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Optical lattice vibrations in a zinc-blende superlattice consisting of periodically inverted polar domains are
theoretically investigated and phonon dispersion curves are obtained. The salient features of the phonon
dispersion are the mixing of longitudinal and transverse optical phonons and zone folding at twice the super-
lattice wave vector. The patterns of sublattice displacement and electric field are obtained and analyzed. The
most interesting feature is the change in symmetry between the displacement and the electrical field, leading to
different selection rules for various photon-phonon and carrier-phonon interactions.
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I. INTRODUCTION

Rapid progress of nanoscale growth and fabrication tech-
niques over the past 20 years1 have brought us to the point
where artificial materials with prescribed electrical and opti-
cal properties can be successfully engineered. Numerous suc-
cessful optical and electronic devices based on unique prop-
erties of electrons in quantum wells and superlattices have
been developed.2 Just as the electrons, the lattice vibrations
also exhibit different characteristics when confined in one or
more directions. However these changes have not yet found
application in devices. Among the different modes of lattice
vibrations, long wavelength optical phonons are probably the
most important when it comes to electronic devices which
are based on III-V semiconductors. The reason for this is that
longitudinal optical phonon(LO) scattering is the dominant
mechanism restricting the hot carrier’s mobility, and hence
any substantial modification of optical phonon properties can
lead to a significant improvement in their performance.3

There has been considerable work performed on the prop-
erties of confined optical phonons in various structures.4–6

Among the different developed models the phenomenologi-
cal continuum model4,6 has been most successful in explain-
ing the properties of optical phonons in various heterostruc-
tures where different layers have different phonon
frequencies, such as GaAs/AlAs. In such structures one can
safely assume that the vibrational modes are confined to one
layer and that the only connection between adjacent modes is
the electrostatic potential so that the dispersion curves of the
phonons in the plane of growth are modified. Unfortunately
this is not of practical interest since in realistic electronic and
optical devices it is desirable to remove the optical phonons
as fast as possible towards the heat sink, i.e., in the direction
normal to the plane of growth. It is, therefore, interesting to
explore heterostructures in which the phonons can move in
three dimensions with modified dispersion. In order to have
phonons travel freely throughout the heterostructure, it is
necessary that the elastic properties and polarizabilities of
alternating layers be the same. This means that in terms of
the magnitudes of all the relevant material parameters, the
alternating layers must be identical. This leaves us with the
freedom of changing the sign of the parameters and brings
forward the idea of using a periodically inverted polar do-
main structure(PIPDS)—a concept well known in the field

of nonlinear optics, where it is called a “quasi-phase-
matched(QPM) structure.”7

The QPM concept is based on the fact that if a crystal
lacks a center of inversion symmetry, inversion will lead to a
sign reversal of odd-order tensor elements, including, for ex-
ample, the second-order optical susceptibilityxs2d. The QPM
structure is a superlattice of alternating inverted layers.
Hence when light of frequencyv and wave vectorksvd
propagates in this structure, the nonlinear polarization at the
second-harmonic frequency 2v can be represented as a su-
perposition of waves with wave vectors 2ksvd+nq0, wheren
is an integer,q0=2p /Lẑ is the superlattice wave vector,L is
the period of the QPM structure, andẑ is the unit vector in
the direction of growth. If one of the wave vectors matches
that of the second-harmonic electromagnetic waveks2vd
(preferably the lowest order), an efficient transfer of energy
into the second harmonic will ensue. The QPM structure thus
provides significant modification of the nonlinear optical
properties of the material while leaving the linear optical
properties intact. If, as often is the case, the QPM structure is
made of ferroelectric materials such as LiNbO3, domain re-
versal can be achieved using electrical field poling from an
already grown crystal. For zinc-blende semiconductors such
as GaAs and ZnSe, which are not ferroelectric, one must
resort to more challenging crystal growth methods such as
stacking of plates approach, wafer bonding, and all-epitaxy
fabrication.8

It is of fundamental interest to look at the optical phonons
in the zinc-blende semiconductor PIPDS. While no third-
order tensors are directly involved in the interaction of the
phonon with light and electrons, the dynamic effective ionic
chargee* (Ref. 9) does reverse its sign upon crossing a do-
main boundary. As a result, momentum conservation rules
for such processes as infrared absorption and the Fröhlich
interaction change drastically, and large wave-vector optical
phonons, which are difficult to produce in bulk crystals, can
be easily generated in PIPDS, as will be shown in the present
paper. While conceptually similar to a typical QPM structure,
phonon PIPDS is distinguished by its finer scale. The do-
mains are reversed every few lattice constants, i.e., on a na-
nometer scale.

