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Tunneling properties of quantum dot arrays in a strong magnetic field
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We study the transport properties of coherently coupled quantum dots in the quantum Hall regime within the
Landauer—Biittiker formalism which captures and explains the experimentally observed features in terms of the
spectral properties of the coupled dot system. The subpeak structure of the transmittance spectrum and the
charging stability diagrams are obtained and discussed. The role of the intradot and interdot Coulomb inter-
action are pointed out. We show the subpeak evolution with the magnetic field and predict a specific oscillatory
behavior of the Hall resistance in strong magnetic field which can be experimentally tested.
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[. INTRODUCTION dition spectrum of four CQD as the interdot tunneling is
increased. Soon afterward, a master-equation technique was
The electronic transport through coupled quantum dotsitilized!! to predict that the conductance spectrum of a pair
(CQD) became a topic of interest once the basic phenomengf CQD exhibits a twin-peak structure due to interdot cou-
in single dots were satisfactorily understood and the experipling. A realistic electron-electron interaction was used but
ments on CQD revealed a number of physical effects nothe approach failed in finding the saturation effect for strong
encountered in the case of single d@ese Ref. 1 for a re- couplings. There is also a series of paperféwhich address
view). Waugh et al?? investigated experimentally at zero the problem of CQD in the framework of constant capaci-
magnetic field the evolution of Coulomb oscillations of the tance model. The position and the shape of the conductance
conductance of double and triple quantum dots as the coleaks in the Coulomb blockade regime were analyxelgt
pling between thenti.e., the interdot conductangis varied.  in the limit of weak or strong tunneling between the dots. We
They found that a usual conductance peak splits into two omention that the tight-binding model has already been used
three subpeakga multipley as the coupling strength in- for the study of transmittance of quantum dot arrays in the
creases. When the interdot coupling approach&g2the  work of Kirczenow® where each dot is associated with a
multiplets merge to distinct peaks, resembling the Coulomiingle atom in the lattice, omitting thus the internal structure
oscillations of a single large dot. This process is the so-calledf the dots. Arrays of one-dimensional QDs were also stud-
saturation effect discussed by Waughal? The next step jed by Staffordet all® and by Shangguaat all” Recently
was accomplished by Livermoret al* who measured the Das and Ra® obtained theoretically the charging stability
conductance through coupled quantum dots in the quantuliagrams for a double dot modeled as one-dimensional Lut-
Hall regime and showe(besides the splittinghat the peaks tinger liquid with large barriers.
undergo shifts and also modulation as the magnetic field is |n this paper we address the problem of tunneling through
continuously varied. arrays of CQD in a strong magnetic field. The specific phe-
All the aforementioned experiments were usually per-nomena we analyze are the multiplet formation, the effects of
formed by applying the same capacitive couplii@., the the intradot and interdot Coulomb interaction and strong
same gate voltageto each dot. The possibility of varying magnetic field effects. Our theoretical approach is based on a
individually the voltages on each dot was realized by Hoff-non-Hermitian tight-binding(TB) Hamiltoniart® and the
manet al’ for parallel dots and by Kouwenhouvenal? for many-probe Landauer-BiittiketLB) formalism2%2! The
lateral dots, who obtained gray scale plots of the double-doton-Hermiticity arises when we include the contribution of
conductance as a function of the gate voltaygs Vg, ap-  the leads in the Hamiltonian of the dot system. The dot array
plied on the dots. These plots are the so-called charging stés considered as a quantum-mechanically coherent system
bility diagrams for double dots. and we treat the electron-electron interactions beyond the
The quantum dot arrays are promising systems for mesaisual constant capacitance model by describing both the in-
scopic physics because of the analogy with complex moltradot and interdot electron-electron interactions in a self-
ecules and due to a possible realization of quantum bitsonsistent way. We recall that the constant capacitance model
(qubits® (see also the review in Ref. 7 and the referencess actually not suitable for the study of quantum dots in the
therein. Another interesting topic is the observation of the quantum Hall regimé223Our formalism covers instead both
Kondo effect in coupled quantum dots in both equilibriumthe Coulomb blockade and the quantum Hall regimes. The
and nonequilibrium regimes, as predicted theoretiéally. calculations are performed at zero temperature. Since we are
Various theoretical attempts were made to describe thénterested in the tunneling properties of artificial molecules
transport phenomena in coupled quantum dots at vanishinign a strong magnetic field the dots are weakly coupled to the
magnetic fields. The Hubbard-type approach initiated byleads and the spins are frozen so that we neglect the Kondo-
Stafford and Das Sarrfaprovided the evolution of the ad- type effects.
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In the present work each quantum dot in the array is dequantum dot array. Following the idea formulated in Ref. 19
scribed as a finite two-dimension@D) plaquette. Thus we [namely Eq.(2.5] we construct a non-Hermitian Hamil-
pay attention to the internal structure of the dots in order tconian H'g‘ff which acts only in the Hilbert space of the CQD
identify the effects of the magnetic field on the orbital mo- system but takes into account the coupling of the array to the
tion of electrons within the dot and consequently on theleads carrying the current. More explicitly, the lead-dot cou-
transport properties of the array. pling will contribute to HY by the so-called “lead’s self-

