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A spin decoherence mechanism is proposed for localized electrons. The irregular phonon phase disturbances
originated from phonon relaxation can influence electron spin precession with a net effect of spin phase decay.
A quantitative analysis demonstrates relatively high efficiency of this mechanism in the low temperature and
low magnetic field regime compared to the spin-flip processes.
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I. INTRODUCTION

Recently, much attention has been devoted to electron
spin relaxation in quantum dots(QDs) since they provide a
natural candidate for the qubits in quantum computing. A
typical approach to this problem is to calculate the spin tran-
sition probability associated with the spin-flip processes, i.e.,
longitudinal spin relaxation. However, quantum computing is
qualitatively limited by the processes that result in the de-
struction of electron spin phase coherence. For example,
phase diffusion of localized electron spin can be character-
ized by relaxation mechanisms that are not related to spin-
flip processes under certain conditions. Hence, a further in-
vestigation oftransversal(or phase) relaxationT2 is crucial
for an accurate understanding.

One such mechanism was proposed in Ref. 1 where a
random change of spin precession and subsequent spin phase
diffusion is associated with the transitions between electronic
quantum states with differentg factors. Although generally
efficient, this process is frozen out at low temperatures due to
its phonon-mediated nature and the direct spin-flip is ex-
pected to be the dominant mechanism of phase relaxation.
However, the spin-flip relaxation reveals a very strong(4th
to 5th power) dependence on the magnetic field,2,3 becoming
rather ineffective at low fields. Hence, it is necessary to ex-
plore other potential sources of decoherence, particularly in
the low field and low temperature regime. In this work, we
show that the spin-phonon interaction, which heretofore was
considered mainly with respect to the resonant processes, can
provide such a mechanism if a finite phonon damping is
taken into account.

Our analysis is based on the representation of spin-
phonon interaction in terms of fluctuating effective magnetic

field VW (in units of energy) acting on the electron spinsW. This

field is assumed to be composed of additive contributionsVW p
from each phononp=hqW ,ûj with a wave vectorqW and polar-

izationû , i.e.,VW =SpVW p . For the moment, let us focus on a
single phonon contribution. Then, in the frame of reference
rotating with the Zeeman frequency, the electron spin per-

forms precession around the smallVW p , which oscillates with
a phonon frequencyvp . No alteration in the electron spin
phase occurs due to such a harmonic perturbation with a
possible exception of spin phase shiftDf0 acquired at the
initial period of interaction 0, t,2p /vp due to a random
phonon phaseup.

4

A different situation can be realized when a phonon har-
monic oscillation is interrupted and resumes at a series of
instant timest1i and t2i si =0,1, . . .d, respectively. The reason
of such phonon fluctuations can be lattice anharmonicity,
phonon scattering at the impurities or lattice defects, etc.
These irregular phonon perturbations affect the electron spin
precession resulting in the phase shiftDfi at each interval of
time t2i − t1i. Subsequently, the net effect of spin phase
changefpstd due to a phonon modep can be expressed as
fpstd=SiDfi , st2i , td .

Note that for a large number of small changesDfi , their
total effect can be described by a diffusion equation. Its so-
lution leads to an exponential decay of electron spin phase
with a relaxation rateTp

−1= 1/2kDfi
2ltp

−1, where tp is the
mean time between sequential instantst1i (or t2i).5 To esti-
mate the spin phase changeDfi caused by a phonon pertur-
bation during thet2i − t1i , it is helpful to recognize that a
single oscillator influence does not change a spin phase dur-
ing its full period Dtp=2p /vp as well as for anyn integer
periodsn2p /vp . Hence,Dfi can be approximated as a spin

rotationVpDtp in an effective fieldVW p independently on du-
ration t2i − t1i . With the mean valuekDfil on the order of
Vp/vp, one can expectTp

−1,tp
−1Vp

2/vp
2 for the phonon mode

p and T2
−1,SpNptp

−1Vp
2/vp

2 when the contributions of all
phonons(with the population factorNp ) are taken into ac-
count.