We start by describing the microscopic structure of PIPDS
as shown in Fig. 1. Since the bulk zinc-blende crystal struc-
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ture can be viewed as two perfect face-centered-cubic(fcc)
sublattices A and B, domain inversion simply means that the
cation and anion exchange the sublattices they occupy. This
inversion is known to occur spontaneously in “rotational
twins”10 and “antiphase boundaries”11 in some zinc-blende
compounds. Such artificial domains have been successfully
operated in “orientation-patterned structures.”8 While the do-
main reversal in III-V semiconductors more often occurs
along the[011] directions,8,11 nothing in principle prevents it
from taking place along one of the[001] directions. In this
work we will consider an III-V semiconductor PIPDS ori-
ented along[001] axis as shown in Fig. 1. If we define a
phonon as a vibrational mode of relative displacement be-
tween sublattices A and B, the ionic polarizationP will have
identical amplitudes but opposite signs at two adjacent do-
mains. If the optical phonon mode can be represented by
amplitudeu0sqd with wave vectorq, the polarization waveP
associated with this phonon mode will contain components
with wave vectorsq8=q+nq0, where n is an integer. The
electric field excited by this polarizationP will, in turn, be
able to apply force to the other phonon modes with wave
vectorsq9=q8+mq0=q+sm+ndq0 (the PIPDS Bragg condi-
tion). Such a coupling mechanism will lead to the modifica-
tion of the optical phonon dispersion curves in PIPDS while
leaving the elastic properties almost intact. This is precisely
the goal that we are trying to achieve, that is to have optical
phonons propagating freely in all directions with modified
dispersion curves.

To obtain insight into the optical phonon properties in
III-V semiconductor PIPDS we have developed a simplified
theoretical description using a “nearly free phonon” formal-
ism in Sec. II. In Sec. III we obtain analytical results for
special cases such as the zero dispersion and long wave lim-
its, while in Sec. IV dispersion results for phonons with ar-
bitrary wave vectors are generated numerically and analyzed.
The issue of interactions between optical phonons and pho-
tons and/or electrons in PIPDS are addressed in Sec. V. Con-
clusions are presented in Sec. VI.

II. THEORETICAL MODEL OF PHONONS IN PIPDS

The so-called “continuum” model of a III-V semiconduc-
tor PIPDS is shown in Fig. 1. The domains are inverted with

periodL=Ma0, wherea0 is the fcc lattice constant, which is
twice the value for a primitive cell, andM is an integer.
Thus, in theory the Brillouin zone(BZ) of the bulk material
s−2p /a0,2p /a0d is split into exactly 2M folded zones of the
superstructures−p /Ma0,p /Ma0d. As will become clear be-
low, it is reasonable to use the modified BZ
s−2p /Ma0,2p /Ma0d.

Due to the periodic inversion, the relation between rela-
tive sublattice displacement and polarization in this structure
are modulated by a periodical square wave functionf

fszd = H+ 1; nL , z, sn + 0.5dL
− 1; sn − 0.5dL , z, nL,

J s1ad

where n is an integer. One can also say that Eq.(1a) de-
scribes the modulation of the dynamic effective ionic charges
e* (Ref. 9). This envelope functionf can be expanded into a
Fourier series as

fszd = o
n=−`

`

gn expsinq0zd = o
n±1,±3. . .

S− i
2

pn
Dexpsinq0 · rd,

s1bd

whereq0=2p /Lẑ is the superlattice wave vector. It should
be mentioned that we shall only consider structures with
identical widths of “positive” and “negative” domains, i.e.,
having a definite symmetry. Then the envelope functionf has
only odd Fourier components. Hence, calculation of the dis-
persion curves(Secs. III and IV) and the discussion of the
selection rules for the photon-phonon and electron-phonon
interactions(Sec. V) can be substantially simplified.

Further simplifications have been made in developing our
model. First, the mechanical properties of the material are
assumed not to be influenced by the existence of the domain
boundary. This is indeed a major simplification since the
cation and anion have different masses. However, if their
masses are close to each other, this discrepancy(7% for
GaAs) can be handled later as a small perturbation. Further-
more, nonpolar Ga-Ga and As-As bonds that exist at the
antiphase boundary have different elastic properties than in
heteropolar Ga-As bonds. With the ionicity of the Ga-As
bond12 being only about 20% one can still treat the deviation
in bond character as a perturbation, whose main impact is the
opening of small gaps at the edge of the folded BZ. Of
course, interface phonon modes associated with the Ga-Ga
and As-As bonds can also exist, but since the bands are non-
polar they will not make a large impact on the infrared and
electron scattering properties that are of interest here. Finally,
in this work we will consider rather small domains, only a
few primitive cells thick. Therefore, using a macroscopic de-
scription for the polarization is definitely an approximation
and all the results obtained in this paper are just estimates.
However, using this macroscopic approximation allows us to
develop a rather clear qualitative picture of the physical pro-
cesses in PIPDS and to obtain solutions that do not require

FIG. 1. Schematic diagram of an antiphase boundary for III–V
semiconductors PIPDS among[001].
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extensive numerical computations and which can be easily
interpreted for the high symmetry directions.

Having established the limitations of our approach, we
now commence our study with the use of the macroscopic
Huang-Born equations6,13

ü = − vT
2u + b12fE − bL

2¹¹ ·u + bT
2 ¹ 3 ¹ 3 u, s2ad

¹ ·D = ¹ · sb21fu + «0«`Ed = 0, s2bd

where u=ÎMr /Vu0 is the modified relative sublattice dis-
placement,Mr is the reduced mass of the anion-cation pair,
V is the unit-cell volume,E is the macroscopic electrical
field, b21=b21=Î«0«`svL

2−vT
2d, vL/T is the BZ center angular

frequency of the bulk longitudinal/transverse optical
sLO/TOd phonon,«` is the optical frequency dielectric con-
stant,«0 is the vacuum permittivity, andbL/T is a phenom-
enological parameter describing the curvature of the LO/TO
phonon dispersion.

