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We examine the effect of interactions between the electrons on the Landauer-Biittiker conductances of some
systems of quantum wires with different geometries. The systems include a long wire with a stub in the middle,
a long wire containing a ring which can enclose a magnetic flux, and a system of four long wires which are
connected in the middle through a fifth wire. Each of the wires is taken to be a weakly interacting Tomonaga-
Luttinger liquid, and scattering matrices are introduced at all the junctions present in the systems. Using a
renormalization group method developed recently for studying the flow of scattering matrices for interacting
systems in one dimension, we compute the conductances of these systems as functions of the temperature and
the wire lengths. We present results for all three regimes of interest, namely, high, intermediate, and low
temperature. These correspond, respectively, to the thermal coherence length being smaller than, comparable
to, and larger than the smallest wire length in the different systems, i.e., the lengths of the stub or each arm of
the ring or the fifth wire. The renormalization group procedure and the formulas used to compute the conduc-
tances are different in the three regimes. In particular, the dimensionality of the scattering matrix effectively
changes when the thermal length becomes larger than the smallest wire length. We also present a phenomeno-
logically motivated formalism for studying the conductances in the intermediate regime where there is only
partial coherence. At low temperatures, we study the line shapes of the conductances versus the energy of the
electrons near some of the resonances; the widths of the resonances are found to go to zero with decreasing
temperature. Our results show that the Landauer-Bittiker conductances of various systems of experimental
interest depend on the temperature and lengths in a non-trivial way when interactions are taken into account.
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l. INTRODUCTION or more complicated geometriés?’ on the other. Using a
fermionic RG technique introduced in Ref. 28, the effects of

The increasing sophistication in the fabrication of semi-a junction(which is characterized by an arbitrary scattering
conductor heterostructures and carbon nanotubes in recemtatrix S) have been studied in some def&i(A similar tech-
years have made it possible to study electronic transport inique has been used to study transport through a double bar-
different geometries. For instance, three-arm and four-armier structure?®) It is natural to extend the study of a single
quantum wire systems have been fabricated by voltage-gajanction to systems of QWs which are of experimental inter-
patterning on the two-dimensional electron gas in GaAsest and which can have more complicated geometries involv-
heterojunctiond:> Other systems of interest include ing more than one junction.
Y-branched carbon nanotub&grossed carbon nanotulses, In this paper, we will study the effect of interactions on
mesoscopic ringd® and quantum wire systems with stubs. the Landauer-Biittiker conductances of three systems of
There have also been many theoretical studies of transport guuantum wires with different geometries. These systems are
systems with various geometri&s? shown in Figs. 1-3, and we will refer to them as the stub, the

Studies of ballistic transport in a quantum wi(@W) ring, and the four-wire system, respectively. The stub system
have led to a clear understanding of the important roleconsists of two long wires, labeled 1 and 3, with a stub
played by both scattering of the electrons and the interactionsibeled 2 being attached to the junction of 1 and 3. The ring
between the electrons inside the QW The scattering can consists of two long wires, labeled 1 and 3, between which
occur either due to impurities inside the QW or at the con-there is a ring which can possibly enclose a magnetic flux;
tacts lying between the QW and its reservoirs. A theoreticathe two arms of the ring, labeled 2 and 4, will be assumed to
analysis using bosonizatibhand the renormalization group have the same length for convenience. The four-wire system
(RG) method typically shows that repulsive interactions be-consists of four long wires labeled 1, 2, 3, and 4. The junc-
tween electrons tend to increase the effective strength of thigon of 1 and 2 is connected to the junction of 3 and 4 by a
back-scattering as one goes to longer length scales; expefifth wire labeled 5. The length of wire 2 in the stub system,
mentally, this leads to a power-law decrease in the condudhe length of each of the arms 2 and 4 in the ring system, and
tance as the temperature is reduced or the wire length ithe length of wire 5 in the four-wire system will all be de-
increased?® Motivated by this understanding of the effects of noted byLs. Each of the junctions present in the different
interaction on scattering, there have been several studies sfstems is governed by ax33 scattering matriXS which is
the interplay between the effects of interactions on one handjnitary. We will assume that each of the wires in the various
and either a single junction between three of more @%%, systems can be described as a one-channel weakly interact-
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FIG. 1. The stub system, showing two long wires labeled 1 and
3, and a stub labeled 2. The lower end of the stub where three wires
meet and the upper end of the stub are denotedAbgnd B, FIG. 3. The four-wire system, showing four long wires labeled
respectively. 1, 2, 3, and 4, a connecting wire in the middle labeled 5, and two

three-wire junctions labeled andB.

ing Tomonaga-Luttinger liquid. For simplicity, we will ig-
nore the spin of the electrons in this paper. resonance, namelg®%s"c where ¢ is the magnetic flux

In Sec. II, we will first summarize the RG method devel- enclosed by the ring, anelandc are the electron charge and
oped in Ref. 21 for studying the flow of thi@matrix at a  the speed of light, respectively. In each system, we will see
junction due to the interactions in the different wires con-how the conductances vary with the temperature in a non-
nected to that junction. We will then describe our method fortrivial way as a result of the interactions. This is the main
carrying out the RG analysis of ttf&matrices at the various point of our paper, namely, that interactions between the
junctions of the different systems. In Sec. Ill, we will de- electrons lead to certain power-laws in the temperature and

scribe the procedure for computing the transmission probtength dependences of the conductances of experimentally
abilities (and conductancgof a system given the form of realizable quantum wire systems.

the Smatrices at all its junctions. Both the RG procedure and
the route from theéS-matrices to the conductances will turn
out to depend on the range of temperatures that one is con- || RENORMALIZATION GROUP METHOD FOR
sidering. There is a length scale, called the thermal coher- SYSTEMS WITH JUNCTIONS
ence lengthLy, which governs the typical distance beyond
which the phase of the electron wave function becomes un- In this section, we will first present the RG procedure
correlated with its initial phase. The regimes of high, inter-developed in Ref. 21 for studying how the effect of a single
mediate, and low temperatures are governed, respectively, Wnction varies with the length scale. We will then describe
the condition that. is much smaller than, comparable to, or how the RG method has to be modified when a system has
much larger than the length scdlg defined above for the more than one junction.
three systems; correspondingly, we have complete incoher- A junction is a point whereN semi-infinite wires meet.
ence, partial coherence, and complete coherence for tHeet us denote the various wires by a labelwhere i
phase. The intermediate temperature range is the most diff=1,2, ... N. As we approach the junction, the incoming and
cult one to study, both for using the RG method and foroutgoing one-electron wave functions on wireapproach
computing the conductances. Based on some earligfalues denoted byy; and yi; respectively; we can write
ideas33 we will describe a phenomenological way of in- these more simply as twd-dimensional columng; and .
troducing partial coherence which will lead to expressionsThe outgoing wave functions are related to the incoming
for the transmission probabilities which interpolate smoothlyones by aN XN scattering matrixjo=Sy;. Current conser-
between the coherent and incoherent expressions. vation at the junction implies th& must be unitary(If we

In Secs. IV=VI, we will apply the formalism outlined in Wwant the junction to be invariant under time rever&amust
the previous sections to the stub, ring, and four-wire systemgllso be symmetrig.The diagonal entries d8 are the reflec-
respectively. In each case, the transmission probabilities dton amplitudesr;, while the off-diagonal entries are the
intermediate and low temperaturgise., the partially and transmission amplitudety to go from wirej to wire i. We
completely coherent regimewill be found to depend sensi- Will assume that the entries & do not have any strong
tively on the phasey=€?FLs; herekg is the wave number of dependence on the energy of the electrons.
the electrons which are assumed to come into or leave the We assume a short-range density-density interaction be-
QW system with a momentum equal to the Fermi momentuniween the electrons of the form
in the reservoirs. In particular, certain valuessptan lead to 1
resonances and antiresonances i.e., maxima and minima in HinF‘fdedYP(X)V(X‘Y)P(Y), (1)
the transmission probabilities. In the ring system, there is 2

another important phase which governs the possibility O(Nherev(x) is a real function ofx, and the density(x) is
) given in terms of the second-quantized fermion fi¢itk) as
1 A7 O\ 3 p=¥™r. We define a parametey, which is related to the
N4 Fourier transform ofV(x) as QZ:V(O)—V(ZKF). Different
4 wires may have different values of this parameter which we

