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We examine the effect of interactions between the electrons on the Landauer-Büttiker conductances of some
systems of quantum wires with different geometries. The systems include a long wire with a stub in the middle,
a long wire containing a ring which can enclose a magnetic flux, and a system of four long wires which are
connected in the middle through a fifth wire. Each of the wires is taken to be a weakly interacting Tomonaga-
Luttinger liquid, and scattering matrices are introduced at all the junctions present in the systems. Using a
renormalization group method developed recently for studying the flow of scattering matrices for interacting
systems in one dimension, we compute the conductances of these systems as functions of the temperature and
the wire lengths. We present results for all three regimes of interest, namely, high, intermediate, and low
temperature. These correspond, respectively, to the thermal coherence length being smaller than, comparable
to, and larger than the smallest wire length in the different systems, i.e., the lengths of the stub or each arm of
the ring or the fifth wire. The renormalization group procedure and the formulas used to compute the conduc-
tances are different in the three regimes. In particular, the dimensionality of the scattering matrix effectively
changes when the thermal length becomes larger than the smallest wire length. We also present a phenomeno-
logically motivated formalism for studying the conductances in the intermediate regime where there is only
partial coherence. At low temperatures, we study the line shapes of the conductances versus the energy of the
electrons near some of the resonances; the widths of the resonances are found to go to zero with decreasing
temperature. Our results show that the Landauer-Büttiker conductances of various systems of experimental
interest depend on the temperature and lengths in a non-trivial way when interactions are taken into account.
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I. INTRODUCTION

The increasing sophistication in the fabrication of semi-
conductor heterostructures and carbon nanotubes in recent
years have made it possible to study electronic transport in
different geometries. For instance, three-arm and four-arm
quantum wire systems have been fabricated by voltage-gate
patterning on the two-dimensional electron gas in GaAs
heterojunctions.1,2 Other systems of interest include
Y-branched carbon nanotubes,3 crossed carbon nanotubes,4

mesoscopic rings,5,6 and quantum wire systems with stubs.7

There have also been many theoretical studies of transport in
systems with various geometries.8–12

Studies of ballistic transport in a quantum wire(QW)
have led to a clear understanding of the important role
played by both scattering of the electrons and the interactions
between the electrons inside the QW.13–16The scattering can
occur either due to impurities inside the QW or at the con-
tacts lying between the QW and its reservoirs. A theoretical
analysis using bosonization17 and the renormalization group
(RG) method typically shows that repulsive interactions be-
tween electrons tend to increase the effective strength of the
back-scattering as one goes to longer length scales; experi-
mentally, this leads to a power-law decrease in the conduc-
tance as the temperature is reduced or the wire length is
increased.18 Motivated by this understanding of the effects of
interaction on scattering, there have been several studies of
the interplay between the effects of interactions on one hand,
and either a single junction between three of more QWs,19–22

or more complicated geometries23–27 on the other. Using a
fermionic RG technique introduced in Ref. 28, the effects of
a junction(which is characterized by an arbitrary scattering
matrix S) have been studied in some detail.21 (A similar tech-
nique has been used to study transport through a double bar-
rier structure.29) It is natural to extend the study of a single
junction to systems of QWs which are of experimental inter-
est and which can have more complicated geometries involv-
ing more than one junction.

In this paper, we will study the effect of interactions on
the Landauer-Büttiker conductances of three systems of
quantum wires with different geometries. These systems are
shown in Figs. 1–3, and we will refer to them as the stub, the
ring, and the four-wire system, respectively. The stub system
consists of two long wires, labeled 1 and 3, with a stub
labeled 2 being attached to the junction of 1 and 3. The ring
consists of two long wires, labeled 1 and 3, between which
there is a ring which can possibly enclose a magnetic flux;
the two arms of the ring, labeled 2 and 4, will be assumed to
have the same length for convenience. The four-wire system
consists of four long wires labeled 1, 2, 3, and 4. The junc-
tion of 1 and 2 is connected to the junction of 3 and 4 by a
fifth wire labeled 5. The length of wire 2 in the stub system,
the length of each of the arms 2 and 4 in the ring system, and
the length of wire 5 in the four-wire system will all be de-
noted byLS. Each of the junctions present in the different
systems is governed by a 333 scattering matrixS which is
unitary. We will assume that each of the wires in the various
systems can be described as a one-channel weakly interact-
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ing Tomonaga-Luttinger liquid. For simplicity, we will ig-
nore the spin of the electrons in this paper.

In Sec. II, we will first summarize the RG method devel-
oped in Ref. 21 for studying the flow of theS-matrix at a
junction due to the interactions in the different wires con-
nected to that junction. We will then describe our method for
carrying out the RG analysis of theS-matrices at the various
junctions of the different systems. In Sec. III, we will de-
scribe the procedure for computing the transmission prob-
abilities (and conductances) of a system given the form of
theS-matrices at all its junctions. Both the RG procedure and
the route from theS-matrices to the conductances will turn
out to depend on the range of temperatures that one is con-
sidering. There is a length scale, called the thermal coher-
ence lengthLT, which governs the typical distance beyond
which the phase of the electron wave function becomes un-
correlated with its initial phase. The regimes of high, inter-
mediate, and low temperatures are governed, respectively, by
the condition thatLT is much smaller than, comparable to, or
much larger than the length scaleLS defined above for the
three systems; correspondingly, we have complete incoher-
ence, partial coherence, and complete coherence for the
phase. The intermediate temperature range is the most diffi-
cult one to study, both for using the RG method and for
computing the conductances. Based on some earlier
ideas,30,31 we will describe a phenomenological way of in-
troducing partial coherence which will lead to expressions
for the transmission probabilities which interpolate smoothly
between the coherent and incoherent expressions.

In Secs. IV–VI, we will apply the formalism outlined in
the previous sections to the stub, ring, and four-wire systems,
respectively. In each case, the transmission probabilities at
intermediate and low temperatures(i.e., the partially and
completely coherent regimes) will be found to depend sensi-
tively on the phaseh=ei2kFLS; herekF is the wave number of
the electrons which are assumed to come into or leave the
QW system with a momentum equal to the Fermi momentum
in the reservoirs. In particular, certain values ofh can lead to
resonances and antiresonances i.e., maxima and minima in
the transmission probabilities. In the ring system, there is
another important phase which governs the possibility of

resonance, namely,eiefB/"c, wherefB is the magnetic flux
enclosed by the ring, ande andc are the electron charge and
the speed of light, respectively. In each system, we will see
how the conductances vary with the temperature in a non-
trivial way as a result of the interactions. This is the main
point of our paper, namely, that interactions between the
electrons lead to certain power-laws in the temperature and
length dependences of the conductances of experimentally
realizable quantum wire systems.

II. RENORMALIZATION GROUP METHOD FOR
SYSTEMS WITH JUNCTIONS

In this section, we will first present the RG procedure
developed in Ref. 21 for studying how the effect of a single
junction varies with the length scale. We will then describe
how the RG method has to be modified when a system has
more than one junction.

A junction is a point whereN semi-infinite wires meet.
Let us denote the various wires by a labeli, where i
=1,2, . . . ,N. As we approach the junction, the incoming and
outgoing one-electron wave functions on wirei approach
values denoted bycIi and cOi respectively; we can write
these more simply as twoN-dimensional columnscI andcO.
The outgoing wave functions are related to the incoming
ones by aN3N scattering matrixcO=ScI. Current conser-
vation at the junction implies thatS must be unitary.(If we
want the junction to be invariant under time reversal,S must
also be symmetric.) The diagonal entries ofS are the reflec-
tion amplitudesr ii , while the off-diagonal entries are the
transmission amplitudestij to go from wire j to wire i. We
will assume that the entries ofS do not have any strong
dependence on the energy of the electrons.

We assume a short-range density-density interaction be-
tween the electrons of the form

Hint =
1

2
E E dxdyrsxdVsx − ydrsyd, s1d

whereVsxd is a real function ofx, and the densityrsxd is
given in terms of the second-quantized fermion fieldCsxd as
r=C†C. We define a parameterg2 which is related to the

Fourier transform ofVsxd as g2=Ṽs0d−Ṽs2kFd. Different
wires may have different values of this parameter which we
will denote byg2i. For later use, we define the dimensionless
constantsai =g2i / s2p"vFd, where we assume that the veloc-
ity vF="kF /m is the same on all wires. In this work, we will

FIG. 1. The stub system, showing two long wires labeled 1 and
3, and a stub labeled 2. The lower end of the stub where three wires
meet and the upper end of the stub are denoted byA and B,
respectively.

