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We study the transport properties of coherently coupled quantum dots in the quantum Hall regime within the
Landauer–Büttiker formalism which captures and explains the experimentally observed features in terms of the
spectral properties of the coupled dot system. The subpeak structure of the transmittance spectrum and the
charging stability diagrams are obtained and discussed. The role of the intradot and interdot Coulomb inter-
action are pointed out. We show the subpeak evolution with the magnetic field and predict a specific oscillatory
behavior of the Hall resistance in strong magnetic field which can be experimentally tested.
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I. INTRODUCTION

The electronic transport through coupled quantum dots
(CQD) became a topic of interest once the basic phenomena
in single dots were satisfactorily understood and the experi-
ments on CQD revealed a number of physical effects not
encountered in the case of single dots(see Ref. 1 for a re-
view). Waugh et al.2,3 investigated experimentally at zero
magnetic field the evolution of Coulomb oscillations of the
conductance of double and triple quantum dots as the cou-
pling between them(i.e., the interdot conductance) is varied.
They found that a usual conductance peak splits into two or
three subpeaks(a multiplet) as the coupling strength in-
creases. When the interdot coupling approaches 2e2/h the
multiplets merge to distinct peaks, resembling the Coulomb
oscillations of a single large dot. This process is the so-called
saturation effect discussed by Waughet al.2 The next step
was accomplished by Livermoreet al.4 who measured the
conductance through coupled quantum dots in the quantum
Hall regime and showed(besides the splitting) that the peaks
undergo shifts and also modulation as the magnetic field is
continuously varied.

All the aforementioned experiments were usually per-
formed by applying the same capacitive coupling(i.e., the
same gate voltage) to each dot. The possibility of varying
individually the voltages on each dot was realized by Hoff-
manet al.5 for parallel dots and by Kouwenhouvenet al.1 for
lateral dots, who obtained gray scale plots of the double-dot
conductance as a function of the gate voltagesVg1

, Vg2
ap-

plied on the dots. These plots are the so-called charging sta-
bility diagrams for double dots.

The quantum dot arrays are promising systems for meso-
scopic physics because of the analogy with complex mol-
ecules and due to a possible realization of quantum bits
(qubits)6 (see also the review in Ref. 7 and the references
therein). Another interesting topic is the observation of the
Kondo effect in coupled quantum dots in both equilibrium
and nonequilibrium regimes, as predicted theoretically.8,9

Various theoretical attempts were made to describe the
transport phenomena in coupled quantum dots at vanishing
magnetic fields. The Hubbard-type approach initiated by
Stafford and Das Sarma10 provided the evolution of the ad-

dition spectrum of four CQD as the interdot tunneling is
increased. Soon afterward, a master-equation technique was
utilized11 to predict that the conductance spectrum of a pair
of CQD exhibits a twin-peak structure due to interdot cou-
pling. A realistic electron-electron interaction was used but
the approach failed in finding the saturation effect for strong
couplings. There is also a series of papers12–14which address
the problem of CQD in the framework of constant capaci-
tance model. The position and the shape of the conductance
peaks in the Coulomb blockade regime were analyzedonly
in the limit of weak or strong tunneling between the dots. We
mention that the tight-binding model has already been used
for the study of transmittance of quantum dot arrays in the
work of Kirczenow15 where each dot is associated with a
single atom in the lattice, omitting thus the internal structure
of the dots. Arrays of one-dimensional QDs were also stud-
ied by Staffordet al.16 and by Shangguanet al.17 Recently
Das and Rao18 obtained theoretically the charging stability
diagrams for a double dot modeled as one-dimensional Lut-
tinger liquid with large barriers.

In this paper we address the problem of tunneling through
arrays of CQD in a strong magnetic field. The specific phe-
nomena we analyze are the multiplet formation, the effects of
the intradot and interdot Coulomb interaction and strong
magnetic field effects. Our theoretical approach is based on a
non-Hermitian tight-binding(TB) Hamiltonian19 and the
many-probe Landauer-Büttiker(LB) formalism.20,21 The
non-Hermiticity arises when we include the contribution of
the leads in the Hamiltonian of the dot system. The dot array
is considered as a quantum-mechanically coherent system
and we treat the electron-electron interactions beyond the
usual constant capacitance model by describing both the in-
tradot and interdot electron-electron interactions in a self-
consistent way. We recall that the constant capacitance model
is actually not suitable for the study of quantum dots in the
quantum Hall regime.22,23Our formalism covers instead both
the Coulomb blockade and the quantum Hall regimes. The
calculations are performed at zero temperature. Since we are
interested in the tunneling properties of artificial molecules
in a strong magnetic field the dots are weakly coupled to the
leads and the spins are frozen so that we neglect the Kondo-
type effects.

