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We calculate the lifetime of low-energy electronic excitations in a two-dimensional quantum dot near a
metallic gate. We find different behaviors depending on the relative values of the dot size, the dot-gate distance,
and the Thomas-Fermi screening length within the dot. The standard Fermi liquid behavior is obtained when
the dot-gate distance is much shorter than the dot size or when it is so large that intrinsic effects dominate.
Departures from the Fermi liquid behavior are found in the unscreened dipole case of small dots far away from
the gate, for which a Caldeira-Leggett model is applicable. At intermediate distances, a marginal Fermi liquid
is obtained if there is sufficient screening within the dot. In these last two nontrivial cases, the level width
decays as a power law with the dot-gate distance.
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I. INTRODUCTION

The understanding of lifetimes of electronic states in finite
low-dimensional devices presents subtleties not found in ex-
tended systems.1–5 The lifetime of quasiparticle excitations
(with energyE) in bulk three- and two-dimensional clean
electron systems scales assE−EFd2, for E sufficiently close
to the Fermi energy,EF.6,7 Such a behavior results from the
combined effects of the screened electron-electron interac-
tion and the continuous spectral density provided by the in-
ternal electronic environment(Fermi sea). The above energy
dependence can be readily obtained from a Fermi golden rule
(FGR) approach using the matrix elements of the effective
interaction expressed in terms of the polarizability of the
metal.6 This response function can also be viewed as result-
ing from an external environment.

The corrections induced by disorder and finite size can be
systematically computed using an expansion in the inverse
conductance,g−1=D0/Ec, whereD0 is the typical level spac-
ing, andEc="D /L2 is the Thouless energy(D is the diffu-
sion coefficient, andL the size of the system).8,9 The appli-
cation of a FGR approach for intrinsic quasiparticle decay is
valid for sizes(or quasiparticle energies) large enough that
the system can be described as an environment with a con-
tinuous spectrum.4,5 On the other hand, in very small dots, it
is the presence of nearby metallic gates that ensures the ex-
istence of decay channels at arbitrarily low energies. This
effect becomes of crucial importance in determining the
width of the low lying electronic excitations.10–12

The purpose of the present work is to investigate the qua-
siparticle lifetimes in quantum dots of various sizes in the
vicinity of an extended metallic gate. In this way, we can
study the crossover between the regimes in which the exter-
nal environment does not introduce qualitative changes with
respect to the case of the isolated dot, and that in which
significant departures from Fermi liquid behavior are ob-
tained. We consider the simple geometry sketched in Fig. 1,

with a two-dimensional dot of lateral sizeL, at a distancez
from the quasi-two-dimensional gate of widthw8 (extensions
to other gemoetries will also be considered). Another impor-
tant scale is the Thomas-Fermi(TF) screening length for the
dot, lTF=p"2e0/m*e2 (m* is the electronic effective mass
ande0 the dielectric constant). The metallic gate will be de-
scribed as an Ohmic environment, that is, as one with a low-
energy spectral density proportional to the frequency.13 The
different behaviors mentioned above are obtained by varying
the relative values of the length scalesL, z, andlTF.

The widely used Caldeira-Leggett model, understood as
that with ohmic spectral density and coupling linear in the
particle coordinate,14 corresponds to the limiting case
z/L ,lTF/L@1. This is the regime which exhibits the largest
departure from the Fermi liquid behavior, a result which is
consistent with the decay of persistent currents predicted for
mesoscopic rings where the electronic dipoles couple to an
ohmic oscillator bath.15 Clarifying the applicability and
physical consequences of different environments is one of
the guiding lines of this work.

The question of electron decay is related to the loss of
phase coherence suffered by electrons in a dot, a problem
which has been the object of experimental attention.16–19

Here we propose a framework within which one can study a
variety of geometrical setups where extrinsic mechanisms
compete with the intrinsic ones to cause electron wave deco-
herence.