FIG. 2. The ring system, showing two long wires labeled 1 and
3, the two arms of the ring labeled 2 and 4, and two three-wire
junctions labeledA andB.

FIG. 3. The four-wire system, showing four long wires labeled
1, 2, 3, and 4, a connecting wire in the middle labeled 5, and two
three-wire junctions labeledA andB.
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be interested in the case in which the interactions are weak
and repulsive, i.e., the parametersai are all positive and
small.

The RG equation for theS-matrix21 can be briefly derived
as follows. A reflection from a junction, denoted by the am-
plitude r ii in wire i, leads to Friedel oscillations in the elec-
tron density in that wire. Ifx denotes the distance of a point
from the junction, the form of the oscillation at that point is
given by the imaginary part ofr iie

i2kFx/ s2pxd. As a result of
the interactions, an electron traveling in that wire gets re-
flected from these oscillations. The amplitude of the reflec-
tion from the oscillations is proportional toair ii /2 if the
electron is reflected away from the junction, and toair ii

* /2 if
the electron is reflected toward the junction. These reflec-
tions renormalize the bareS-matrix which characterizes the
junction at the microscopic length scale. The entries ofS
therefore become functions of the length scaleL; we define
the logarithm of the length scale asl =lnsL /dd, whered is a
short-distance cutoff such as the average interparticle spac-
ing. In terms of aN3N diagonal matrixM whose entries are
given byMii = 1/2air ii . Then the RG equation forS is found
to be21

dS

dl
= M − SM†S s2d

to first order in theai. (This equation is therefore perturba-
tive in the interaction strength.) One can verify from Eq.(2)
that S remains unitary under the RG flow; it also remains
symmetric if it begins with a symmetric form. The fixed
points of Eq.(2) are given by the conditionSM†=MS†, i.e.,
SM† must be Hermitian.

We can study the linear stability of a fixed point by devi-
ating slightly from it, and seeing how the deviation grows to
first order under the RG flow. Let us denote a fixed point by
the matrixS0 and a deviation byeS1, wheree is a small real
parameter andS1 is a matrix; we require that the matrixS
=S0+eS1 is unitary up to ordere. (We can think ofS1 as
defining the “direction” of the deviation.) We substituteS in
Eq. (2) and then demand thatS1 should take such a form that
the RG equation reduces tode /dl =me, wherem is a real
number. We then call the directionS1 stable, unstable, and
marginal(to first order) if m,0,.0, and 0, respectively. All
fixed points have at least one exactly marginal direction
which corresponds to multiplying the matrixS0 by a phase;
clearly this leaves Eq.(2) invariant.

In this paper, we will be concerned with the RG flow of
S-matrices which are two-,three- and four-dimensional. For
convenience, we will assume certain symmetries in each of
these cases. It is useful to discuss these symmetries here, and
how they lead to some simplifications for the RG flows.

We first consider a two-wire system in which there is
complete symmetry between the wires which we will label as
1 and 3. Namely, the interaction parameters are equal,a1
=a3=a, and the scattering matrix has the form

S2D = Sa b

b a
D . s3d

Unitarity implies that we can parametrizea andb as

a = −
ileiu

1 + il
, and b =

eiu

1 + il
, s4d

wherel andu are real. Equation(2) then leads to the differ-
ential equations

dl

dl
= a l, and

du

dl
=

al

1 + l2 . s5d

The reflection and transmission probabilitiesuau2 and ubu2
only depend onl. For a.0, we see that there is an unstable
fixed point atl=0, and a stable fixed point atl=`. If l is
not zero initially(i.e., at the microscopic length scaled), then
it flows to infinity at long distances. Henceb goes to zero as
t,e−al ,L−a, a approaches 1, and the two wires effectively
get cut off from each other. This is in agreement with the
results obtained using bosonization.17

Next, we will consider the 333 case. Here we will as-
sume that there is complete symmetry between two of the
wires, say, 1 and 2, and that theS-matrix is real. Namely,
a1=a2, andS takes the form

S3D = 1r8 t8 t

t8 r8 t

t t r
2 , s6d

where r8, t8, and t are real parameters which, by unitarity,
satisfy

t8 = 1 + r8,

r = − 1 − 2r8,

t = Îs− 2r8ds1 + r8d, s7d

and −1ø r8ø0. The RG equations in Eq.(2) can be written
purely in terms of the parameterr8 as

dr8

dl
= − r8s1 + r8dfa1r8 + a3s1 + 2r8dg. s8d

If a1,a3.0, we have stable fixed points atr8=0 (where
there is perfect transmission between wires 1 and 2, and wire
3 is cut off from the other two wires) and −1(where all three
wires are cut off from each other). There is also an unstable
fixed point at

r8 = −
a3

a1 + 2a3
. s9d

If r8 starts with a value which is greater than(or less than)
this, then it flows to the value 0(or −1) at large distances. In
other words, forr8 lying between 0 and −1/3, the transmis-
sion (and, therefore, the conductance) between wires 1 and 2
increasesas we move toward the fixed point by lowering the
temperature. This is unexpected for a one-dimensional(1D)
system, where the conductance usually decreases for any
nonzero back-scattering as the temperature is lowered; this
unusual behavior is due to the fact that we have a three-point
junction and hence, this is only a quasi-one-dimensional sys-
tem.[We should point out that the fixed point in which wires
1 and 2 transmit perfectly into each other and wire 3 is cut
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off is stable only within the restricted space described by
Eqs.(6) and(7), or a simple variant of that case in whichr8,
t8, r, andt are complex but all of them have the same phase.
If we take a general unitary matrixS3D, then this is not a
completely stable fixed point. The only stable fixed point in
the general case is the one in which all three wires are cut off
from each other.21 We should also note that there is another
system known in which interactions can lead to an increase
in the conductance.32]

Finally, let us consider the 434 case. Here we will be
interested in a situation in which there is complete symmetry
between wires 1 and 2, and between wires 3 and 4; further,
we will take the values ofai in all the wires to be equal toa.
The S-matrix takes the form

S4D =1
a b c c

b a c c

c c a b

c c b a
2 , s10d

where a, b, and c are all complex. Unitarity implies that
these parameters can be written in terms of three independent
real variables. There does not seem to be a convenient pa-
rametrization in terms of which the RG equations take a
simple form. We therefore have to study the RG equations in
Eq. (2) numerically; the results will be described in Sec. VI.
However, the fixed points of the RG equations and their lin-
ear stabilities can be found analytically. There are three kinds
of fixed points.

(i) uau=1, andb=c=0. This corresponds to all the wires
being cut off from each other. This fixed point is stable in
two directions, and is exactly marginal in one direction(cor-
responding to a phase rotation ofa).

(ii ) ubu=1, anda=c=0. This corresponds to perfect trans-
mission between wires 1 and 2, and between wires 3 and 4,
but no transmission between any other pair of wires. This
fixed point is unstable in one direction[where it flows to the
fixed point described in(i)], and marginal in two directions.
One of these marginal directions turns out to be unstable at a
higher order, and the RG flow eventually takes it to the third
fixed point described below. The other marginal direction
corresponds to a phase rotation ofb.

(iii ) uau=1/2, b=−a, and c= ±a. This is a special point
which corresponds to the maximum possible transmission
with complete symmetry between all the four wires. This
fixed point is unstable in one direction[where it flows to the
fixed point in(i)], stable in a second direction[where it flows
in from the fixed point in(ii )], and exactly marginal in the
third direction(corresponding to a simultaneous phase rota-
tion of a, b, andc). The fact that(iii ) is stable in one direc-
tion and unstable in another, means that an interesting cross-
over can occur as a result of the RG flow. Namely, one can
begin near(ii ), approach(iii ) for a while, and eventually go
to (i). As a result,ucu can first increase and then decrease as
we go to long distances. Here again, this result is counter-
intuitive as far as one-dimensional physics is concerned,
since back-scattering is not expected to decrease; however,
once again, we have a four-point junction and hence our

system is only quasi-one-dimensional. This will be discussed
in more detail in Sec. VI(see Fig. 15).

