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Electronic lifetimes in ballistic quantum dots electrostatically coupled to metallic environments
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We calculate the lifetime of low-energy electronic excitations in a two-dimensional quantum dot near a
metallic gate. We find different behaviors depending on the relative values of the dot size, the dot-gate distance,
and the Thomas-Fermi screening length within the dot. The standard Fermi liquid behavior is obtained when
the dot-gate distance is much shorter than the dot size or when it is so large that intrinsic effects dominate.
Departures from the Fermi liquid behavior are found in the unscreened dipole case of small dots far away from
the gate, for which a Caldeira-Leggett model is applicable. At intermediate distances, a marginal Fermi liquid
is obtained if there is sufficient screening within the dot. In these last two nontrivial cases, the level width
decays as a power law with the dot-gate distance.
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[. INTRODUCTION with a two-dimensional dot of lateral sizg at a distance
from the quasi-two-dimensional gate of widih (extensions
The understanding of lifetimes of electronic states in finiteto other gemoetries will also be consideyedinother impor-
low-dimensional devices presents subtleties not found in extant scale is the Thomas-Fer(fiF) screening length for the
tended systemsS The lifetime of quasiparticle excitations dot, Ajg=m%%€;/m'e® (m' is the electronic effective mass
(with energyE) in bulk three- and two-dimensional clean @nd e the dielectric constantThe metallic gate will be de-
electron systems scales @&-E)?, for E sufficiently close ~ Scribed as an Ohmic environment, that is, as one with a low-
to the Fermi energyE®7 Such a behavior results from the €Nergy spectral density proportional to the frequericihe
combined effects of the screened electron-electron interacliferent behaviors mentioned above are obtained by varying

tion and the continuous spectral density provided by the in—he relative values of the length scalesz, andrr.

; ) ; The widely used Caldeira-Leggett model, understood as
ternal electronic e”V'rO”me'@Fe“.””' sea The abovga ENeT9Y that with ohmic spectral density and coupling linear in the
dependence can be readily obtained from a Fermi golden ru'Sarticle coordinaté? corresponds to the limiting case

.(FGR) ?proa‘?h using _the matrix elements Qf th_e_ eﬁeCt'Vez/L,)\TF/L>1. This is the regime which exhibits the largest
interaction expressed in terms of the polarizability of the

metal® This response function can also be viewed as resultgeparture from the Fermi liquid behavior, a result which is
. ' P . consistent with the decay of persistent currents predicted for
ing from an external environment.

) : ) o mesoscopic rings where the electronic dipoles couple to an
The corrections induced by disorder and finite size can b%hmic OSCiIIato% batts Clarifying the appplicabilitypand

systematically_lcomputed using an expans_ion in the inVerSShysical consequences of different environments is one of
conductanceg " =A,/E., where, is the typical level spac- the guiding lines of this work.

) a 2% i e
ing, andE.=#D/L" is the Thouless energp '93 the diffu The question of electron decay is related to the loss of
sion coefficient, and. the size .Of t_he_ syste)ﬁ' The appli- . phase coherence suffered by electrons in a dot, a problem
cation of a FGR approach for intrinsic quasiparticle decay i hich has been the object of experimental attén’c?oi"?

valid for sizes(or quasiparticle energipdarge enough that Here we propose a framework within which one can study a

msﬁtggcﬂ rf,?se gﬁﬁg%etﬁe?shgﬂ de?r\]/'\r/znm;gta\l’lvggtg ?to I{'/Ialriety of geometrical setups where extrinsic mechanisms
P ’ ' v ' © compete with the intrinsic ones to cause electron wave deco-

is the presence of nearby metallic gates that ensures the X

. I ) “Nerence.

istence of decay channels at arbitrarily low energies. This

effect becomes of crucial importance in determining the L

width of the low lying electronic excitation§-12 —
The purpose of the present work is to investigate the qua- Dot

siparticle lifetimes in quantum dots of various sizes in the z

vicinity of an extended metallic gate. In this way, we can

study the crossover between the regimes in which the exter- "
nal environment does not introduce qualitative changes with
respect to the case of the isolated dot, and that in which Gate

significant departures from Fermi liquid behavior are ob-
tained. We consider the simple geometry sketched in Fig. 1, FIG. 1. (Color onling. Sketch of system studied in the text.
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S(7,P,t-t’) the effectively independent electron, and E2).can be writ-
ten as
d’q :
0= s[(mle"[n)*S(a,z;AB), ()
(2m)
where §(q,z,AE) is the Fourier transform of the structure
n|m min factor.
7t 7.t Notice that now a quasiparticle does not decay into a two-
b4 b4

particle—one-hole configuratiofiike in the case of intrinsic
FIG. 2. (Color onling. Diagram representing the calculation in decay, butinto another one-particle state. The use of FGR is

