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Optical phonons in a periodically inverted polar superlattice
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Optical lattice vibrations in a zinc-blende superlattice consisting of periodically inverted polar domains are
theoretically investigated and phonon dispersion curves are obtained. The salient features of the phonon
dispersion are the mixing of longitudinal and transverse optical phonons and zone folding at twice the super-
lattice wave vector. The patterns of sublattice displacement and electric field are obtained and analyzed. The
most interesting feature is the change in symmetry between the displacement and the electrical field, leading to
different selection rules for various photon-phonon and carrier-phonon interactions.
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I. INTRODUCTION of nonlinear optics, where it is called a “quasi-phase-

Rapid progress of nanoscale growth and fabrication techlatched QPM) structure.” _
niques over the past 20 yeisave brought us to the point ~ 1he QPM concept is based on the fact that if a crystal
where artificial materials with prescribed electrical and opti-lacks a center of inversion symmetry, inversion will lead to a
cal properties can be successfully engineered. Numerous sugign reversal of odd-order tensor elements, including, for ex-
cessful optical and electronic devices based on unique progmple, the second-order optical susceptibijity. The QPM
erties of electrons in quantum wells and superlattices havétructure is a superlattice of alternating inverted layers.
been develope#l.Just as the electrons, the lattice vibrationsHence when light of frequency and wave vectok(w)
also exhibit different characteristics when confined in one olpropagates in this structure, the nonlinear polarization at the
more directions. However these changes have not yet founsecond-harmonic frequencyw2can be represented as a su-
application in devices. Among the different modes of latticeperposition of waves with wave vectork() +nc,, wheren
vibrations, long wavelength optical phonons are probably thés an integergy=2w/AZ is the superlattice wave vecto, is
most important when it comes to electronic devices whichthe period of the QPM structure, ads the unit vector in
are based on Ill-V semiconductors. The reason for this is thahe direction of growth. If one of the wave vectors matches
longitudinal optical phonoriLO) scattering is the dominant that of the second-harmonic electromagnetic w&y2w)
mechanism restricting the hot carrier's mobility, and hencgpreferably the lowest ordgran efficient transfer of energy
any substantial modification of optical phonon properties carinto the second harmonic will ensue. The QPM structure thus
lead to a significant improvement in their performadce. provides significant modification of the nonlinear optical

There has been considerable work performed on the progproperties of the material while leaving the linear optical
erties of confined optical phonons in various structdrés. properties intact. If, as often is the case, the QPM structure is
Among the different developed models the phenomenologimade of ferroelectric materials such as LiNp@omain re-
cal continuum modé# has been most successful in explain- versal can be achieved using electrical field poling from an
ing the properties of optical phonons in various heterostrucalready grown crystal. For zinc-blende semiconductors such
tures where different layers have different phononas GaAs and ZnSe, which are not ferroelectric, one must
frequencies, such as GaAs/AlAs. In such structures one camsort to more challenging crystal growth methods such as
safely assume that the vibrational modes are confined to orstacking of plates approach, wafer bonding, and all-epitaxy
layer and that the only connection between adjacent modes fabrication®
the electrostatic potential so that the dispersion curves of the It is of fundamental interest to look at the optical phonons
phonons in the plane of growth are modified. Unfortunatelyin the zinc-blende semiconductor PIPDS. While no third-
this is not of practical interest since in realistic electronic andorder tensors are directly involved in the interaction of the
optical devices it is desirable to remove the optical phononghonon with light and electrons, the dynamic effective ionic
as fast as possible towards the heat sink, i.e., in the directiochargee* (Ref. 9 does reverse its sign upon crossing a do-
normal to the plane of growth. It is, therefore, interesting tomain boundary. As a result, momentum conservation rules
explore heterostructures in which the phonons can move ifor such processes as infrared absorption and the Fréhlich
three dimensions with modified dispersion. In order to haventeraction change drastically, and large wave-vector optical
phonons travel freely throughout the heterostructure, it igshonons, which are difficult to produce in bulk crystals, can
necessary that the elastic properties and polarizabilities dfe easily generated in PIPDS, as will be shown in the present
alternating layers be the same. This means that in terms @faper. While conceptually similar to a typical QPM structure,
the magnitudes of all the relevant material parameters, thphonon PIPDS is distinguished by its finer scale. The do-
alternating layers must be identical. This leaves us with thenains are reversed every few lattice constants, i.e., on a na-
freedom of changing the sign of the parameters and bringesometer scale.
forward the idea of using a periodically inverted polar do- We start by describing the microscopic structure of PIPDS
main structurg PIPDS—a concept well known in the field as shown in Fig. 1. Since the bulk zinc-blende crystal struc-
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period A=Ma,, wherea, is the fcc lattice constant, which is
[001] | [oo1] [ [001] | [ooT] | [001] | [oo1] | [0O1] twice the value for a primitive cell, an¥ is an integer.
Thus, in theory the Brillouin zonéBZ) of the bulk material
+ (=27l agy, 27/ ap) is split into exactly M folded zones of the
superstructuré-m/May, 7/ Mag). As will become clear be-
2[100] low, it is reasonable to wuse the modified BZ
(=27/May, 27/ May).
200 Due to the periodic inversion, the relation between rela-
tive sublattice displacement and polarization in this structure
® Ga are modulated by a periodical square wave funcfion
O As