FIG. 2. The ring system, showing two long wires labeled 1 andWill denote byg,;. For later use, we define the dimensionless
3, the two arms of the ring labeled 2 and 4, and two three-wireCOnstantsy; =g/ (27fivg), where we assume that the veloc-
junctions labeledA and B. ity vp=fike/mis the same on all wires. In this work, we will
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be interested in the case in which the interactions are weak ixe? b g’ 4
; . iy a=- , an =—0,
2rrl]illrepuIS|ve, i.e., the parameteass are all positive and 1+in 1+in (4)

The RG equation for th&matrix?! can be briefly derived where\ and 6 are real. Equatio2) then leads to the differ-
as follows. A reflection from a junction, denoted by the am-ential equations
plituder; in wire i, leads to Friedel oscillations in the elec- ~ 40
tron density in that wire. Ik denotes the distance of a point —=a\, and —=—. (5)
from the junction, the form of the oscillation at that point is dl dil 1+A
given by the imaginary part af;€?#/(2mx). As aresult of  The reflection and transmission probabilitigs? and |b|2
the interactions, an electron traveling in that wire gets r€only depend on. For a>0, we see that there is an unstable
flected from these oscillations. The amplitude of the reflectiygq point at\=0, and a stable fixed point at=x. If \ is
tion from the oscillations is proportional ta;rj/2 if the 4t 7610 initially(i.e., at the microscopic length scalg then

electron is reflected away from the junction, anain;/2if it fiows to infinity at long distances. Hendegoes to zero as
the electron is reflected toward the junction. These reflec; _ g-a _| -a 4 approaches 1, and the two wires effectively

tions renormalize the bar®matrix which characterizes the get cut off from each other. This is in agreement with the
junction at the microscopic length scale. The entriesSof egyits obtained using bosonizatith.

therefore become functions of the length sdajeve define Next. we will consider the % 3 case. Here we will as-
the logarithm of the length scale &sIn(L/d), wheredis @ gyme that there is complete symmetry between two of the

short-distance cutoff such as the average interparticle spagjres, say, 1 and 2, and that ti®matrix is real. Namely,
ing. In terms of &N X N diagonal matrixVl whose entries are  , =4, andS takes the form

given byM;;=1/2a;r;i. Then the RG equation f@&is found

to bet 't ot
ds ) Sp=|t" "t (6)
i M -SM'S (2 t tor

L . o
to first order in theqa;. (This equation is therefore perturba- wherer, ', andt are real parameters which, by unitarity,

tive in the interaction strengthOne can verify from Eq(2) satisfy
that S remains unitary under the RG flow; it also remains t'=1+r',
symmetric if it begins with a symmetric form. The fixed
points of Eq.(2) are given by the conditioBM'=MS', i.e., r=-1-2",
SM' must be Hermitian.
We can study the linear stability of a fixed point by devi- t= \m )

ating slightly from it, and seeing how the deviation grows to . _ _
first order under the RG flow. Let us denote a fixed point byand -I=r'<0. The RG equations in E@2) can be written
the matrixS, and a deviation byS;, wheree is a small real ~ purely in terms of the parametet as

parameter and; is a matrix; we require that the matri&x dr’
=S+€S; is unitary up to ordefe. (We can think ofS; as —=—r'(1+r)[ayr' + az(1+2r")]. (8)
defining the “direction” of the deviationWe substituteS in di

Eq.(2) and then demand th&; should take such a form that |t 4, 4,>0, we have stable fixed points at=0 (where
the RG equation reduces "d_’f/d! =pe, wherep is areal  there is perfect transmission between wires 1 and 2, and wire
number. We then call the directioh, stable, unstable, and 3 s cut off from the other two wirgsand —1(where all three

marginal(to first ordey if ©<0,>0, and 0, respectively. All - yjres are cut off from each otheiThere is also an unstable
fixed points have at least one exactly marginal directiorfixed point at

which corresponds to multiplying the matrg by a phase;
clearly this leaves Eq2) invariant. = a3 9)
In this paper, we will be concerned with the RG flow of g+ 2a3’
Smatrices which are two-,three- and four-dimensional. For | . L
convenience, we will assume certain symmetries in each q ! starts_, with a value which is greater themT.Iess thap
these cases. It is useful to discuss these symmetries here, afif: then it flows to the value @r ~1) at large distances. In
how they lead to some simplifications for the RG flows, ~ Other words, for’ lying between 0 and ~1/3, the transmis-
We first consider a two-wire system in which there is sion(and, therefore, the conductand®tween wires 1 and 2

complete symmetry between the wires which we will label adncreasesas we move toward the fixed point by lowering the
1 and 3. Namely, the interaction parameters are equgal,

temperature. This is unexpected for a one-dimensjabal
= as=a, and the scattering matrix has the form system, where the conductance usually decreases for any

nonzero back-scattering as the temperature is lowered; this
ab unusual behavior is due to the fact that we have a three-point
b a/ ©) junction and hence, this is only a quasi-one-dimensional sys-

tem.[We should point out that the fixed point in which wires
Unitarity implies that we can parametrizeandb as 1 and 2 transmit perfectly into each other and wire 3 is cut

cor|
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off is stable only within the restricted space described bysystem is only quasi-one-dimensional. This will be discussed
Egs.(6) and(7), or a simple variant of that case in which in more detail in Sec. V(see Fig. 1%
t’, r, andt are complex but all of them have the same phase. We see that the only completely stable fixed point is given
If we take a general unitary matri;p, then this is not a by (i). As we approach this point at large distandesndc
completely stable fixed point. The only stable fixed point ingo to zero ash,c~L™“, while the ratiob/c approaches a
the general case is the one in which all three wires are cut offonstant.
from each othef! We should also note that there is another  Let us now consider the three systems shown in Figs. 1-3.
system known in which interactions can lead to an increasén all the systems, there are four length scales of interest.
in the conductancé&] First, there is the microscopic length scalevhich will be
Finally, let us consider the ¥4 case. Here we will be assumed to be much smaller than all the other length scales.
interested in a situation in which there is complete symmetryrhen there is the lengthg of the various subsystems, such as
between wires 1 and 2, and between wires 3 and 4; furthethe stub in Fig. 1, each arm of the ring in Fig. 2 and the fifth
we will take the values of; in all the wires to be equal ta.  wire in Fig. 3. Next, we have the thermal coherence length

The Smatrix takes the form L, defined as
h
aboeoc Lr= 1, (11)
b acc keT
S4D: b f (10) . . .
cca whereT is the temperature. As mentioned before, we will be
c cba interested in three different regimes, namely, the rhtif_g

being much smaller than(high temperatung comparable to
wherea, b, and ¢ are all complex. Unitarity implies that 1 (intermediate temperatureand much larger than @ow
these parameters can be written in terms of three independet@mperaturg Finally, we have the length,, of the long
real variables. There does not seem to be a convenient paires, namely, wires 1 and 3 in Figs. 1 and 2, and wires 1, 2,
rametrization in terms of which the RG equations take a3, and 4 in Fig. 3. We will assume thaty is much longer
simple form. We therefore have to study the RG equations ifthan bothLg andLy. The long wires will be assumed to be
Eq. (2) numerically; the results will be described in Sec. VI. connected to some reservoirs beyond the distdngeWe
However, the fixed points of the RG equations and their lin-will not need to consider the reservoirs explicitly in this pa-
ear stabilities can be found analytically. There are three kindger, and the length scalgy will not appear in our calcula-
of fixed points. tions.