The qualitative consideration provided above shows that
electron spin phase relaxation can be strongly affected by
phonon phase damping of any origin such as phonon decay.
Moreover, since this mechanism does not involve energy ex-
change, only the longitudinal(with respect to the external

magnetic fieldBW ) componentVz of the effective fluctuating
field is relevant to our case. These characteristics qualita-
tively distinguish the mechanism under consideration from
other processes, most of which are determined by fluctua-
tions of transversal componentsVx and Vy at the resonant
frequency with the Zeeman splitting.

II. THEORETICAL MODEL

For a detailed quantitative analysis of the proposed
mechanism, let us start with the spin–phonon interaction op-
erator,
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Hs−ph = VW sW, s1d

where theath componentsa=x,y,zd of the fluctuating field
takes a form linear in the creation and annihilation operators
ap

† andap of the phonon modep f−p;h−qW ,ûjg; i.e.,

Va = o
p

Va
pQp ; o

p

Va
psap

† − a−pd, s2d

with a matrix elementVa
p of the spin–phonon interaction.

The specific form ofVa
p will be discussed later.

Now we focus on the spin evolution caused by random
fluctuations ofVa . Obviously electron spin follows each of
such fluctuations that result in its irregular behavior at the
time scaletc of theVa fluctuations. Actually a random single
spin fluctuation associated with each phonon scattering is
expected to be very small and drops out of the problem;
instead, the total result of these small fluctuations averaged
over the time scaleDt stc!Dt!T2d is the subject of our
investigation. The time evolution of mean spin valuesW can be
described by the quantum kinetic equation5 in the case of
anisotropic medium and interactionHs−ph [Eq. (1)],

d

dt
sWstd = vW 3 sWstd − GfsWstd − sW0g, s3d

where vW is an effective field with componentsvi
=o j gijmBBj.

6 As usual,gij are the components of ag tensor,
the subscriptsi and j relate to the crystalline coordinate sys-
tem, mB is the Bohr magneton,k. . .l=Trhe−Hd/T. . .j /Tr e−Hd/T

where Hd is the Hamiltonian of the dissipative subsystem
(lattice vibrations in our case), andT is the temperature.vW
and T are expressed in units of energy. The matrixG of
relaxation coefficients is composed of Fourier transformed
correlation functions,

gmn ; gmnsvd = kVmstdVnlv =
1

2p
E

−`

`

kVmstdVnleivtdt,

s4d

with Vmstd=expsiHdtdVm exps−iHdtd. It has a canonical
form in the frame of referencesx̂, ŷ, ẑ with ẑ directed along
vW (so thatm, n=x, y, z). With a provision that the correlation
functions are symmetrical,gmnsvd=gnmsvd, the matrixG has
a simpler form: Gxx=psgzz

0 +ngyyd, Gyy=psgzz
0 +ngxxd, Gzz

=pnsgxx+gyyd, Gmn=−pngmn, (mÞn), where gzz
0 =gzzs0d,

n;nsvd=s1+e−v/Td /2, sW0=−1/2ẑtanhsv /2Td, v=vz

=soi vi
2d1/2.

One can see that the coefficientsGxx andGyy responsible
for transversal relaxation consist of two parts,T2,v

−1 =pngyy
(or pngxx) andT2,0

−1 =pgzz
0 . A comparison with the longitudi-

nal relaxation coefficientGzz shows that the termT2,v
−1 stems

from the contribution of spin-flip processes involving energy
exchange between the Zeeman and phonon reservoirs. Since
the longitudinal relaxation has been the subject of a number
of recent studies,2,3,7,8 we focus on the analysis of theT2,0

−1

term.
The correlation function Fourier image[Eq. (4)] of the

effective fieldVW is expressed in terms of the phonon opera-
tors according to Eq.(2). In turn, the Fourier image of pho-

non correlation functionswpsvd=kQpstdQ−plv is Lorentzian-
like since the corresponding Green function satisfies the
equation Gpsvd=svp/pdfv2−vp