f(z):{+ 1; nA<z<(n+05A (1a

-1; (n-0HA<z<nA,

FIG. 1. Schematic diagram of an antiphase boundary for llI-V

semiconductors PIPDS amofi@g01].
wheren is an integer. One can also say that Etg) de-

ture can be viewed as two perfect face-centered-c(fbyy ~ Scribes the modulation of the dynamic effective ionic charges
sublattices A and B, domain inversion simply means that th&" (Ref. 9. This envelope functiofi can be expanded into a
cation and anion exchange the sublattices they occupy. ThfsOUrier series as
inversion is known to occur spontaneously in “rotational
twins™'% and “antiphase boundariéd”in some zinc-blende oc 5
compounds. Such artificial domains have been successfully - ; - _i s —
operated in “orientation-patterned structur@sVhile the do- f@= 2 grexdlinggz) > ( |7m)exp(|nqo ")
main reversal in IlI-V semiconductors more often occurs
along the[011] directions?* nothing in principle prevents it
from taking place along one of tH@®01] directions. In this
work we will consider an IlI-V semiconductor PIPDS ori- whereqy=27/AZ is the superlattice wave vector. It should
ented along[001] axis as shown in Fig. 1. If we define a be mentioned that we shall only consider structures with
phonon as a vibrational mode of relative displacement beidentical widths of “positive” and “negative” domains, i.e.,
tween sublattices A and B, the ionic polarizatiérwill have having a definite symmetry. Then the enve|0pe functibas
identical amplitudes but opposite signs at two adjacent dopnly odd Fourier components. Hence, calculation of the dis-
mains. If the optical phonon mode can be represented bjersion curvegSecs. Il and 1 and the discussion of the
amplitudeuy(q) with wave vectom, the polarization wav®  selection rules for the photon-phonon and electron-phonon
associated with this phonon mode will contain componentsnteractions(Sec. Vj can be substantially simplified.
with wave vectorsq’ =g+nd,, wheren is an integer. The Further simplifications have been made in developing our
electric field excited by this polarizatioR will, in turn, be  model. First, the mechanical properties of the material are
able to apply force to the other phonon modes with waveassumed not to be influenced by the existence of the domain
vectorsq’=q’ +mdy=q+(m+n)q, (the PIPDS Bragg condi- boundary. This is indeed a major simplification since the
tion). Such a coupling mechanism will lead to the modifica-cation and anion have different masses. However, if their
tion of the optical phonon dispersion curves in PIPDS whilemasses are close to each other, this discrepaigy for
leaving the elastic properties almost intact. This is precisel\GaAs can be handled later as a small perturbation. Further-
the goal that we are trying to achieve, that is to have opticaiore, nonpolar Ga-Ga and As-As bonds that exist at the
phonons propagating freely in all directions with modified antiphase boundary have different elastic properties than in
dispersion curves. heteropolar Ga-As bonds. With the ionicity of the Ga-As

To obtain insight into the optical phonon properties in bond being only about 20% one can still treat the deviation
[1-V semiconductor PIPDS we have developed a simplifiedin bond character as a perturbation, whose main impact is the
theoretical description using a “nearly free phonon” formal-opening of small gaps at the edge of the folded BZ. Of
ism in Sec. Il. In Sec. lll we obtain analytical results for course, interface phonon modes associated with the Ga-Ga
special cases such as the zero dispersion and long wave lirand As-As bonds can also exist, but since the bands are non-
its, while in Sec. IV dispersion results for phonons with ar-polar they will not make a large impact on the infrared and
bitrary wave vectors are generated numerically and analyze@lectron scattering properties that are of interest here. Finally,
The issue of interactions between optical phonons and phan this work we will consider rather small domains, only a
tons and/or electrons in PIPDS are addressed in Sec. V. Cofew primitive cells thick. Therefore, using a macroscopic de-
clusions are presented in Sec. VI. scription for the polarization is definitely an approximation
and all the results obtained in this paper are just estimates.
However, using this macroscopic approximation allows us to

The so-called “continuum” model of a IlI-V semiconduc- develop a rather clear qualitative picture of the physical pro-
tor PIPDS is shown in Fig. 1. The domains are inverted withcesses in PIPDS and to obtain solutions that do not require

n=-—x nxl,+3...