Eq. (2). The filled bubble describes the time-dependent response df€n justified by the large density of final states provided by

the environmentimproper polarization Labelsm andn stand for ~ the environmen(metallic gatg. ' '
electron states within the dot. The properties of the environment determine the precise

form of the bubble in Fig. 2. However, we can infer some

The next section introduces the model considered in thigeneral featurgs fulfilled l_Jy the physically relevant environ-
ments we are interested in

work. Then, we present calculations for the case
z/L,Ae/L>1. Section IV discusses the reginel <1,
while in Sec. V we analyze the situation whefL>1 and

(i) An Ohmic environment implies that, at low energies

Me/L<1. The main conclusions, as well as the experimental Sr.r'.z,AE) = |AE[S(r.r.2), ®)
relevance of our work, are discussed in Sec. VI. (i) For small|r| and|r’| we will always have, effectively,
Il MODEL Sirr',2) =r&@r’, (6)

As described in the introduction, our system is given by a
dot coupled to a metallic gatsee Fig. 1. Such an electro-
static interaction is governed by the Hamiltonian

(i) S(r,r’,2—0 for |r—r’| sufficiently large with re-
spect to the characteristic length scales of the environment
and the dot-gate coupling. These general properties still al-
N low for different regimes, which will be thoroughly dis-
Hine= | VAr)p(r)dr, (1) cussed in the following chapters.
A The lifetime of a stat@ is obtained by considering all the
where A=L2 is the area of the doft, is a two-dimensional Possible transitions to lower states above the Fermi energy

vector in the plane of the dop(r) is the operator describing
= 2 T (7)

the local electronic density fluctuations of the dot, aht) EL<E<E,

represents the potential induced on the dot by the (eita

z the separation dot-ggte We are interested in describing the energy dependence of the
The electronic states of the dot in the absence of the gatevel width. Therefore, we will average over nearby eigen-

will be assumed to be well described by an independent elestates

tron analysis. The consistency of this approximation in the

various regimes will be discussed in the sequel. Using the I'(E) = LE r.8.(E-E,) (8)

FGR the probability per unit time of a transition between the (=) v

electronic states andm (transition ratg is _ _ _
whered, represents a smootheéfunction of width e (which

_ LA ", Ve we take as an energy scale of the order of a few level spac-
an—fA erA dr“mip(r)M{nlp(r)myS(r.r*,z;Eq - Ew), ings and v(E)=ZX, 6(E-E,) is the smoothed density of
states within the dot.

2
where the structure factor lll. DIPOLAR APPROXIMATION
dt | 9 9 For dots far away from the gate> L) andL so small that
1, ZAE) = | = dAEUR(r HVLr,0 3 way g
Sr.r.zAB) f h (VAT VL, 0) ® internal screening effects can be neglectéd=<Ap), the

describes the fluctuations of the metallic environment as e electric field penetrates the dot and, in the low-frequency

: . .hmit, we can use the dipolar expansion represented in Eq.
perienced in the quantum dot. The averages are taken wit N _ < .
respect to the degrees of freedom of the environment. ThEP)- For simplicity, we will take the tensd, as diagonal and
second order processes involved in the calculation of thésotropic, S=S,(2). Relaxing this assumption would not
transition rates of Eq(2) are represented by the diagram lead to qualitative changes in the results. An estimation of
shown in Fig. 2. S(2) in a simple situation is given in the Appendix.

Within the one-particle picture that we adopted for the dot From Egs.(2), (5), and (6) one can write the transition
(m[p(r)|ny=W, (r)W,(r), whereW,, is the wave function of rate as
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\ I'(E-Ep
I'on=S%2(E - Ep) f dr dr’ W (r)
XW (1) -1’ W (r)W(r’)
- &)(Z)(En _ Em) |<m|r |n>|2. (9) l_s‘at

The transition rate is then governed by the squared dipole
matrix element. Local averaggen a scale ofe) of matrix
elements for an arbitrary operatér

hVF/L E-Er

FIG. 3. (Color onling. Schematic behavior of the decay rate

CA(E,AE) = > Km|AINY|?6(E - E;) S(AE - E, + Epy), I'(E), of state of energy, as a function of, for the unscreened
mn dipole case discussed in Sec. lll.