PHYSICAL REVIEW B 70, 085303(2004)

1098-0121/2004/70(8)/085303(10)/$22.50 ©2004 The American Physical Society70 085303-1



In the present work each quantum dot in the array is de-
scribed as a finite two-dimensional(2D) plaquette. Thus we
pay attention to the internal structure of the dots in order to
identify the effects of the magnetic field on the orbital mo-
tion of electrons within the dot and consequently on the
transport properties of the array.

The rest of this paper is organized as follows. In Sec. II
we outline the formalism through which we evaluate the
transmittance of the coupled dot array system. In Sec. III we
present our results and discuss their relevance to the experi-
mental findings. While the numerical results are given for a
particular array composed of two identical dots only we
stress from the beginning that the description we give for the
peak splitting and their saturation holds without any change
for bigger arrays. We choose to study in more detail the
double-dot case because the plots in this case are easier to
follow. We conclude in Sec. IV.

II. FORMALISM

We consider an array ofN coupled(identical) quantum
dots placed in a strong perpendicular magnetic field. The
electronic transport through the structure is described by a
generalization of the formalism used in Ref. 19 to describe
the transport properties of a single QD. The Hamiltonian of a
system of coupled dots contains the following terms:

HN = o
k=1

N

Hk + tinto
k=1

N−1

sHt
kk+1 + h.c.d + Ue o

k.k8

N

Hee
kk8, s1d

whereHk is the Hamiltonian ofkth dot of the array which
includes the intradot electron-electron interaction,Ht

kk+1 de-

scribes the tunnel coupling of consecutive dots, whileHee
kk8 is

the operator that accounts for the Coulomb interaction be-
tween electrons located in different dots( the so-called elec-
trostatic interdot coupling). The 2D spinless HamiltonianHk

is considered in the self-consistent Hartree approximation
(SCHA) and reads(ki , i8l denotes the nearest neighbor sum-
mation)

Hk = o
iPQDk

SVg
k + Uo

jsÞid

knjl
u j − i uDci

†ci + tDo
ki,i8l

ei2pfii 8 ci
†ci8. s2d

Hereci
†scid are the creation(annihilation) operators in lo-

calized states indexed byi PQDk and tD is the nearest-
neighbor hopping integral in the dots. The phasefii8 comes
from the Peierls substitution and accounts for the magnetic
flux through the unit cell of the lattice measured in quantum
flux unitsf /f0. knjl denotes the mean occupation number of
the site j from the kth dot. Since we use a one particle ap-
proximation for the Coulomb repulsion which is restricted
within the dots the Landauer-Büttiker formalism holds.

The charge transfer through the system is assured by sev-
eral biased(noninteracting) leads attached at will to the

quantum dot array. Following the idea formulated in Ref. 19
[namely Eq. (2.5)] we construct a non-Hermitian Hamil-
tonianHeff

N which acts only in the Hilbert space of the CQD
system but takes into account the coupling of the array to the
leads carrying the current. More explicitly, the lead-dot cou-
pling will contribute to HN by the so-called “lead’s self-
energy” (see Ref. 20 for a general discussion):

Heff
N sEd = HN + t2o

a

e−ikca
†ca, E = 2 cosk, s3d

wheret is the strength of the lead-dot coupling and the index
a denotes the sites where the leads are attached to the dots.
We note thatHeff

N depends on the energyE of the incident
electron and the imaginary part of its eigenvalues is con-
trolled by the lead-dot couplingt. Finally, one replaces the
effective Green functionGeff

+ sEd=sE−Heff
N + i0d−1 in the

Landauer- Büttiker formula

gabsEFd =
e2

h
TabsEFd = 4t4 sin2kuGeff,ab

+ sEFdu2 s4d

in order to obtain the conductancegab, the transmittanceTab

and finally the Hall resistance as outlined previously.19 Re-
mark thatgab depend as well on the gate voltagesVg

k applied
on each dot. Since the number of degrees of freedom of the
terminals is infinite while the mesoscopic system has only a
finite number of degrees of freedom, the Fermi levelEF of
the whole system is fixed by the leads.