The rest of this paper is organized as follows. In Sec. llenergy”(see Ref. 20 for a general discussion
we outline the formalism through which we evaluate the _
transmittance of the coupled dot array system. In Sec. Il we HY(E) =HN+ 2> e7*clc,, E=2 cosk, (3
present our results and discuss their relevance to the experi- @

mental findings. While the numerical results are given for ayhereris the strength of the lead-dot coupling and the index
particular array composed of two identical dots only we, genotes the sites where the leads are attached to the dots.
stress from the beginning that the description we give for th§ye note tha‘HNﬁ depends on the enerdy of the incident

€

peak splitting and their saturation holds without any changgectron and the imaginary part of its eigenvalues is con-

for bigger arrays. We choose to study in more detail theyq|ieq by the lead-dot coupling. Finally, one replaces the
double-dot case because the plots in this case are easier dactive Green functionG:y(E)=(E-HY+i0)™ in the
e

H €
follow. We conclude in Sec. IV. Landauer- Biittiker formula

II. FORMALISM

& 4 o + 2
We consider an array dfl coupled (identica) quantum Gap(Er) = 7 Tap(Er) =47 SPGB “@

dots placed in a strong perpendicular magnetic field. The , )
electronic transport through the structure is described by ! order to obtain the conductanggg, the transmittancg .z
generalization of the formalism used in Ref. 19 to describetNd finally the Hall resistance as outlined previod$liRe-

the transport properties of a single QD. The Hamiltonian of a"a'k thatg.; depend as well on the gate voltagésapplied
system of coupled dots contains the following terms: on egch d_ot.' Since the: number of degrges of freedom of the
terminals is infinite while the mesoscopic system has only a
N i N , finite number of degrees of freedom, the Fermi lekzglof
HY =2 H+ 7, 2 (H 4+ he) +U. 2 HES, (1) the whole system is fixed by the leads.
k=1 k=l k>K! The parameters entering our description are tfiushe

whereH¥ is the Hamiltonian okth dot of the array which tunnel coupling between the dot system and the leads de-
includes the intradot electron-electron interactibf*? de- ~ Scribed by the parameter (ii) the interdot tunnel coupling

ibes the t | i f tive dot hiié . it (i) the strength of the intradot and interdot Coulomb
SCribes Ihe tunnet coupling of consecutive dots, w IS interactionU and U,, respectively, andiv) the gate voltage

the operator that accounts for the Coulomb interaction beg ... : .
LT which can be applied on any dkt We take the hoppin
tween electrons located in different dgtthe so-called elec- integral t° to be tf?g unit of er)1/ergy so that all thgpotr?er