(i) |a]=1, andb=c=0. This corresponds to all the wires  The interpretation ot is that it is the distance beyond
being cut off from each other. This fixed point is stable inwhich the phase of an electron wave packet becomes uncor-
two directions, and is exactly marginal in one direct{oor- related. This can be understood as follows. If the bias which
responding to a phase rotation & drives the current through a QW system is infinitesimal, then

(i) |b|=1, anda=c=0. This corresponds to perfect trans- the electrons coming into the QW from the reservoirs have
mission between wires 1 and 2, and between wires 3 and 4n energyEr=%2k/(2m), whereE is the Fermi energy in
but no transmission between any other pair of wires. Thighe reservoirs. At a temperatuile the electron energy will
fixed point is unstable in one directigwhere it flows to the typically be smeared out by an amount of the ordekgi.
fixed point described iiii)], and marginal in two directions. The uncertainty in energy is therefore given kyT=AE
One of these marginal directions turns out to be unstable atafveAkg, where we have used the relatiar=rkg/m.
higher order, and the RG flow eventually takes it to the thirdHence,Ake=kgT/(Avg)=1/L+. If an electron with one par-
fixed point described below. The other marginal directionticular wave-numbekg travels a distance, the phase of its
corresponds to a phase rotationtof wave function changes by the amolpL.. Hence, the phases

(i) |a|]=1/2, b=-a, andc=+a. This is a special point of different electrons whose wave numbers vary by an
which corresponds to the maximum possible transmissiommountAkg will differ by about 7= (and can therefore be
with complete symmetry between all the four wires. Thisconsidered to be uncorreladed they travel a distance of
fixed point is unstable in one directigwhere it flows to the aboutzL;. Hencel; (or L) can be thought of as the phase
fixed point in(i)], stable in a second directigwhere it flows  relaxation length of a wave pack®t.
in from the fixed point in(ii)], and exactly marginal in the We can now discuss in broad terms the RG procedure that
third direction(corresponding to a simultaneous phase rotawe will use for the various systems. In each case, we will
tion of a, b, andc). The fact thatiii ) is stable in one direc- begin at the microscopic length scalewith certain values
tion and unstable in another, means that an interesting crosgr the entries of the 33 Smatrices at the various junc-
over can occur as a result of the RG flow. Namely, one cations. We will use Eq(2) to evolve all theS-matrices. We
begin neaxii), approachiii) for a while, and eventually go will follow this evolution till we get to the length scales or
to (i). As a result|c| can first increase and then decrease ad.t, whichever isshorter Two possibilities arise at this stage.
we go to long distances. Here again, this result is counter- (i) If L is less tharLg, we will stop the RG flow at the
intuitive as far as one-dimensional physics is concernedength scaleL;, and then calculate the transmission prob-
since back-scattering is not expected to decrease; howeveabilities as discussed in Sec. lll.
once again, we have a four-point junction and hence our (ii) If Ltis larger tharlLg, we will stop the RG flow of the
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! 3 the length scalé;=d, i.e.,L;/Ls=0.1. The values of’ that
we will quote in the different figures will be the values at
- L1/Ls=0.1. The reason for choosing these particular values
2 4 of the parameters is that they are “typical” to experimental
systems. The interaction parametex0.2 corresponds to a
value of the Tomonaga-Luttinger parameteiK
FIG. 4. Effective descriptions of the various systems at low=\(1-a)/(1+a) of about 0.8 A variety of experiments
temperaturel.;> L. The stub and ring systems effectively reduce Show thatK typically lies in the range 0.6-08:3¢ The
to a two-wire system with a junction as {m), while the four-wire ~ short-distance cutoff parametdris usually taken to be the
system reduces to a four-wire system with a junction agjn inverse of the Fermi wave numbky in the two-dimensional
electron gases which form the reservoirs of many quantum

3x3 matrices at the length scales. Much beyond that Wire systems; this is about 0Am in many semiconductor
length scale, the various systems shown in Figs. 1-3 looReterojunctions. The wire lengifor ring diametey L typi-
different since it no longer makes sense to consider the difcally lies in the range 1-1@m.**33 Hence the ratid_s/d
ferent junctiongand theirS-matrices separately. In particu- Would be expected to lie in the range 10 to 100. For tem-
lar, the stub and the ring systems look like two long wiresPeratures lying in the range of 0.3° to 25"andLs lying in
joined at one point, while the four-wire system looks like the range given above, the ratig/Ls lies in the range 0.01
four long wires joined at one point. Thus they all look like t0 2.

systems with only one junction as indicated in Fig. 4. This

junction is described by an effectiv@matrix which is 2 .

x 2 for the stub and ring systems, ana 4 for the four-wire IIl. LANDAUER-BUTTIKER CONDUCTANCE

system. As we will discuss in Secs. IV-VI, the effective | this section, we will discuss how to calculate the con-
Smatrix is obtained by appropriately combining th&X3  §yctances of the various systems in the three different re-
S-matrices at the various junctions at the length s€glave  gimes of temperature. As mentioned already, we assume that
can think of this process as mtegratmg out” the subsystemg, each of the systems, the long wires are eventually con-
of lengthLs. Then we will continue the RG flow beyond the nected to reservoirs through some contacts. For a single
length scalels, but now with the effectivesmatrices. This  channel of spinless fermions, there is a resistancg#f at

will continue till we reach the length scalg. At that point,  the contactd? [Although the contacts can themselves scatter
we stop the RG flow and compute the transmission probabilighe fermionsté we will ignore such effects here. We are also

ties as shown in Sec. lll. _ _assuming that the QWSs are free of impurities. So the only
[The reason for stopping the RG flowlat in all cases is  goyrces of scattering in our systems are the juncgons.

that the amplitudes of the various Friedel oscillations and the \yje take the fermions in all the reservoirs to have the same

reflections from thengcaused by interactiongnd from the  form; energyEe, and the net current on all the wires to be

junctions are not phase coherent with each other beyond thak,q in the absence of any applied voltage on the leads. Now

length scale. Hence all these reflections will no longer CONgyppose that the voltage in reserviois changed by a small
tribute coherently to the renormalization of the scatteringamountvi. herei=1,3 for thestub and ring systems, arid

amplitudes described by the varioBsnatrices} =1,...,4 for the four-wire system. Fd¥;| much smaller
To summarize, we will carry out the RG flow in one stageinan all the other energy scales in the problem, suckas

from the length scale up to the length scaler, if Ly<Ls  angkgT, the net current flowing into wiré (from reservoir
If L+>Lg, we will study the RG flow in two stages; the first i) will satisfy the linear relationshi§-37

stage will be with one kind o&-matrix fromd to Lg, while
the second stage will be with a different kind Sfmatrix e
Ii = FE T”VJ,
J

(a) ®)

from Lgto L. The two kinds ofS-matrices will be connected (12)

to each other at the length scadlg as discussed in Secs.
IV=VI. In all cases, when we finally stop the RG flaafter ~ whereT;; (for i # ) defines the various transmission prob-
one stage or twp we will compute the transmission prob- abilities, andT; +1 denotes the reflection probability on wire
abilities. The procedure for doing this will be discussed ini. The T;; satisfies certain sum rules. Current conservation
the next section[In reality, we expect a smooth cross-over implies that>; T;;=0 for each value of. The condition that
from one stage of the RG procedure to the other at someach of the currents must be zero if all teare equal to
length scale which is of the order dfs. For the sake of each other implies that; T;;=0 for each value of. This is
computational simplicity, however, we are adopting a RGequivalent to saying that changing all thv by the same
procedure which changes abruptly exactly_gt We should amount does not change any of the currents. Thus, if there
also note that the RG procedures that we will follow areareN wires, onlyN-1 of the voltages are independent vari-
really only valid forL;<LgandL;>Lg However, we will  ables as far as the currents are concerned.
assume for convenience that it is a reasonable approximation We can compute any of the conductances of the system if
to use the same procedures all the way up{els] we know the values of all th&; in Eq. (12). One way to

In all the numerical results presented in Secs. IV-VI, wedefine a conductance is as follo#s}’ We consider two of
will take the interaction parameter=0.2 on all the wires, the long wires, say, andj; we call these the current probes,
and the ratid_s/d=10. We will always begin the RG flow at and the currents at these two wires satisfy-I;. On all the
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other wires, we impose the voltage probe conditiq0; P
this imposesN-2 conditions on the voltages. These condi- 1
tions imply that there is only one independent variable left

among all the voltages; we can take this variable tovpe 1 i
-V, wherek#1 (in generalk,| may or may not be the same T
asi,j). We can now define a conductance of the form

A 2

|:
Giu=—"""": 13
TV v 19 5

In Secs. IV and V, we will consider systems which have FIG. 5. A wire with two voltage probe®; and P, at a point
only two long wires labeled 1 and@@ee Figs. 1 and)2The  labeledA. The two probes cause phase randomization of right and
sum rules discussed above then imply the relations left moving waves, respectively.