2−2vpMpsvdg−1, where the
“mass” operatorMpsvd depends on the phonon interaction
(see, for example, Ref. 9). In the most general case, this
correlation function takes the form10

wpsvd =
1

p

s2Np + 1dGpsvd
sv2 − vp

2d2/vp
2 + Gp

2svd
, s5d

whereGpsvd=Im Mpsvd depends on the specific mechanism
of phonon scattering. In such a manner,Gpsvd is a function
of temperature due to the anharmonicity of the third and
fourth order; furthermore, there are contributions by other
sources of phonon scattering(point defects, isotopes, dislo-
cations, crystal boundaries, and interfaces) that reveal differ-
ent dependencies onv and vp. Hence, an evaluation of the
relaxation coefficients becomes too complicated to be ap-
proached analytically. Instead, to proceed further, we utilize
the phonon relaxation time that can be extracted from the
thermal conductivity measurements(see Ref. 11 and the ref-
erences therein). An expression appropriate for the correla-
tion function Fourier imagegmnsvd was derived in Ref. 5 in
the relaxation time approximation. For our particular case of
v=0 andm=n=z, it can be reduced to

gzz
0 = o

p1,p2

Vz
p1Vz

p2kQp1
Qp2

l
1

p

tp1

−1

vp1

2 + tp1

−2 , s6d

wheretp=1/Gpsvpd is the relaxation time of phonon modep
(i.e., phonon lifetime). In most cases, one can assumevp
@tp

−1 and neglect the second term in the denominator of Eq.
(6). Then, along with the definition of the operatorQp [see
Eq. (2)], one can express the nonresonant phonon contribu-
tion to the transversal spin relaxation rate in the form

T2,0
−1 = o

p

uVz
pu2s2Np + 1d

tp
−1

vp
2 , s7d

which is in accordance with the qualitative analysis dis-
cussed earlier in this paper. The phonon population factorNp
is given asfexpsvp/Td−1g−1.

Equation(7) is the starting point of our investigation on
the proposed spin relaxation mechanism. However, this still
requires detailed knowledge of the phonon dispersionvp and
the relaxation timetp for each phonon modep. By taking
into account the conditions frequently encountered in quan-
tum computation utilizing semiconductor QDs, we restrict
our consideration to the case when the radiusa0 of the elec-
tron state is much larger than the lattice constant and the
temperature is sufficiently low. Since the spin–phonon inter-
action matrix Vz

p is significant only for the phonon wave
vector q&1/a0, a largea0 essentially limits the summation
of Eq. (7) to long wavelength phonons. Subsequentlytp,
which is a complex function of the temperature and phonon
frequencies,12 can be considered in the long wavelength
limit. Moreover, at low enough temperaturesT&Tbs (Tbs
<10 K in the case of Ref. 12), only one term originating
from the boundary scattering survives for phonon
relaxation.11 Since this mechanism is insensitive to the tem-
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perature as explained by Ref. 11, it is adequate to assume a
constant phonon relaxation timetp.tph for long wavelength
phonons atT&Tbs. This permits us to avoid the problems
associated with the complex dependence ofvp andtp, which
can be very specific for each particular sample.

A. Effect of g-factor fluctuation

To evaluateVz
p, we consider the spin–lattice interaction

via phonon modulation ofg factor. In general, the spin–
lattice interaction Hamiltonian can be written in terms of the
tensorAijkl :

13,14,3

Hs−ph = o
i jkl

AijklmBBisjukl, s8d

whereukl is the strain tensorukl averaged over the electron
ground stateugl=cgsrWd: ukl=kguuklugl. By way of an impor-
tant example, we consider az-directed magnetic field and a
localized electron with the axial symmetry with respect to
the z-axis. This reduces Eq.(8) to the form of Eq.(1) with
Vz=fsA33−A31duzz+A31DgmB; here,D denotes the dilatation
D=Siuii and the Voigt notation is adopted(A33=Azzzz, A31
=Azzxx, A66=Axyxy). Then, the matrix element of the spin–
phonon interaction takes the expression

Vz
p = iS "