Equation(2) can be simplified by considering three or-
thogonal sublattice vibration modes as shown in Fig. 2.4

Here the bold arrow labels the direction of relative sublattice
displacement. The mode polarized among wave vectorq is
referred to as the LO mode, the mode whose polarization lies
in the plane formed byz and q [plane(010) here] is called
the p-TO mode and the last one, polarized along they [010]
direction is called the shear horizontal(s-TO mode). Since
the domain inversion does not change the mechanical prop-
erties of the bulk material, clearly the s-TO mode will remain
essentially a bulk TO mode. Another way to understand this
is to invoke the tangential electric fieldsEx,Eyd and normal
electric displacementDz, all of which are zero for the bulk
s-TO mode. On the other hand, the LO and p-TO modes both
produce a discontinuous polarizationP at the antiphase
boundaries. Thus, in PIPDS the LOsqd and p-TOsqd modes
will couple together as well as to other LO PIPDS Bragg
condition. Thus, we shall focus our attention only on these
coupled LO-p-TO modes in the(010) plane.

To determine the dispersion of the mixed LO-p-TO
modes, we shall expand the modified relative sublattice dis-
placementu using basis as the bulk LO and p-TO modes,
i.e.,

u = o
q

sCq
Laq

L + Cq
Taq

Tdexpsiq · r − ivtd, s3d

whereaq
L/T is the unit polarization vector of the LO(p-TO)

mode.
Next, we introduce the “charge displacement” asw= fu,

which in fact is the “true” modified relative displacement

between cations and anions. Using Eq.(1b) and Eq.(3) we
can expand the charge displacementw in the same basis as
for the modified relative sublattice displacementu

w = o
n=±1,±3. . .

o
q

gnsCq
Laq

L + Cq
Taq

Tdeiq·r−ivt+inq0·r

= o
q1

o
n=±1,±3. . .

gnsCq1−nq0

L aq1−nq0

L + Cq1−nq0

T aq1−nq0

T deiq1·r−ivt

= o
q1

sDq1

L aq1

L + Dq1

T aq1

T deiq1·r−ivt, s4ad

where we have introducedq1=q+nq0, n being an odd inte-
ger. Here

Dq1

L = o
n=±1,±3. . .

gnsCq1−nq0

L cosuq1−nq0,q1

+ Cq1−nq0

T sinuq1−nq0,q1
d, s4bd

Dq1

T = o
n=±1,±3. . .

gns− Cq1−nq0

L sinuq1−nq0,q1

+ Cq1−nq0

T cosuq1−nq0,q1
d, s4cd

whereuq1,q2
is the rotation angle fromq1 to q2, as shown in

Fig. 3 and the positive direction is set to be clockwise.
Now we can rewrite the Eq.(2b) as ¹ ·sb12w+«0«`Ed

=0. According to Eq.(4a) the charge displacementw is a
superposition of independent longitudinal and transverse
plane waves. The longitudinal waves carry an electric field
while the transverse modes do not.13 The total electric fieldE
is then

E = −
b12

«0«`
o
q1

Dq1

L aq1

L eiq1·r−ivt

= −
b12

«0«`
o

n=±1,±3. . .
o
q

gnsCq
L cosuq,q+nq0

+ Cq
T sinuq,q+nq0

daq+nq0

L eiq·r+inq0·r−ivt. s5d

Next we substitute Eq.(5) and Eq.(3) into Eq. (2a), mul-
tiply both sides by exps−iq1·rd, integrate over the volume,
and finally evaluate scalar products withaq1

L/T to obtain

FIG. 2. Basis of phonon modes in PIPDS.

FIG. 3. Illustration of rotation.
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sv2 − vT
2 + bL

2q1
2dCq1

L

= svL
2 − vT

2d o
m=0,±2. . .

o
n=±1,±3. . .

gm−ngn cosuq1,q1−nq0

3sCq1−mq0

L cosuq1−mq0,q1−nq0

+ Cq1−mq0

T sinuq1−mq0,q1−nq0
d, s6ad

sv2 − vT
2 + bT

2q1
2dCq1

T

= svL
2 − vT

2d o
m=0,±2. . .

o
n=±1,±3. . .

gm−ngn sinuq1,q1−nq0

3sCq1−mq0

L cosuq1−mq0,q1−nq0

+ Cq1−mq0

T sinuq1−mq0,q1−nq0
d. s6bd

Now we can move the diagonal terms withm=0 from the
right-hand side(rhs) of Eq. (6) to the left-hand side(lhs),
while dropping the subscript “1” in the wave vector and de-
fining the new parameters as

hq = o
n=±1,±3. . .

gng−n cos2 uq,q−nq0
, s7ad

xq = o
n=±1,±3. . .