T13= T3 == Ty == Tas, (14 All three systems of interest to us have two junctions.
) ) Note that the stub also has two junctions, i.e., a three-wire
and there is only one conductance to consider, namely,nction at the lower end, and a one-wire junction at the

Gi3,31=(€2/N)Ty3. In Sec. VI, we will consider a system with upper endB where we will take theS-matrix to be equal to
four long wires labeled 1, 2, 3, and 4, with complete sym-—1 corresponding to a hard wall boundary conditjofn
metry between wires 1 and 2 on one hand, and between gectron which enters through one of the long wires has the
and 4 on the othe(see Fig. 3. In this case, we have the possibility of bouncing back and forth many times between
relations the two junctions. After several bounces, the electron can
emerge from the same long wire or from a different long

Tiy =Ty wire. From Figs. 1-3, we can see that two waves which
T11= Too=Tag= Ty, emerge from the system aftey andn, bounces will have a
Typ= Tas difference in path lengths which is equal t|qng— n2_|LS._ Now,
there are two regimes of temperature which will give differ-
T13=T14= To= Tau, ent answers for the probabiliti. If the thermal length_t
andT,;+ Ty, + 2T,3=0. (15) (which is the phase relaxation length as argued eariger

) . much smaller tharLg, then the two waves will be phase
There are many different conductances one can consider {fcoherent ifn, +n,. In this case, the contributions of the

th.is system; the important ones are as foIIows. We can takg,o waves toT,; must be added incoherently. On the other
wires 1 and 2 to be the current probes, and wires 3 and 4 tRand, if Ly is much larger than |2,—n,|Lg, then the contri-

be the voltage probes. We then obtain butions of the two waves will add up coherently. In between
&2 these extremes is an intermediate regime in whighs com-
Gio21= F(T12+ T13). (16) parable toLg in that case, we have only partial coherence,

and the two waves becomes more and more incoherent as

Alternatively, we can take wires 1 and 3 to be the currentn;—ny| increases. _ _
probes, and wires 2 and 4 to be the voltage probes. We then It is useful to have an expression for tfig which can

find interpolate all the way from the coherent regiith@w tem-
perature to the incoherent regimgiigh temperature To ob-
_ AT+ T1) tain such an interpolating formula, we use the idea of partial
18317 3T+ Ty coherence caused by phase randomization by a voltage probe
which was introduced in Refs. 30 and 31. We will first sum-
42 Tyo(Tyz+ T1o) marize this idea, and then describe how it can be extended to

Cuaa=" "1 7 (17)  our problem.
1312 Consider Fig. 5 in which there is a wire with two ends
We now have the problem of determining the value3pf labeled 1 and 2. At some point label&dn the middle of the
in our systems. IfLt>Lg, we will see in Secs. IV-VI that wire, there are two wire®; and P, which are voltage
one can think of each of the systems as effectively havingrobes, i.e., the net outgoing currents at each of these wires

only one junction. In that cas&;; is related to the entries of is zero. The four-wire junction af is governed by an

the Smatrix at that junction as follows: S-matrix of the form
Tij :|tij|2 fori 7&1, 0 V’l—p 0 _\"5
\”1 _ p O _ \;”B
andT; = r|* - 1. (18) S= , (19)

\“/F_) 0 V1- p 0
On the other hand, iE+<Lg then we have to consider all 0 \B 0 \T—p
the junctions in the system, and the calculationTgfin-

volves combining the effects of sevet&matrices in some where the columns and rows carry the indices 1P2,and
way. P, in that order, ang is a real parameter which lies in the
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range Gsp=<1. (If p=0, the voltage probes have no effect,

and phase randomization does not ogcéirwave traveling
right from end 1 can go partially out int®; and partially on
to end 2; the part which goes out in& can reenter the wire

PHYSICAL REVIEW B 70, 085318(2004)

interpolates between (i.e., complete phase coherence be-
tween the two wavesfor p=0 and 0(i.e., no phase coher-
ence for p=1. Further, the interpolating factor depends ex-
ponentially onn,—n,| which is proportional to the difference

and go on to 2. We now impose the phase randomizatiobetween the path lengths of the two waves.

condition that the wave which goes out i can reenter
the wire with an arbitrary phase change @f, but it must

Now we have to implement this idea in the systems of
interest to us. We do this by generalizing the idea of phase

have the same magnitude; this is necessary to ensure the zeemdomization at a single point to phase randomization at a

current condition sinc®; is a voltage probe. Upon solving a

problem in which there is an incoming wave of unit ampli-

continuum of points. Let us assume that the density of such
points in a wire is given byu/L¢, whereu is some dimen-

tude at end 1, and no incoming wave at end 2, we find thasionless numbewhich is independent of any temperature or
there is complete transmission of the wave across the poidéngth scalg and that the parameteris the same at each of
A. To be explicit, we take the incoming and outgoing wavesthose points. This assumption for the density is motivated by

at A to be of the forms

1 0
t

= g1y and o = v | (20)
0 0

respectively. We then use the scattering matrix in @) to
relate ¢, and 5. On eliminatingy, we find that the trans-
mission amplitude across is given by

—\1=-pai®
'[:—e“‘sl—l yl_pe_ ' (21)
1-V1-pd®’

so that|t|=1. When we calculate any physical quantisyich
as a transmission or reflection probabiljitwe will integrate
over ¢, from 0 to 2. The following identity will prove to be

useful,
27
J %tn — (1 _ p)\n\/z
0 27T

(22)

for any integem. As shown below, the integration over
reduces the coherence of a wave moving to the right from
to 2. Similarly, we can introduce a phase changepefor a
wave which leaves and reenters the wire at prBbeinte-

grating overg, reduces the coherence of a wave moving to
the left from 2 to 1. For both right and left moving waves,
the degree of coherence depends on the value of the para

eterp as we will now see.

We consider two waves which travel and n, times,
respectively, through poinA from left to right. Let us sup-
pose that their amplitudes asg anda,, respectively, in the
absence of phase randomization, i.e., jerO. In the pres-
ence of phase randomization, their amplitudes willapg?
anda,t™, respectively, whereis given in Eq.(21). If these
two waves contribute to a transmission probability the

our identification ofL; as the phase relaxation length; the
smaller the value of 1, the more frequently phase relaxation
should occur as an electron travels along the wire. Thus the
number of phase relaxation points in an interval of lerigth

is equal toul/Ly. Following arguments similar to the one
described above, one can show that the interference of two
waves which pass through that length interval and n,
times will get multiplied by the factof1 —p)n2lkl/(Lo) |

we write (1-p)“2=e*, wherev is a positive dimensionless
number, we see that the interference between two waves
whose path lengths differ bL=|n,—n,|L will carry a fac-

tor of
F—ex{_ &:|
- VLT .

The high temperature limitL;— 0) corresponds to the inco-
herent case in which we ignore the interference between
paths with any finite length difference; namely, we add up
the probabilities contributed by different paths.

In our calculations of the transmission probabilities de-
scribed in Secs. IV=VI, we will require an interpolating fac-
ior as in Eq.(24) only for the casd.t<Lg It is only in that

egime that our systems have more than one junction which
allows for a number of different paths between any pair of
long wires. ForL>Lg, each of our systems effectively sim-
plify to a system which has only one junction and, therefore,
only one possible path between any pair of long wires.
Mence there will be no need to consider any interference
terms forLt>Lg In order to make our expressions for the
transmission probabilities match as we approaghl g from
above and below, we will use an interpolating fadtowhich

is 1 atLt=Ls We will therefore use a formula which is
motivated by the expression in E@4) (with v set equal to

1), but which is somewhat modified so that it is goes to 1 as
L approached g from below. We will use the following

(24)

cross-term coming from their interference will be given by prescription:

aja.t™ M+a,a,t" 2. We now integrate this expression over ~ AL AL
the variableg,. Using Eq.(22), we find that F=ex L L for Lr<Ls, (25
27
%[a’iaz 21 4 a;altnl—nz] for. the_ factor multiplying the interference of two paths dif-
o 2 fering in length byAL.