P ; ; gl K

e a8/ . and sy, e messired nuns of

(SCHA) and reads(i,i’) denotes the nearest neipﬁlbor sum- The calculation oG, must be performed numerically,
' 9 and the mean occupation number of each &itgin Eq. (2)

matien must be calculated self-consistently. From &), it is obvi-
n: _ ous that
He= > <v5+ ux |.<—_J>.—|>ciTci +t0>) €2 ¢le,. (2 .
i e QDy j(#i) ]~ G,i" Gef-f(z) - [ (GN(Z))—l_ 7,22 e"kclca ' (5)

HereciT(ci) are the creatioigannihilatior) operators in lo-
calized states indexed biye QD, and t° is the nearest- so, for calculatingS.; one needs to know the Green function
neighbor hopping integral in the dots. The phage comes GN=(z-HN)™! of the isolated CQD system. For large arrays
from the Peierls substitution and accounts for the magnetithis could be a difficult taskeven for noninteracting dots
flux through the unit cell of the lattice measured in quantumsince the numerical effort depends on the number of dots and
flux units ¢/ ¢. (n;) denotes the mean occupation number ofon the size of each dot. When the electrostatic interdot cou-
the sitej from the kth dot. Since we use a one particle ap- pling is neglectedi.e., consideringd,=0), we found a re-
proximation for the Coulomb repulsion which is restricted cursive scheme which works efficiently fbridentical dots.
within the dots the Landauer-Biittiker formalism holds. This scheme expresses the Green function ofNt+dot sys-

The charge transfer through the system is assured by setem GN in terms of GN"! and G, the Green function of a
eral biased(noninteractiny leads attached at will to the single isolated dot. To see this we use the perturbative ex-

M1 01 FIG. 1. The coupled dot
system.
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pansion with respect to the coupling Hamiltonian which con-tion of the N-dot Hilbert spaceN=HN"1@ H?. V is an off-
nects the group dfl- 1 dots with the singléth dot(see Fig.  diagonal perturbatioghere N1 is the Hilbert space foN

1). Briefly, one writesHN=HN"2+H+ 7 (HIN24+HN1Y  —1 coupled dots and! is that for an isolated dptThe next
=Hy+ 7,V and observes thad, andGy=(z—Hy)* are block  step is to use a matrix form of the Dyson equation@(z)

diagonal matrices with respect to the following decomposi-with respect tovV which reads

GVl o0 ) . ( 0 H{\‘"“Gl(z))“
0 G4 2 HN G (2) 0 ' ©

n=0

G2 =(z-HY)'=Gy(2)(1 - ﬂntVGO(Z))_1:<

Then the matrix elements @\ can be calculated explic- neling. Figure 2a) shows the spectrum of a double dot as a
itly after summing the series in each subspafe® and’.  function of the magnetic flux. Each dot has» @0 sites. As
Straightforward manipulations lead to the following systemone can easily recognize the spectrum presents similarities
of equations: with the Hofstadter spectrum of a mesoscopic plaguste,

for instance, Fig. 2 in Ref. 24As is well known, the eigen-

TﬁnGﬁn(Z) values from this spectrum can be labeled in terms of the

ﬁtGmﬁql(Z)Gﬁn(Z) topological properties of their eigenfunctions which are in
) turn of two types: edge and bulk states. The edge states are

due to the Dirichlet boundary conditions and they fill the

and gaps existing in the spectrum of the same tight-binding

Hamiltonian when periodic boundary conditions are used

&N (2 =GN-Y2)GL (2) Tint _ ®) (see also Ref. 25An important property of the edge states is
nm nm "1 -2 GN(2)GL(2) that they are well separated in energy. In contrast, the ener-

. . gies of bulk states are grouped together.
lterating Eq.(8) as many times as necessary We express: The spectrum of the disconnected double dot is doubly
the Green function ofN-coupled quantum dots solely in

1 X N ) degenerate and coincides with the usual spectrum of a 10
terms of G'(2) [note that in the LB formulaGy,(2) is % 10 plaquette. For coupled dots the new feature is that the