(10)

have been thoroughly studi@¥23They are interesting quan- and we will not be restricted to a particular geometry.

tum mechanical quantities governing not only transition If Ag=%?/mL? is the mean level spacing within the dot,
rates, but other experimentally revelant phenomena, like thée estimation of the energy dependence of the dipole matrix
energy absorption rate of small metallic clustéfé and elements allows us to write the level width as

guantum transport in ballistic systerfsSimilar to the den-

sity of stateg? C,(E,AE) can be written as a leading smooth

term plus oscillating corrections. The latter are given by a S(2) (FFF

periodic orbit expansion, and therefore depend on the nature I'E) = @ A d(AB)AE G (E,AE)

of the underlying classical dynamigse., chaotic versus in- 0

tegrablg. The smooth term is given by the Fourier transform hvgll |2

of the classical autocorrelation function of the observable =cli- E-E¢ (12

(expressed in terms of classical trajectoriend presents
some scaling behavior in the case of billiard systéfrsor

the dipole matrix element§A=r) the hard wall confining ¢, Er>E-E;>%vg/L, and T(E)=0 for E-Ep<five/L.

potential translates into a dependence This expression only assumes the validity of Ex{), which,
L2 E®”? in turn, can be considered an expansiomia/E-<1. The
C/(E,AE) = (1) constant is discussed in the sequel. The energy dependence

’V(E)El'
A of the level width, depicted in Fig. 3, yields a plateaulike

for both, integrable, and nonintegrable systems, provided#ehavior forive/L <E—-Er<Eg. For E-Er comparable to
AE>#ve/L. The AE™* dependence of, (E,AE) arises from  Eg, the possible smoothing of the potential and the opening
the discontinuity of the velocity of the particle as it bouncesOf additional relaxation mechanisms lead to a vanishing life-
against the hard wall. The power-law of Edl) is obtained time, and thereford’(E) increases withE for E~Er>E¢
from the contribution of a single bounce off the boundary. At(not shown in Fig. 3

sufficiently low frequencies, the contributions from many The quasiparticle decay rate for a standard Fermi liquid
such bounces have to be added. This leads to interferendellows the lawI'g (E) o (E-Eg)% Thus, the energy depen-
effects and to an effective lower cutoff of th&"* law at the  dence obtained in Eq(1l2) (a constantl'(E) for E-Eg
synchrotron energyivg/L. >fivg/L) reveals anon-Fermi-liquid behaviarWe have thus

Like in the one-dimensional cage@here the semiclassical identified an electronic system where dissipation effects are
dipole matrix element can be evaluated on generalell described by the standa¢tinear in the particle coordi-
grounds®), the AE™ law is preserved when we consider a natg Caldeira-Leggett model, the oscillator bath being
soft potential, provided thaAE<(%/a)VE/m’, wherea is  formed by the quasiparticle field of the gate. Anomalous be-
the length scale defining the rise of the confining potentialhaviors in systems described by the the Caldeira-Leggett
That is, when the small energy differences that we are intermodel have been discussed in the literafdr&€. Such
ested in correspond to times much larger than the collisiofparticle-bath couplings were known to be realized in con-
time, and thus the detailed profile of the confining walls be-texts where the particle coordinate.g., the flux through a
comes irrelevant. For large values AE, the soft character superconducting ringdoes not experience any quantum sta-
of the walls comes into play, and the correlation functiontistical constraint. Here we have shown that, under specific
defined in Eq(10) decays faster thaAE™. In the following ~ circumstances, such anomalous behavior can also be dis-
calculations we will be using Eq11) for AE in the range played in systems where the Pauli exclusion principle plays
el L<AE<(hla)VE/m'. an essential role.