2rVvp
D1/2

fsA33 − A31dez
pqz + dû,LA31qgFsqWdmBB,

s9d

wherer is the mass density of the crystal,V is the volume of
the sample structure,eWp the polarization vector of the phonon
modep, =L ,T, andFsqWd=kgueiqW·rWugl. The spin-lattice relax-
ation rate in Eq.(7) can be calculated by treating the phonon
modes based on the isotropic elastic continuum model with
the longitudinal and transverse sound velocitiescL and cT.
Assuming the axial symmetry for the local electron center,
i.e., FsqWd=Fsx,zd (x=qa0/2, z=qz/q, the parametera0 rep-
resents the electron state radius as mentioned before), one
can obtain

T2,0
−1 = tph

−1jsBdE
0

xmax

x
tp

−1

tph
−1FcothSTT

ef f

T
xDFTsxd

+
cT

3

cL
3FLsxdcothSTL

ef f

T
xDGdx, s10d

jsBd =
sA33 − A31d2mB

2B2

2p2"rcT
3a0

2 ,

FLsxd =E
−1

1

sz2 + zd2F2sx,zddz,

FTsxd =E
−1

1

z2s1 − z2dF2sx,zddz, s11d

where tph
−1 is an average phonon relaxation rate,Tû

ef f

="c/kBa0 is the effective temperature, andz;A31/ sA33

−A31d=−1/3 if one assumes that the strain induced part of
the effectiveg-tensorg̃ij =Sk,lAijklukl is characterized by zero
trace, i.e.,A33+2A31=0. Whena0 is much larger than the
lattice constant, the upper limitxmax in the integral of Eq.
(10) may be taken to infinity sinceFsqWd restricts the actual
phonon wave vectors toq&1/a0 as discussed above.

Let us evaluate spin relaxation of a shallow donor with an
effective Bohr radiusaB s=a0d andFsx,zd=s1+x2d−2. Utiliz-
ing the constant phonon relaxation time approximationtp
.tph for T&Tbs, the integral in Eq.(10) can be evaluated
analytically,

T2,0
−1 =

2jsBdtph
−1

45
SÎ1 +

T2

T'
2 +

2cT
3

3cL
3Î1 +

T2

Ti
2D , s12d

whereTis'd=s16/15pdTLsTd
ef f . Note that Eq.(12) is obtained

with BW i f001g. In the case of cubic symmetry[where only
two constantsA66 and A33=−2A31 in Eq. (8) describe the
effect of spin–phonon coupling], an expressionT2,0

−1 for an

arbitrarily directedBW can be obtained in terms of the direc-
tion cosinesl =Bx/B, m=By/B, n=Bz/B. Our calculations
show that this is achieved by multiplying the factor

fsBW /Bd = 1 +S4

9

A66
2

A33
2 − 1DP s13d

to Eq. (12); P=3sl2m2+m2n2+n2l2d, 0ø Pø1. One can see
that the angular dependence of our mechanism does not re-

sult in zero relaxation under any direction ofBW . Moreover,
the directions along the principal axes(f001g, etc.) can result
in maximal relaxation, while the same directions sometimes
forbid the spin-flip processes.13,15

As an example, we consider a phosphorus shallow donor
in Si with aB=1.8 nm. The phonon relaxation time can be
extracted from the low temperature measurements of Si ther-
mal resistivity16 in terms of the theory developed in Refs. 17
and 11stph=2.4310−8 sd. The spin–phonon coupling con-
stants were estimated in the works of Refs. 13 and 15. How-
ever, we believe that direct determination of coupling con-
stants by means of EPR measurements of Si:P under an
applied stress gives more reliable data. A corresponding ex-
periment was performed in Ref. 18, where the constantA66
=0.44 was found. Similarly, our estimation obtainedA33
=0.31 andA31=−0.155 that givesT2,0

−1 =1.3310−4 s−1 at the
magnetic field of 1 T and low temperaturesT!Tis'd
.10 K.

In another important case of a Si shallow donor in
Al0.4Ga0.6As, the data on EPR under a uniaxial stress19 pro-
vide rather strong spin–phonon constants ofA33=19.6 and
A31=−9.8. This gives the estimationT2,0

−1 =6.1310−2 s−1 and
6.1310−4 s−1 for the magnetic fields of 1 T and 0.1 T, re-
spectively, atT=4 K under the assumption that phonon life-
times are identical in these crystals.