FIG. 1. (Color online). Sketch of system studied in the text.
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The next section introduces the model considered in this
work. Then, we present calculations for the case
z/L ,lTF/L@1. Section IV discusses the regimez/L!1,
while in Sec. V we analyze the situation whenz/L@1 and
lTF/L!1. The main conclusions, as well as the experimental
relevance of our work, are discussed in Sec. VI.

II. MODEL

As described in the introduction, our system is given by a
dot coupled to a metallic gate(see Fig. 1). Such an electro-
static interaction is governed by the Hamiltonian

Hint =E
A

V̂zsr dr̂sr ddr , s1d

whereA=L2 is the area of the dot,r is a two-dimensional
vector in the plane of the dot,r̂sr d is the operator describing

the local electronic density fluctuations of the dot, andV̂zsr d
represents the potential induced on the dot by the gate(with
z the separation dot-gate).

The electronic states of the dot in the absence of the gate
will be assumed to be well described by an independent elec-
tron analysis. The consistency of this approximation in the
various regimes will be discussed in the sequel. Using the
FGR the probability per unit time of a transition between the
electronic statesn andm (transition rate) is

Gmn=E
A

drE
A

dr 8kmur̂sr dunlknur̂sr 8dumlSsr ,r 8,z;En − Emd,

s2d

where the structure factor

Ssr ,r 8,z;DEd =E dt

"
eiDEt/"kV̂zsr 8,tdV̂zsr ,0dl s3d

describes the fluctuations of the metallic environment as ex-
perienced in the quantum dot. The averages are taken with
respect to the degrees of freedom of the environment. The
second order processes involved in the calculation of the
transition rates of Eq.(2) are represented by the diagram
shown in Fig. 2.

Within the one-particle picture that we adopted for the dot
kmu r̂sr d unl=Cm

* sr dCnsr d, whereCn is the wave function of

the effectively independent electron, and Eq.(2) can be writ-
ten as

Gmn=E d2q

s2pd2ukmueiq·r unlu2Ssq,z;DEd, s4d

where Ssq ,z,DEd is the Fourier transform of the structure
factor.

Notice that now a quasiparticle does not decay into a two-
particle–one-hole configuration(like in the case of intrinsic
decay), but into another one-particle state. The use of FGR is
then justified by the large density of final states provided by
the environment(metallic gate).

The properties of the environment determine the precise
form of the bubble in Fig. 2. However, we can infer some
general features fulfilled by the physically relevant environ-
ments we are interested in

(i) An Ohmic environment implies that, at low energies

Ssr ,r 8,z;DEd . uDEuS̃sr ,r 8,zd, s5d

(ii ) For smallur u andur 8u we will always have, effectively,

S̃sr ,r 8,zd . rS0
I szdr 8, s6d

(iii ) S̃sr ,r 8 ,zd→0 for ur −r 8u sufficiently large with re-
spect to the characteristic length scales of the environment
and the dot-gate coupling. These general properties still al-
low for different regimes, which will be thoroughly dis-
cussed in the following chapters.

The lifetime of a staten is obtained by considering all the
possible transitions to lower states above the Fermi energy

Gn = o
EF,Em,En

Gmn. s7d

We are interested in describing the energy dependence of the
level width. Therefore, we will average over nearby eigen-
states

GsEd =
1

nsEdon

GndesE − End, s8d

wherede represents a smoothedd function of widthe (which
we take as an energy scale of the order of a few level spac-
ings) and nsEd;on desE−End is the smoothed density of
states within the dot.

III. DIPOLAR APPROXIMATION

For dots far away from the gatesz@Ld andL so small that
internal screening effects can be neglectedsL!lTFd, the
electric field penetrates the dot and, in the low-frequency
limit, we can use the dipolar expansion represented in Eq.

(6). For simplicity, we will take the tensorS0
I as diagonal and

isotropic, S0
I .S0szd. Relaxing this assumption would not

lead to qualitative changes in the results. An estimation of
S0szd in a simple situation is given in the Appendix.