In simple two-dimensional geometries, like a circular The constant in Eq. (12) depends on the distance gate-
dis@ or an infinite rectangular strig@,the dipole matrix ~dot and on the properties of the gdteroughSy(2)], as well
element can be calculated explicitly for the unscreened casgs on the details of the dgthrough C(E,AE) and v(E)].
and screened@Thomas-Fermicases. In the calculation that Using the results of the Appendix for a two-dimensional
follows we will only need the scaling behavior of EQ1)  gate, we have
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L7%ke hoe( L 2 1 liminary investigation reveals the following results: A semi-
L\ m infinite three-dimensional gate yields Fermi liquid behavior
FE for z<L, with logarithmic corrections if it is dirty. The be-
(13 havior of a dot close to a gate made of a two-dimensional

where the primes refer to parameters of the gate. For quasEl€cron gas is somewhat more singular. We find marginal
two-dimensional gates of widtv' a factorkiw’ has to be Fermi liquid behavior [I'(E)=(E-Ef)] if the two-
included in the denominator. If the dot has widtha factor dimensional2D) gate is diffusive, and Fermi liquid behavior
k-w must be added to the numerator. For a semi-infiniteVith logarithmic corrections if it is ballistic. We must note
three-dimensional gate, the factk.l’ in the denominator that these qalculations QO not include additional screening by
of Sy(2) is replaced by k2, while for a one-dimensional the dot, which may be important far>re. For such large
gate it is replaced byl’. Thus, we find that the level width dots, we expect to find full Fermi liquid behavior for both

decays with the dot-gate distance as power-law, with an exiwo-dimensional and semi-infinite three-dimensional gates.

: ; ; ; The result(18) has the form which corresponds tstan-
t by the d lity of th t=1,2,3. S ! .
ponent given by the dimensionality of the g& 3 dard Fermi liquid” The effect of the external environment is

then indistinguishable from that of the intrinsic charge fluc-
tuations of the dot, which are not considered in the present
analysis but which should dominate in the limit of very large
For dots sufficiently close to the gate<L), we expect dots. The estimation of the typical matrix element in E)
the quasiperfect screening provided by the gate to yield &an be extended to diffusive ddts)eading to logarithmic
structure factor of Eq(5) of limited range. Let us defing’  corrections to Eq(18). Similar effects for bulk diffusive sys-
=r—r’ and assume that tems are well known in the literatuPé. Those
calculationd*? have been made in the context of studies of
the effect of intrinsic charge fluctuations.

Iim I'E)=c=—%————=
E—vpll ) mZ(kel ) (kfw') L

IV. SHORT-RANGE REGIME

s= J dr'S(r”) (14)
V. SCREENED DIPOLE
is finite. Then we may mimic the structure kernel through the

approximation For dots far away from the gate and large enough to par-

tially screen the external electric fie{d>L> \{¢) an inter-
S(r,r',z;AE) = SAE Sr—r") (15) _mediate regime shOL_JId be g(_)nsid_ered. The potential which
induces the electronic transitions in the dot has now to be
for [r—r'| much greater than the range 8f”). Let us take  taken as that of an external uniform electric field screened by
AE small enough for the density matrix element betweenthe two-dimensional electron gas of the dot. Since the dot is
statesm and n with (E,-E)=AE to be, on average, ap- two-dimensional, the screening length is independent of the
proximately independent of position and energy, electron density. In addition, in contrast with the three-
dimensional case, the electric field penetrates beyond this
(16) length. Near the boundary, the charge density and the
screened potentid¥e(r), depend algebraically on the dis-

9 1/2 H i
This set of approximations leads to a transition rate fromfance to the edg‘é, ¢ asg =% This power-law behawor
staten to m with the particularly simple expression allows us to esumau_a_the dep_endence on the energy differ-
enceAE, of the transition matrix elements, to leading order

S in Are/L. For a ballistic quantum dot, dimensional analysis
2 ;AE- (17)  applied to thes ' scaling of the potential yields

V(NW(r)|?= ek

Tmn=SAE f dr [W () ()
A

Within this regime of validity, the width of a quasiparticle f dr W, (1) W (r)Vae(r) o« (E, - Eq) Y2, (19
state of energye can be written as A
S E-Er Such a classical estimation of the matrix elements can be
I'(E) = —v(E) d(AE)AE x (E — Ef)?, (18) carried out exactly for the case of a dior a rectangular
A Ag strig?” unbounded in one direction. As in those cases, we

expect the scaling in E@19) to be valid also for any ballistic
chaotic quantum dot. This behavior of the matrix element
leads to a lifetime

where the density of state$E) is assumed to vary slowly on
the scale oE—-E¢ (an exact property for a two-dimensional

dot).
In practice,S defined in Eq(14) is never finite, as can be ['(E) & E - Eg, (20)
seen by noting thab=lim,e_.oS(q=0,z,AE)/AE and deriv- e, the lifetime of a quasiparticle is proportional to the en-

ing S(q,z,AE) for any reasonable screening modste the ergy of the quasiparticle itself. This type of dependence is
Appendix for specific casgsFortunately, the requirements usually associated tmarginal Fermi liquid behavioin bulk

to obtain Eqs(17) and(18) are much less stringent than the systems.