gng−n sinuq,q−nq0
cosuq,q−nq0

, s7bd

aq,m
LL = o

n=±1,±3. . .
gm−ngn cosuq−mq0,q−nq0

cosuq−nq0,q, s7cd

aq,m
LT = o

n=±1,±3. . .
gm−ngn cosuq−mq0,q−nq0

sinuq−nq0,q, s7dd

aq,m
TL = o

n=±1,±3. . .
gm−ngn sinuq−mq0,q−nq0

cosuq−nq0,q, s7ed

aq,m
TT = o

n=±1,±3. . .
gm−ngn sinuq−mq0,q−nq0

sinuq−nq0,q, s7fd

wherem should be even integers. We finally have the char-
acteristic equations for the phonon dispersion in PIPDS

fv2 + bL
2q2 − hqvL

2 − s1 − hqdvT
2gCq

L − svL
2 − vT

2dxqCq
T

= svL
2 − vT

2d o
m=±2,±4. . .

saq,m
LL Cq−mq0

L + aq,m
LT Cq−mq0

T d,

s8ad

fv2 + bT
2q2 − hqvT

2 − s1 − hqdvL
2gCq

T − svL
2 − vT

2dxqCq
L

= svL
2 − vT

2d o
m=±2,±4. . .

saq,m
TL Cq−mq0

L + aq,m
TT Cq−mq0

T d,

s8bd

where we have used the fact thaton=−`
` gng−n=1.

As one can see, only the vibrations whose wave vectors
differ by an even number of superlattice wave vectorsq0,
i.e., 4p /L, are coupled together. Therefore, we can indeed
use the modified BZs−2p /Ma0,2p /Ma0d. This modified
Bragg condition is quite different from the Bragg condition

in ordinary periodic structure, which can be easily under-
stood from the original Eq.(2). Excluding the electric field
from them immediately shows that the solution should have
periodicity of the functionf2szd, i.e.,L /2, which isM primi-
tive cell constants. Therefore, to determine the coupled LO-
p-TO optical phonon dispersion one needs to diagonalize a
2M 32M matrix, which, generally speaking, can only be
done numerically. However, before proceeding with the nu-
merical calculations, in the next section we will consider
some special cases which will allow us to gain some physical
insight into PIPDS phonon properties.

III. SPECIAL CASES

A. Zero dispersion bL =bT=0

Neglecting optical phonon dispersion implies that each
anion-cation pair acts as an independent oscillator. Then the
oscillation phases of two bonds at two sides of the antiphase
boundary can simply be reversed to satisfy the electrostatic
boundary conditions. Equation(2) can be rewritten in terms
of the charge displacementw as

ẅ = − vT
2w + b12E, s9ad

¹ ·D = ¹ · sb21w + «0«`Ed = 0. s9bd

These expressions are identical to the Huang-Born equa-
tions in bulk dispersionless materials.13 Therefore, if one re-
defines the PIPDS optical phonon in terms of charge dis-
placementw rather than the relative sublattices displacement
u0, the optical phonon properties in PIPDS would be indis-
tinguishable from the bulk optical phonon properties.

B. On-axis propagationqx=0

In this case all the wave vectorsq−mq0 are collinear,
hence sinuq,q−mq0

=0, so thatxq=aq,m
LT =aq,m

TL =aq,m
TT =0. Fur-

thermore, sinceongn−mgn=−dm,0, the remaining off-diagonal
componentsaq,m

LL are also equal to zero, while all thehq=1
and we are left only with a diagonal matrix whose eigenval-
ues are

v2 = vL
2 − bL

2q2 sLO moded, s10ad

v2 = vT
2 − bT

2q2 sp-TO moded. s10bd

We see that in this case the LO mode and p-TO mode are
decoupled from each other and exhibit the same dispersion
properties as in bulk materials, with no gaps at the edge of
the modified BZ. This is an expected result, since the LO and
p-TO modes propagating alongz do not carry an electric
field Ei parallel to the boundary nor an electric displacement
Dz normal to the boundary. Furthermore, the p-TO and s-TO
modes are degenerate for the on-axis propagation case. Note
that this result is only an approximation since small mass
difference between the anion and cation will open narrow
gaps at the BZ edge and center, but as mentioned before, we
disregard this effect here.

C. Long wave limit q\0

For q!q0 it is rather easy to see that the wave vectors
q−mq0 are also all nearly collinear. Then we can obtain
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sinuq−mq0,q−nq0
= 0, m,n Þ 0,

cosuq−mq0,q−nq0
= signsmdsignsnd, m,n Þ 0,

sinuq,q−nq0
= − signsndsinu,

cosuq,q−nq0
= − signsndcosu, s11ad

whereu is the rotation angle fromq to z, and signsnd is +1
if n.0 and −1 forn,0. Hence,

aq,m
LL = aq,m

LT = aq,m
TL = aq,m

TT = 0,

xq = cos2 u, hq = − sinu cosu. s11bd

One then sees that the LOsqd and p-TOsqd modes are
decoupled from the other modes and the secular equation
between them simply becomes

*v2 − v̄2 −
vL

2 − vT
2

2
cos 2u

vL
2 − vT

2

2
sin 2u

vL
2 − vT

2

2
sin 2u v2 − v̄2 +

vL
2 − vT

2

2
cos 2u*

= 0, s12d

wherev̄2=svL
2+vT

2d /2.
It is easy to verify that Eq.(12) always gives the same

eigenvalues but that the eigenvectors do change for different
u, as

v+ = vL ⇒ uq = cosuaq
L + sinuaq

T = ẑ, s13ad

v− = vT ⇒ uq = sinaq
L − cosuaq

T = x̂. s13bd

Once again the result is expected. For small wave vectors
the electrostatic potential and electric field are determined by
modulation of the charge displacementw imposed by do-

main reversal. Therefore, it is relative to thez direction that
phonons will split into transverse and longitudinal branches.