From Eqs.(2), (5), and (6) one can write the transition
rate as

FIG. 2. (Color online). Diagram representing the calculation in
Eq. (2). The filled bubble describes the time-dependent response of
the environment(improper polarization). Labelsm andn stand for
electron states within the dot.
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Gmn= S0szdsEn − Emd E dr dr 8 Cn
*sr d

3Cmsr 8dr · r 8 Cmsr dCn
*sr 8d

= S0szdsEn − Emdukmur unlu2. s9d

The transition rate is then governed by the squared dipole
matrix element. Local averages(on a scale ofe) of matrix
elements for an arbitrary operatorA,

CAsE,DEd ; o
mn

ukmuAunlu2desE − EnddesDE − En + Emd,

s10d

have been thoroughly studied.20–23They are interesting quan-
tum mechanical quantities governing not only transition
rates, but other experimentally revelant phenomena, like the
energy absorption rate of small metallic clusters26,27 and
quantum transport in ballistic systems.28 Similar to the den-
sity of states,24 CAsE,DEd can be written as a leading smooth
term plus oscillating corrections. The latter are given by a
periodic orbit expansion, and therefore depend on the nature
of the underlying classical dynamics(i.e., chaotic versus in-
tegrable). The smooth term is given by the Fourier transform
of the classical autocorrelation function of the observable
(expressed in terms of classical trajectories) and presents
some scaling behavior in the case of billiard systems.22 For
the dipole matrix elementssA=r d the hard wall confining
potential translates into a dependence

CrsE,DEd .
L2

ÎnsEd
E3/2

DE4 , s11d

for both, integrable, and nonintegrable systems, provided
DE."vF /L. TheDE−4 dependence ofCrsE,DEd arises from
the discontinuity of the velocity of the particle as it bounces
against the hard wall. The power-law of Eq.(11) is obtained
from the contribution of a single bounce off the boundary. At
sufficiently low frequencies, the contributions from many
such bounces have to be added. This leads to interference
effects and to an effective lower cutoff of theDE−4 law at the
synchrotron energy"vF /L.

Like in the one-dimensional case(where the semiclassical
dipole matrix element can be evaluated on general
grounds25), the DE−4 law is preserved when we consider a
soft potential, provided thatDE! s" /adÎE/m* , wherea is
the length scale defining the rise of the confining potential.
That is, when the small energy differences that we are inter-
ested in correspond to times much larger than the collision
time, and thus the detailed profile of the confining walls be-
comes irrelevant. For large values ofDE, the soft character
of the walls comes into play, and the correlation function
defined in Eq.(10) decays faster thanDE−4. In the following
calculations we will be using Eq.(11) for DE in the range
"vF /L,DE, s" /adÎE/m* .

In simple two-dimensional geometries, like a circular
disc26 or an infinite rectangular stripe,27 the dipole matrix
element can be calculated explicitly for the unscreened case
and screened(Thomas-Fermi) cases. In the calculation that
follows we will only need the scaling behavior of Eq.(11)

and we will not be restricted to a particular geometry.
If D0<"2/mL2 is the mean level spacing within the dot,

the estimation of the energy dependence of the dipole matrix
elements allows us to write the level width as

GsEd .
S0szd
nsEd ED0

E−EF

dsDEdDE CrsE,DEd

. cF1 −S "vF/L

E − EF
D2G s12d

for EF@E−EF."vF /L, and GsEd.0 for E−EF!"vF /L.
This expression only assumes the validity of Eq.(11), which,
in turn, can be considered an expansion inDE/EF!1. The
constantc is discussed in the sequel. The energy dependence
of the level width, depicted in Fig. 3, yields a plateaulike
behavior for"vF /L!E−EF!EF. For E−EF comparable to
EF, the possible smoothing of the potential and the opening
of additional relaxation mechanisms lead to a vanishing life-
time, and thereforeGsEd increases withE for E−EF.EF

(not shown in Fig. 3).
The quasiparticle decay rate for a standard Fermi liquid

follows the lawGFLsEd~ sE−EFd2. Thus, the energy depen-
dence obtained in Eq.(12) (a constantGsEd for E−EF

@"vF /L) reveals anon-Fermi-liquid behavior. We have thus
identified an electronic system where dissipation effects are
well described by the standard(linear in the particle coordi-
nate) Caldeira-Leggett model, the oscillator bath being
formed by the quasiparticle field of the gate. Anomalous be-
haviors in systems described by the the Caldeira-Leggett
model have been discussed in the literature.29,30 Such
particle-bath couplings were known to be realized in con-
texts where the particle coordinate(e.g., the flux through a
superconducting ring) does not experience any quantum sta-
tistical constraint. Here we have shown that, under specific
circumstances, such anomalous behavior can also be dis-
played in systems where the Pauli exclusion principle plays
an essential role.