finiteness of Eq(14). While the electronic behavior of a dot ~ We can use the results in the Appendix to make a more
very close to a metallic gate deserves a careful study, a prejuantitative estimate of the lifetimes in this regime. Through
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TABLE |. Sketch of the regimes studied in the text. FL stands for Fermi liquid behavior, while NFL and
MFL indicate non-Fermi liquid and marginal Fermi liquid, respectively. The roman numbers indicate the
sections where the various cases are discussed in the main text.

Ne/L >1 <1

z/L

>1 Dipole, NFL(11) Screened dipole, MFLV)
<1 Short range, FLIV) Short range, FI(IV)

its charge fluctuations, the gate induces an electric #iedl  dots. Such behavior implies the existence of well-defined
the position of the dot. The effect of the field at the positionquasiparticles inside the dot, consistently with the Fermi lig-
of the dot is described in the Appendix for the casel,  uid theory.

where the dipolar approximation can be made. In the present We find deviations from this behavior when the dot is
case\te=<L, and therefore we need to include the screeningufficiently far from the gate, so that the charge fluctuations
of the bare field due to the electrons in the dot. The resultingt the gate induce an almost uniform electric field at the dot.

induced charge near the edges of {tveo-dimensional dot his field may be either unscreenéd< )\_TF) or _|mperfectly
goes a(x) = EVL/x. From the charge density we can calcu- Screenedire<L), because of the two-dimensional nature of
late the Thomas-Fermi potential, the dot here considered. In the absence of screening, the
coupling between the electrons in the dot and the external
px) € L gates is correctly described by the standard Caldeira-Leggett
Vre(X) ~ o ~>Vy (21)  model of a particle coupled linearly in its position to a bath

of oscillators. The lifetime then shows a plateau at energies
wherev is the compressibility of the electron gas, which we E—Er smaller thanEg, but still larger tharive/L [see Fig.
take to be equal to the density of states per unit area. Hencg]- This corresponds to non-Fermi-liquid behavior. When the
the difference between the present screened case and the @ole induced by the gate igmperfectly screened, the

screened dipolar regime in Sec. Ill is the replacement level width is linear in the energy. Then the definition of the
quasiparticle peaks is not enhanced near the Fermi energy as

& L strongly as in the case of a Fermi liquid. This is the case of
e°EX — Vr(X) = ez——\/; (22 a marginal Fermi liquid.
v Remarkably, the effect of the gate is enhanced for gates of
The calculation of is implicit in the analysis of the dipolar reduced dimensions, as revealed by #i dependence of
effects made in the Appendix. In order to estimate the lifethe linewidths. In this sense, it is important to note that the
times, we need to replace the matrix elemémix|n) by  effective dimensionalityd of the response of the gate is de-
(ml)\TFv"L_/le (note thate?v= }\#:)_ As dicussed at the be- tgrmlned by the ratio of its various length sg:ales and _the
ginning of this section, the asymptotic behavior of thedlstance to the dot. For instance, the potential fluctuations

screened potential fixes the energy dependence of the matri'nduced at a distanceby a metallic wire of diameter much
P 9y dep aller thanz can be described as if the wire were one-

elements at low energies, see EtP). Using this result, and - gimensional(see the Appendix even if the wire is fully
the calculations in the Appendix, we find three-dimensional, with its diameter much larger than its

A2 E-E Fermi wave length.
I'(E) =~ —TF o F, — - (23) Inspection of Table | suggests that the degree of departure
2 (k)" 2Kl (kew') from Fermi liquid (FL) behavior seems to go through a