Equation(13) indicates a very interesting fact for the two
extreme situations,u=0° andu=90°, for which the eigen-
modes are indeed decoupled LO and p-TO modes and for
which the higher frequency mode always has its sublattice
displacementu along z direction. Thus for lateral propaga-
tion u=90° it is the p-TO mode which possesses the higher
frequencyvL. This result will be confirmed by the numerical
calculations in the following section.

IV. NUMERICAL RESULTS

Except for the special cases described in Sec. III, we have
to resort to solving the full 2M 32M system of equations
[Eq. (8)] to numerically generate dispersion curves for vari-
ous directions, i.e., various anglesu between the phonon
wave vectorq and the growth directionz. We use GaAs as an
example, with all the relevant material parameters for this
material given in Table I.[Note that sincevL/T are given in
the same unitsscm−1d as q, the bL/T

2 are dimensionless.] In
performing the numerical calculations we set the following
limitations on the wave vectorq, namely thatqz should be
confined in the modified BZs−k0/M ,k0/Md, while the in-
planeqx belongs to the bulk BZs−k0,k0d. Here k0=2p /a0

=1.113108 cm−1 for GaAs.
Numerically calculated dispersion curves forM =5 are

shown in Fig. 4 foru=90° and Fig. 5 foru=45°. Each figure
consists of four plots: Plot(a) is the original spectrum of
bulk GaAs phonons folded into the modified PIPDS BZ; plot

TABLE I. Parameters for GaAs(Ref. 17).

vL scm−1d vT scm−1d a0 snmd bL
2s10−12d bT

2s10−12d

292 269 0.5653 2.91 3.12

FIG. 4. Dispersion curves and eigenvectors in
PIPDS forM =5 andu=90°.
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(b) represents the numerically generated dispersion curves;
plot (c) displays the composition(probabilities of constituent
plane wavesuCq+mq0

L/T u2) of the highest frequency branch in
plot (b) as a function of wave vectorq. Only the dominant-
contributing modes are labeled in plot(c), with Lsmd corre-
sponding to the LOsq+2mq0d mode andTsmd corresponding
to p-TOsq+2mq0d mode. Plot(d) displays a zoom in in the
vicinity of the highest frequency anticrossing shown in plot
(b).

Let us consider first the case in which the wave vectorq is
along thex [100] direction (lateral propagation), Fig. 4. In
the long wave limitq→0, one can see from Fig. 4(c) that the
highest frequency mode is essentially a bulk p-TO mode, just
as expected according to the results of Sec. III, Eq.(13). This
follows since the long wavelength longitudinal sublattices
oscillations produce opposite polarizationsP along thex di-
rection in adjacent layers so that the fields generated by these
polarizations will cancel each other out and contribute no
additional restoring force to the sublattices. At the same time
the p-TO oscillations produce polarization charges at the an-
tiphase boundary. Thus, they experience an additional restor-
ing force. Since it is this restoring force that causes the split-
ting of bulk LO and TO modes, one can understand why in
this case the energies of long wave LO and p-TO phonons
are reversed.

As the wave vectorq increases, the contributions of the
p-TOsq±2q0d modes gradually arise, until following the an-
ticrossing, the character of the mode changes abruptly to a
combination of various LO modes. The anticrossing occurs
in the vicinity of q,2.13107 cm−1,0.95q0, which is to be
expected since whenq,q0, the gradient of the charge dis-
placementw and thus the electric field of both LO and p-TO
vibrations is directed at roughly 45° to the axisz. This field
exerts roughly equal electrostatic forces upon the oscillations
of both LO and p-TO modes and thus mixes them. As the
wave vectorq increases past the anticrossing, the gradient of
the charge displacementw approaches the direction of wave

vector q, and the lowest-order LO mode, LOsqd, becomes
dominant.

The dispersion curves for the cases when the wave vector
q is not directed alongx exhibit much stronger LO-p-TO
phonon mixing, an example of which is shown in Fig. 5 for
u=45°. Whenq is close to zero, the p-TOsqd and LOsqd
modes dominate, and their probabilities are all 0.5 as follows
from Eq.(13a). As the wave vectorq increases, gradually the
LOsq−2q0d mode starts contributing to the eigenvectors,
while the p-TOsqd slowly vanishes. Eventually, when the
wave vectorq approaches the BZ edge, the highest energy
state becomes a 50/50 combination of LOsqd and LOsq
−2q0d modes with no contribution from other modes. Such a
50/50 combination can be easily explained by the Bragg
reflection at the BZ boundary.