The constantc in Eq. (12) depends on the distance gate-
dot and on the properties of the gate[throughS0szd], as well
as on the details of the dot[through CsE,DEd and nsEd].
Using the results of the Appendix for a two-dimensional
gate, we have

FIG. 3. (Color online). Schematic behavior of the decay rate
GsEd, of state of energyE, as a function ofE, for the unscreened
dipole case discussed in Sec. III.
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lim
E→vF/L

GsEd . c .
L"2kF

mz2skF8 l8dskF8w8d
=

"vF

L
SL

z
D2 1

skF8 l8dskF8w8d
,

s13d

where the primes refer to parameters of the gate. For quasi–
two-dimensional gates of widthw8 a factorkF8w8 has to be
included in the denominator. If the dot has widthw, a factor
kFw must be added to the numerator. For a semi-infinite
three-dimensional gate, the factorz2kF8 l8 in the denominator
of S0szd is replaced byz3kF8

2l8, while for a one-dimensional
gate it is replaced byzl8. Thus, we find that the level width
decays with the dot-gate distance as power-law, with an ex-
ponent given by the dimensionality of the gatesd=1,2,3d.

IV. SHORT-RANGE REGIME

For dots sufficiently close to the gatesz!Ld, we expect
the quasiperfect screening provided by the gate to yield a
structure factor of Eq.(5) of limited range. Let us definer 9
=r −r 8 and assume that

S̄;E dr 9Ssr 9d s14d

is finite. Then we may mimic the structure kernel through the
approximation

S̃sr ,r 8,z;DEd = S̄DE dsr − r 8d s15d

for ur −r 8u much greater than the range ofSsr 9d. Let us take
DE small enough for the density matrix element between
statesm and n with sEn−Emd=DE to be, on average, ap-
proximately independent of position and energy,

UCn
*sr dCmsr dU2 .

1

A2 . s16d

This set of approximations leads to a transition rate from
staten to m with the particularly simple expression

Gmn= S̄DEE
A

dr uCn
*sr dCmsr dU2.

S̄

A
DE. s17d

Within this regime of validity, the width of a quasiparticle
state of energyE can be written as

GsEd =
S̄

A
nsEdE

D0

E−EF

dsDEdDE ~ sE − EFd2, s18d

where the density of statesnsEd is assumed to vary slowly on
the scale ofE−EF (an exact property for a two-dimensional
dot).

In practice,S̄ defined in Eq.(14) is never finite, as can be

seen by noting thatS̄=limDE→0Ssq=0,z,DEd /DE and deriv-
ing Ssq,z,DEd for any reasonable screening model(see the
Appendix for specific cases). Fortunately, the requirements
to obtain Eqs.(17) and(18) are much less stringent than the
finiteness of Eq.(14). While the electronic behavior of a dot
very close to a metallic gate deserves a careful study, a pre-

liminary investigation reveals the following results: A semi-
infinite three-dimensional gate yields Fermi liquid behavior
for z!L, with logarithmic corrections if it is dirty. The be-
havior of a dot close to a gate made of a two-dimensional
electron gas is somewhat more singular. We find marginal
Fermi liquid behavior fGsEd~ sE−EFdg if the two-
dimensional(2D) gate is diffusive, and Fermi liquid behavior
with logarithmic corrections if it is ballistic. We must note
that these calculations do not include additional screening by
the dot, which may be important forL.lTF. For such large
dots, we expect to find full Fermi liquid behavior for both
two-dimensional and semi-infinite three-dimensional gates.