(1b)

Il. THEORETICAL MODEL OF PHONONS IN PIPDS
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FIG. 2. Basis of phonon modes in PIPDS. between cations and anions. Using Etp) and Eq.(3) we

can expand the charge displacemenin the same basis as
extensive numerical computations and which can be easilfor the modified relative sublattice displacement
interpreted for the high symmetry directions.
Having established the limitations of our approach, we
now commence our study with the use of the macroscopic w= S > gn(claalc_]+C'(I1'ag)eiq-r—iwt+inq0.r

Huang-Born equatiofs? iew i
i w'zl'u ' blsz - BEVV H ﬁﬁ VoV (28) ) QE n= 123 gn(carﬂ%agl‘n% * Cgl‘ﬂ%agl‘n%)eiql.r_iwt
1 n=+1%3...
V-D=V - (byfu+ege,E)=0, (2b) => (Dblalﬁl n Dglagl)eiql-r—iwt, (4a)
a1

where u=\M,/Qu, is the modified relative sublattice dis-

placementM;, is the reduced mass of the anion-cation pair,

Q) is the unit-cell volumeE is the macroscopic electrical \yhere we have introducegl, =q+ngp, N being an odd inte-
field, by =by1= Veoe.(w ~ wf), wi v is the BZ center angular ger. Here

frequency of the bulk longitudinal/transverse optical

(LO/TO) phonon.., is the optical frequency dielectric con-

stant, g is the vacuum permittivity, an@, ,+ is a phenom- DL = 2 g (Ct cosé
enological parameter describing the curvature of the LO/TO g e+l 13, n=a,7Ndg 017NMo. %
phonon dispersion. T ]
Equation(2) can be simplified by considering three or- + Cq,-ng, SN Og,-ngy.q,) (4b)

thogonal sublattice vibration modes as shown in Fig. 2.
Here the bold arrow labels the direction of relative sublattice
displacement. The mode polarized among wave vegtisr

referred to as the LO mode, the mode whose polarization lies D;: 2 On(- C(Lh—nqo SiN 0y, -nqy,,

in the plane formed by andq [plane(010) herq is called n=£1.43...

the p-TO mode and the last one, polarized alongytiie10] +C! cos¥, ) (40
G1~ndg G17Ndp:G17

direction is called the shear horizoni{@TO modeg. Since

the domain inversion does not change the mechanical prop-
erties of the bulk material, clearly the s-TO mode will remain
essentially a bulk TO mode. Another way to understand this_. o N .

is to invoke the tangential electric field,, E,) and normal %:IQNS and the POSlth_Ef[ dltfﬁCtlgn Izsbset t% b(g cIoEkW|sE_)
electric displacemen,, all of which are zero for the bulk ow we can rewrite the Eqe2b) as V- (bW +eee-.

s-TO mode. On the other hand, the LO and p-TO modes botﬁo' Accordmg to Eq.(4a) the charge_: dlgplacemem IS a
produce a discontinuous polarizatid® at the antiphase superposition of independent longitudinal and transverse

; . lane waves. The longitudinal waves carry an electric field
boundaries. Thus, in PIPDS the (@) and p-TQq) modes pal S
will couple together as well as to other LO PIPDS Bragg}/;/htlrl]i;he transverse modes do AdThe total electric fieldE
condition. Thus, we shall focus our attention only on these

coupled LO-p-TO modes in th@10) plane.
To determine the dispersion of the mixed LO-p-TO

Whereéqulqz is the rotation angle from, to g, as shown in

b12

modes, we shall expand the modified relative sublattice dis- E=-—23pt atli et T-iot
placementu using basis as the bulk LO and p-TO modes, 802 q, 97
ie.
’ UP S S L
=-— 0n(Cg cosé,
u=2 (Chal+Clalexpliq -1 —iat), 3) Bofunmstes. g
. q + C-(I]— sin 0q,q+nqo)a|(i+nq0eiqIHian'r_iwt- (5)

Whereaq is the unit polarization vector of the L(p-TO)
mode. Next we substitute Eq5) and Eq.(3) into Eq.(2a), mul-

Next, we introduce the “charge displacement’vesfu,  tiply both sides by ex@-ig,-r), integrate over the volume,
which in fact is the “true” modified relative displacement and finally evaluate scalar products Wﬂli{: to obtain
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(o~ o+ S,

— 2 2
= ((1),_ - wT) 2 E Om-nGn COS eql,ql—nqo
m=0,+2...n=+1,3...

X (CE cos6,

01~maqy 01~Mdg.d7~Ndy

+Cl_ sing

d;~Mdp

(6a)

ql‘m%vql‘“qo) !
2 T
(w* = wT + ql)C
= (CUL - wT) > > Om-nGn SIN Ba1,0,-nag
m=0,£2...n=+£1,#3...

X (Ct cosé,

q;~Mdg G17Mdo.41~Ndp
-
Cq - sin O -maig - nqo) (6b)

Now we can move the diagonal terms witi=0 from the
right-hand side(rhs) of Eq. (6) to the left-hand sidglhs),

PHYSICAL REVIEW B70, 085319(2004)

in ordinary periodic structure, which can be easily under-
stood from the original Eq(2). Excluding the electric field
from them immediately shows that the solution should have
periodicity of the functiorf?(2), i.e., A/2, which isM primi-

tive cell constants. Therefore, to determine the coupled LO-
p-TO optical phonon dispersion one needs to diagonalize a
2M X 2M matrix, which, generally speaking, can only be
done numerically. However, before proceeding with the nu-
merical calculations, in the next section we will consider
some special cases which will allow us to gain some physical
insight into PIPDS phonon properties.