Having numerically calculated the eigenfrequencies and
eigenvectors, we now turn our attention to plots of the modi-
fied relative sublattice displacementu and electrical fieldE
as shown in Figs. 6–11. Since we are interested only in the
envelope functions and relative magnitudes of the lateral and
axial components ofu andE, in these figures we have used
the simplified normalization conditionsL−1eu* ·udz=1 and
L−1eE* ·Edz=1, in which the integral is over one periodL.

First, let us focus on the displacement and electric field
patterns for propagation in the lateral plane, i.e.,u=90°. In
this lateral propagation case, all the bulk phonon components
shown in Eq.(3) are in phase. This means that their ampli-
tudesCq

L/T can all be set to be real which shall greatly facili-
tate our discussion and analysis. Also, according to Eq.(6)
only those phonon modes whose wave vectors differ by an
even number of superlattice wave vectorsq0 will couple to
each other. Therefore, the periodicity of the relative sublat-
tice displacementu should beL /2 here.

The patterns for lateral propagation are shown in Figs. 6
and 7 for four different values ofq, which are(A) q,0 (long
wave limit), (B) q,0.95q0 (just prior to the anticrossing),
(C) q,q0 (just after the anticrossing), and(D) q@q0 (close
to the BZ edge), respectively.

FIG. 5. Dispersion curves and eigenvectors in
PIPDS forM =5 andu=45°.
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Now, let us start with the relative sublattice displacement
patterns, shown in Fig. 6.

(A) In the very long wave limitq,0, as discussed in Sec.
III, there exists only the axial component of the sublattices
displacement, sayuz=1, while the lateral componentux=0.

(B) Just prior to the anticrossingq,0.95q0, according to
Fig. 4(c) only the p-TOsqd and p-TOsq±2q0d modes are im-
portant. The p-TOsq±2q0d modes should have same weights
(amplitude and phase) since they are symmetric to the
p-TOsqd mode. If we label the weights of p-TOsqd and
p-TOsq±2q0d modes asCq

T and Cq+2q0

T , respectively, then
from Eq. (3) one can express the axial displacement asuz
=Cq

T+2Cq+2q0

T sinuq+2q0,q0
cos 2q0z and the lateral displace-

ment asux=−i2Cq+2q0

T cosuq+2q0,q0
sin 2q0z. One can see that

uz contains one constant term and one oscillating term, and,
given that tanuq+2q0,q0

.0.5, it is not difficult to see that the
oscillating lateral term has twice the amplitude of the oscil-
lating axial one.

(C) After the anticrossingq,q0, the highest frequency

mode becomes a combination of LOsqd and LOsq±2q0d
modes. With similar considerations as in Case(B), the axial
displacement becomes an odd function ofz, uz
= i2Cq+2q0

L cosuq+2q0,q0
sin 2q0z while the lateral displace-

ment becomes an even function, ux=Cq
L

+2Cq+2q0

L sinuq+2q0,q0
cos 2q0z. Using the fact that

tanuq+2q0,q0
.0.5, this time the amplitude of theuz oscillat-

ing term is twice that of the lateral displacementux.
(D) As the wave vector increases towards the BZ bound-

FIG. 6. Normalized sublattice displacement patterns over one
period of PIPDS forM =5 and u=90°. (A) q=0.03106 cm−1;
(B) q=20.03106 cm−1; (C) q=22.23106 cm−1; (D) q
=110.53106 cm−1.

FIG. 7. Normalized electric field patterns over one period of
PIPDS for M =5 and u=90°. (A) q=0.03106 cm−1; (B) q
=20.03106 cm−1; (C) q=22.23106 cm−1; (D) q=110.5
3106 cm−1.

FIG. 8. Normalized sublattice displacement and electric field
patterns in one period of PIPDS forM =5, u=45°, and q
=0.03106 cm−1. Imaginary, real parts, and absolute amplitude are
drawn with dashed lines, dotted lines, and solid lines, respectively.
The same rule will hold in Figs. 9–11.

FIG. 9. Normalized sublattice displacement and electric field
patterns in one period of PIPDS forM =5, u=45°, andq=14.4
3106 cm−1.
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ary, sayq@q0, the LOsqd becomes much more important, so
that the axial displacementuz and the oscillating amplitude
of ux all get smaller.

Next we turn our attention to the pattern of the electrical
field E as shown in Fig. 7. From our former consideration
and discussion, due to the periodical modulation functionf,
the periodicity of electric fieldE should beL and the sym-
metry of E should opposite to the symmetry of sublattice
displacementu, that is, if the displacementu is even, the
electrical field should be odd, and vice versa. This is why the
axial component of the electric fieldEz can be discontinuous
at the domain boundaries. This behavior is not in conflict
with the electrical boundary conditions since only the normal

component of the electric displacementDz should be con-
tinuous at the interface. At the same time, the lateral compo-
nent Ex is always continuous at the domain boundaries, as
shown in Fig. 7(b). One should also note the small ripple
seen in Fig. 7, which is an artifact of the finite number of
terms used in the Fourier expansion in Eq.(5).