G2 = Gy (2) + G (2)Gh (2) T

needed, spectrum exhibits a multiplet structure due to the tunnel-
N-1 1 coupling 7, between the dots which lifts the degeneracy of

GN (2= 4G ()N ] , the energy levels. This degeneracy lifting and its dependence
" T i 1- 7,6 (2Ghn(23(2) on 7, Will produce the peak splitting in the transmittance

9) spectrum reported in the experiments. Indeed, through the
Landauer—Buittiker formulEg. (4)], the transmittance spec-
where the complex coefficiens are given by the recursion trum as a function of the Fermi energy corresponds to the

formula structure of the energy spectrum of the effective Hamiltonian
2 |Gl 28, [Eq. (3)]. The _Iatter h_as resonances located near the eigen-
a;=1, a@=1+ int 1”m la'—l ri=2. values ofHN with the imaginary part controlled by the lead-
1-72GL(2Gk (28, dot couplingr.
(10) The correspondence between the transmittance peaks and

the energy spectrum is shown in FiggaRand 2b) and
These formulas can be used to compute the electronic tranfdicates the resonant tunneling process of the electron
mittance through any number of ddi similar relation can  through the coherent double-dot structure represented sche-
be obtained foiGy(z) which also makes the computation of matically in Fig. 2c). This correspondence depends essen-

occupation numbefn;) easiet. tially on the strength of the lead-array coupling, namelyron
For 7 small the real part of the second termHiY, is small
IIl. RESULTS AND DISCUSSION and gives only a small shift of the resonance. In contrast, a

large 7 spoils the resonant aspect and the one-to-one corre-

Although the effects of the interdot coupling and electron-spondence. Let us mention that for a flgX¢$,=0.15 and a
electron interaction competes in artificial molecules theyplaquette of 1(x 10 sites, the ratio between the linear dimen-
must be considered separately. We start then with nonintesion of the system and cyclotron radius approximately equals
acting dots and distinguish the charging effects later on.  10.

As we have mentioned, we treat explicitly the simplest We now discuss the subpeak aspect. Regarding Fig. 2
array, namely a double dot. Let us first discuss the spectralne notices that some doubldthe ones within the range
properties of double dots and their role in the resonant tunv, e (2,3)] have a clear resolution and are rather equally
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0.2 produced by the interdot coupling are mixed. Since the array