We see that the only completely stable fixed point is given
by (i). As we approach this point at large distances,b andc
go to zero asb,c,L−a, while the ratiob/c approaches a
constant.

Let us now consider the three systems shown in Figs. 1–3.
In all the systems, there are four length scales of interest.
First, there is the microscopic length scaled which will be
assumed to be much smaller than all the other length scales.
Then there is the lengthLS of the various subsystems, such as
the stub in Fig. 1, each arm of the ring in Fig. 2 and the fifth
wire in Fig. 3. Next, we have the thermal coherence length
LT defined as

LT =
"vF

kBT
, s11d

whereT is the temperature. As mentioned before, we will be
interested in three different regimes, namely, the ratioLT/LS
being much smaller than 1(high temperature), comparable to
1 (intermediate temperature), and much larger than 1(low
temperature). Finally, we have the lengthLW of the long
wires, namely, wires 1 and 3 in Figs. 1 and 2, and wires 1, 2,
3, and 4 in Fig. 3. We will assume thatLW is much longer
than bothLS andLT. The long wires will be assumed to be
connected to some reservoirs beyond the distanceLW. We
will not need to consider the reservoirs explicitly in this pa-
per, and the length scaleLW will not appear in our calcula-
tions.

The interpretation ofLT is that it is the distance beyond
which the phase of an electron wave packet becomes uncor-
related. This can be understood as follows. If the bias which
drives the current through a QW system is infinitesimal, then
the electrons coming into the QW from the reservoirs have
an energyEF="2kF

2 / s2md, whereEF is the Fermi energy in
the reservoirs. At a temperatureT, the electron energy will
typically be smeared out by an amount of the order ofkBT.
The uncertainty in energy is therefore given bykBT=DE
="vFDkF, where we have used the relationvF="kF /m.
Hence,DkF=kBT/ s"vFd=1/LT. If an electron with one par-
ticular wave-numberkF travels a distanceL, the phase of its
wave function changes by the amountkFL. Hence, the phases
of different electrons whose wave numbers vary by an
amountDkF will differ by about p (and can therefore be
considered to be uncorrelated) if they travel a distance of
aboutpLT. HenceLT (or pLT) can be thought of as the phase
relaxation length of a wave packet.33

We can now discuss in broad terms the RG procedure that
we will use for the various systems. In each case, we will
begin at the microscopic length scaled with certain values
for the entries of the 333 S-matrices at the various junc-
tions. We will use Eq.(2) to evolve all theS-matrices. We
will follow this evolution till we get to the length scaleLS or
LT, whichever isshorter. Two possibilities arise at this stage.

(i) If LT is less thanLS, we will stop the RG flow at the
length scaleLT, and then calculate the transmission prob-
abilities as discussed in Sec. III.

(ii ) If LT is larger thanLS, we will stop the RG flow of the

SOURIN DAS, SUMATHI RAO, AND DIPTIMAN SEN PHYSICAL REVIEW B70, 085318(2004)

085318-4



333 matrices at the length scaleLS. Much beyond that
length scale, the various systems shown in Figs. 1–3 look
different since it no longer makes sense to consider the dif-
ferent junctions(and theirS-matrices) separately. In particu-
lar, the stub and the ring systems look like two long wires
joined at one point, while the four-wire system looks like
four long wires joined at one point. Thus they all look like
systems with only one junction as indicated in Fig. 4. This
junction is described by an effectiveS-matrix which is 2
32 for the stub and ring systems, and 434 for the four-wire
system. As we will discuss in Secs. IV–VI, the effective
S-matrix is obtained by appropriately combining the 333
S-matrices at the various junctions at the length scaleLS; we
can think of this process as “integrating out” the subsystems
of lengthLS. Then we will continue the RG flow beyond the
length scaleLS, but now with the effectiveS-matrices. This
will continue till we reach the length scaleLT. At that point,
we stop the RG flow and compute the transmission probabili-
ties as shown in Sec. III.

[The reason for stopping the RG flow atLT in all cases is
that the amplitudes of the various Friedel oscillations and the
reflections from them(caused by interactions) and from the
junctions are not phase coherent with each other beyond that
length scale. Hence all these reflections will no longer con-
tribute coherently to the renormalization of the scattering
amplitudes described by the variousS-matrices.]

To summarize, we will carry out the RG flow in one stage
from the length scaled up to the length scaleLT, if LT,LS.
If LT.LS, we will study the RG flow in two stages; the first
stage will be with one kind ofS-matrix from d to LS, while
the second stage will be with a different kind ofS-matrix
from LS to LT. The two kinds ofS-matrices will be connected
to each other at the length scaleLS as discussed in Secs.
IV–VI. In all cases, when we finally stop the RG flow(after
one stage or two), we will compute the transmission prob-
abilities. The procedure for doing this will be discussed in
the next section.[In reality, we expect a smooth cross-over
from one stage of the RG procedure to the other at some
length scale which is of the order ofLS. For the sake of
computational simplicity, however, we are adopting a RG
procedure which changes abruptly exactly atLS. We should
also note that the RG procedures that we will follow are
really only valid forLT!LS andLT@LS. However, we will
assume for convenience that it is a reasonable approximation
to use the same procedures all the way up toLT=LS.]

In all the numerical results presented in Secs. IV–VI, we
will take the interaction parametera=0.2 on all the wires,
and the ratioLS/d=10. We will always begin the RG flow at

the length scaleLT=d, i.e.,LT/LS=0.1. The values ofr8 that
we will quote in the different figures will be the values at
LT/LS=0.1. The reason for choosing these particular values
of the parameters is that they are “typical” to experimental
systems. The interaction parametera=0.2 corresponds to a
value of the Tomonaga-Luttinger parameterK
=Îs1−ad / s1+ad of about 0.8.21 A variety of experiments
show thatK typically lies in the range 0.6−0.8.34–36 The
short-distance cutoff parameterd is usually taken to be the
inverse of the Fermi wave numberkF in the two-dimensional
electron gases which form the reservoirs of many quantum
wire systems; this is about 0.1mm in many semiconductor
heterojunctions. The wire length(or ring diameter) LS typi-
cally lies in the range 1−10mm.18,33 Hence the ratioLS/d
would be expected to lie in the range 10 to 100. For tem-
peratures lying in the range of 0.3° to 25°K18 andLS lying in
the range given above, the ratioLT/LS lies in the range 0.01
to 2.

III. LANDAUER-BÜTTIKER CONDUCTANCE

In this section, we will discuss how to calculate the con-
ductances of the various systems in the three different re-
gimes of temperature. As mentioned already, we assume that
in each of the systems, the long wires are eventually con-
nected to reservoirs through some contacts. For a single
channel of spinless fermions, there is a resistance ofe2/h at
the contacts.33 [Although the contacts can themselves scatter
the fermions,16 we will ignore such effects here. We are also
assuming that the QWs are free of impurities. So the only
sources of scattering in our systems are the junctions.]

We take the fermions in all the reservoirs to have the same
Fermi energyEF, and the net current on all the wires to be
zero in the absence of any applied voltage on the leads. Now
suppose that the voltage in reservoiri is changed by a small
amountVi; here i =1,3 for thestub and ring systems, andi
=1, . . . ,4 for the four-wire system. ForuViu much smaller
than all the other energy scales in the problem, such asEF
andkBT, the net current flowing into wirei (from reservoir
i) will satisfy the linear relationship33,37

I i =
e2

h o
j

TijVj , s12d

where Tij (for i Þ j) defines the various transmission prob-
abilities, andTii +1 denotes the reflection probability on wire
i. The Tij satisfies certain sum rules. Current conservation
implies thatoi Tij =0 for each value ofj . The condition that
each of the currents must be zero if all theVi are equal to
each other implies thato j Tij =0 for each value ofi. This is
equivalent to saying that changing all theVi by the same
amount does not change any of the currents. Thus, if there
areN wires, onlyN−1 of the voltages are independent vari-
ables as far as the currents are concerned.