The parameters entering our description are thus(i) the
tunnel coupling between the dot system and the leads de-
scribed by the parametert, (ii ) the interdot tunnel coupling
tint, (iii ) the strength of the intradot and interdot Coulomb
interactionU andUe, respectively, and(iv) the gate voltage
Vg

k which can be applied on any dotk. We take the hopping
integral tD to be the unit of energy, so that all the other
energiesVg

k, t, andtint are measured in units oftD.
The calculation ofGeff

+ must be performed numerically,
and the mean occupation number of each siteknil in Eq. (2)
must be calculated self-consistently. From Eq.(3), it is obvi-
ous that

Geffszd = F sGNszdd−1 − t2o
a

e−ikca
†caG−1

, s5d

so, for calculatingGeff one needs to know the Green function
GN=sz−HNd−1 of the isolated CQD system. For large arrays
this could be a difficult task(even for noninteracting dots)
since the numerical effort depends on the number of dots and
on the size of each dot. When the electrostatic interdot cou-
pling is neglected(i.e., consideringUe=0), we found a re-
cursive scheme which works efficiently forN identical dots.
This scheme expresses the Green function of theN-dot sys-
tem GN in terms ofGN−1 and G1, the Green function of a
single isolated dot. To see this we use the perturbative ex-

FIG. 1. The coupled dot
system.
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pansion with respect to the coupling Hamiltonian which con-
nects the group ofN−1 dots with the singleNth dot(see Fig.
1). Briefly, one writesHN=HN−1+H1+tintsHt

1,N−1+Ht
N−1,1d

=H0+tintV and observes thatH0 andG0=sz−H0d−1 are block
diagonal matrices with respect to the following decomposi-

tion of theN-dot Hilbert spaceHN=HN−1 % H1. V is an off-
diagonal perturbation(hereHN−1 is the Hilbert space forN
−1 coupled dots andH1 is that for an isolated dot). The next
step is to use a matrix form of the Dyson equation forGNszd
with respect toV which reads

GNszd = sz− HNd−1 = G0szds1 − tintVG0szdd−1=SGN−1szd 0

0 G1szd
D · o

nù0

`

tint
n S 0 Ht

N−1,1G1szd
Ht

1,N−1GN−1szd 0
Dn

. s6d

Then the matrix elements ofGN can be calculated explic-
itly after summing the series in each subspaceHN−1 andH1.
Straightforward manipulations lead to the following system
of equations:

Gnn
N szd = Gnn

N−1szd + Gnm
N−1szdGnm

N−1szd
tint

2 Gnn
1 szd

1 − tint
2 Gmm

N−1szdGnn
1 szd

s7d

and

Gnm
N szd = Gnm

N−1szdGnm
1 szd

tint

1 − tint
2 Gmm

N−1szdGnn
1 szd

. s8d

Iterating Eq.(8) as many times as necessary we express
the Green function ofN-coupled quantum dots solely in
terms of G1szd [note that in the LB formulaGnm

N szd is
needed],

Gnm
N szd = tint

N−1sGnm
1 szddNp

i=1

N−1
1

1 − tint
2 Gnn

1 szdGmm
1 szdaiszd

,

s9d

where the complex coefficientsai are given by the recursion
formula

a1 = 1, aiszd = 1 +
tint

2 uGnm
1 szdu2ai−1

1 − tint
2 Gnn

1 szdGmm
1 szdai−1

for i ù 2.

s10d

These formulas can be used to compute the electronic trans-
mittance through any number of dots[a similar relation can
be obtained forGnn

N szd which also makes the computation of
occupation numberknjl easier].

III. RESULTS AND DISCUSSION

Although the effects of the interdot coupling and electron-
electron interaction competes in artificial molecules they
must be considered separately. We start then with noninter-
acting dots and distinguish the charging effects later on.