= (aya, + aay) (1 — p) a2, (23) IV. STUB SYSTEM

We thus see that the phase randomization has the effect of We will now use the ideas developed in the previous two
multiplying the interference of two terms by a factor which sections to study the transmission probability of the stub sys-
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tem shown in Fig. 1. The 8 3 scattering matrix, calle&;p, Let us now calculate the transmission probabiliy. If
which governs the junction labeledlwill be assumed to be L;=<Lg we have to us&;p to compute an expression i,

of the form given in Eqs(6) and(7), with complete symme- with an interpolating factoF as in Eq.(25). This is easy to

try between the two long wires labeled 1 and 3. At the otheido since we have already found the sum over all the paths as
end of the stub labeled, we will assume a hard wall bound- in Eq. (27). According to the phase randomization idea dis-
ary condition, i.e., perfect reflection with a phase change otussed in Sec. lll, the interference between two paths char-

-1. acterized by integens; andn, must be multiplied by a factor
We first consider the RG flow of the transmission prob-F=f""l where

abilities T;;. There is only one independent quantity to con-

sider in this system, namely, 5 all the others are related to f= exp{Z(l - L_S>] _ (28)

it by Eq.(14). As outlined in Sec. Il, we start from the length Lt

scaled and initially use Eq(8) to see how the various entries
of S;p flow as functions of the length. If;<Lg, we follow
this flow up to the length scale; and then stop there. At that
point, we computel,; as explained below.

This follows from the prescription Eq25) since the differ-
ence in path lengths is given lyL=2|n;—n,|Ls. On sum-
ming up all the terms with the appropriate factorsfpfve

If L+>Lg, we first use Eq(8) to follow the flow up to the find that
length scaleLs At that point, we switch over to a 22 , 2, r’ nf n* f
scattering matrixS,p which can be obtained from the matrix Tig=t'"+ 5 -t (t' + E) Taraf 1arn*fl
S;p that we get at that length scale from the RG calculation. d K
The entries ofS,p(Lg) and S;p(Lg) can be shown to be re- (29

lated as follows, where we have used some of the relations in &g. Equa-

2 tion (29) is the desired interpolating expression 1gs. If we
(Sp)11= (Sip)zz=1" — i , setf=0 (as we must do foLt<Lg), we get the incoherent
l1+ry expression
t*n Ta=t2+ =14 (30)
(Sp)13= (Sp)a=t' = : (26) ol 2 '
l+ry

which is independent of. On the other hand, if we sdt

where »=€\s. Equation(26) will be derived in the next =1 (as we must do dt;=Lg), we get the coherent expression
paragraph[The phase facton appears because the electrons

are assumed to have a momentunkefn all regions; hence
the wave functions have factors of €Wpx).] Having ob-
tainedS;p at the length scalkg, we then continue with the o ) _
RG flow of that matrix following Eq.(5). This flow is ~ Which is just the square of the modulus @:p);3 given in
stopped when we reach the length sdajeAt that point, we  Ed. (26). Equation(29) interpolates between the coherent
computeT,5 as explained below. and incoherent expressions depending on the valde of
Equation(26) can be derived in one of two ways. The first ~ There is a way of directly obtaining the incoherent ex-
way is to assume an incoming wave with unit amplitude onPression in Eq(30) without summing over paths. We will
wire 1 and no incoming wave on wire 3, and then use théPresent this derivation here; as discussed in the next section,
scattering matrixS;p at junctionA and the sign change 8 @ similar derivation will work for the ring system where it is
The second way, which is more instructive for us and is alsdlifficult to classify the different paths in a convenient way
easier, is to sum over all the paths that an electron can tak@nd therefore to sum over them. The idea is to add probabili-
For instance, if we consider the different paths which goties(intensities rather than amplitudes. Consider a situation
through the Stub, we see that they are characterized by élwth the fO”OWing kinds of waves: a wave of unit intensity
integern=0, 1, ..., which is the number of times a path goes which comes into the system from wire 1, a wave of inten-
up and down the stub. The length of a path which goes fron§ity ir which is reflected back to wire 1, a wave of intensity
a point just to the left oA to itself after going up and down i Which is transmitted to wire 3, a wave of intensifywhich
the stubn times is given by BLs. Summing over all such travels up along the stub 2, and a wave of intengjtstown

t277

l+ry

2

Tl3: t' -

(31

paths leads to the expression along the stub[Note that the last four waves are actually
made up of sums of several waves obtained after repeated
(Spp)i=r' —typt+tygrgt—typroprgt+ - travels up and down the stub; however, we will not need to
2 explicitly sum over all those paths in this way of doing the
t 7] . . . . . .
=r' - ’ (27)  calculation. The summation over paths will be implicit be-
l+ry cause we are assuming thati;, andi, andiy denote the

total intensities of those four kinds of wavgdow we use

which is the first equation in Eq26). Similarly, we can  the matrixS,g at junctionA. This gives the following rela-
derive the second equation in E@6) by summing over all  tjons between these intensities:

the paths which go from a point just to the leftAdto a point
just to the right ofA =r2+tiy,
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FIG. 6. T15 for the stub system as a function bf/Lg for « FIG. 7. Ty3 as a function ofLy/Lg for «=0.2, Lg/d=10,

=0.2,Lg/d=10, n:ei”’z, and different values af’. The four sets of r’ =—0.54, and different values of. The four sets of curves are for
curves are forr’=-0.10,-0.33,-0.54, and —0.80 from top to 7=-1,6%87 €967 and 1 from top to bottom.
bottom.

the last two cases. In Fig. 7, we shdws; as a function of

i =t2+ 1%, L+/Ls for four different values ofy. In the coherent regime,
we see thafl;53 remains stuck at 1 and 0 faj=-1 and 1,
i, =2+ 12 (32)  respectively, while it decreases for the other two cases. It is
clear that modifyings (by changing the gate voltagean
Similarly, the total reflection at the eriglimplies thati,=iq.  |ead to large changes ify3 in the coherent regime.
Putting these relations together, we obtgml+r’, which
agrees with the expression in E§O0). V. RING SYSTEM

Wheg Ly becomes equal tds Tyl is equal to We now turn to the ring system shown in Fig. 2. We will
|(S2p)12* Where(S,p) 12 s given in Eq.(26). [Our formalism  555me that both the junctioAsandB are described by the
is designed to ensure that we get the same valu& 98t  game 3¢ 3 scattering matrixS;, given in Egs.(6) and (7),

Ly=Ls whether we approach that point from the high tem-yith complete symmetry between the two arms of the ring
perature or the low temperature sidélsing the parametri- |5peled 2 and 4.

zation in Eq.(4) and the RG equations in E(p), we see that The RG evolution of the transmission probabilitigs is
\ at a length scaler>Lgis related to its value at the length ¢t,died in the same way as for the stub syst@mce again,
scaleLs as follows: there is only one independent quantity to consider here,
Lo\ namely,T,5 the others are related to it by Ed.4).] We start
ALy = (—T> NLg). (33 from the length scalel and initially use Eq(8) to see how
Ls the various entries of the two matric8g, flow as functions
ThenTy(Ly) is given by 1[1+\*(Ly)]. of the length. IfL< Lg, we follow this flow up to the length