The result(18) has the form which corresponds to astan-
dard Fermi liquid.7 The effect of the external environment is
then indistinguishable from that of the intrinsic charge fluc-
tuations of the dot, which are not considered in the present
analysis but which should dominate in the limit of very large
dots. The estimation of the typical matrix element in Eq.(17)
can be extended to diffusive dots,31 leading to logarithmic
corrections to Eq.(18). Similar effects for bulk diffusive sys-
tems are well known in the literature.32 Those
calculations31,32 have been made in the context of studies of
the effect of intrinsic charge fluctuations.

V. SCREENED DIPOLE

For dots far away from the gate and large enough to par-
tially screen the external electric fieldsz@L@lTFd an inter-
mediate regime should be considered. The potential which
induces the electronic transitions in the dot has now to be
taken as that of an external uniform electric field screened by
the two-dimensional electron gas of the dot. Since the dot is
two-dimensional, the screening length is independent of the
electron density. In addition, in contrast with the three-
dimensional case, the electric field penetrates beyond this
length. Near the boundary, the charge density and the
screened potentialVTFsr d, depend algebraically on the dis-
tance to the edge,8,9 j, as j−1/2. This power-law behavior
allows us to estimate the dependence on the energy differ-
enceDE, of the transition matrix elements, to leading order
in lTF/L. For a ballistic quantum dot, dimensional analysis
applied to thej−1/2 scaling of the potential yields

E
A

dr Cn
*sr dCmsr dVTFsr d ~ sEn − Emd−1/2. s19d

Such a classical estimation of the matrix elements can be
carried out exactly for the case of a disc26 or a rectangular
strip27 unbounded in one direction. As in those cases, we
expect the scaling in Eq.(19) to be valid also for any ballistic
chaotic quantum dot. This behavior of the matrix element
leads to a lifetime

GsEd ~ E − EF, s20d

i.e., the lifetime of a quasiparticle is proportional to the en-
ergy of the quasiparticle itself. This type of dependence is
usually associated tomarginal Fermi liquid behaviorin bulk
systems.

We can use the results in the Appendix to make a more
quantitative estimate of the lifetimes in this regime. Through
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its charge fluctuations, the gate induces an electric fieldE at
the position of the dot. The effect of the field at the position
of the dot is described in the Appendix for the casez@L,
where the dipolar approximation can be made. In the present
caselTFøL, and therefore we need to include the screening
of the bare field due to the electrons in the dot. The resulting
induced charge near the edges of the(two-dimensional) dot
goes asrsxd~EÎL /x. From the charge density we can calcu-
late the Thomas-Fermi potential,

VTFsxd ,
rsxd
en̄

.
E
n̄
ÎL

x
, s21d

wheren̄ is the compressibility of the electron gas, which we
take to be equal to the density of states per unit area. Hence,
the difference between the present screened case and the un-
screened dipolar regime in Sec. III is the replacement

e2Ex → VTFsxd .
E

e2n̄
ÎL

x
. s22d

The calculation ofE is implicit in the analysis of the dipolar
effects made in the Appendix. In order to estimate the life-
times, we need to replace the matrix elementkmuxunl by
kmulTF

ÎL /xunl (note thate2n̄.lTF
−1). As dicussed at the be-

ginning of this section, the asymptotic behavior of the
screened potential fixes the energy dependence of the matrix
elements at low energies, see Eq.(19). Using this result, and
the calculations in the Appendix, we find

GsEd <
lTF

2

zd

E − EF

skF8dd−2kFl8skF8w8d3−d . s23d

For quasi-two-dimensional systems, a factorskFwd / skF8w8d,
wherew is the width of the dot andw8 is the width of the
gate has to be included, as in Sec. III. Also like in the un-
screened dipole case, interference among many trajectories
leads toGsEd.0 for sE−EFd!"vF /L.