Ill. SPECIAL CASES

A. Zero dispersion B, =B1=0

Neglecting optical phonon dispersion implies that each
anion-cation pair acts as an independent oscillator. Then the
oscillation phases of two bonds at two sides of the antiphase
boundary can simply be reversed to satisfy the electrostatic

while dropping the subscript “1” in the wave vector and de-poundary conditions. Equatiai2) can be rewritten in terms

fining the new parameters as

Mg = 2 9n9-n cos’ 0q,q—nq0a (79
n=+1,+3...
Xq~= gn-n SiN ‘9q,q—nq0 cos eq,q—nqoa (7b)
n=+1,#3...
LL _—
@t = 2 OmenOn COSOy g a-ndy COS Ogngyqr (70)
n=x1,+3...
LT _ :
a5m= 2 Om-nGn COS Ot-map a-ngo SN Og-ngg.qr (79)
n=+1,+3...
TL — H
Xgm~ E Im-nOn SIN gq—mqo,q—nqo Cos eq—nqo,qa (7e)
n=+1,#3...
TT _ ; ;
Xgm~— E Im-nGn SIN eq—mqo,q—nqo sin Bq—nqo,qr (7f)
n=+1,+3...

wherem should be even integers. We finally have the char-

acteristic equations for the phonon dispersion in PIPDS
i w%)XqC;

LT T
Cq m%)

[ +:3Lq - 77qu (1- 7'/q)")T]C

- LL ~L
=(0?-0?) X (a mCo-mgy *
m=+2,+4..

(8a)

[wz + ,8‘2|'q2 - nqw‘%' -(1- ﬂq)wE]CT - (wE - w'zl'))(ch

(. 2_ 2 TL L 2T
= (wf wT)m:+22+4 (g mCq- amCa- qu)

(8b)
where we have used the fact th&f._.9,9-,=1.

of the charge displacement as

w=- (1)-2|-W+ ble, (9a)
V-D=V '(b21W+ 80800E):0. (gb)

These expressions are identical to the Huang-Born equa-
tions in bulk dispersionless materiafsTherefore, if one re-
defines the PIPDS optical phonon in terms of charge dis-
placementv rather than the relative sublattices displacement
Uo, the optical phonon properties in PIPDS would be indis-
tinguishable from the bulk optical phonon properties.

B. On-axis propagationg,=0

In this case all the wave vectos—md, are collinear,
LT — TL _ —
hence sinfyq-mq,=0, so thatx,=agn = agm=a, =0. Fur-
thermore, smcé:ngn mIn=—0m0, the remaining off -diagonal
componentsz:zLL are also equal to zero, while all thg=1
and we are Ieft only with a diagonal matrix whose eigenval-

ues are

(LO modse, (109

w—w—,B

= w?- B5g? (p-TO mods. (10b)

We see that in this case the LO mode and p-TO mode are
decoupled from each other and exhibit the same dispersion
properties as in bulk materials, with no gaps at the edge of
the modified BZ. This is an expected result, since the LO and
p-TO modes propagating alormydo not carry an electric
field E; parallel to the boundary nor an electric displacement
D, normal to the boundary. Furthermore, the p-TO and s-TO
modes are degenerate for the on-axis propagation case. Note
that this result is only an approximation since small mass
difference between the anion and cation will open narrow
gaps at the BZ edge and center, but as mentioned before, we

As one can see, only the vibrations whose wave vectorgisregard this effect here.

differ by an even number of superlattice wave vectggs
i.e., 4r/ A, are coupled together. Therefore, we can indeed
use the modified BZ-2m/Mag, 2w/ Mag). This modified For g<qq it is rather easy to see that the wave vectors
Bragg condition is quite different from the Bragg condition q—mgq, are also all nearly collinear. Then we can obtain

C. Long wave limit g—0
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sin 6,

4-maga-ng, = 0: MN#0,

COS 0g-mqg, q-nqp = signm)sign(n), m,n# 0,
sin 0q,q-ngy = ~ sign(n)sin 6,

C0S0q,q-ng, = = signin)cosa,

(11a

where# is the rotation angle fromgq to z and sigiin) is +1
if n>0 and -1 forn<0. Hence,

LL — LT

TL _
gm~ %gm =

@ = %gm

T =0,

g,m
Xq=COS 6, 7,=-sin@cosé. (11b)

One then sees that the (§ and p-TAqg) modes are

decoupled from the other modes and the secular equation

between them simply becomes

2 2 2 2
2 — W~ Wt W — Wt

0 - - cos % sin 20
2_ 2 2_ 2
9T Gin 20 Wt + LT osp
=0, (12

where w?=(wf+w?)/2.
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TABLE |. Parameters for GaA&Ref. 17).

BH107?)
3.12

BA1071?)
2.91

o (cm?)  wr(em™®)  ag(nm)

0.5653

292 269

main reversal. Therefore, it is relative to thelirection that
phonons will split into transverse and longitudinal branches.

Equation(13) indicates a very interesting fact for the two
extreme situationsg=0° and #=90°, for which the eigen-
modes are indeed decoupled LO and p-TO modes and for
which the higher frequency mode always has its sublattice
displacemenu along z direction. Thus for lateral propaga-
tion #=90° it is the p-TO mode which possesses the higher
frequencyw, . This result will be confirmed by the numerical
calculations in the following section.