Similar calculations can be performed for an electron lo-
calized in a QD ofLxy=2a0 in the lateral width andLw
=eLxy in the thickness. Under the conditione&0.1, an ap-
proximate formula takes the form
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T2,0
−1 = jsBdtph

−1So
i=L,T

biÎci
2 + di

2T2

Ti
2D , s14d

where the fitting coefficients arebT=1, bL=cT
3 /cL

3, cT=0.33
−1.27e2, dT=0.35−0.395e2, cL=0.97−28.5e2, and dL=0.40
−3.76e2.

Let us compare, as an example, spin phase relaxation
caused by the phonon decay[Eq. (14)] with the spin-flip
admixture mechanism(Ref. 2) in a GaAs QD with Lw
=3 nm andLxy=25 nm, assumingtph=2.4310−8 s andA33
=19.6. For the relatively strong magnetic field of 1 T and
T=4 K, our mechanism and the spin-flip mechanism give
T2,0

−1 <0.1 s−1 and 1/2T1
−1=T2,v

−1 =10 s−1, respectively, while
for B=0.1 T both mechanisms predict almost the same rate
of <10−3 s−1. In lower magnetic fields, our mechanism pre-
vails.

B. Effect of hyperfine constant modulation

The g-factor modulation described in Eq.(8) is not the
only possible mechanism of spin–phonon interaction. For an
alternative process, let us consider the hyperfine interaction
(HFI) of localized electrons with the nuclei:

Hhf = ahfo
j

ucsrW jdu2IWjsW, s15d

whereahf is the HFI constant andIWj is the nuclear spin situ-
ated at sitej with the positionrW j. Lattice vibrations near the
nuclear equilibrium positions can lead to effective field fluc-
tuations and, subsequently, the spin–phonon interaction. Tak-
ing into account the long wavelength phonons with respect to
the mean internuclear distance<ni

−1/3 (ni is the nuclear spin
concentration), the main part of this interaction for a typical
nuclear spin configuration can be represented as in Eq.(1)
with

VW = n̂ÎIsI + 1dni/VQDahfD. s16d

Here, the unit vectorn̂ is directed along the effective nuclear
field defined by Eq.(15) andVQD=seucsrWdu4d3rWd−1. A calcu-
lation of the phase relaxation rate for the case of a shallow
donor results in the expression, which is similar to Eq.(12),

T2,0
−1 =

jhftph
−1

3
Î1 +

T2

Ti
2 , s17d

where the parameter

jhf =
IsI + 1dniahf

2

6p2"rVQDcL
3a0

2 , s18d

is independent on the magnetic field. In the case of an elec-
tron localized in a QD, one can find the approximate rate
through an analogy with Eq.(14):

T2,0
−1 = jhftph

−1Îchf
2 + dhf

2 T2

TL
2 , s19d

wherechf=3.7−68e2, dhf=2.7−9.8e2, and e&0.1. Numeri-
cal estimations provided for a donor in Si and GaAs in terms

of Eq. (17) indicate the inefficiency of this mechanism with a
very long relaxation time(about 1014 s and 108 s, respec-
tively). Hence, this mechanism can be neglected in most
cases.

C. Two phonon process

So far, we primarily considered the influence of phonon
decay on spin phase relaxation via linear spin–phonon inter-
action as given in Eq.(8). Namely, the effect of phonon
scattering with an electron spin on phonon relaxation has not
been considered(i.e., electron spin-induced phonon decay).
The Hamiltonian of this process can be derived in terms of
spin–two-phonon interactionHs−ph

s2d =oDijklmnmBBisjuklumn
with the spin–phonon coupling constantsDijklmn. Now the
fluctuating effective field takes the form Va

=op,p8 Wa
p,p8QpQp8 (Wa

p,p8 are the matrix elements ofHs−ph
s2d ),

so the correlation function Fourier imagegmnsvd [Eq. (4)] is
expressed in terms of phonon correlation functions
ksQp1

Qp2
dstdQp3

Qp4
lv. Its calculation performed in a har-

monic approximation leads to a simple expressiondsvp1
−vp2

dsdp1,p3
dp4,p2

+dp2,p3
dp4,p1

ds2Np1
Np2

+Np1
+Np2

d. Substi-
tuting this function forgmnsvd and a parameterD for the
dominant contribution among the coupling constantsDijklmn,
the spin phase relaxation rate for the two-phonon process is
given at low temperatures(T,"cT/kBa0) approximately as