In the coherent regime given ly,>Lg, we observe that scalel__T and then stop there. At that point, we comptigas
Tysis equal to 1 ifp=-1 and 0 if»=1; this follows on using  €XPlained below.
Egs.(7) and(31). We will call these resonances and antireso- If Lt>Ls, we first use Eq8) to follow the flow up to the
nances, respectively; they arise due to interference betwed@ngdth scaleLs At that point, we switch over to a22
the different paths. For these two special valuesypfl,;;  Scattering matriS;p which can be obtained from the matrix
remains stuck at 1 and 0 and does not flow under RG. Fopsp that we get at that length scale from the RG calculation.
any other value ofy, T;5 starts at a value which is less than For the ring system, the off-diagonal matrix elements of
1; it then flows toward zero till the RG evolution stops at theSp(Ls) are related to the parameterappearing inSyp(Lg)
length scale_;. Note that by changing the electron momen-as follows?

tum kg (this can be done by changing the gate voljages (Sip)15= (Sip)a1

can vary the value ofy and therefore of the matrix elements

in Eq. (26); we can therefore, in principle, tune the system to _ 2co§®2)n" (1 - p)(=2r) (1 +1")
resonance[This is in contrast to a single wire system with T[1+@+ 2P -2(1 +1")3(1 + cosd) p’

an impurity where one can change the matrix elements of (34)
S,p only by varying the strength of the impurity potential
which may not be easy to do experimentdlly. where 7=€2ts and® is a dimensionless number which is
In Figs. 6 and 7, we showi;; as a function ol/Lgfor  related to the magnetic flugg enclosed by the ring through
various values of" and#, with «=0.2 on all the three wires, the expressionb=e¢g/(c). Equation(34) will be derived
andLs/d=10. In Fig. 6, we have considered four different in the Appendix. Having obtaine§,p at the length scalkg,
values ofr’. Of these values, the first one is greater than thave continue with the RG flow following Eq5). The flow is
unstable fixed point value of —1/3 given in E§), the sec- stopped when we reach the length sdajeAt that point, we
ond is equal to —1/3, and the last two are less than —1/3. IsomputeT,; as explained below.
the incoherent regime, we see thgg increases in the first As shown in the Appendix, Eq34) can be obtained by
case, does not change in the second case, and decreaseadsuming an incoming wave with unit amplitude on wire 1
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and no incoming wave on wire 3, and then using the scatter-

ing matrices at junction& and B.2 One might think of de- ]

riving Eq. (34) by summing over all paths which go from 08 |— T,, Incoherent .

wire 1 to wire 3, just as we did for the stub system. However, [ |- Ty Coherent | TTTTNeel I

it seems very hard to enumerate the set of paths for the ring ol —— T

system in a convenient way. This is because there are two 04k - i

arms, and a path can go into either one of the two arms every \ ~~~~~~~~~~~~~ 1

time it encounters one of the two junctions. 02r ™
This difficulty in summing over paths also makes it hard [T ]

to find a simple interpolating formula for the conductance in B LT}LS 10

the regime_;<Lg. To see this more clearly, we first note that

in the stubsystem, two paths which have equal lengths must F|G. 8. T, for the ring system as a function &f/Lg for

necessarily be identical to each other. Any point, where=0.2, Lg/d=10, r'=-0.18, =0, and different values of;. The

waves moving in one particular direction get phase randomfour coherent curves are for=1,60.087 0167 3nde0-47 from top

ized, will therefore occur the same number of times in thewo bottom. The incoherent curve is the same forzall

two paths. Hence, the interference between the two paths

will not come with any powers of either the phase facjar

the phase randomization factér If there are two paths of = (05 +ia),
unequal lengthsrgLgand 2,Lgin the stub system, then any

point, where waves moving in a particular direction get i =2+ 1%y +t'%y,
phase randomized, will occur; times in one path and,

times in the other path. Therefore the interference between iy =212+t 2y,

the two paths will come with a factor of"+2fl"i=2! Thus,
the power ofy and the power of are always related to each
other in a simple way[This is why a factor off always
accompanies a factor af or %" in Eq.(29).] The situation is
quite different in the ring system. Here the powersyoénd iy =12 +1'%,. (35)

f are not necessarily related to each other in any simple way, . . ) ) ) .
For instance, consider a path which enters the syste olving these equations and using some of the relations in

through wire 1, goes into the arm 2, and leaves through wiré&d- (7), We find the incoherent expression oy (valid for

3, and a second path which enters through wire 1, goes intbT <Ls) 0 be

the arm 4, and leaves through wire 3. These two paths have 2r'(1+r")
the same lengthLg the interference between the two will i =-
therefore not carry any powers gf However, a phase ran-

domization point which lies on one path will not lie on the \ynich is independent of botly and ®.

other path. Hence, the phase randomizations will not cancel at the pointLy=Lg Tis(Lg) is given by|(Syo)142 where
between the two paths, and the interference between the tV\(%ZD)B is given in Eq.(34). We can again use the parametri-
paths will carry a factor of. Thus, there is no geperal rela- zation in Eq.(4) and the RG equation in Eq5) to obtain
tion between the power aof and the power of. This makes Tia(Lp)=1/[1+\3(Ly)], wherex(Ly) is given in Eq.(33).

is difficult to find an interpolating expression fas. In Fig. 8, we showT s as a function oL/Lg for various

Even though we do not have an interpolating expressmr\l/alueSm with =0.2 on all the wires, antlg/d=10.

for the ring system, we can obtain an incoherent expression In the coherent regime given Hy:>Lg, we can find the

for Ty by following a_procedure §|m|lar to thg_one we used conditions under which there are resonances and antireso-
for the stub system, i.e., by adding probabilities rather tharhances in the transmission through the ring, Tes=1 and 0

amplitudes. Consider a situation with the following kinds of respectively(Some of these conditions have been discussed
waves: a wave of unit intensity which comes into the system o+ 8) We find thatT,5=1 for the following values of
from wire 1, a wave of intensity; which is reflected back to 7,62, andr’: 13

wire 1, a wave <_)f.intensit}'lt which is transmitted_to wire 3, (i) n=¢®=1, andr’ can take any value. Note that for
waves of Intensitys andiy Wh'.Ch travel, respectn{ely, from these values ofy and€?, there are eigenstates of the elec-
junction A_ to Jur)cF|on B gnd vice versa along wire 2, and tron which are confined to the ring.

waves of intensityi,, andi, which travel respectively from (i) 7=€®, andr’=0. For 7=e*®, there are eigenstates

{Enftt'ﬁnf‘t? JunctionB and vut:e \lllersa glong vvf|re 4Notef of the electron on the ring. Further,=0 impliest=0 which
atthe ast six waves are actually made up of SUmMS Of S€Vs,qqns that these eigenstates cannot escape from the ring to

eral waves obtained after repeated bounces from the tw, e long wires

junctions. We do not need to explicitly sum over all these (iii) e%=1 ;,:_1/2 andy can take any value. Note that

paths because we are assuming tha, ..., denote the total r'=—1/2 impliesr=0 which means that a wave which is

intensities of these six kinds of wavgdow we use the coming in on wire 1(3) suffers no reflection at junction

r_natrices at junctions ?”dB.- This_gives the following rela- A (B). [We note that both the numerator and denominator of
tions between the various intensities, Eq. (34) vanish under conditiond) and(ii); hence one has
=24ty tig), to take the limit appropriately to see thB;=1]

L2 2
Ip =1 %l + 1%y,

1+r +r'2 (36)
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2 4
FIG. 9. T;3 as a function of R-Lgmod 27 for @=0.2, Lg/d Zeglig mod 21

=10,r'=-0.19,®=0, and different values df;/Lg. The three sets

of curves are fol.t/Ls=1,50, and 18 from top to bottom. FIG. 11. Ty3 as a function of ReLsmod 2 for =0.2, Ls/d

=10, =0, and different values df;/Ls. The four sets of curves
are forL+/Lg=1,150, 20 000, and £drom top to bottom. Note that

Similarly, we find thatT,3=0 for the following values of _ g
there is a transmission zero a&t2s=0 mod 2.