IV. NUMERICAL RESULTS

Except for the special cases described in Sec. I, we have
to resort to solving the full B X 2M system of equations
[Eg. (8)] to numerically generate dispersion curves for vari-
ous directions, i.e., various anglésbetween the phonon
wave vectoig and the growth directiom. We use GaAs as an
example, with all the relevant material parameters for this
material given in Table I[Note that sincev ; are given in

It is easy to verify that Eq(12) always gives the same the same unit§cm™) asq, the g7, are dimensionlessin
eigenvalues but that the eigenvectors do change for differemerforming the numerical calculations we set the following

0, as

(133

o, = o 0 ug=cosday + sin fag =2,

w_= w70 Ug=sinag - cosfag = X. (13b)

limitations on the wave vectay, namely thatg, should be
confined in the modified BZ-ky/M,ky/M), while the in-
plane g, belongs to the bulk BZ-ky,kg). Here ky=27/a,
=1.11x 10° cm ' for GaAs.

Numerically calculated dispersion curves fbf=5 are

Once again the result is expected. For small wave vectorshown in Fig. 4 ford=90° and Fig. 5 fod=45°. Each figure
the electrostatic potential and electric field are determined bgonsists of four plots: Ploga) is the original spectrum of

modulation of the charge displacememtimposed by do-

(a) Folded Bulk Phonon Spectrum

bulk GaAs phonons folded into the modified PIPDS BZ; plot

(b) Phonon Spectrum In PIPDS

Y

0 50 100 0 50

(c) Eigenvector of the First Curve

(d) Zoom of the Anticrossing

100
FIG. 4. Dispersion curves and eigenvectors in

PIPDS forM=5 and§=90°.

1

¥y

16 18

q(10 scm")

2 .
q(10 “em™)

22 24
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(a) Folded Bulk Phonon Spectrum {b) Phonon Spectrum In PIPDS

280 F——=

260

g 240

A

8 220

200
180

0

FIG. 5. Dispersion curves and eigenvectors in

(c) Eigenvector of the First Curve (d) Zoom of the Anticrossing PIPDS forM=5 and#=45°.
T 289 T -
1| -.-. L(-1) ]
........... T(_1 )
£o6/--- 1O |  __ A
< W § 287
g 0.4 £ 1 =
4 4
02 A i 286 /—\
0 e v e v 1 e VI - 285 N
0 10 20 30 14 16 18 20
q (10 ®em™) q(10 °em™)

(b) represents the numerically generated dispersion curvesgctor g, and the lowest-order LO mode, L), becomes
plot (c) displays the compositiofprobabilities of constituent dominant.

plane waveslcgf,noo 2) of the highest frequency branch in ‘The dispersion curves for the cases when the wave vector
plot (b) as a function of wave vectar. Only the dominant- d iS not directed along exhibit much stronger LO-p-TO
contributing modes are labeled in plap, with L(m) corre-  Phonon mixing, an example of which is shown in Fig. 5 for

: . #=45°. Whenq is close to zero, the p-T@) and LQQ)
sponding to the LQy+2mgg,) mode andl(m) correspondin
t(f) p-TIO(%+2qu) qri?ode %)I)ot(d) display(s ; 200Mm Fi)n in Ithge modes dominate, and their probabilities are all 0.5 as follows

S ’ . . . from Eq.(13a. As the wave vectog increases, gradually the
vicinity of the highest frequency anticrossing shown in plot LO(q—gq(O) ?qode starts contrik())ﬁting to thegeigenvgctors,

(0). . , . . , while the p-TQq) slowly vanishes. Eventually, when the
o Conedor 1 i case 1 Whch 1 WAUE VEA wave vectorg approaches he B2 sdg, he ghet srery
the long wave limitg— 0, one can see from Fid(@ that the st;\te becomes' a 50750 gomblnatlon of (Dand LAq
highest frequency mode is essentially a bulk p-TO mode, just o) modes. Wlt-h no contrlbutlon from other modes. Such a
9 d ym y P €, JUS50/50 combination can be easily explained by the Bragg
as expec'Fed according to the results of Sec. Il &8). Thls_ reflection at the BZ boundary.
follows since the long wavelength longitudinal sublattices  aying numerically calculated the eigenfrequencies and
oscillations produce opposite polarizatidhsalong thex di-  gjgenvectors, we now turn our attention to plots of the modi-
rection in adjacent layers so that the fields generated by thesgq relative sublattice displacememtand electrical fieldE
polarizations will cancel each other out and contribute noas shown in Figs. 6-11. Since we are interested only in the
additional restoring force to the sublattices. At the same tim&nvelope functions and relative magnitudes of the lateral and
the p-TO oscillations produce polarization charges at the araxial components ofi andE, in these figures we have used
tiphase boundary. Thus, they experience an additional restothe simplified normalization conditions™ fu* - udz=1 and
ing force. Since it is this restoring force that causes the splitA™* [E* - Edz=1, in which the integral is over one peridd
ting of bulk LO and TO modes, one can understand why in  First, let us focus on the displacement and electric field
this case the energies of long wave LO and p-TO phononpatterns for propagation in the lateral plane, i#=90°. In
are reversed. this lateral propagation case, all the bulk phonon components
As the wave vector increases, the contributions of the shown in Eq.(3) are in phase. This means that their ampli-
p-TO(g+2q,) modes gradually arise, until following the an- tudesC.'" can all be set to be real which shall greatly facili-
ticrossing, the character of the mode changes abruptly to &ate our discussion and analysis. Also, according to(Ep.
combination of various LO modes. The anticrossing occur®nly those phonon modes whose wave vectors differ by an
in the vicinity of g~ 2.1x 10’ cm 1~ 0.95,, which is to be  even number of superlattice wave vectggswill couple to
expected since wheg~ q, the gradient of the charge dis- each other. Therefore, the periodicity of the relative sublat-
placementv and thus the electric field of both LO and p-TO tice displacementi should beA/2 here.
vibrations is directed at roughly 45° to the axisThis field The patterns for lateral propagation are shown in Figs. 6
exerts roughly equal electrostatic forces upon the oscillationand 7 for four different values af, which are(A) g~ 0 (long
of both LO and p-TO modes and thus mixes them. As thevave limit), (B) q~0.95q, (just prior to the anticrossing
wave vectorq increases past the anticrossing, the gradient ofC) q~ g, (just after the anticrossingand(D) > q, (close
the charge displacement approaches the direction of wave to the BZ edgg respectively.
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FIG. 8. Normalized sublattice displacement and electric field