As we have mentioned, we treat explicitly the simplest
array, namely a double dot. Let us first discuss the spectral
properties of double dots and their role in the resonant tun-

neling. Figure 2(a) shows the spectrum of a double dot as a
function of the magnetic flux. Each dot has 10310 sites. As
one can easily recognize the spectrum presents similarities
with the Hofstadter spectrum of a mesoscopic plaquette(see,
for instance, Fig. 2 in Ref. 24). As is well known, the eigen-
values from this spectrum can be labeled in terms of the
topological properties of their eigenfunctions which are in
turn of two types: edge and bulk states. The edge states are
due to the Dirichlet boundary conditions and they fill the
gaps existing in the spectrum of the same tight-binding
Hamiltonian when periodic boundary conditions are used
(see also Ref. 25). An important property of the edge states is
that they are well separated in energy. In contrast, the ener-
gies of bulk states are grouped together.

The spectrum of the disconnected double dot is doubly
degenerate and coincides with the usual spectrum of a 10
310 plaquette. For coupled dots the new feature is that the
spectrum exhibits a multiplet structure due to the tunnel-
couplingtint between the dots which lifts the degeneracy of
the energy levels. This degeneracy lifting and its dependence
on tint will produce the peak splitting in the transmittance
spectrum reported in the experiments. Indeed, through the
Landauer–Büttiker formula[Eq. (4)], the transmittance spec-
trum as a function of the Fermi energyEF corresponds to the
structure of the energy spectrum of the effective Hamiltonian
[Eq. (3)]. The latter has resonances located near the eigen-
values ofHN with the imaginary part controlled by the lead-
dot couplingt.

The correspondence between the transmittance peaks and
the energy spectrum is shown in Figs. 2(a) and 2(b) and
indicates the resonant tunneling process of the electron
through the coherent double-dot structure represented sche-
matically in Fig. 2(c). This correspondence depends essen-
tially on the strength of the lead-array coupling, namely ont.
For t small the real part of the second term inHeff

N is small
and gives only a small shift of the resonance. In contrast, a
large t spoils the resonant aspect and the one-to-one corre-
spondence. Let us mention that for a fluxf /f0=0.15 and a
plaquette of 10310 sites, the ratio between the linear dimen-
sion of the system and cyclotron radius approximately equals
10.

We now discuss the subpeak aspect. Regarding Fig. 2(b)
one notices that some doublets[the ones within the range
VgP s2,3d] have a clear resolution and are rather equally
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spaced. This happens because in a strong magnetic field the
distance between two subpeaks is determined by the type of
the corresponding resonant level(edge or bulk). To see this
we first show in Fig. 3 the spatial distribution of the first and
29th eigenvectors of the double dot[the positions of the
associated peaks in Fig. 2(b) are Vg=3.1655 and Vg
=2.3880, respectively]. Moreover, if the distanceD between
two initially degenerate bulk states is small the two subpeaks

produced by the interdot coupling are mixed. Since the array
is a coherent quantum system the eigenfunctions have the
character of molecular states(i.e., the eigenfunctions are ex-
tended to both dots). When one of the dots is detuned(by
applying an additional gate potential) the molecular states
are scrambled with important effects on the orbital
magnetization.26

A more interesting regime is the one in which the capaci-
tive coupling is differentsVg1ÞVg2d. As is well known
experimentally,1 for two lateral QD’s coupled in series the
gray scale plot ofg12sVg1,Vg2d has a honeycomb pattern. In
Fig. 4 we present stability diagrams for our double dot. The
similarity with the calculations based on the constant capaci-
tance model(CCM) in Ref. 1 and with the experimental gray
scale plots in Ref. 5 is clearly seen. The similarity exists in
spite of the fact that we are here in the strong magnetic field,
while the above-mentioned stability diagrams are obtained in
the absence of it. We observe that for almost decoupled dots
[Fig. 4(a)] a chessboard pattern is obtained, which changes to
the honeycomb picture at moderate coupling. A rather large
tint deforms the hexagonal domains and at perfect coupling
the diagram is reduced to a bunch of straight lines. We point
out that in the strong magnetic field case a rather regular
aspect of the rhomboids composing the stability diagram is
found only in a range of gate voltages that contains peaks
arising from edge states. Indeed, looking at Figs. 2(a) and
2(b) one may easily check that the intervalf2.55,2.95g sat-
isfies this condition. Moreover, in the diagrams shown in Fig.
4 the traces lying on the lineVg1=Vg2 represent the usual
subpeaks obtained at the same capacitive coupling on dots.