maximum as a function of the dot-gate distance: At small
distances, short-range correlations dominate causing FL be-
havior to prevail, as shown in Sec. IV. This limit is essen-
tially equivalent to that in which the dot merges into the gate,
@ith global FL behavior. At longer distances, the analysis of
Secs. lll and V indicates a departure from the FL regime,
especially for small dots. At much longer distances, one ex-
V1. DISCUSSION pects the interaction between dot and gate to be negligible.
Then internal, short-range correlations dominate within the
We have calculated the lifetime of electronic states in baldot and FL properties are again recovered. We note that this
listic quantum dots due to the presence of metallic gatesapparently reentrant behavior is compatible with the monoto-
Depending on the size of the ddt), the dot-gate distance nous decay of the electronic linewidth with distariSee Eq.
(2), and the screening length within the datg), we find  (4)], since the prefactor of the quadratic energy dependence
different regimes, schematically described in Table I. Thecharacteristic of FL behavior are very large in the case of
level width depends quadratically on the quasiparticle enershort distances.
gies when the screening is short ranged. This happens when It is interesting to compare the estimates obtained here
the dot is sufficiently close to the metallic gate or for largewith the lifetimes expected from the decay of the quasiparti-

For quasi-two-dimensional systems, a factkgw)/(kfw’),
wherew is the width of the dot anav’ is the width of the
gate has to be included, as in Sec. lll. Also like in the un-
screened dipole case, interference among many trajectori
leads tol'(E) =0 for (E-Eg) <Auvg/L.
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cles into internal excitations of the dot. That calculation, for e \?(de-c)?
a disordered dot, givés [in(E) = IR |E[, (28)
Ur
I'(E) ~ (E-Ep)® (24) whered._¢ is the distance between carbon atoms. Then, us-
Er ing Eq.(13), we obtain, forE=7%vg/L
We assume in the following that the same expression, within Cint _ (i)z( dC—C>ZZ\N’(kl,:| ") (kew') 29
numerical factors, gives the lifetimes for the ballistic dots I'g hue R L2 ’

considered here. Comparing this Eg4) with the contribu-
tion from the gate, Eq(23) (we assumd. >\, i.e., the
screened cagewe find that the effect of the gate dominates

The dimensionless coupling const@htfug is of order unity
for graphitic compoundgsee, for instance Ref. 35This

if expression contains, in addition, a number of factors which
depend on the geometry of the setup. Different realistic com-
fwe L\ (kehrp)?(kpL)?d binations of them can lead 5=y,
E-Er< T(E) (kel ) (ke L) (kw3 (25 The unscreened regime\rg>L, corresponds to dots

smaller than#%%e,/m'e?, which, for realistic values of
This inequality is based on the resg#t3), which only ap- the parameters, ¢,~12,m ~0.06 m,, corresponds to
plies for (E-Eg)>#ve/L, being zero below that energy. L<108m. In addition, the calculations presented here re-

Thus, the dominance of gate effects over a significant energguire the number of electrons in the dot to be much larger
range requires than one. These dots require electronic densities of order

~10% m™2. This value is much higher than those achieved
(k’z)d<£ (kehve)? with present day techniques.

F 1" (ke/ki)2(kiw' )3 For sufficiently large dots, the mean free pathecomes
smaller than the siz&, and we have a crossover from the
Since, in turn, the dipole approximation requizsL, one is  ballistic regime considered here to a diffusive one. In diffu-

(26)

led to the condition sive systems, typical matrix elements involving stajies
, and |[n) do not depend on the energy differerég-E,, for
KL < (ke/ke) (kehre) =3 energies such tha€,-E,|<E., where E.=AD/L? is the
F (el "2 ' Thouless energy. This corresponds to an effective short-range
interaction behavior, as discussed in Sec.[$¢e Eq(16)].
(KL/ke) (KA rp)2 Thus, in the disordered regime, the anomalous effects dis-
kiL<—————— d=2, cussed in this paper wll be cut off at energies of orHgr
(kel ") (kew’) i.e., we will have conventional Fermi liquid lifetimes f&
-Er<E..
_ (Ki/ke)X(Kehte)? d=1 27 The small sizes and the two-dimensional character of the

(KLl ") (kiw)2 quantum dot are essential for the non-Fermi liquid results
that we have obtained. A three-dimensional dot with<<L
Typical values of the density in quantum dots are in thewould result in a complete screening of the gate fluctuations,
range 1 10*°-4x 10" m™2 leading to values okz' of or-  putting us in the short-range regime and thus yielding a
der 5x10°8-8x10® m. The produckehree<rg* for GaAs  Fermi-liquid-type of quasiparticle lifetime. For one-
quantum dots of typical densitiesiig=1. In metallic gates, dimensional systems, the decay rate of a single particle level
k{1~1crl° m andkfl’ can be as low as 10-10Hence, the  of quantum numben, coupled to a Caldeira-Leggett envi-
factor [(ki/ke)2(kehtp)?]/(KEl') in Eq. (27) can be of the ronment, has been shot#rto scale linearly witm. The na-
order 1¢-1CP. Assuming, in additiof? L~w’, the domi- ive extension of such a universal behavior for fermionic sys-
nance of the effects of a quasi-two-dimensional gate requireems would also lead to an electronic lifetime that exhibits a
kL =107-10% which restricts the range of possible experi- plateau as a function dE—Eg. Our starting point of well-