Now, let us start with the relative sublattice displacementpatterns in one period of PIPDS foM=5, #=45° andq

patterns, shown in Fig. 6.
(A) In the very long wave limig~ 0, as discussed in Sec.

=0.0x 10° cm L. Imaginary, real parts, and absolute amplitude are
drawn with dashed lines, dotted lines, and solid lines, respectively.

1, there exists only the axial component of the sublatticesThe same rule will hold in Figs. 9-11.

displacement, say,=1, while the lateral component=0.

(B) Just prior to the anticrossing~ 0.95,, according to
Fig. 4(c) only the p-Tdq) and p-Tdqg*2q,) modes are im-
portant. The p-TQq+2qy,) modes should have same weights
(amplitude and phagesince they are symmetric to the
p-TO(g) mode. If we label the weights of p-T@ and
p-TO(g+20o) modes asC; and Cgﬂqo' respectively, then
from Eq. (3) one can express the axial displacemenugs
:C;+ 2Cg+2q0 sin Ogr+2q0,0, COS 3pz and the lateral displace-
ment aqu:—iZCq+2q0 COS g 2q,,q, sin 2g5z. One can see that
u, contains one constant term and one oscillating term, an
given that tarﬁqﬁqquOzO.S, it is not difficult to see that the
oscillating lateral term has twice the amplitude of the oscil-
lating axial one.

(C) After the anticrossingy~qo, the highest frequency

@E, (b) E,
./".
/ \
1.0 B ARSI 1.0
(RN ’ A 7
A ’ " VAP '
N Br Do v ’
h N’ M . i A 7
054 R I A § ,/ fos
; . B A 3 ’
4. :C K A5 vB A ,
B.\‘, R i\ ‘| ’
i . o . Ay b
0.0 S e A1 00
~. g N AN ‘\ " Vs v
\ 7 v Vot S
! \ 1Y s
-0.5 k1 ie vV S jp-05
D 3 ~ \ V. o
. \ v .
v \ VA M
, K \ \‘ AN R
-1.0 e M oy Lo
v \ K
s
0 A2 A0 A2 A

FIG. 7. Normalized electric field patterns over one period of
PIPDS for M=5 and #=90°. (A) g=0.0x10°cm™®; (B) q

=20.0x1f cm™; (C) ¢g=22.2x10Fcm; (D) @=110.5
X 100 em L.

mode becomes a combination of () and LOQg*2q)
modes. With similar considerations as in Cé&Bg, the axial
displacement becomes an odd function

& u,
:iZC,;,rzq0 COSb+2q0.q, sin 200z while the lateral displace-
ment becomes an even function, uX:C'a
+2C|<i+2qo sin Ogr+20,q, COS DloZ. Using the fact that

tan 0q+2q0'q0:0.5, this time the amplitude of the, oscillat-
ing term is twice that of the lateral displacement

d (D) As the wave vector increases towards the BZ bound-
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FIG. 9. Normalized sublattice displacement and electric field

patterns in one period of PIPDS foi=5, #=45°, andg=14.4
X 10 em L,
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component of the electric displacemedj should be con-
tinuous at the interface. At the same time, the lateral compo-
nentE, is always continuous at the domain boundaries, as
shown in Fig. th). One should also note the small ripple
seen in Fig. 7, which is an artifact of the finite number of
terms used in the Fourier expansion in E5).

The relative sublattice displacement and electrical field
patterns are easy to visualize for the lateral propagation case
since all the bulk phonon components are in phase with each
other. Withq along an arbitrary direction, the phase and am-
plitude relations become more complicated and both in-
phase(real) and quadratur@maginary parts of each distri-
bution pattern must be plotted. Far along the [101]]
direction(#=45°), the results are shown in Figs. 8-11. The
imaginary, real parts, and absolute amplitude are drawn using
e . dashed, dotted, and solid lines, respectively.

v 1 (A) In the long wave limitg~0 (Fig. 8), following the

0 A2 A0 A2 A discussion in Sec. lll, only the axial components of both
sublattice displacement and electric fieldE exist. The pic-

FIG. 10. Normalized sublattice displacement and electric fieldture is identical to the long wave limit as shown in Figs. 6

patterns in one period of PIPDS foM=5, #=45° and q and 7.