We can compute any of the conductances of the system if
we know the values of all theTij in Eq. (12). One way to
define a conductance is as follows.33,37 We consider two of
the long wires, say,i and j ; we call these the current probes,
and the currents at these two wires satisfyI i =−I j. On all the

FIG. 4. Effective descriptions of the various systems at low
temperature,LT.L0. The stub and ring systems effectively reduce
to a two-wire system with a junction as in(a), while the four-wire
system reduces to a four-wire system with a junction as in(b).
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other wires, we impose the voltage probe conditionIm=0;
this imposesN−2 conditions on the voltages. These condi-
tions imply that there is only one independent variable left
among all the voltages; we can take this variable to beVk
−Vl, wherekÞ l (in general,k, l may or may not be the same
as i , j). We can now define a conductance of the form

Gij ,kl =
I i

Vk − Vl
. s13d

In Secs. IV and V, we will consider systems which have
only two long wires labeled 1 and 3(see Figs. 1 and 2). The
sum rules discussed above then imply the relations

T13 = T31 = − T11 = − T33, s14d

and there is only one conductance to consider, namely,
G13,31=se2/hdT13. In Sec. VI, we will consider a system with
four long wires labeled 1, 2, 3, and 4, with complete sym-
metry between wires 1 and 2 on one hand, and between 3
and 4 on the other(see Fig. 3). In this case, we have the
relations

Tij = Tji ,

T11 = T22 = T33 = T44,

T12 = T34,

T13 = T14 = T23 = T24,

andT11 + T12 + 2T13 = 0. s15d

There are many different conductances one can consider in
this system; the important ones are as follows. We can take
wires 1 and 2 to be the current probes, and wires 3 and 4 to
be the voltage probes. We then obtain

G12,21=
e2

h
sT12 + T13d. s16d

Alternatively, we can take wires 1 and 3 to be the current
probes, and wires 2 and 4 to be the voltage probes. We then
find

G13,31=
4e2

h

T13sT13 + T12d
3T13 + T12

,

G13,24=
4e2

h

T13sT13 + T12d
T13 − T12

. s17d

We now have the problem of determining the values ofTij
in our systems. IfLT.LS, we will see in Secs. IV–VI that
one can think of each of the systems as effectively having
only one junction. In that case,Tij is related to the entries of
the S-matrix at that junction as follows:

Tij = utij u2 for i Þ j ,

andTii = ur ii u2 − 1. s18d

On the other hand, ifLT,LS, then we have to consider all
the junctions in the system, and the calculation ofTij in-
volves combining the effects of severalS-matrices in some
way.

All three systems of interest to us have two junctions.
[Note that the stub also has two junctions, i.e., a three-wire
junction at the lower endA, and a one-wire junction at the
upper endB where we will take theS-matrix to be equal to
−1 corresponding to a hard wall boundary condition.] An
electron which enters through one of the long wires has the
possibility of bouncing back and forth many times between
the two junctions. After several bounces, the electron can
emerge from the same long wire or from a different long
wire. From Figs. 1–3, we can see that two waves which
emerge from the system aftern1 andn2 bounces will have a
difference in path lengths which is equal to 2un1−n2uLS. Now,
there are two regimes of temperature which will give differ-
ent answers for the probabilitiesTij . If the thermal lengthLT
(which is the phase relaxation length as argued earlier) is
much smaller thanLS, then the two waves will be phase
incoherent ifn1Þn2. In this case, the contributions of the
two waves toTij must be added incoherently. On the other
hand, if LT is much larger than 2un1−n2uLS, then the contri-
butions of the two waves will add up coherently. In between
these extremes is an intermediate regime in whichLT is com-
parable toLS; in that case, we have only partial coherence,
and the two waves becomes more and more incoherent as
un1−n2u increases.

It is useful to have an expression for theTij which can
interpolate all the way from the coherent regime(low tem-
perature) to the incoherent regime(high temperature). To ob-
tain such an interpolating formula, we use the idea of partial
coherence caused by phase randomization by a voltage probe
which was introduced in Refs. 30 and 31. We will first sum-
marize this idea, and then describe how it can be extended to
our problem.

Consider Fig. 5 in which there is a wire with two ends
labeled 1 and 2. At some point labeledA in the middle of the
wire, there are two wiresP1 and P2 which are voltage
probes, i.e., the net outgoing currents at each of these wires
is zero. The four-wire junction atA is governed by an
S-matrix of the form

S=1
0 Î1 − p 0 − Îp

Î1 − p 0 − Îp 0

Îp 0 Î1 − p 0

0 Îp 0 Î1 − p
2 , s19d

where the columns and rows carry the indices 1, 2,P1, and
P2 in that order, andp is a real parameter which lies in the

FIG. 5. A wire with two voltage probesP1 and P2 at a point
labeledA. The two probes cause phase randomization of right and
left moving waves, respectively.
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range 0øpø1. (If p=0, the voltage probes have no effect,
and phase randomization does not occur.) A wave traveling
right from end 1 can go partially out intoP1 and partially on
to end 2; the part which goes out intoP1 can reenter the wire
and go on to 2. We now impose the phase randomization
condition that the wave which goes out intoP1 can reenter
the wire with an arbitrary phase change off1, but it must
have the same magnitude; this is necessary to ensure the zero
current condition sinceP1 is a voltage probe. Upon solving a
problem in which there is an incoming wave of unit ampli-
tude at end 1, and no incoming wave at end 2, we find that
there is complete transmission of the wave across the point
A. To be explicit, we take the incoming and outgoing waves
at A to be of the forms

cI =1
1

0

eif1c

0
2 andcO =1

0

t

c

0
2 , s20d

respectively. We then use the scattering matrix in Eq.(19) to
relatecI and cO. On eliminatingc, we find that the trans-
mission amplitude acrossA is given by

t = − eif1
1 −Î1 − p e−if1

1 −Î1 − p eif1
, s21d

so thatutu=1. When we calculate any physical quantity(such
as a transmission or reflection probability), we will integrate
overf1 from 0 to 2p. The following identity will prove to be
useful,

E
0

2p df1

2p
tn = s1 − pdunu/2 s22d

for any integern. As shown below, the integration overf1
reduces the coherence of a wave moving to the right from 1
to 2. Similarly, we can introduce a phase change off2 for a
wave which leaves and reenters the wire at probeP2; inte-
grating overf2 reduces the coherence of a wave moving to
the left from 2 to 1. For both right and left moving waves,
the degree of coherence depends on the value of the param-
eterp as we will now see.

We consider two waves which traveln1 and n2 times,
respectively, through pointA from left to right. Let us sup-
pose that their amplitudes area1 anda2, respectively, in the
absence of phase randomization, i.e., forp=0. In the pres-
ence of phase randomization, their amplitudes will bea1t

n1

anda2t
n2, respectively, wheret is given in Eq.(21). If these

two waves contribute to a transmission probabilityT, the
cross-term coming from their interference will be given by
a1

*a2t
n2−n1+a2

*a1t
n1−n2. We now integrate this expression over

the variablef1. Using Eq.(22), we find that

E
0

2p df1

2p
fa1

*a2 tn2−n1 + a2
*a1t

n1−n2g

= sa1
*a2 + a2

*a1ds1 − pdun1−n2u/2. s23d

We thus see that the phase randomization has the effect of
multiplying the interference of two terms by a factor which

interpolates between 1(i.e., complete phase coherence be-
tween the two waves) for p=0 and 0(i.e., no phase coher-
ence) for p=1. Further, the interpolating factor depends ex-
ponentially onun1−n2u which is proportional to the difference
between the path lengths of the two waves.

Now we have to implement this idea in the systems of
interest to us. We do this by generalizing the idea of phase
randomization at a single point to phase randomization at a
continuum of points. Let us assume that the density of such
points in a wire is given bym /LT, wherem is some dimen-
sionless number(which is independent of any temperature or
length scale), and that the parameterp is the same at each of
those points. This assumption for the density is motivated by
our identification ofLT as the phase relaxation length; the
smaller the value ofLT, the more frequently phase relaxation
should occur as an electron travels along the wire. Thus the
number of phase relaxation points in an interval of lengthL
is equal tomL /LT. Following arguments similar to the one
described above, one can show that the interference of two
waves which pass through that length intervaln1 and n2
times will get multiplied by the factors1−pdun1−n2umL/s2LTd. If
we write s1−pdm/2=e−n, wheren is a positive dimensionless
number, we see that the interference between two waves
whose path lengths differ byDL= un1−n2uL will carry a fac-
tor of

F = expF− n
DL

LT
G . s24d

The high temperature limitsLT→0d corresponds to the inco-
herent case in which we ignore the interference between
paths with any finite length difference; namely, we add up
the probabilities contributed by different paths.