VI. DISCUSSION

We have calculated the lifetime of electronic states in bal-
listic quantum dots due to the presence of metallic gates.
Depending on the size of the dotsLd, the dot-gate distance
szd, and the screening length within the dotslTFd, we find
different regimes, schematically described in Table I. The
level width depends quadratically on the quasiparticle ener-
gies when the screening is short ranged. This happens when
the dot is sufficiently close to the metallic gate or for large

dots. Such behavior implies the existence of well-defined
quasiparticles inside the dot, consistently with the Fermi liq-
uid theory.

We find deviations from this behavior when the dot is
sufficiently far from the gate, so that the charge fluctuations
at the gate induce an almost uniform electric field at the dot.
This field may be either unscreenedsL!lTFd or imperfectly
screenedslTF!Ld, because of the two-dimensional nature of
the dot here considered. In the absence of screening, the
coupling between the electrons in the dot and the external
gates is correctly described by the standard Caldeira-Leggett
model of a particle coupled linearly in its position to a bath
of oscillators. The lifetime then shows a plateau at energies
E−EF smaller thanEF, but still larger than"vF /L [see Fig.
3]. This corresponds to non-Fermi-liquid behavior. When the
dipole induced by the gate is(imperfectly) screened, the
level width is linear in the energy. Then the definition of the
quasiparticle peaks is not enhanced near the Fermi energy as
strongly as in the case of a Fermi liquid. This is the case of
a marginal Fermi liquid.

Remarkably, the effect of the gate is enhanced for gates of
reduced dimensions, as revealed by thez−d dependence of
the linewidths. In this sense, it is important to note that the
effective dimensionalityd of the response of the gate is de-
termined by the ratio of its various length scales and the
distance to the dot. For instance, the potential fluctuations
induced at a distancez by a metallic wire of diameter much
smaller thanz can be described as if the wire were one-
dimensional(see the Appendix), even if the wire is fully
three-dimensional, with its diameter much larger than its
Fermi wave length.

Inspection of Table I suggests that the degree of departure
from Fermi liquid (FL) behavior seems to go through a
maximum as a function of the dot-gate distance: At small
distances, short-range correlations dominate causing FL be-
havior to prevail, as shown in Sec. IV. This limit is essen-
tially equivalent to that in which the dot merges into the gate,
with global FL behavior. At longer distances, the analysis of
Secs. III and V indicates a departure from the FL regime,
especially for small dots. At much longer distances, one ex-
pects the interaction between dot and gate to be negligible.
Then internal, short-range correlations dominate within the
dot and FL properties are again recovered. We note that this
apparently reentrant behavior is compatible with the monoto-
nous decay of the electronic linewidth with distance[See Eq.
(4)], since the prefactor of the quadratic energy dependence
characteristic of FL behavior are very large in the case of
short distances.

It is interesting to compare the estimates obtained here
with the lifetimes expected from the decay of the quasiparti-

TABLE I. Sketch of the regimes studied in the text. FL stands for Fermi liquid behavior, while NFL and
MFL indicate non-Fermi liquid and marginal Fermi liquid, respectively. The roman numbers indicate the
sections where the various cases are discussed in the main text.

lTF/L @1 !1

z/L

@1 Dipole, NFL(III ) Screened dipole, MFL(V)

!1 Short range, FL(IV ) Short range, FL(IV )
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cles into internal excitations of the dot. That calculation, for
a disordered dot, gives1,2

GsEd .
sE − EFd2

EF
. s24d

We assume in the following that the same expression, within
numerical factors, gives the lifetimes for the ballistic dots
considered here. Comparing this Eq.(24) with the contribu-
tion from the gate, Eq.(23) (we assumeL@lTF, i.e., the
screened case), we find that the effect of the gate dominates
if

E − EF ,
"vF

L
SL

z
Dd skFlTFd2skF8Ld2−d

skFl8dskFLdskF8w8d3−d . s25d

This inequality is based on the result(23), which only ap-
plies for sE−EFd."vF /L, being zero below that energy.
Thus, the dominance of gate effects over a significant energy
range requires

skF8zdd ,
L

l8

skFlTFd2

skF/kF8d2skF8w8d3−d . s26d

Since, in turn, the dipole approximation requiresz@L, one is
led to the condition

kF8L ø
skF8/kFdskFlTFd

skF8 l8d1/2 d = 3,

kF8L ø
skF8/kFd2skFlTFd2

skF8 l8dskF8w8d
d = 2,

1 ø
skF8/kFd2skFlTFd2

skF8 l8dskF8w8d2 d = 1, s27d

Typical values of the density in quantum dots are in the
range 131015−431015 m−2 leading to values ofkF

