordingltps (solid) and
Cu(11)) as a function of energy relative to the Fermi le¢gl The I' (dashed for a Cu001)/vacuum/C001) tunnel junction atk
solid, dashed, and dotted lines correspond+d 03, 5x 104 and =0 as a function of the electron energfe-=0).

10 a.u., respectively. The second solid line in the inset, which

vanishes in the ener ap, is the Landauer-Biittiker formula . " .
Tis(e,k). 9y gap (k=0) calculated with the Landauer-Biittiker formalism as

well as that obtained according to E@8) with an additional

energy gap of the Cu band structure. In order to show théactor 2. In the energy range shown, the electronic structure
contribution of bulk states to the tunnel current, we show thedf Cu has only single band @fp electrons and the tunneling
same functior'(e,k) with a magnified scale in the inset of Probability increases exponentially until dropping to zero at
Fig. 4. Though negligible as compared with the surfaceihe band edge at 1.46 eV. The transmission obtamgd from
resonance peak, one sees that bulk states contribute to tHe two formulas agrees perfectly except for a small discrep-
tunneling conductance up to the lower edge of the energ@cy at the high transmission values, which is expected as
gap atl. In the inset we also show the Landauer—BUttikerthe additional contribution of 2TprI%g] can no longer be

formulal' (e k), which is seen to vanish identically in the nre]glelgted tforthath:ﬁ_h t(:an_srpsswe lJunctlon. I:owever,h_or;]e
energy gap. By integrating the surface-resonance peak, as t gou'd note that this deviation only occurs for very hig

tunnel current ak=0 we obtain 2.5 1077, 2.55x 107/, and unneling rates.
2.65x 10" a.u., for6=10% 5x 104 and 10° a.u., respec-
tively. These values are in good agreement wity=2.48
X 107 a.u., which was estimated from the width of the sur-
face resonance without introducing an artificial broadening,
a|th0ugh discrepancy increases s||ght|y with increas&]g In this paper we presented an efficient method to evaluate
The resonant peak in Fig. 4 can be integrated with a muckhe tunnel current flowing between semi-infinite bulk sys-
coarser energy gr|d thaﬂ Thus, Ca|cu|ating the tunnel cur- tems separated by a potential barrier. Based on the embed-
rent from surface states becomes much easier by introducir?”g approach of Inglesfield, we derived not only the con-
5>0. The value ofs should be determined by balancing the ductance due to tunneling of electrons from an energy
numerical accuracy and computational amount. continuum on one side to that on the other side of the poten-
Regarding the tunnel current from bulk states, one doe§al barrier but also the conductance due to tunneling of elec-
not need to introduce such a broadening of the spectral fundtons from localized states on one side to an energy con-
tion. However, since we would like to evaluate the tunneltinuum on the other side of the barrier. The former was
currents from bulk and surface states at the same time usirRptained by reformulating the Landauer-Buttiker formula,
Formula Eq(27), it may be worth examining the effect of ~ While the latter was derived by expressing the lifetime of
on the bulk current. To see this, we show in Figl'Ge,k resonant states in terms of the embedding potential. Although
=0) for Cu(001) calculated with a broadening parameter they are based on diffe_renF physics and assumption_s, we have
=5x 10 a.u. by a dashed line. By integrating this curve UIO_shown t_hat both contributions can be sgamlessly integrated
to the Fermi level, one obtains the tunnel current which ighto & single formula by carefully choosing the surface on
overestimated only by 2% as compared with that calculatedvhich the tunnel cu_rrent |s.ev_aluated. As a first application
without a broadeningsolid line). we calculated the field-emission current from Cu surfaces

As a further example we consider tunneling of electrons2nd the electronic transport in a Cu-vacuum-Cu system.
from a planar C(001) electrode through a vacuum layer
with thickness 13.6 a.u. into another @©01) electrode. In

IV. SUMMARY

this calculation we have chosen no additional surf&ce ACKNOWLEDGMENTS
within the vacuum barrier but used the left embedding plane
z=b, within the Cu electrode to evaluate E@8) to avoid This work was supported by the NAREGI Nanoscience

extra computational efforts and to demonstrate the validity oProject, Ministry of Education, Culture, Sports, Science and
the discussion in Sec. Il D for a 3D example. Figure 5 showslechnology, Japan. D.W. thanks the Japan Science and Tech-
the tunneling probability of electrons with normal incidence nology Agency for support.
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