mental setups. defined quasiparticles may not be appropriate in one dimen-
It is also instructive to analyze a carbon nanotube of rasion.
dius R and lengthL suspended at distan@eover a quasi- Finally, we wish to stress that, due to the reciprocal char-

two-dimensional metallic gate. Recent experiments show thacter of the microscopic interactions, in those cases where
existence of interference effects due to the electronic cohewe have found a departure from Fermi liquid behavior in the
ence throughout the nanotubfewhen L <z the dipolar re-  dot, a similar deviation will be realized locally in the region
gime discussed in Sec. Il applies, as the screening effectsf the metallic gate which is most strongly affected by the
due to the one-dimensional nanotube can be neglected. Theesence of the quantum dot.

matrix elements and density of states needed to calculate the Possible experiments to measure the electronic lifetimes
lifetimes are different from the two-dimensional quantitieshere studied may include transport spectroscopy of quantum
used in the analysis in Sec. Ill. To leading orderkifl,  dots®37 or, through their effect on the pattern of standing
however, these effects cancel, and Et) is also valid in  waves, scanning tunnel microscop8TM) studies of the
this case. On the other hand, a perturbative calculation of thelectron density within the dot similar to those performed for
lifetime due to intrinsic effects gives quantum corralg®3°
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APPENDIX: DIPOLAR COUPLING TO A METALLIC lems of energy dissipation by moving chartfesr the decay
GATE of image states at metallic surfacgs$? Then, the effective
dielectric function which describes the effect of electrostatic
In this Appendix we estimate the coefficie®f defining  screening by the gate at points outside the gate can be written
the structure factor in the dipole approximation. For specias a two-dimensional integral over the surface of the gate.
ficity, we will assimilate the metallic gate to a disordered This approximation becomes exact at large distances. The
electron layer. The functioS(r,r';E) defined in Eq.(5), resulting screened potential outside the gate is
wherer andr’ are positions within the dot, can be written, in

,
S(r,r',z;E) =—1Im Vg (r —r',z;E/R), (A1)
where
where Vg, is the screened interaction induced by the gate.
For a two-dimensional gate located at a distanée®m the B(q,0) = ﬂf dg, (A7)
dot, the Fourier transform o, is ' 7) (P + D) elq,0,; )
2me? €292 €(q,q,, w) being the bulk dielectric function. Using, as for

Vsel 0,2 0) = (A2) " the two-dimensional gate, the dielectric function of a diffu-

q &0, 0) . 510 ! :
. . . _ sive electron liquid, and expanding for-r’| <z, we find a
whereq is a two-dimensional vector in the plane of the dot. resylt identical to Eq(A5) with 7,02 in the denominator of

For a diffusive 2D electron gas, we have the integrand replaced bysqg, where vs=mk:/ 722 is the
2m€ Du,q? dengity of states of _the three-dimensional gate. _
Qo) =1+——————, (A3) Finally, it is straightforward to generalize the previous
q Do -le calculations to the case where the gate is a one-dimensional

whereD=#2%k./ml’ is the diffusion coefficient|’ the mean Metallic gate. The main difference is that the integral over
free path, and,=m/ mh2 X /kiw') is the density of states of (he positions at the gate is one-dimensional.
the quasi-two-dimensional gate. In the long wavelength USing EQs(A5) and(A6) we can estimate the value &

limit, we obtain in Eq. (9). We find, apart from factors of order unity
e2dz Z|’(k,’:W')2 1D
Im Vse(d,2,0) = - Do (A4) S ~ 1 2k ) (kw') 2D (A8)

where we have assumedv<D@?. The exponential Z(ke2)(kel") 3D

exp(-292) implies that only wave vectors such that<z?  Corrections of order log/R), whereR is the radius of the
contribute toVg(r —r’,z; w). Assuming that the typical dis- gate, are neglected when the gate is effectively one-
tances within the dot are such tHatr’|<z we can write  dimensional.
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