Our approach also reproduces the experimental results of
Livermoreet al.;4 Figs. 3(a)–3(c) in Ref. 4 reveal that, in a
strong magnetic field, the transmittance of a double dot be-
haves as follows:(i) at a given magnetic field but increasing
interdot coupling, one starts with single peaks[Fig. 3(a)],
then twin peaks appear[Fig. 3(b)] and finally, at large inter-
dot coupling, the saturation leads to individual peaks[Fig.
3(c)]; (ii ) with increasing magnetic field the position of each
peak shifts linearly(in spite of a zig-zag appearance) versus
larger gate voltages. Both these features can be described by
our model even without considering the interaction effects.
Our results shown in Fig. 5 indicate a striking similarity to
the experimental situation. We recover both the increase of
the distance between the twin peaks by increasing the inter-
dot tunnelingtint and the drift of the peaks with the variation
of the magnetic field. Again we found that such a regular
behavior, as observed in the experiment, occurs whenever
the Fermi level lies in a region covered by the edge states.

We now study the peak splitting in the case of interacting
double dots. Figures 6(a)–6(d) show the Coulomb peaks of
an artificial molecule composed of two 838 dots for differ-
ent interdot couplingstint. As expected, the splitting in-
creases withtint and saturates at perfect coupling. The satu-
ration is nonlinear in the coupling parametertint which can
be shown only by taking into account all orders of the per-
turbation as we make here. Again we remark the differences
between edge and bulk subpeaks and for clarity we show in
Fig. 7 the splitting process for a single edge subpeak and a
bunch of bulk subpeaks[noticing that theVg interval in Figs.
7(a) and 7(b) have the same length, one can check that the

FIG. 2. (a) The degeneracy lifting of the eigenvalues for the
Hofstadter-type spectrum of a noninteracting double dot; each dot
consists of 10310 sites andtint=0.4. (b) The corresponding split
peaks in the transmittanceT12 as a function of the gate potential at
magnetic fluxf /f0=0.15,t=0.4, andEF=0. (c) The sketch of the
double dot with four terminals for which the transmittance has been
calculated.
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bulk states are denser and their splitting is more difficult to
follow]. In what concerns the interaction effects it was
shown for the single-dot problem that, at least in SCHA, the
Coulomb repulsion gives rise to an increase in the level spac-
ing and in the width of transmission peaks.19 The same fea-
tures should hold also for coupled dots. To go beyond these
qualitative statements we present in Fig. 8 the positionsVg

sid

of two edge doubletssi =9,10,11,12d as a function of the
interaction strengthU, at fixed interdot tunnel coupling. We

identify two effects:(i) each subpeak position depends lin-
early onU but with different slopes; the slopes increase(in
absolute value) with the index i as expected since at each
subpeak the number of electrons increases, hence the Cou-
lomb repulsion is enhanced.(ii ) The splitting increases
slowly with the interaction strength.

The results shown in Figs. 6 and 7 are obtained by taking
into account the total Coulomb interaction. However, one
asks usually how important the interdot interaction is, in par-

FIG. 3. The spatial distribution
of the first and 29th eigenvectors
inside a double dot composed of
two identical dots 10310 sites
each.sf /f0=0.15,tint=0.4d. The
first eigenvector is localized in the
middle of each dot while the 29th
is clearly stuck to the edges; note
also the formation of a coherent
molecular state due to the interdot
coupling.