7, €® andr’:

(i) =1, andé® andr’ can take any values except 1 and
-1, respectively. tion given in (iii) above. We also observe antiresonances

(i) r'=0, and» and €® can take any values except  (T13=0) in Figs. 10 and 11 atkLs=0 mod 2.
=e*®_ Note thatr’=0 implies thatt=0 which means that Let us now discuss the resonance line shape in more
there is no transmission between the long wires and the ringletail®2° Exactly at a resonance, occurring at, says Ko,

(i) r'=-1, andz can take any value except 1, whi¢ T,3is equal to 1, and it remains stuck at that value no matter
can take any value. Once agair,=—1 implies thatt=0 how largeLy is. We can now ask: What is the shape of the
which means that there is no transmission between the longgsonance line slightly away fromk:=kg,? If one deviates

wires and the ring. from kgo by a small amountk= |kz—kgo| which is fixed, one
(iv) €®=-1, and(7,r’) can take any values exceft, finds that the transmission 5 differs from 1 by an amount of
-1) and(-1,0). order (Ak)%. (An example of this is discussed belpwZom-

As in the stub system, if;5 begins with the value 1 or 0 paring this with the form in Eq4), we see thak ~ Ak at the
at L/Ls=1, it remains stuck there and does not flow underength scald_s. Equation(34) then implies that will grow
RG as we go to larger length scales. For any other startings Ak(L1/Lg)* at low temperature; henck will approach
value ofTy3, it flows toward zero till the RG evolution stops zero as 1X?~T?> at very low temperature, ik is held
at the length scale. It is interesting to consider the shape fixed. On the other hand, the width of the resonance line at
of the resonance line which is a plot ®f3 versus the mo- half the maximum possible value ®f3 is given by the con-
mentumke (or, equivalently,;) at very low temperatures. As dition thatAk(Ly/Lg)“~ 1, which implies thathk~T¢. Thus
discussed in the following paragraph, one finds that the linéhe resonance line becomes narrower with decreasing tem-
shape becomes narrower with decreasing temperature, witrerature, with a widthAk which vanishes a3®. (This has
the width at half maximum scaling with temperatureTés  been experimentally observed in a single quantum W#ire,
Figures 9 and 10 show this feature qualitatively for the resobut not in systems with junctions such as the ones being
nances of typesi) and (i) described above. In Fig. 10, we considered herg.
see pairs of resonances becalgg has maxima at &Lg To summarize, T3 depends on the variablesk and T
equal to® and -® mod 2. Figure 11 shows the resonance through the combinatiox=Ak/T¢, and T;5(x) ~1/x? as x
of type (iii ). HereTy3is close to 1 for a wide range &t (or  — 0. (This differs slightly from the expression given in Ref.
n) at L{/Lg=1; this is consistent with the resonance condi-13 because we have assumedo be small) As a specific
example, let us consider the resonance of tgipeWe set

€®=1 and take the limikz — kgo=7n/Lg in Eq. (34). We
find that at the length scaleg
(1+2r')?
Ti3=1-—————(2AkLg)? 37
13 16f’2(l+l")2( S) ( )
up to order(Ak)?. Equation(5) then implies that at the length
scaleLy
(1+2rr)2 2( LT>2a -1
Ti3=| 1+ —5——=(2AkLg)*| — . (38
13 16I"2(1+I”)2( S) I—S ( )

FIG. 10. Ty as a function of ReLsmod 27 for @=0.2,Lg/d ~ Thus, if " is held fixed andT,; is plotted against
=10, ®=0.57, and different values ot.t/Ls The four sets of AK(Lt/Lg%, we should get the same curve for different val-

curves are fot1/Ls=1,50,3000, and 1®from top to bottom. Note  ues ofL;/Lg, provided that the quadratic approximation in
that there is a transmission zero &-Ps=0 mod 2. Eq. (37) holds good. In Fig. 12, we shoW; as a function of
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where »=€?ls, [Equation(39) will be derived in the next
paragraph.Having obtainedS,y at the length scalég, we

then continue with the RG flow of that matrix using E®).

This flow is stopped when we reach the length sdaje
where we computd,,, andT;s.

As in the stub system, E@39) can be derived in one of
two ways. The first way is to assume an incoming wave with
unit amplitude on wire 1 and no incoming waves on wires 2,
B } 3 and 4, and then use the scattering matriggsat junctions
02! + L L A andB. The second way is to sum over all the paths that an
[2k L mod 2n] * (L/Ly” electron can take. As in the stub system, the different paths

going between any two of the long wiresind | are charac-

FIG. 12. T13 as a function of the scaled variablgkLs mod  terized by an integen=0,1, ..., which is the number of
2m](Lt/L9* for @=0.2,Ls/d=10,r'=-0.32,®=0, and different  times a path goes right and left on the central wire labeled 5.
values Oﬂ_T/Ls. The four sets of curves are fdlﬁ'/ LS:1,2.7,7.4, For |nstance, the sum over paths Wh'Ch go from a p0|nt on

and 20 from top to bottom. The inset shows the same plots withoWyire 1 lying very close to junctior to itself gives the series
scaling, i.e.,T13 as a function of RrLg

(S4D)ll: r’+ t771’2r 771/2t + t771’2r 771/2'. 771/2r 771/2»[ + ...,

2AKkLL1/Lg“ for four different values ofL;/Ls We see (40
that the curves agree well with each other down to about | . . ) Lo -
T,3=0.7. For comparison, we have shown the same pIotsa Zlignagr;ﬁf’evtvr:? ;?hee:'res): ?gggg?lg :2 gg)g) Similarly,
without scaling in the inset; we see that they begin disagree- P . . .
Let us now calculate the transmission probabilities

ing belowT;3=0.95.(We find similar resonance line shapes tsmd Ty If Ly<Ls we have o us&;p to compute expres-

in the stub and four-wire systems, although we have NO%ions forT; with an interpolating factof as in Eq.(28). This

shown those plots hepe. ; ] . :
is as easy to do here as in the stub system since we know
how to explicitly sum over all the paths. The interference

VI. EOUR-WIRE SYSTEM between the contributions of two paths characterized by in-
tegersn, andn, must be multiplied by a factd™ ™!, where
Finally, let us consider the four-wire system shown in Fig.f is given in Eq.(28). On summing up all the terms with the
3. We will assume that both junctiomsandB are described appropriate factors of, we find that
by the same X 3 scattering matrixS;p given in Egs(6) and

2,2 4

(7), w_ith complete symmetry between the wire; 1 and 2 on TL,=t2+ t_rz +t2<t’r + r_z)
one side and the wires 3 and 4 on the other side. The trans- 2(1+r7) 2(1+r9)
mission probabilities enjoy the symmetries described in Eqg. f “f
(15) ( o, 7 )

: 2 2 ¢ |

We first consider the RG flow of the transmission prob- 1-r"gt 1-rpf

abilities T;;. Due to the symmetries of the system, and the ) - .
sum rules discussed in Sec. lll, we see that there are only two _t + tr nf +1 f
independent quantities to consider, nam&ly, and T5. Fol- B721+rd)  21+r)\1-r2pf  1-r2yf)

lowing the formalism in Sec. Il, we start from the length (1)
scaled and initially use Eq(8) to see how the various entries

of S3p flow as functions of the length. lf+<Lg we follow  These are the desired interpolating expressionsT{grand
this flow up to the length scaley, and then comput&;, and T3 If we setf=0 (as we must do foL.t<Lg), we get the

Tis incoherent expressions
If L+>Lg, we first use Eq(8) to follow the flow up to the , , 12
length scaleLg. At that point, we switch over to a 44 T,=t'2+ €2 _(+r)+5+4r ),
scattering matrixS,p which can be obtained from the matrix 2(1+r?) 21+ +2r'?)
S;p that we get at that length scale from the RG calculation.
The entries ofS,p(Lg) and S;p(Lg) can be shown to be re- ot r'(1+r')
lated as follows: Ti3= 2(1 +r?) - 21+ 2" +2r'%)’ (42)
(Sip)pe =1 + t?ry which are independent af. On the other hand, if we sét
1-r2yp’ =1 (as we must do atr=Lg), we get the coherent expres-
2r sions which are given by the square of the modulus of the
(Sip)p=t' + —72’ entries(Syp)1, and (S;p)13 in Eq. (39).
1-roy As in the stub system, there is a way of directly obtaining
> 12 the incoherent expression in E@-2) without summing over
(54[))13:%, (39) paths, by adding probabilities rather than amplitudes. We
1-roy consider a situation with the following kinds of waves: a
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—————————————————————— 02sf Ao

- 0.15F

— T,, Incoherent ] o
.
.-+ T, , Interpolating( - oik |I— :13 Ecoherlznf ]
-- T,, Coherent | --- T, Interpolating
] 0051 |- T,; Coherent -
I 1
%1 ! 10 %.l 1 10
s Lyl

FIG. 13. Ty3 for the four-wire system as a function bf/Lg for FIG. 14. T3 as a function ofL{/Lg for «=0.2, Ls/d=10, and

a=0.2,Lg/d=10, andnp=1. The four sets of curvgincoherent and r’=-0.28. The four sets of curvémterpolating and coherenare
interpolating are forr’=-0.43,-0.28,-0.17, and —0.07 from top to for 7=1,6/%-37 €067 ande®%7 from top to bottom. The incoherent
bottom. The coherent curve stays at 1/4 for all values’adince  curve is independent of.