−1 of or-
der 5310−8−8310−8 m. The productkFlTF~ rs

−1 for GaAs
quantum dots of typical densities isrsù1. In metallic gates,
kF8

−1,10−10 m andkF8 l8 can be as low as 10−102. Hence, the
factor fskF8 /kFd2skFlTFd2g / skF8 l8d in Eq. (27) can be of the
order 104−106. Assuming, in addition,33 L,w8, the domi-
nance of the effects of a quasi-two-dimensional gate require
kF8L.102−103, which restricts the range of possible experi-
mental setups.

It is also instructive to analyze a carbon nanotube of ra-
dius R and lengthL suspended at distancez over a quasi-
two-dimensional metallic gate. Recent experiments show the
existence of interference effects due to the electronic coher-
ence throughout the nanotube.34 When L!z the dipolar re-
gime discussed in Sec. III applies, as the screening effects
due to the one-dimensional nanotube can be neglected. The
matrix elements and density of states needed to calculate the
lifetimes are different from the two-dimensional quantities
used in the analysis in Sec. III. To leading order inkFL,
however, these effects cancel, and Eq.(13) is also valid in
this case. On the other hand, a perturbative calculation of the
lifetime due to intrinsic effects gives

GintsEd . S e2

"vF
D2SdC−C

R
D2

uEu, s28d

wheredC−C is the distance between carbon atoms. Then, us-
ing Eq. (13), we obtain, forE="vF /L

Gint

GG
. S e2

"vF
D2SdC−C

R
D2zw8skF8 l8dskF8w8d

L2 . s29d

The dimensionless coupling constante2/"vF is of order unity
for graphitic compounds(see, for instance Ref. 35). This
expression contains, in addition, a number of factors which
depend on the geometry of the setup. Different realistic com-
binations of them can lead toGGùGint.

The unscreened regime,lTF@L, corresponds to dots
smaller than "2e0/m*e2, which, for realistic values of
the parameters, e0,12,m* ,0.06me, corresponds to
L,10−8 m. In addition, the calculations presented here re-
quire the number of electrons in the dot to be much larger
than one. These dots require electronic densities of order
,1016 m−2. This value is much higher than those achieved
with present day techniques.

For sufficiently large dots, the mean free pathl becomes
smaller than the sizeL, and we have a crossover from the
ballistic regime considered here to a diffusive one. In diffu-
sive systems, typical matrix elements involving statesuml
and unl do not depend on the energy differenceEn−Em for
energies such thatuEn−Emu!Ec, where Ec="D /L2 is the
Thouless energy. This corresponds to an effective short-range
interaction behavior, as discussed in Sec. IV[see Eq.(16)].
Thus, in the disordered regime, the anomalous effects dis-
cussed in this paper wll be cut off at energies of orderEc,
i.e., we will have conventional Fermi liquid lifetimes forE
−EF,Ec.

The small sizes and the two-dimensional character of the
quantum dot are essential for the non-Fermi liquid results
that we have obtained. A three-dimensional dot withlTF,L
would result in a complete screening of the gate fluctuations,
putting us in the short-range regime and thus yielding a
Fermi-liquid-type of quasiparticle lifetime. For one-
dimensional systems, the decay rate of a single particle level
of quantum numbern, coupled to a Caldeira-Leggett envi-
ronment, has been shown25 to scale linearly withn. The na-
ive extension of such a universal behavior for fermionic sys-
tems would also lead to an electronic lifetime that exhibits a
plateau as a function ofE−EF. Our starting point of well-
defined quasiparticles may not be appropriate in one dimen-
sion.