In our calculations of the transmission probabilities de-
scribed in Secs. IV–VI, we will require an interpolating fac-
tor as in Eq.(24) only for the caseLTøLS. It is only in that
regime that our systems have more than one junction which
allows for a number of different paths between any pair of
long wires. ForLT.LS, each of our systems effectively sim-
plify to a system which has only one junction and, therefore,
only one possible path between any pair of long wires.
Hence there will be no need to consider any interference
terms forLT.LS. In order to make our expressions for the
transmission probabilities match as we approachLT=LS from
above and below, we will use an interpolating factorF which
is 1 at LT=LS. We will therefore use a formula which is
motivated by the expression in Eq.(24) (with n set equal to
1), but which is somewhat modified so that it is goes to 1 as
LT approachesLS from below. We will use the following
prescription:

F = expFDL

LS
−

DL

LT
G for LT ø LS, s25d

for the factor multiplying the interference of two paths dif-
fering in length byDL.

IV. STUB SYSTEM

We will now use the ideas developed in the previous two
sections to study the transmission probability of the stub sys-
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tem shown in Fig. 1. The 333 scattering matrix, calledS3D,
which governs the junction labeledA will be assumed to be
of the form given in Eqs.(6) and(7), with complete symme-
try between the two long wires labeled 1 and 3. At the other
end of the stub labeledB, we will assume a hard wall bound-
ary condition, i.e., perfect reflection with a phase change of
−1.

We first consider the RG flow of the transmission prob-
abilities Tij . There is only one independent quantity to con-
sider in this system, namely,T13; all the others are related to
it by Eq. (14). As outlined in Sec. II, we start from the length
scaled and initially use Eq.(8) to see how the various entries
of S3D flow as functions of the length. IfLT,LS, we follow
this flow up to the length scaleLT and then stop there. At that
point, we computeT13 as explained below.

If LT.LS, we first use Eq.(8) to follow the flow up to the
length scaleLS. At that point, we switch over to a 232
scattering matrixS2D which can be obtained from the matrix
S3D that we get at that length scale from the RG calculation.
The entries ofS2DsLSd and S3DsLSd can be shown to be re-
lated as follows,

sS2Dd11 = sS2Dd33 = r8 −
t2h

1 + rh
,

sS2Dd13 = sS2Dd31 = t8 −
t2h

1 + rh
, s26d

whereh=ei2kFLS. Equation(26) will be derived in the next
paragraph.[The phase factorh appears because the electrons
are assumed to have a momentum ofkF in all regions; hence
the wave functions have factors of expsikFxd.] Having ob-
tainedS2D at the length scaleLS, we then continue with the
RG flow of that matrix following Eq.(5). This flow is
stopped when we reach the length scaleLT. At that point, we
computeT13 as explained below.

Equation(26) can be derived in one of two ways. The first
way is to assume an incoming wave with unit amplitude on
wire 1 and no incoming wave on wire 3, and then use the
scattering matrixS3D at junctionA and the sign change atB.
The second way, which is more instructive for us and is also
easier, is to sum over all the paths that an electron can take.
For instance, if we consider the different paths which go
through the stub, we see that they are characterized by an
integern=0,1, . . . ,which is the number of times a path goes
up and down the stub. The length of a path which goes from
a point just to the left ofA to itself after going up and down
the stubn times is given by 2nLS. Summing over all such
paths leads to the expression

sS2Dd11 = r8 − tht + thrht − thrhrht + ¯

= r8 −
t2h

1 + rh
, s27d

which is the first equation in Eq.(26). Similarly, we can
derive the second equation in Eq.(26) by summing over all
the paths which go from a point just to the left ofA to a point
just to the right ofA

Let us now calculate the transmission probabilityT13. If
LTøLS, we have to useS3D to compute an expression forT13
with an interpolating factorF as in Eq.(25). This is easy to
do since we have already found the sum over all the paths as
in Eq. (27). According to the phase randomization idea dis-
cussed in Sec. III, the interference between two paths char-
acterized by integersn1 andn2 must be multiplied by a factor
F= f un1−n2u, where

f = expF2S1 −
LS

LT
DG . s28d

This follows from the prescription Eq.(25) since the differ-
ence in path lengths is given byDL=2un1−n2uLS. On sum-
ming up all the terms with the appropriate factors off, we
find that

T13 = t82 +
t2

2
− t2St8 +

r8

2
DF hf

1 + rhf
+

h * f

1 + rh * f
G ,

s29d

where we have used some of the relations in Eq.(7). Equa-
tion (29) is the desired interpolating expression forT12. If we
set f =0 (as we must do forLT!LS), we get the incoherent
expression

T13 = t82 +
t2

2
= 1 + r8, s30d

which is independent ofh. On the other hand, if we setf
=1 (as we must do atLT=LS), we get the coherent expression

T13 = Ut8 −
t2h

1 + rh
U2

s31d

which is just the square of the modulus ofsS2Dd13 given in
Eq. (26). Equation (29) interpolates between the coherent
and incoherent expressions depending on the value off.

There is a way of directly obtaining the incoherent ex-
pression in Eq.(30) without summing over paths. We will
present this derivation here; as discussed in the next section,
a similar derivation will work for the ring system where it is
difficult to classify the different paths in a convenient way
and therefore to sum over them. The idea is to add probabili-
ties (intensities) rather than amplitudes. Consider a situation
with the following kinds of waves: a wave of unit intensity
which comes into the system from wire 1, a wave of inten-
sity i r which is reflected back to wire 1, a wave of intensity
i t which is transmitted to wire 3, a wave of intensityiu which
travels up along the stub 2, and a wave of intensityid down
along the stub.[Note that the last four waves are actually
made up of sums of several waves obtained after repeated
travels up and down the stub; however, we will not need to
explicitly sum over all those paths in this way of doing the
calculation. The summation over paths will be implicit be-
cause we are assuming thati r, i t, and iu and id denote the
total intensities of those four kinds of waves.] Now we use
the matrixS3D at junctionA. This gives the following rela-
tions between these intensities:

i r = r82 + t2id,
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i t = t82 + t2id,

iu = t2 + r2id. s32d

Similarly, the total reflection at the endB implies thatiu= id.
Putting these relations together, we obtaini t=1+r8, which
agrees with the expression in Eq.(30).

When LT becomes equal toLS, T12sLSd is equal to
usS2Dd12u2 wheresS2Dd12 is given in Eq.(26). [Our formalism
is designed to ensure that we get the same value ofT13 at
LT=LS whether we approach that point from the high tem-
perature or the low temperature side.] Using the parametri-
zation in Eq.(4) and the RG equations in Eq.(5), we see that
l at a length scaleLT.LS is related to its value at the length
scaleLS as follows:

lsLTd = SLT

LS
Da

lsLSd. s33d

ThenT13sLTd is given by 1/f1+l2sLTdg.
In the coherent regime given byLT.LS, we observe that

T13 is equal to 1 ifh=−1 and 0 ifh=1; this follows on using
Eqs.(7) and(31). We will call these resonances and antireso-
nances, respectively; they arise due to interference between
the different paths. For these two special values ofh, T13
remains stuck at 1 and 0 and does not flow under RG. For
any other value ofh, T13 starts at a value which is less than
1; it then flows toward zero till the RG evolution stops at the
length scaleLT. Note that by changing the electron momen-
tum kF (this can be done by changing the gate voltage), we
can vary the value ofh and therefore of the matrix elements
in Eq. (26); we can therefore, in principle, tune the system to
resonance.[This is in contrast to a single wire system with
an impurity where one can change the matrix elements of
S2D only by varying the strength of the impurity potential
which may not be easy to do experimentally.]

In Figs. 6 and 7, we showT13 as a function ofLT/LS for
various values ofr8 andh, with a=0.2 on all the three wires,
and LS/d=10. In Fig. 6, we have considered four different
values ofr8. Of these values, the first one is greater than the
unstable fixed point value of −1/3 given in Eq.(9), the sec-
ond is equal to −1/3, and the last two are less than −1/3. In
the incoherent regime, we see thatT13 increases in the first
case, does not change in the second case, and decreases in

the last two cases. In Fig. 7, we showT13 as a function of
LT/LS for four different values ofh. In the coherent regime,
we see thatT13 remains stuck at 1 and 0 forh=−1 and 1,
respectively, while it decreases for the other two cases. It is
clear that modifyingh (by changing the gate voltage) can
lead to large changes inT13 in the coherent regime.