FIG. 4. Charging diagrams for a double dot in the strong magnetic field(f /f0=0.15,t=0.4). (a) tint=0.2, (b) tint=0.4, (c) tint=0.6,
(d) tint=1.
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ticular when the dots are small. This contribution represents
an additional term compared to the intradot Coulomb repul-
sion, and it was suggested that the strengthUe of the interdot
interaction is smaller than the intradot interaction strengthU
because of the screening produced by the metallic gates be-
tween neighboring dots.27

The interdot term should accentuate the interaction effects
observed in the transmission through a single dot. Further-
more, since the interaction energy is positive, in the presence
of the additional interdot electrostatic coupling the whole
transmittance spectrum is pushed upward on the energy
scale, corresponding to smaller gate voltages. This is noticed
by comparing Figs. 9(a) and 9(b) which shows the transmit-

tance spectrum of a double dot composed of two dots having
538 sites each with and without the interdot interaction.
The latter increases the width of the peaks even further, lead-
ing also to a reduction in the depth of the multiplets. This
explains the poor resolution of the doublet aroundVg=2.35
shown in Fig. 9(a).

The progressive character of the level splitting and the
contribution of the interaction in comparison to the noninter-
acting case is shown in Fig. 10 for three well-defined dou-
blets in the region of edge states. Figure 10(a) presents our
results for the transmittance and the number of electrons ac-
commodated in the double-dot system as a function of the
gate voltage and reveals the addition of two electrons at each

FIG. 5. The drift with the magnetic field of the twin peaks from the conductance spectrum of a noninteracting double dot(538 sites per
dot) for two values of the tunnel coupling:(a) tint=0.2, (b) tint=0.6. For both casesEF=0.

FIG. 6. The dependence of the transmittance spectrum of a double dot(having 838 sites per dot) on the interdot couplingtint at fixed
interaction strengthU=Ue=0.1 andf /f0=0.15,EF=0. (a) tint=0.2,(b) tint=0.4,(c) tint=0.8,(d) tint=1. The peaks behavior reproduces the
experimental observations; a usual peak is tunnel split into a multiplet and the splitting increases withtint.
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doublet. This represents the so-called bunching effect which
means that two(or more) electrons are added almost simul-
taneously within the dots; in our case the bunching is due to
the interdot coupling and is present as long as the saturation
has not yet set in. Figure 10(b) shows the magnitude of the
splitting DVn sn=1,2,3d as a function of the interdot cou-
pling tint at U=Ue=0.5 andU=Ue=0 and evidently demon-
strates that(i) DVn depends on the peak indexn, i.e., differ-
ent peaks have different robustness to splitting;(ii ) DVn is
progressive withtint; the slope ofDVn, while staying posi-
tive, decreases withtint; (iii ) the presence of the Coulomb
interaction gives rise to a larger splitting inDVn and to a
more rapid saturation compared to noninteracting case.(We
draw the splitting as function oftint

2 in order to keep the
analogy with experimental curves which are presented in
terms of internal conductanceGint

2.)
The peak structure of the transmittance(conductance) ma-

trix impose specific behavior on the Hall resistance. More
precisely any minimum of the conductance gives rise to a
maximum inRH, according to the formula

RH = sg21g43 − g12g34d/D, s11d

D being a 333 subdeterminant of the matrixgab. Obviously,
the minima of the conductance occur in-between the reso-
nances and in the same place the maxima of the Hall resis-

FIG. 8. The peak positionsVg
sid of two edge doublets from the

transmittance spectrum of a double dot(838 sites per dot) as a
function of the interaction strengthU (U=Ue, i =9,10,11,12,tint

=0.4, EF=0). The distance between the doublets as well as their
splittings increase smoothly withU.

FIG. 9. Contribution of the interdot Coulomb interaction:(a)
Transmittance spectrum in the presence of both interdot and intra-
dot interactionsU=Ue=0.5d. (b) The same in the presence of intra-
dot electron-electron interaction onlysU=0.5,Ue=0d. The param-
eters are:tint=0.2,t=0.4, EF=0.

FIG. 7. The peak splitting at different values oftint for edge(a) and bulk(b) subpeaks:tint=0.2 (solid line), tint=0.4 (long-dashed line),
tint=0.8 (dashed line), andtint=1 (dotted line).
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tance can be found, resulting in an oscillating behavior of the
Hall resistance. Such a behavior was put into evidence for
single dots in in the case of pinched contacts to the leads.19