=1.
! the wires; there is no RG flow if the interaction parameters
wave of unit intensity which comes into the system from&'€ all zero. Apeculiarity of our RG formali_sm is that it has
wire 1, waves of intensity, i, andi, which go into wires 2, two stages Whlch_work in the regimes pf high and low tem-
3, and 4, and waves of intensity andi, which travel right perature, respectively. We abruptly switch between the two
and left, respectively, on wire 5. We then use the matriceSt2ges when we cross the poirt/Ls=1. It would be useful
S,p at junctionsA and B to relate all these intensities, and to develop an interpolating formalism for the RG flow which

then solve fori, andis. This reproduces the results in Eq. €an vary smoothly across the intermediate range of tempera-
ture. In our way of deriving the RG equations, this may
(42).

If Ly>Lg Ty, and Ty are equal to|(Syp)1J? and require an analysis of the way in which Friedel oscillations

; i from two junctions interfere with each other.
[(Syp)14%, Where(Syp)1, and(Syp)15 are given in Eq(39). In _ .
this regime, the RG flow has to be carried out numerically Our results should be applicable to the systems mentioned

for the reasons explained after HGO). In generalb andc earlier such as multiarm quantum wirjgzsyarious "“."ds of
P HAD). In g carbon nanotube®! and systems with other kinds of

flow to zero asL™ at long distances as discussed earlier; s .
henceT,, and Ts go to zero ag 2%, geometrf. While some of the early experiments focused on
In the coherent regime given hy>Lg, we observe that e_Iectronlc transport in the presence of an external _magnetlc
T,, and T,; are both equal to 1/4 if eithem=1 or field and the effects of geometry, measuring _the various con-
r'=-1/2. We may call these resonances since the maxiqugctances at different temperatu(_aﬂd, i POSS.'ble' different
possible value off;53 which is allowed by the form of the wire Igngths shquld reveal the interaction mduc;ed power
laws discussed in our work. Note that a spread in the phase

matrix in EQ.(10) is 1/4. If =1, T,3 remains stuck at 1/4 . . .
and does not flow under RG. Thilg can be seen in Fig. 1338 discussed after EL) in Sec. I] and phase randomiza-

where we showl;; as a function oL¢/Lgfor various values tion (as_discussed in Sec. )Iare_the onl_y eff_ects of thermal

of r'. For any other value of, T, flows till the RG evolu- fluctuations that we have considered in this work. We have
tion stops at the length scdle., (As discussed below;;; can ignored oth_er effeg:ts of f|n|te temperature, such as momen-
sometimes increase before eventually decreasing towar({gm relaxatlon.by inelastic scattering, and corrections to the
zero at very low temperaturgg\s in the stub system, we can andauer-Buttiker conductances due to thermal broadening

vary the value ofy and therefore tune the system to reso-Of the Fermi-Dirac distribution near the Fermi energy. An
nance by changing the electron momentigm application of our work to experiments would require one to
In Fig. 14, we showf,; as a function of /L for various disentangle these other features before the effects of interac-

values of#%. In Fig. 15, we show the cross-over behavior of 022
T,3 mentioned in Sec. Il. In the coherent regime, for certain
ranges of values of’ and 7, T.5 first increases and then

decreases at very low temperatures. As explained earlier, this
can only happen in a quasi-one-dimensional system, since in
purely one-dimensional systems with repulsive interactions, o2r N
back-scattering always increases. &
o19F \
VII. DISCUSSION /
. . . 0.18 . L ! ! -
In this work, we have derived the RG equations and the 0wt e gg et 0
S

transmission probabilitieeand conductancgdor three sys-
tems of experimental interest. The RG flows and the conse- FIG. 15. T;; as a function ofL{/Lg for a=0.2, Lg/d=10,
guent power-laws in the temperature and length dependences=-0.33, andy=€%52", T, first increases and then decreases at
of the conductances are purely a result of the interactions imery low temperatures.
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tions can become visible. Typically, the temperature at which/, , and ¢/, just to the right ofA; waves on wires 2 and 4
these experiments are done is about-AL1K, while the  which are outgoing at junctioA and have amphtude&?Out
Fermi energy is about 10°K which is much lardeence  and ¢/, ., just to the right ofA; waves on wires 2 and 4
the thermal broadening effect is expected to be small. which are incoming at junctioB and have amphtudet#g in

We emphasize that this is the first study which considersnd ﬁm just to the left ofB; and waves on wires 2 and 4
the effects of interactions in the stub and the four-wire syswhich are outgoing at junctioB and have amp||tude$§ out
tems, although interaction effects have been studied for ringnd 7, just to the left ofB. Our aim is to find an expres-
systems earlier using bosonizati#An interesting point to  sion for the transmitted amplitudg; o
observe is that sometimes the nontrivial geometry in these The Schrddinger equation relates many of the amplitudes
systemgwith junctions which have three wires meeting at aintroduced above to each other. This is because of the fol-
point) can actually reduce back-scattering from a junction agowing features: a wave which travels a distamggcks up a
a result of the RG flow. In that case, as one goes toward loyhase ofek™ (we are assuming that all the particles have
temperatures, the conductance between two of the wires iomentumk); a wave which travels anticlockwise around
enhancedinstead of being reduced as would have happeneghe ring from junctiorA to junctionB or vice versa picks up
for scattering from an impurity. However, this occurs only a phase o€®/?; and a wave which travels clockwise around
for a specific kind of junction and only for certain special the ring from junctionA to junctionB or vice versa picks up

ranges of values of th&-matrix, as discussed after E@). a phase o&™®2, This gives us the following relations:
One limitation of our work is that we have assumed linear 5 L il
relations between the incoming and outgoing fermion fields. Py jn=€"FS” ¢/2L\,out'
In principle, other interesting things can happen at a junction,
particularly if we consider the case of spinful fermions and if '/é,in = eikFLs’fi‘I’/Zlﬂglout,
some of the wires are superconducting rather than metallic.
For instance, there may be Andreev reflection in which an Y8 = elkeLsri®izyp
4,in 4,outr

electron striking the junction from one wire is reflected back
as a hole while two electrons are transmitted into some of the kL2 B
other wires>19 It would be interesting to study these phe- Vain = 2YR (A1)

nomena using the techniques developed in this paper.  Now we use the form of the scattering matrices in &).at
the two junctions. At junctiorA, we have

Prou=T+ t(’ﬂzA,in + Wiin)'
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APPENDIX ‘/’3,out: t(%@m + w&,in) ’
We will derive Eq.(34) here. We consider a situation with
the following kinds of waves: an incoming wave on wire 1 ¢§out: r’:pginﬂ’ﬁ’in,
whose amplitude is unity just to the left of junctidki an
outgoing wave on wire 1 whose amplitudeyis . just to the ﬁom: B+t %3 o (A3)

left of junction A; an outgoing wave on wire 3 whose ampli-
tude isys ojust to the right of junctiorB; waves on wires 2 Using Egs.(A1)«(A3), we obtain the expression fd8,p)31
and 4 which are incoming at junctiohand have amplitudes =3 o given in Eq.(34).
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