V. RING SYSTEM

We now turn to the ring system shown in Fig. 2. We will
assume that both the junctionsA andB are described by the
same 333 scattering matrixS3D given in Eqs.(6) and (7),
with complete symmetry between the two arms of the ring
labeled 2 and 4.

The RG evolution of the transmission probabilitiesTij is
studied in the same way as for the stub system.[Once again,
there is only one independent quantity to consider here,
namely,T13; the others are related to it by Eq.(14).] We start
from the length scaled and initially use Eq.(8) to see how
the various entries of the two matricesS3D flow as functions
of the length. IfLT,LS, we follow this flow up to the length
scaleLT and then stop there. At that point, we computeT13 as
explained below.

If LT.LS, we first use Eq.(8) to follow the flow up to the
length scaleLS. At that point, we switch over to a 232
scattering matrixS2D which can be obtained from the matrix
S3D that we get at that length scale from the RG calculation.
For the ring system, the off-diagonal matrix elements of
S2DsLSd are related to the parameterr8 appearing inS3DsLSd
as follows:8

sS2Dd13 = sS2Dd31

=
2 cossF/2dh1/2s1 − hds− 2r8ds1 + r8d

f1 + s1 + 2r8dhg2 − 2s1 + r8d2s1 + cosFdh
,

s34d

whereh=ei2kFLS, andF is a dimensionless number which is
related to the magnetic fluxfB enclosed by the ring through
the expressionF=efB/ s"cd. Equation(34) will be derived
in the Appendix. Having obtainedS2D at the length scaleLS,
we continue with the RG flow following Eq.(5). The flow is
stopped when we reach the length scaleLT. At that point, we
computeT13 as explained below.

As shown in the Appendix, Eq.(34) can be obtained by
assuming an incoming wave with unit amplitude on wire 1

FIG. 6. T13 for the stub system as a function ofLT/LS for a
=0.2,LS/d=10,h=eip/2, and different values ofr8. The four sets of
curves are forr8=−0.10,−0.33,−0.54, and −0.80 from top to
bottom.

FIG. 7. T13 as a function ofLT/LS for a=0.2, LS/d=10,
r8=−0.54, and different values ofh. The four sets of curves are for
h=−1,ei0.8p ,ei0.6p, and 1 from top to bottom.
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and no incoming wave on wire 3, and then using the scatter-
ing matrices at junctionsA and B.8 One might think of de-
riving Eq. (34) by summing over all paths which go from
wire 1 to wire 3, just as we did for the stub system. However,
it seems very hard to enumerate the set of paths for the ring
system in a convenient way. This is because there are two
arms, and a path can go into either one of the two arms every
time it encounters one of the two junctions.

This difficulty in summing over paths also makes it hard
to find a simple interpolating formula for the conductance in
the regimeLT,LS. To see this more clearly, we first note that
in thestubsystem, two paths which have equal lengths must
necessarily be identical to each other. Any point, where
waves moving in one particular direction get phase random-
ized, will therefore occur the same number of times in the
two paths. Hence, the interference between the two paths
will not come with any powers of either the phase factorh or
the phase randomization factorf. If there are two paths of
unequal lengths 2n1LS and 2n2LS in the stub system, then any
point, where waves moving in a particular direction get
phase randomized, will occurn1 times in one path andn2
times in the other path. Therefore the interference between
the two paths will come with a factor ofhn1−n2f un1−n2u. Thus,
the power ofh and the power off are always related to each
other in a simple way.[This is why a factor off always
accompanies a factor ofh or h* in Eq. (29).] The situation is
quite different in the ring system. Here the powers ofh and
f are not necessarily related to each other in any simple way.
For instance, consider a path which enters the system
through wire 1, goes into the arm 2, and leaves through wire
3, and a second path which enters through wire 1, goes into
the arm 4, and leaves through wire 3. These two paths have
the same lengthLS; the interference between the two will
therefore not carry any powers ofh. However, a phase ran-
domization point which lies on one path will not lie on the
other path. Hence, the phase randomizations will not cancel
between the two paths, and the interference between the two
paths will carry a factor off. Thus, there is no general rela-
tion between the power ofh and the power off. This makes
is difficult to find an interpolating expression forT13.

Even though we do not have an interpolating expression
for the ring system, we can obtain an incoherent expression
for T13 by following a procedure similar to the one we used
for the stub system, i.e., by adding probabilities rather than
amplitudes. Consider a situation with the following kinds of
waves: a wave of unit intensity which comes into the system
from wire 1, a wave of intensityi r which is reflected back to
wire 1, a wave of intensityi t which is transmitted to wire 3,
waves of intensityi2r and i2l which travel, respectively, from
junction A to junction B and vice versa along wire 2, and
waves of intensityi4r and i4l which travel respectively from
junction A to junctionB and vice versa along wire 4.[Note
that the last six waves are actually made up of sums of sev-
eral waves obtained after repeated bounces from the two
junctions. We do not need to explicitly sum over all these
paths because we are assuming thati r , i t , . . . , denote the total
intensities of these six kinds of waves.] Now we use the
matrices at junctionsA andB. This gives the following rela-
tions between the various intensities,

i r = r2 + t2si2l + i4ld,

i t = t2si2r + i4rd,

i2r = t2 + r82i2l + t82i4l ,

i4r = t2 + r82i4l + t82i2l ,

i2l = r82i2r + t82i4r ,

i4l = r82i4r + t82i2r . s35d

Solving these equations and using some of the relations in
Eq. (7), we find the incoherent expression forT13 (valid for
LT!LS) to be

i t = −
2r8s1 + r8d
1 + r8 + r82 , s36d

which is independent of bothh andF.
At the point LT=LS, T13sLSd is given by usS2Dd13u2 where

sS2Dd13 is given in Eq.(34). We can again use the parametri-
zation in Eq.(4) and the RG equation in Eq.(5) to obtain
T13sLTd=1/f1+l2sLTdg, wherelsLTd is given in Eq.(33).

In Fig. 8, we showT13 as a function ofLT/LS for various
valuesh, with a=0.2 on all the wires, andLS/d=10.

In the coherent regime given byLT.LS, we can find the
conditions under which there are resonances and antireso-
nances in the transmission through the ring, i.e.,T13=1 and 0
respectively.(Some of these conditions have been discussed
in Ref. 8.) We find thatT13=1 for the following values of
h ,eiF, andr8:

(i) h=eiF=1, and r8 can take any value. Note that for
these values ofh andeiF, there are eigenstates of the elec-
tron which are confined to the ring.

(ii ) h=e±iF, andr8=0. Forh=e±iF, there are eigenstates
of the electron on the ring. Further,r8=0 impliest=0 which
means that these eigenstates cannot escape from the ring to
the long wires.

(iii ) eiF=1, r8=−1/2, andh can take any value. Note that
r8=−1/2 implies r =0 which means that a wave which is
coming in on wire 1(3) suffers no reflection at junction
A (B). [We note that both the numerator and denominator of
Eq. (34) vanish under conditions(i) and (ii ); hence one has
to take the limit appropriately to see thatT13=1.]

FIG. 8. T13 for the ring system as a function ofLT/LS for a
=0.2, LS/d=10, r8=−0.18, F=0, and different values ofh. The
four coherent curves are forh=1,ei0.08p ,ei0.16p, andei0.4p from top
to bottom. The incoherent curve is the same for allh.
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Similarly, we find thatT13=0 for the following values of
h, eiF and r8:

(i) h=1, andeiF andr8 can take any values except 1 and
-1, respectively.

(ii ) r8=0, andh and eiF can take any values excepth
=e±iF. Note thatr8=0 implies thatt=0 which means that
there is no transmission between the long wires and the ring.

(iii ) r8=−1, andh can take any value except 1, whileeiF

can take any value. Once again,r8=−1 implies thatt=0
which means that there is no transmission between the long
wires and the ring.

(iv) eiF=−1, andsh ,r8d can take any values excepts1,
−1d and s−1,0d.