The relative sublattice displacement and electrical field
patterns are easy to visualize for the lateral propagation case
since all the bulk phonon components are in phase with each
other. Withq along an arbitrary direction, the phase and am-
plitude relations become more complicated and both in-
phase(real) and quadrature(imaginary) parts of each distri-
bution pattern must be plotted. Forq along the [101]
direction su=45°d, the results are shown in Figs. 8–11. The
imaginary, real parts, and absolute amplitude are drawn using
dashed, dotted, and solid lines, respectively.

(A) In the long wave limitq,0 (Fig. 8), following the
discussion in Sec. III, only the axial components of both
sublattice displacementu and electric fieldE exist. The pic-
ture is identical to the long wave limit as shown in Figs. 6
and 7.

(B) As q increases towards the anticrossing(Fig. 9), the
patterns change, and both in-phase and quadrature compo-
nents of opposite symmetries arise. The periodicity of the
sublattice displacement pattern remainsL /2, while for the
electrical field pattern it is stillL.

(C) Past the anticrossing, the symmetries of the compo-
nents change, but the periodicities remain, as shown in Fig.
10.

(D) The most interesting change of patterns occurs at the
superlattice BZ edge, shown in Fig. 11. At this point, com-
plete Bragg reflection takes place. Both axial and lateral dis-
placements have the standing wave patterns. One can see
indeed thatux and uz can be expressed asux, sinq0z and
uz, cosq0z. As to the electrical field, the most striking char-
acteristic is that the lateral electric fieldEx does not average
to zero here.

The main feature of all the patterns displayed in Figs.
6–11 is that the electric field patterns always have periodicity
that is different from the relative sublattice displacement pat-
terns. Since in polar materials, it is the electric field of opti-
cal phonon that is responsible for most of its interactions
with electrons and photons, one should expect that these in-
teractions undergo radical change in PIPDS. Of these inter-
actions, the LO phonon scattering of hot electrons, the infra-
red absorption, and the Raman scattering of photons9 are the
ones that are of the most practical interest and they will be
briefly considered in the next section.

V. INTERACTION WITH ELECTRONS AND PHOTONS

We have seen that periodic domain reversal can have a
dramatic effect on the optical phonon spectrum of a zinc-
blende semiconductor. Let us now turn our attention to the
processes that lead to the creation and annihilation of these
phonons and see how they are influenced by the domain
reversal. In this brief description we shall concentrate on the
selection rules rather than the magnitudes of the processes
since the latter are not much different from those in bulk
semiconductor.

FIG. 10. Normalized sublattice displacement and electric field
patterns in one period of PIPDS forM =5, u=45°, and q
=22.23106 cm−1.

FIG. 11. Normalized sublattice displacement and electric field
patterns in one period of PIPDS forM =5, u=45°, and q
=31.33106 cm−1.
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A. Fröhlich interaction

The scattering of hot carriers in polar semiconductors oc-
curs mostly via the Fröhlich interaction, i.e., interaction be-
tween the electrons and electric field associated with LO
phonons. The electric field in bulk semiconductors is

E = − b21u/«0«` , E0e
iq·r−ivt. s14d

This electric field produces an electrostatic potentialFLO
, iq−1E0e

iq·r−ivt. The interaction between the electrostatic
potential FLO and the electron with initial wave vectorki
will scatter the electron into a new statek f so that the energy
and momentum are conserved, i.e.,"2ski

2−kf
2d /2mc

=±"vLOsqd and ki −k f =±q. Therefore, for the carriers near
the BZ center, only the zone-center LO phonons can be gen-
erated, with the maximum LO wave vector being of the order
of qmax<Î2mcvL /"<2.43106 cm−1.

The situation changes dramatically in PIPDS. The electric
field now isE=−b21fszdu /«0«`,E0on=±1,±3̄ gne

isq−nq0d·r−ivt,
and it is not difficult to see that the momentum conservation
condition for the Fröhlich scattering in PIPDS becomeski
−k f =±fq−nq0g, wheren= ±1, ±3. . . . Thus Fröhlich scatter-
ing will generate optical phonons near the edge of the modi-
fied PIPDS BZ, with wave vectorsuq−nq0u,qmax, i.e., inside
a sphere of radiusqmax. These wave vectors are shown in
Fig. 12 in an extended zone picture. The relative strengths of
Fröhlich interaction, which are proportional togn

2, are shown
by the darkness of the grayscale. Clearly, most of the scat-
tering creates LO phonons with wave vectors near ±q0.

It is instructive to estimate the average group velocity of
the zone-edge optical phonons. Since according to the results
of Sec. III B, the gap at the BZ edge along thez axis is very
small and the LO phonons that are generated within a sphere
of radiusqmax will have a nonzero group velocity which can
be estimated from

kvLO
2 l ,

E
k,qmax

uvsq0 − kdu2d3k

E
k,qmax

d3k

. s15d

A calculation for the highest energy branch shows that the
average group velocity of the optical phonons forM =5
should be around 70 m/s in GaAs, while forM =7, it be-
comes 50 m/s. These values are much larger than the group
velocities at the BZ center in bulk materials. With the life-
times of LO phonons being the order of 10–100 ps,14,15 one
can see that the diffusion coefficient for the PIPDS zone-
edge optical phonons is of the order of 10−3 cm2 s−1 so that
the diffusion length is of the order of a few nanometers.
Therefore, one can possibly observe diffusion of the optical
phonons in PIPDS. It is interesting to note that if we reduce
M even further, the velocities of the optical phonons accord-
ing to our model will increase to,300 m/s. However, this
result must be taken with a grain of salt since PIPDS with
such a very small period should be treated by more precise
methods, such as microscopic models.