In the present case of multiple dots, the interdot coupling
should add its own pattern because the splitting of the energy
levels gives rise to a richer aspect of the transmittance spec-
trum. In Fig. 11 we show plots of the Hall resistance for an
interacting double dot at different interdot couplings. One
notices that at smalltint [Fig. 11(a)] there are two types of
oscillations that correspond to the doublet structure of the
resonances. The large amplitude oscillations correspond to
the minima between two doublets while the small oscilla-
tions are due to the local minima found between two peaks
composing a doublet. By increasing the interdot coupling
(and hence the splitting) the local minima get smaller; con-
sequently the amplitude of theRH oscillations is enhanced
and at perfect coupling[Fig. 11(c)] all maxima become com-
parable. In this case the oscillation pattern resembles the one
of a single(bigger) dot [compare for instance Figs. 11(c) and

6(b) from Ref. 19]. To the best of our knowledge such a
property has not yet been observed experimentally.

Finally, as an illustration of our recursive method we
present in Fig. 12 the multiple subpeak structure of the trans-
mittance through a chain of 10 dots, together with its phase
evolution as a function of the plunger gate voltage, which
shows sudden jumps byp between each subpeak of the mul-
tiplet.

FIG. 10. (a) Three split peaks corresponding to the edge states,
mapped onto the electronic occupation number calculated fort
=0.4 andtint=0.1 (U=Ue=0.5,EF=0). The rather smooth curve of
the number of particles indicates that the charge quantization is
somewhat poor, nevertheless it can be observed that at each doublet
the number of electrons increases by two.(b) The magnitude of
splitting DVn versus the interdot coupling for the three doublets
from above, for both non-interactingsU=Ue=0d and interacting
casesU=Ue=0.5d.

FIG. 11. The oscillatory behavior of the Hall resistance for an
interacting double dot in high magnetic field regime(U=Ue=0.5,
f /f0=0.15, t=0.4) for several interdot tunnel couplings.(a) tint

=0.2, (b) tint=0.6, (c) tint=1. The small amplitude oscillations due
to the splitting are more evident in the rangeVg.0 where the
spectrum is covered by edge states. The same gate potential is ap-
plied on both dots andEF=0.
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IV. CONCLUSIONS

The Landauer-Büttiker approach has been used to de-
scribe the electronic transport through an array of coupled
quantum dots placed in a strong perpendicular magnetic
field. The formalism permits to consider the parameters
which determine the problem(interdot couplingtint and lead-
dot couplingt) in all orders of the perturbation and thus to

obtain results in the whole range of variation of these param-
eters. We have shown that the multiplet structure is deter-
mined by the tunnel coupling between the dots, while the
Coulomb interaction gives rise to a significant additional
width of the peaks and increases the splitting. The latter satu-
rates at perfect interdot coupling. The strong magnetic field
leads to specific features summarized as follows.(i) The
splitting depends on the nature of the states from which it
evolves(bulk or edge). States show different robustness to
splitting. (ii ) At small and moderate interdot couplings, one
obtains weak oscillations in the Hall resistance in addition to
the usual ones.(iii ) The position of the peaks(and subpeaks)
shifts with increasing magnetic field; this yields a diagram
(Fig. 5) which is similar to what was found experimentally
by Livermoreet al.4

Finally, the stability diagrams of double dots in strong
magnetic field were reproduced. As shown by Holleitneret
al.28 the investigation of such diagrams for a double-dot em-
bedded in a mesoscopic ring is the first step in understanding
the quantum transport through Aharonov-Bohm interferom-
eters with quantum dots. A theoretical approach to this topic
will be explored elsewhere.

ACKNOWLEDGMENTS

This work was supported by Grant No. CNCSIS/2002 and
Romanian Programme for Fundamental Research. V.M. ac-
knowledges support from the NATO-TUBITAK and the Ro-
manian Ministry of Education and Research under CERES
contract. B.T. acknowledges the support of TUBITAK,
NATO-SfP, MSB-KOBRA, and TUBA.

1W. G. van der Wiel, S. de Francheschi, J. M. Elzerman, T.
Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys.
75, 1 (2003).

2F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L.
Campman, and A. C. Gossard, Phys. Rev. Lett.75, 705 (1995).

3F. R. Waugh, M. J. Berry, C. H. Crouch, C. Livermore, D. J. Mar,
R. M. Westervelt, K. L. Campman, and A. C. Gossard, Phys.
Rev. B 53, 1413(1996).