T2,0
−1 =

mB
2B2D2

21r2cT
3 SkBT

"cT
D7

. s20d

ParameterD can be estimated asD=3sg−2dC2/Eg
2 (g, C, and

Eg are the electrong factor, deformation potential and energy
gap).1 The numerical evaluation of Eq.(20) at low tempera-
turessT=4 Kd predicts a long relaxation time. In the case of
GaAs atB=1 T, one can findT2,0<33105 s, which is too
long to be of any experimental or practical interest.

III. DISCUSSION

To illustrate the significance of the mechanism under con-
sideration, let us briefly survey the most important spin de-
coherence mechanisms reported in the literature: the HFI and
spin–lattice interactions. In the presence of the HFI, an elec-
tron spin performs precession around the sum of the external

magnetic fieldBW and the effective fieldBW hf caused by the

HFI. The dispersion ofBW hf over an ensemble of QDs results
in a relatively fast electron spin phase diffusion(see Refs. 20
and 21); it causes also a partial longitudinal relaxation
s,67%d that can be essentially eliminated asB@Bhf (
Bhf,1 G for typical Si QDs).

In the case of a single electron in a QD, the electron spin
can change its phase through the HFI since the nuclei also
perform precession around the effective field caused by the
electron spin. This field proportional toucsrW jdu2 [see Eq.(15)]
is inhomogeneous over the QD volume, which distorts the
mutual correlation of nuclei spin configuration and subse-
quently causes an alteration in the direction and strength of

BW hf.
20,22 However, this relaxation is rather long and can be
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suppressed ifB@Bhf. In addition, it can be further reduced
in the case of full nuclei spin polarization22 and/or isotope
purification. Hence, the spin–lattice(i.e., phonon) interaction
provides the most fundamental and unavoidable source of
electron spin decoherence.

Among the spin–lattice interaction mechanisms, the
phonon-mediated transitions between the ground and excited
states modulate the precession velocity leading to very effec-
tive decoherence,1 when their energy separations are small
enough. However, under the assumptionkBT!d0 this relax-
ation is reduced as exps−d0/kBTd. Thus, the spin-flip pro-
cesses and the phonon-decay induced mechanism considered
in this paper provide the main contributions at low tempera-
tures. Moreover, these two mechanisms differ in the mag-
netic field dependence. When the magnetic field decreases,
the spin-flip process yields to spin phase diffusion induced
by phonon relaxation as mentioned above. The estimated
magnetic field strength for this cross-over(e.g., &0.1 T) is
well within the range of practical importance.

IV. CONCLUSION

We considered spin phase diffusion of a localized electron
through anharmonic phonon disturbances. In contrast to the
spin-flip process where only the resonant(with the Zeeman
energy) phonons are relevant, electron spin phase acquires
random shifts when relaxation of any(resonant or nonreso-

nant) phonon occurs. A quantitative analysis shows that the
considered phase relaxation reveals a relatively weak depen-
dence on the magnetic field strength and the temperature
compared to the direct spin relaxation processes or other
mechanisms that involve the excited electron states. In addi-
tion, a specific dependence on the magnetic field direction
[Eq. (13)] is attributed to this mechanism. Thus, one can
expect that at low temperatures and magnetic fields the spin
phase diffusion mediated by the phonon relaxation can be-
come dominant over the spin-flip processes. As for quantita-
tive estimation of the relaxation rate, the decisive role be-
longs to the phonon lifetimetph. In the present study, we
estimatedtph from the experiments conducted in bulk Si. It
is not apparent if this estimation is applicable to the case of
QDs. Moreover, the phonon lifetime may be a function of
geometry and composition of the structure under consider-
ation. However, the qualitative signatures of the proposed
mechanism is expected to persist and may provide a ground
for experimental verification. It should also be pointed out
that the framework of the developed theoretical model al-
lows more accurate estimation when the detailed information
on phonon dispersion and relaxation is taken into account.
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