B. Deformation potential scattering

When it comes to scattering via the deformation potential
scattering, the interaction Hamiltonian is proportional to the
sublattice displacementu and is not modified by the periodic
domain inversion. Therefore, optical phonons created via this
process tend to be near the BZ center. Still, as shown in Secs.
III and IV, the zone-center phonons in PIPDS are mixed
(albeit weakly) with the phonons separated by an even num-
ber of superlattice wave vectorsq0. The conservation of mo-
mentum for the deformation potential scattering thus be-
comes ki −k f =±sq−mq0d, where m=0, ±2, ±4. . . . The
positions of the phonons created via the deformation poten-
tial scattering are also shown in Fig. 12.

C. Infrared absorption

As far as the optical properties, the main difference be-
tween PIPDS and a bulk zinc-blende lattice is the fact that
the former does have a center of inversion located at the
domain boundaries. Therefore, following the rule of mutual
exclusion,16 excitation that is active in the first-order infrared
absorption spectrum is inactive in the first-order Raman
spectrum. Indeed, let us consider the interaction between the
infrared photon of frequencyvp=vTO and wave vectorkp
and the phonon of wave vectorq. The interaction Hamil-
tonian is proportional to

Ekp
·Pq , Ekp

·b21fszduq , b21 o
n=±1,±3,. . .

gne
inq0·rEkp

·uq,

s16d

where Pq is the ionic polarization associated with phonon.
Therefore, momentum conservation for the infrared absorp-
tion becomes

FIG. 12. Locations of scattered optical phonon through different
processes. The importance of each position is labeled by the
grayscale.
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q − nq0 = kp , 0. s17d

Thus infrared absorption generates only the TO phonons lo-
cated near the modified PIPDS BZ edges, as shown in Fig.
12. It is these phonons that would also give rise to
polaritons9 in the PIPDS.

D. Raman scattering

As we have already mentioned, from a symmetry point of
view, the BZ edge phonons active in the infrared should be
inactive in Raman spectra, and only the BZ-center LO and
TO phonons should contribute to Raman spectra, just as in
the bulk material. Of course, for the case when the Raman
scattering is caused by the deformation potential, this obser-
vation is obvious since the domain inversion hardly causes
any change in the mechanical properties. For the case when
Raman scattering is caused by the electric field of LO
phonons, this result can also be understood rather easily from
the following simple considerations. The electric field of the
long wavelength LO phononE=−b21fszdu /«0«` reverses its
sign at the domain boundary. So does the linear electro-optic
coefficient ]x /]E, fszdr14,bulk. Therefore, the phonon-
induced variation of the optical susceptibility,s]x /]ud0u
,−b21r14,bulku /«0«`, does not change its sign at the bound-
ary. The PIPDS thus behaves almost entirely like the bulk
materials with a small exception — the BZ center optical
phonons are weakly mixed with the optical phonons sepa-
rated by even number of superlattice wave vectorq0. There-
fore, the selection rule for the Raman scattering iskp,i −kp,s
=±sq−mq0d, with m being the even integers, and is also as
shown in Fig. 12.

Figure 12 shows the locations of optical phonons gener-
ated by all possible electronic and optical interactions. As
can be seen, due to the inversion symmetry of PIPDS, the
locations are complimentary—all the phonons generated by

deformation potential or Raman scattering are located in the
vicinity of the BZ centers while all the phonons generated by
Fröhlich scattering and infrared absorption are located near
BZ edges.

VI. CONCLUSIONS

In this work we have considered the properties of optical
phonons in a periodically inverted polar domain structure —
the small-scale equivalent of the quasi-phase-matched peri-
odically poled domain structures in nonlinear optics. We
have calculated the dispersion of optical phonons and de-
scribed their main features. These include zone folding and
the mixing of LO/TO modes separated by even number of
superlattice wave vectorq0. We have also obtained the pat-
terns of sublattice displacement and electric field associated
with the phonons and shown that in the wave-vector space
the electric fieldE is always shifted relative to the sublattice
displacementu by an odd number of superlattice wave vec-
tors q0. We have also briefly considered the interactions of
PIPDS phonons with electrons and photons and obtained
modified selection rules for various processes.

As far as the potential application of PIPDS, the first one
that comes to mind is to use them in order to excite the
optical phonons away from the BZ center. Furthermore, in
short-period PIPDS, optical phonons interacting with elec-
trons will have higher diffusion coefficients and thus be able
to quickly diffuse away to provide effective cooling channels
for high-speed semiconductor devices. However, to analyze
such structures one needs to use methods more precise than
what we have developed here, which will be the emphasis of
our future work.
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