As in the stub system, ifT13 begins with the value 1 or 0
at LT/LS=1, it remains stuck there and does not flow under
RG as we go to larger length scales. For any other starting
value ofT13, it flows toward zero till the RG evolution stops
at the length scaleLT. It is interesting to consider the shape
of the resonance line which is a plot ofT13 versus the mo-
mentumkF (or, equivalently,h) at very low temperatures. As
discussed in the following paragraph, one finds that the line
shape becomes narrower with decreasing temperature, with
the width at half maximum scaling with temperature asTa.
Figures 9 and 10 show this feature qualitatively for the reso-
nances of types(i) and (ii ) described above. In Fig. 10, we
see pairs of resonances becauseT13 has maxima at 2kFLS
equal toF and −F mod 2p. Figure 11 shows the resonance
of type (iii ). HereT13 is close to 1 for a wide range ofkF (or
h) at LT/LS=1; this is consistent with the resonance condi-

tion given in (iii ) above. We also observe antiresonances
sT13=0d in Figs. 10 and 11 at 2kFLS=0 mod 2p.

Let us now discuss the resonance line shape in more
detail.13,29 Exactly at a resonance, occurring at, say,kF=kF0,
T13 is equal to 1, and it remains stuck at that value no matter
how largeLT is. We can now ask: What is the shape of the
resonance line slightly away fromkF=kF0? If one deviates
from kF0 by a small amountDk= ukF−kF0u which is fixed, one
finds that the transmissionT13 differs from 1 by an amount of
order sDkd2. (An example of this is discussed below.) Com-
paring this with the form in Eq.(4), we see thatl,Dk at the
length scaleLS. Equation(34) then implies thatl will grow
as DksLT/LSda at low temperature; henceT13 will approach
zero as 1/l2,T2a at very low temperature, ifDk is held
fixed. On the other hand, the width of the resonance line at
half the maximum possible value ofT13 is given by the con-
dition thatDksLT/LSda,1, which implies thatDk,Ta. Thus
the resonance line becomes narrower with decreasing tem-
perature, with a widthDk which vanishes asTa. (This has
been experimentally observed in a single quantum wire,34

but not in systems with junctions such as the ones being
considered here.)

To summarize,T13 depends on the variablesDk and T
through the combinationx=Dk/Ta, and T13sxd,1/x2 as x
→`. (This differs slightly from the expression given in Ref.
13 because we have assumeda to be small.) As a specific
example, let us consider the resonance of type(i). We set
eiF=1 and take the limitkF→kF0=pn/LS in Eq. (34). We
find that at the length scaleLS

T13 = 1 −
s1 + 2r8d2

16r82s1 + r8d2s2DkLSd2 s37d

up to ordersDkd2. Equation(5) then implies that at the length
scaleLT

T13 = F1 +
s1 + 2r8d2

16r82s1 + r8d2s2DkLSd2SLT

LS
D2aG−1

. s38d

Thus, if r8 is held fixed and T13 is plotted against
DksLT/LSda, we should get the same curve for different val-
ues ofLT/LS, provided that the quadratic approximation in
Eq. (37) holds good. In Fig. 12, we showT13 as a function of

FIG. 9. T13 as a function of 2kFLSmod 2p for a=0.2, LS/d
=10, r8=−0.19,F=0, and different values ofLT/LS. The three sets
of curves are forLT/LS=1,50, and 105 from top to bottom.

FIG. 10. T13 as a function of 2kFLSmod 2p for a=0.2, LS/d
=10, F=0.5p, and different values ofLT/LS. The four sets of
curves are forLT/LS=1,50,3000, and 106 from top to bottom. Note
that there is a transmission zero at 2kFLS=0 mod 2p.

FIG. 11. T13 as a function of 2kFLSmod 2p for a=0.2, LS/d
=10, F=0, and different values ofLT/LS. The four sets of curves
are forLT/LS=1,150,20 000, and 106 from top to bottom. Note that
there is a transmission zero at 2kFLS=0 mod 2p.
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2DkLSsLT/LSda for four different values ofLT/LS. We see
that the curves agree well with each other down to about
T13=0.7. For comparison, we have shown the same plots
without scaling in the inset; we see that they begin disagree-
ing belowT13=0.95.(We find similar resonance line shapes
in the stub and four-wire systems, although we have not
shown those plots here.)

VI. FOUR-WIRE SYSTEM

Finally, let us consider the four-wire system shown in Fig.
3. We will assume that both junctionsA andB are described
by the same 333 scattering matrixS3D given in Eqs.(6) and
(7), with complete symmetry between the wires 1 and 2 on
one side and the wires 3 and 4 on the other side. The trans-
mission probabilities enjoy the symmetries described in Eq.
(15).

We first consider the RG flow of the transmission prob-
abilities Tij . Due to the symmetries of the system, and the
sum rules discussed in Sec. III, we see that there are only two
independent quantities to consider, namely,T12 andT13. Fol-
lowing the formalism in Sec. II, we start from the length
scaled and initially use Eq.(8) to see how the various entries
of S3D flow as functions of the length. IfLT,LS, we follow
this flow up to the length scaleLT, and then computeT12 and
T13.

If LT.LS, we first use Eq.(8) to follow the flow up to the
length scaleLS. At that point, we switch over to a 434
scattering matrixS4D which can be obtained from the matrix
S3D that we get at that length scale from the RG calculation.
The entries ofS4DsLSd and S3DsLSd can be shown to be re-
lated as follows:

sS4Dd11 = r8 +
t2rh

1 − r2h
,

sS4Dd12 = t8 +
t2rh

1 − r2h
,

sS4Dd13 =
t2h1/2

1 − r2h
, s39d

whereh=ei2kFLS. [Equation(39) will be derived in the next
paragraph.] Having obtainedS4D at the length scaleLS, we
then continue with the RG flow of that matrix using Eq.(2).
This flow is stopped when we reach the length scaleLT,
where we computeT12, andT13.

As in the stub system, Eq.(39) can be derived in one of
two ways. The first way is to assume an incoming wave with
unit amplitude on wire 1 and no incoming waves on wires 2,
3 and 4, and then use the scattering matricesS3D at junctions
A andB. The second way is to sum over all the paths that an
electron can take. As in the stub system, the different paths
going between any two of the long wiresi and j are charac-
terized by an integern=0,1, . . . , which is the number of
times a path goes right and left on the central wire labeled 5.
For instance, the sum over paths which go from a point on
wire 1 lying very close to junctionA to itself gives the series

sS4Dd11 = r8 + th1/2rh1/2t + th1/2rh1/2rh1/2rh1/2t + . . . ,

s40d

which agrees with the first equation in Eq.(39). Similarly,
we can derive the other expressions in Eq.(39).

Let us now calculate the transmission probabilitiesT12
and T13. If LTøLS, we have to useS3D to compute expres-
sions forTij with an interpolating factorf as in Eq.(28). This
is as easy to do here as in the stub system since we know
how to explicitly sum over all the paths. The interference
between the contributions of two paths characterized by in-
tegersn1 andn2 must be multiplied by a factorf un1−n2u, where
f is given in Eq.(28). On summing up all the terms with the
appropriate factors off, we find that

T12 = t82 +
t2r2

2s1 + r2d
+ t2St8r +

r4

2s1 + r2dD
3S hf

1 − r2hf
+

h* f

1 − r2h* f
D ,

T13 =
t2

2s1 + r2d
+

t2r2

2s1 + r2dS hf

1 − r2hf
+

h* f

1 − r2h* f
D .

s41d

These are the desired interpolating expressions forT12 and
T13. If we set f =0 (as we must do forLT!LS), we get the
incoherent expressions

T12 = t82 +
t2r2

2s1 + r2d
=

s1 + r8ds2 + 5r8 + 4r82d
2s1 + 2r8 + 2r82d

,

T13 =
t2

2s1 + r2d
= −

r8s1 + r8d
2s1 + 2r8 + 2r82d

, s42d

which are independent ofh. On the other hand, if we setf
=1 (as we must do atLT=LS), we get the coherent expres-
sions which are given by the square of the modulus of the
entriessS4Dd12 and sS4Dd13 in Eq. (39).