4C. Livermore, D. S. Duncan, R. M. Westervelt, K. D. Mara-
nowski, and A. C. Gossard, Phys. Rev. B59, 10 744(1999); J.
Appl. Phys. 86, 4043(1999).

5F. Hofmann, T. Heinzel, D. A. Wharam, J. P. Kotthaus, G. Böhm,
W. Klein, G. Trankle, and G. Weimann, Phys. Rev. B51, 13 872
(1995).

6D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 (1998).
7D. P. DiVincenzo, G. Burkard, D. Loss, and E. V. Sukhorukov, in

Quantum Mesoscopic Phenomena and Mesoscopic Devices in
Microelectronics, edited by I. O. Kulik and R. Ellialtioglu(Klu-
wer, Dordrecht, 2000), p. 399.

8T. Aono and M. Eto, Phys. Rev. B64, 073307(2001).
9R. Aguado and D. C. Langreth, Phys. Rev. B67, 245307(2003).

10C. A. Stafford and S. Das Sarma, Phys. Rev. Lett.72, 3590
(1994).

11G. Klimeck, G. Chen, and S. Datta, Phys. Rev. B50, 2316

(1994).
12K. A. Matveev, L. I. Glazman, and H. U. Baranger, Phys. Rev. B

53, 1034(1996); 54, 5637(1996).
13J. M. Golden and B. I. Halperin, Phys. Rev. B53, 3893(1996);

54, 16 757(1996).
14R. Ziegler, C. Bruder, and H. Schoeller, Phys. Rev. B62, 1961

(2000).
15G. Kirczenow, Phys. Rev. B46, 1439(1992).
16C. A. Stafford, R. Kotlyar, and S. Das Sarma, Phys. Rev. B58,

7091 (1998).
17W. Z. Shangguan, T. C. Au Yeung, Y. B. Yu, and C. H. Kam,

Phys. Rev. B63, 235323(2001).
18S. Das and S. Rao, Phys. Rev. B68, 073301(2003).
19V. Moldoveanu, A. Aldea, A. Manolescu, and M. Niţă, Phys. Rev.

B 63, 045301(2001).
20S. Datta,Electronic Transport in Mesoscopic Systems(Cambridge

University Press, Cambridge, 1995), p. 146.
21M. Büttiker, in Nanostructured Systems, edited by M. Reed

[Semicond. Semimetals35, 191 (1992)].
22L. P. Kouwenhouvenet al., in Mesoscopic Electron Transport,

NATO ASI Series E, Vol. 345, edited by L. L. Sohn, L. P. Kou-
wenhouven, and G. Schön(Kluwer, Dordrecht, 1997).

23P. L. McEuen, E. B. Foxman, J. Kinaret, U. Meirav, M. A. Kast-
ner, N. S. Wingreen, and S. J. Wind, Phys. Rev. B45, 11 419

FIG. 12. Multiplet in the transmittance spectrum of an array of
10 dots(538 sites each) and the transmission phase as a function
of the gate potential in the strong field regimef /f0=0.15. The
transmittance is measured in units ofe2/h and the phase in units of
p. The phase increases byp on each subpeak of the multiplet.
Other parameters aret=0.2, tint=0.2.

TUNNELING PROPERTIES OF QUANTUM DOT ARRAYS… PHYSICAL REVIEW B 70, 085303(2004)

085303-9



(1992).
24U. Sivan, Y. Imry, and C. Hartzstein, Phys. Rev. B39, 1242

(1989).
25A. Aldea, P. Gartner, A. Manolescu, and M. Niţă, Phys. Rev. B

55, R13 389(1997).
26A. Aldea, V. Moldoveanu, M. Niţă, A. Manolescu, V. Gudmunds-

son, and B. Tanatar, Phys. Rev. B67, 035324(2003).

27F. Ramirez, E. Cota, and S. E. Ulloa, Phys. Rev. B59, 5717
(1999).

28A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick,
Phys. Rev. Lett.87, 256802(2001); A. W. Holleitner, H. Qin,
K. Eberl, and J. P. Kotthaus, Physica E(Amsterdam) 12, 774
(2002).

V. MOLDOVEANU, A. ALDEA, AND B. TANATAR PHYSICAL REVIEW B 70, 085303(2004)

085303-10