=22.2x10° cmt. (B) As q increases towards the anticrossifidg. 9), the

patterns change, and both in-phase and quadrature compo-

ary, sayq>qo, the LO(q) becomes much more important, so nents of opposite symmetries arise. The periodicity of the

that the axial displacement, and the oscillating amplitude sublattice displacement pattern remaits2, while for the

of u, all get smaller. electrical field pattern it is still\.

Next we turn our attention to the pattern of the electrical (C) Past the anticrossing, the symmetries of the compo-
field E as shown in Fig. 7. From our former considerationnents change, but the periodicities remain, as shown in Fig.
and discussion, due to the periodical modulation funcfion 10.
the periodicity of electric fiel&e should beA and the sym- (D) The most interesting change of patterns occurs at the
metry of E should opposite to the symmetry of sublattice superlattice BZ edge, shown in Fig. 11. At this point, com-
displacemenu, that is, if the displacement is even, the plete Bragg reflection takes place. Both axial and lateral dis-
electrical field should be odd, and vice versa. This is why theplacements have the standing wave patterns. One can see
axial component of the electric field, can be discontinuous indeed thatu, and u, can be expressed ag~ singyz and
at the domain boundaries. This behavior is not in conflictu,~ cosqyz. As to the electrical field, the most striking char-
with the electrical boundary conditions since only the normalacteristic is that the lateral electric fielf} does not average

to zero here.

(a)uy (b)u The main feature of all the patterns displayed in Figs.
6-11 is that the electric field patterns always have periodicity
that is different from the relative sublattice displacement pat-
terns. Since in polar materials, it is the electric field of opti-
cal phonon that is responsible for most of its interactions
with electrons and photons, one should expect that these in-
teractions undergo radical change in PIPDS. Of these inter-
actions, the LO phonon scattering of hot electrons, the infra-
red absorption, and the Raman scattering of phétarsthe
ones that are of the most practical interest and they will be
briefly considered in the next section.

V. INTERACTION WITH ELECTRONS AND PHOTONS

We have seen that periodic domain reversal can have a
dramatic effect on the optical phonon spectrum of a zinc-
blende semiconductor. Let us now turn our attention to the
processes that lead to the creation and annihilation of these

0 AL A 0O A2 A phonons and see how they are influenced by the domain

reversal. In this brief description we shall concentrate on the

FIG. 11. Normalized sublattice displacement and electric fieldselection rules rather than the magnitudes of the processes
patterns in one period of PIPDS foM=5, 6=45° and q since the latter are not much different from those in bulk
=31.3x10° cmL, semiconductor.

4 ted Teudg
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b 0100]

243
. : Raman/Deformation f |U(q0 - k)| d°k
k<qmaX

2
o : Frohlich /Infrared <ULO>
d®k
K<Omax

(15

A calculation for the highest energy branch shows that the
average group velocity of the optical phonons fdr=5

N — should be around 70 m/s in GaAs, while ft=7, it be-
¢.[001] comes 50 m/s. These values are much larger than the group
<« > velocities at the BZ center in bulk materials. With the life-
o times of LO phonons being the order of 10-100"p%,one

can see that the diffusion coefficient for the PIPDS zone-
edge optical phonons is of the order of i@nm? s™* so that
the diffusion length is of the order of a few nanometers.
Therefore, one can possibly observe diffusion of the optical
phonons in PIPDS. It is interesting to note that if we reduce
M even further, the velocities of the optical phonons accord-
FIG. 12. Locations of scattered optical phonon through differenting to our model will increase te-300 m/s. However, this
processes. The importance of each position is labeled by thgagyit must be taken with a grain of salt since PIPDS with

grayscale. such a very small period should be treated by more precise
methods, such as microscopic models.
A. Frohlich interaction
The scattering of hot carriers in polar semiconductors oc- B. Deformation potential scattering

curs mostly via the Fréhlich interaction, i.e., interaction be-

tween the electrons and electric field associated with LOSC:XQEE It fﬁgﬁfg&ggggﬂgg}i}?c?nggﬁ ?Sefor:)mg:'t?gngﬁgﬁil
phonons. The electric field in bulk semiconductors is 9, prop

sublattice displacementand is not modified by the periodic
o domain inversion. Therefore, optical phonons created via this
E = —Dbyulege, ~ EgedT et (14)  process tend to be near the BZ center. Still, as shown in Secs.
Il and 1V, the zone-center phonons in PIPDS are mixed
(albeit weakly with the phonons separated by an even num-
ber of superlattice wave vectogg. The conservation of mo-
mentum for the deformation potential scattering thus be-
comes k;—k;=+(g—mqy), where m=0,+2,+4... . The
positions of the phonons created via the deformation poten-
tial scattering are also shown in Fig. 12.