As in the stub system, there is a way of directly obtaining
the incoherent expression in Eq.(42) without summing over
paths, by adding probabilities rather than amplitudes. We
consider a situation with the following kinds of waves: a

FIG. 12. T13 as a function of the scaled variablef2kFLS mod
2pgsLT/LSda for a=0.2, LS/d=10, r8=−0.32, F=0, and different
values ofLT/LS. The four sets of curves are forLT/LS=1,2.7,7.4,
and 20 from top to bottom. The inset shows the same plots without
scaling, i.e.,T13 as a function of 2kFLS.
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wave of unit intensity which comes into the system from
wire 1, waves of intensityi2, i3, andi4 which go into wires 2,
3, and 4, and waves of intensityi r and i l which travel right
and left, respectively, on wire 5. We then use the matrices
S3D at junctionsA and B to relate all these intensities, and
then solve fori2 and i3. This reproduces the results in Eq.
(42).

If LT.LS, T12 and T13 are equal to usS4Dd12u2 and
usS4Dd13u2, wheresS4Dd12 andsS4Dd13 are given in Eq.(39). In
this regime, the RG flow has to be carried out numerically
for the reasons explained after Eq.(10). In general,b andc
flow to zero asL−a at long distances as discussed earlier;
henceT12 andT13 go to zero asL−2a.

In the coherent regime given byLT.LS, we observe that
T12 and T13 are both equal to 1/4 if eitherh=1 or
r8=−1/2. We may call these resonances since the maximum
possible value ofT13 which is allowed by the form of the
matrix in Eq.(10) is 1/4. If h=1, T13 remains stuck at 1/4
and does not flow under RG. This can be seen in Fig. 13
where we showT13 as a function ofLT/LS for various values
of r8. For any other value ofh, T13 flows till the RG evolu-
tion stops at the length scaleLT. (As discussed below,T13 can
sometimes increase before eventually decreasing towards
zero at very low temperatures.) As in the stub system, we can
vary the value ofh and therefore tune the system to reso-
nance by changing the electron momentumkF.

In Fig. 14, we showT13 as a function ofLT/LS for various
values ofh. In Fig. 15, we show the cross-over behavior of
T13 mentioned in Sec. II. In the coherent regime, for certain
ranges of values ofr8 and h, T13 first increases and then
decreases at very low temperatures. As explained earlier, this
can only happen in a quasi-one-dimensional system, since in
purely one-dimensional systems with repulsive interactions,
back-scattering always increases.

VII. DISCUSSION

In this work, we have derived the RG equations and the
transmission probabilities(and conductances) for three sys-
tems of experimental interest. The RG flows and the conse-
quent power-laws in the temperature and length dependences
of the conductances are purely a result of the interactions in

the wires; there is no RG flow if the interaction parametersai
are all zero. A peculiarity of our RG formalism is that it has
two stages which work in the regimes of high and low tem-
perature, respectively. We abruptly switch between the two
stages when we cross the pointLT/LS=1. It would be useful
to develop an interpolating formalism for the RG flow which
can vary smoothly across the intermediate range of tempera-
ture. In our way of deriving the RG equations, this may
require an analysis of the way in which Friedel oscillations
from two junctions interfere with each other.

Our results should be applicable to the systems mentioned
earlier such as multiarm quantum wires,1,2 various kinds of
carbon nanotubes,3,4 and systems with other kinds of
geometry.5–7While some of the early experiments focused on
electronic transport in the presence of an external magnetic
field and the effects of geometry, measuring the various con-
ductances at different temperatures(and, if possible, different
wire lengths) should reveal the interaction induced power
laws discussed in our work. Note that a spread in the phase
[as discussed after Eq.(11) in Sec. II] and phase randomiza-
tion (as discussed in Sec. III) are the only effects of thermal
fluctuations that we have considered in this work. We have
ignored other effects of finite temperature, such as momen-
tum relaxation by inelastic scattering, and corrections to the
Landauer-Büttiker conductances due to thermal broadening
of the Fermi-Dirac distribution near the Fermi energy. An
application of our work to experiments would require one to
disentangle these other features before the effects of interac-

FIG. 13. T13 for the four-wire system as a function ofLT/LS for
a=0.2,LS/d=10, andh=1. The four sets of curves(incoherent and
interpolating) are forr8=−0.43,−0.28,−0.17, and −0.07 from top to
bottom. The coherent curve stays at 1/4 for all values ofr8 since
h=1.

FIG. 14. T13 as a function ofLT/LS for a=0.2, LS/d=10, and
r8=−0.28. The four sets of curves(interpolating and coherent) are
for h=1,ei0.3p ,ei0.6p, andei0.9p from top to bottom. The incoherent
curve is independent ofh.

FIG. 15. T13 as a function ofLT/LS for a=0.2, LS/d=10,
r8=−0.33, andh=ei0.52p. T13 first increases and then decreases at
very low temperatures.
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tions can become visible. Typically, the temperature at which
these experiments are done is about 0.1−1°K, while the
Fermi energy is about 10°K which is much larger;6 hence
the thermal broadening effect is expected to be small.

We emphasize that this is the first study which considers
the effects of interactions in the stub and the four-wire sys-
tems, although interaction effects have been studied for ring
systems earlier using bosonization.24 An interesting point to
observe is that sometimes the nontrivial geometry in these
systems(with junctions which have three wires meeting at a
point) can actually reduce back-scattering from a junction as
a result of the RG flow. In that case, as one goes toward low
temperatures, the conductance between two of the wires is
enhanced, instead of being reduced as would have happened
for scattering from an impurity. However, this occurs only
for a specific kind of junction and only for certain special
ranges of values of theS-matrix, as discussed after Eq.(9).

One limitation of our work is that we have assumed linear
relations between the incoming and outgoing fermion fields.
In principle, other interesting things can happen at a junction,
particularly if we consider the case of spinful fermions and if
some of the wires are superconducting rather than metallic.
For instance, there may be Andreev reflection in which an
electron striking the junction from one wire is reflected back
as a hole while two electrons are transmitted into some of the
other wires.5,19 It would be interesting to study these phe-
nomena using the techniques developed in this paper.
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APPENDIX

We will derive Eq.(34) here. We consider a situation with
the following kinds of waves: an incoming wave on wire 1
whose amplitude is unity just to the left of junctionA; an
outgoing wave on wire 1 whose amplitude isc1,out just to the
left of junctionA; an outgoing wave on wire 3 whose ampli-
tude isc3,out just to the right of junctionB; waves on wires 2
and 4 which are incoming at junctionA and have amplitudes

c2,in
A andc4,in

A just to the right ofA; waves on wires 2 and 4
which are outgoing at junctionA and have amplitudesc2,out

A

and c4,out
A just to the right ofA; waves on wires 2 and 4

which are incoming at junctionB and have amplitudesc2,in
B

and c4,in
B just to the left ofB; and waves on wires 2 and 4

which are outgoing at junctionB and have amplitudesc2,out
B

andc4,out
B just to the left ofB. Our aim is to find an expres-

sion for the transmitted amplitudec3,out.
The Schrödinger equation relates many of the amplitudes

introduced above to each other. This is because of the fol-
lowing features: a wave which travels a distancex picks up a
phase ofeikFx (we are assuming that all the particles have
momentumkF); a wave which travels anticlockwise around
the ring from junctionA to junctionB or vice versa picks up
a phase ofeiF/2; and a wave which travels clockwise around
the ring from junctionA to junctionB or vice versa picks up
a phase ofe−iF/2. This gives us the following relations:

c2,in
B = eikFLS−iF/2c2,out

A ,

c2,in
A = eikFLS+iF/2c2,out

B ,

c4,in
B = eikFLS+iF/2c4,out

A ,

c4,in
A = eikFLS−iF/2c4,out

B . sA1d

Now we use the form of the scattering matrices in Eq.(6) at
the two junctions. At junctionA, we have

c1,out= r + tsc2,in
A + c4,in

A d,

c2,out
A = t + r8c2,in

A + t8c4,in
A ,

c4,out
A = t + r8c4,in

A + t8c2,in
A . sA2d

At junction B, we have

c3,out= tsc2,in
B + c4,in

B d,

c2,out
B = r8c2,in

B + t8c4,in
B ,

c4,out
B = r8c4,in

B + t8c2,in
B . sA3d

Using Eqs.(A1)–(A3), we obtain the expression forsS2Dd31

=c3,out given in Eq.(34).
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