Finally, we wish to stress that, due to the reciprocal char-
acter of the microscopic interactions, in those cases where
we have found a departure from Fermi liquid behavior in the
dot, a similar deviation will be realized locally in the region
of the metallic gate which is most strongly affected by the
presence of the quantum dot.

Possible experiments to measure the electronic lifetimes
here studied may include transport spectroscopy of quantum
dots36,37 or, through their effect on the pattern of standing
waves, scanning tunnel microscope(STM) studies of the
electron density within the dot similar to those performed for
quantum corrals.38,39
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APPENDIX: DIPOLAR COUPLING TO A METALLIC
GATE

In this Appendix we estimate the coefficientS0 defining
the structure factor in the dipole approximation. For speci-
ficity, we will assimilate the metallic gate to a disordered
electron layer. The functionSsr ,r 8 ;Ed defined in Eq.(5),
wherer andr 8 are positions within the dot, can be written, in
general, as

Ssr ,r 8,z;Ed = − Im Vscrsr − r 8,z;E/"d, sA1d

whereVscr is the screened interaction induced by the gate.
For a two-dimensional gate located at a distancez from the
dot, the Fourier transform ofVscr is

Vscrsq,z;vd =
2pe2 e−2qz

q esq,vd
, sA2d

whereq is a two-dimensional vector in the plane of the dot.
For a diffusive 2D electron gas, we have

esq,vd = 1 +
2pe2

q

Dn2q
2

Dq2 − iv
, sA3d

whereD="2kF8 /ml8 is the diffusion coefficient,l8 the mean
free path, andn2=m/p"23 /kF8w8d is the density of states of
the quasi-two-dimensional gate. In the long wavelength
limit, we obtain

Im Vscrsq,z;vd . −
e−2qz v

Dn2q
2 , sA4d

where we have assumedv!Dq2. The exponential
exps−2qzd implies that only wave vectors such thatq!z−1

contribute toVscrsr −r 8 ,z;vd. Assuming that the typical dis-
tances within the dot are such thatur −r 8u!z, we can write

Im Vscrsr − r 8,z;vd . −E d2q

8p2

uq · sr − r 8du2e−2qzv

Dn2q
2 ,

sA5d

which leads to the dipolar approximation discussed in the
text.40

The calculation of ImVscrsr −r 8 ,z;vd for a semi-infinite
three-dimensionalgate can be carried out in a similar way if
we assume that quasiparticles within the gate are specularly
reflected at the boundary.41 This approximation has been
widely used in the literature for the study of the related prob-
lems of energy dissipation by moving charges42 or the decay
of image states at metallic surfaces.43,44 Then, the effective
dielectric function which describes the effect of electrostatic
screening by the gate at points outside the gate can be written
as a two-dimensional integral over the surface of the gate.
This approximation becomes exact at large distances. The
resulting screened potential outside the gate is

Vscrsq,z;vd = e−2qz2pe2

q

Bsq,vd − 1

Bsq,vd + 1
, sA6d

where

Bsq,vd ;
q

p
E dqz

sq2 + qz
2desq,qz;vd

, sA7d

esq ,qz,vd being the bulk dielectric function. Using, as for
the two-dimensional gate, the dielectric function of a diffu-
sive electron liquid, and expanding forur −r 8u!z, we find a
result identical to Eq.(A5) with n2q

2 in the denominator of
the integrand replaced byn3q, wheren3=mkF /p2"2 is the
density of states of the three-dimensional gate.

Finally, it is straightforward to generalize the previous
calculations to the case where the gate is a one-dimensional
metallic gate. The main difference is that the integral over
the positions at the gate is one-dimensional.

Using Eqs.(A5) and(A6) we can estimate the value ofS0
in Eq. (9). We find, apart from factors of order unity

S0
−1szd < 5 zl8skF8w8d2 1D

z2skF8 l8dskF8w8d 2D

z2skF8zdskF8 l8d 3D

sA8d

Corrections of order logsz/Rd, whereR is the radius of the
gate, are neglected when the gate is effectively one-
dimensional.
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