This electric field produces an electrostatic potentigl,
~iq lE,€9T et The interaction between the electrostatic
potential @ o and the electron with initial wave vectdx;
will scatter the electron into a new stdtgso that the energy
and momentum are conserved, i.ef%(k*—k?)/2m,
=thw o(q) and k;—k;==q. Therefore, for the carriers near
the BZ center, only the zone-center LO phonons can be gen-

erated, with the maximum LO wave vector being of the order C. Infrared absorption

= —z 1
Of Gmax= \2Mewy /= 2.4X 10° e As far as the optical properties, the main difference be-

The situation changes dramatically in PIPDS. The E|eCtritheen PIPDS and a bulk zinc-blende lattice is the fact that

i iSE=— B3, i(g-ngo) T-iwt _ (
fleldlnc_)w ISE . .bZlf(Z)U/8°8°° EoZnz1,+3-0n€ ' the former does have a center of inversion located at the
and it is not difficult to see that the momentum conservation

- . N domain boundaries. Therefore, following the rule of mutual
condition for the Frohlich scattering in PIPDS beconkes 16 e ; L g g
—Ky=+[q—nqy], wheren=+1, +3... . Thus Frohlich scatter- exclusion;® excitation that is active in the first-order infrared

. . . .absorption spectrum is inactive in the first-order Raman
Ing will generate (_)ptlcal phonons near the edg_e of_thg mOdIépectrum. Indeed, let us consider the interaction between the
fied PIPDS BZ, with wave vectotg—ndg| < Omay I-€-, inside infrared photon of frequency,=wro and wave vectok

a sphere of radiugm,, These wave vectors are shown in nd the phonon of wave vecpt(nr II%e interaction Hamr}l-
Fig. 12 in an extended zone picture. The relative strengths A nian is proportional to ’

Frohlich interaction, which are proportional gﬁ are shown

by the darkness of the grayscale. Clearly, most of the scat-

tering creates LO phonons with wave vectors negy. + Ev, " Pq~ By, - baf(2)ug ~ bz, > gnemqo'rEkp “Ug,
It is instructive to estimate the average group velocity of n=t13,...
the zone-edge optical phonons. Since according to the results (16)

of Sec. Il B, the gap at the BZ edge along thexis is very

small and the LO phonons that are generated within a spheshere P is the ionic polarization associated with phonon.
of radiusq,a Will have a nonzero group velocity which can Therefore, momentum conservation for the infrared absorp-
be estimated from tion becomes
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- ngo=k,~ 0. (17 deformation potential or Raman scattering are located in the

vicinity of the BZ centers while all the phonons generated by

Thus infrared absorption generates only the TO phonons 1o shjich scattering and infrared absorption are located near
cated near the modified PIPDS BZ edges, as shown in Figz> edges.

12. It is these phonons that would also give rise to
polaritond in the PIPDS. VI. CONCLUSIONS

In this work we have considered the properties of optical
phonons in a periodically inverted polar domain structure —

As we have already mentioned, from a symmetry point ofthe small-scale equivalent of the quasi-phase-matched peri-
view, the BZ edge phonons active in the infrared should beodically poled domain structures in nonlinear optics. We
inactive in Raman spectra, and only the BZ-center LO anchave calculated the dispersion of optical phonons and de-
TO phonons should contribute to Raman spectra, just as iscribed their main features. These include zone folding and
the bulk material. Of course, for the case when the Ramathe mixing of LO/TO modes separated by even number of
scattering is caused by the deformation potential, this obsesuperlattice wave vectay,. We have also obtained the pat-
vation is obvious since the domain inversion hardly causegerns of sublattice displacement and electric field associated
any change in the mechanical properties. For the case whemwith the phonons and shown that in the wave-vector space
Raman scattering is caused by the electric field of LOthe electric fieldE is always shifted relative to the sublattice
phonons, this result can also be understood rather easily frogisplacement by an odd number of superlattice wave vec-
the following simple considerations. The electric field of thetors q,. We have also briefly considered the interactions of
long wavelength LO phonoB=-b,,f(z)u/epe., reverses its PIPDS phonons with electrons and photons and obtained
sign at the domain boundary. So does the linear electro-optimodified selection rules for various processes.
coefficient dy/JE~f(D)ryspu. Therefore, the phonon- As far as the potential application of PIPDS, the first one
induced variation of the optical susceptibilitggx/ou)ou  that comes to mind is to use them in order to excite the
~ =Dyl 14pull/ €08, dOES NOt change its sign at the bound-optical phonons away from the BZ center. Furthermore, in
ary. The PIPDS thus behaves almost entirely like the bulighort-period PIPDS, optical phonons interacting with elec-
materials with a small exception — the BZ center opticaltrons will have higher diffusion coefficients and thus be able
phonons are weakly mixed with the optical phonons sepato quickly diffuse away to provide effective cooling channels
rated by even number of superlattice wave vecgprThere- ~ for high-speed semiconductor devices. However, to analyze
fore, the selection rule for the Raman scattering js-k, s such structures one needs to use methods more precise than
:i(q—mqo), with m being the even integers, and is also aswhat we have developed here, which will be the emphasis of
shown in Fig. 12. our future work.

Figure 12 shows the locations of optical phonons gener- ACKNOWLEDGMENT
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