is a coherent quantum system the eigenfunctions have the
character of molecular statése., the eigenfunctions are ex-
tended to both dojs When one of the dots is detungby
applying an additional gate potentighe molecular states
are scrambled with important effects on the orbital
magnetizatiorfs
A more interesting regime is the one in which the capaci-
tive coupling is different(Vy; # Vg,). As is well known
experimentally, for two lateral QD’s coupled in series the
gray scale plot 0f;5(Vy,Vy,) has a honeycomb pattern. In
Fig. 4 we present stability diagrams for our double dot. The
similarity with the calculations based on the constant capaci-
tance mode(CCM) in Ref. 1 and with the experimental gray
- scale plots in Ref. 5 is clearly seen. The similarity exists in
@ Bigenvalues spite of the fact that we are here in the strong magnetic field,
0% ' ' ' while the above-mentioned stability diagrams are obtained in
the absence of it. We observe that for almost decoupled dots
[Fig. 4@)] a chessboard pattern is obtained, which changes to
the honeycomb picture at moderate coupling. A rather large
7ot deforms the hexagonal domains and at perfect coupling
03l | the diagram is reduced to a bunch of straight lines. We point
out that in the strong magnetic field case a rather regular
aspect of the rhomboids composing the stability diagram is
02r 1 found only in a range of gate voltages that contains peaks
arising from edge states. Indeed, looking at Fig®) 2and
2(b) one may easily check that the intery2l55,2.99 sat-
isfies this condition. Moreover, in the diagrams shown in Fig.
J U L J U 4 the traces lying on the lin¥y; =V, represent the usual
A subpeaks obtained at the same capacitive coupling on dots.
. 3 35 .
Vg Our approach also reproduces the experimental results of
Livermore et al.;* Figs. 3a)-3(c) in Ref. 4 reveal that, in a
strong magnetic field, the transmittance of a double dot be-
haves as follows(i) at a given magnetic field but increasing
interdot coupling, one starts with single pediksg. 3@)],
then twin peaks appedFig. 3b)] and finally, at large inter-
dot coupling, the saturation leads to individual pe@kiy.
3(0)]; (ii) with increasing magnetic field the position of each
peak shifts linearlyin spite of a zig-zag appearanoeersus
larger gate voltages. Both these features can be described by
our model even without considering the interaction effects.
Our results shown in Fig. 5 indicate a striking similarity to
the experimental situation. We recover both the increase of
3 the distance between the twin peaks by increasing the inter-
dot tunnelingr;,; and the drift of the peaks with the variation
of the magnetic field. Again we found that such a regular
O15ehavior, as observed in the experiment, occurs whenever
the Fermi level lies in a region covered by the edge states.
We now study the peak splitting in the case of interacting
ouble dots. Figures(8—6(d) show the Coulomb peaks of
an artificial molecule composed of twox8 dots for differ-
ent interdot couplingsr,;. As expected, the splitting in-
spaced. This happens because in a strong magnetic field theeases withr,,;, and saturates at perfect coupling. The satu-
distance between two subpeaks is determined by the type oétion is nonlinear in the coupling parametey which can
the corresponding resonant leedge or bullk To see this be shown only by taking into account all orders of the per-
we first show in Fig. 3 the spatial distribution of the first and turbation as we make here. Again we remark the differences
29th eigenvectors of the double dffthe positions of the between edge and bulk subpeaks and for clarity we show in
associated peaks in Fig.(§ are V4=3.1655 andVj Fig. 7 the splitting process for a single edge subpeak and a
=2.3880, respectively Moreover, if the distancé between  bunch of bulk subpeaksioticing that theV, interval in Figs.
two initially degenerate bulk states is small the two subpeak3(a) and 1b) have the same length, one can check that the

0.16 kN

Flux

0.1

&

0.12

0.4

Transmittance T_12

01}

—
|

)

(c) 4

FIG. 2. (a) The degeneracy lifting of the eigenvalues for the
Hofstadter-type spectrum of a noninteracting double dot; each d
consists of 1k 10 sites andry=0.4. (b) The corresponding split
peaks in the transmittandg, as a function of the gate potential at
magnetic flux¢/ ¢y=0.15,7=0.4, andEg=0. (c) The sketch of the
double dot with four terminals for which the transmittance has bee
calculated.

085303-4



TUNNELING PROPERTIES OF QUANTUM DOT ARRAYS. PHYSICAL REVIEW B 70, 085303(2004)

Eigenvector mo .1 (bulk-type), E—=—3.165S

"'l".'.'"""l" A ol FIG. 3. The spatial distribution
""""""" { Vays of the first and 29th eigenvectors
= “‘1‘0 L T inside a double dot composed of

two identical dots 1&X 10 sites
each.(¢/ $=0.15,7,,=0.4). The
Eigenvector Nno.298 (edges-typs), E—2.3880 first eigenvector is localized in the
7 middle of each dot while the 29th
is clearly stuck to the edges; note
also the formation of a coherent
10 molecular state due to the interdot
e coupling.

e 7

s e A — o

bulk states are denser and their splitting is more difficult toidentify two effects:(i) each subpeak position depends lin-
follow]. In what concerns the interaction effects it wasearly onU but with different slopes; the slopes incredse
shown for the single-dot problem that, at least in SCHA, theabsolute valugwith the indexi as expected since at each
Coulomb repulsion gives rise to an increase in the level spacubpeak the number of electrons increases, hence the Cou-
ing and in the width of transmission peaRsThe same fea- |lomb repulsion is enhancedii) The splitting increases
tures should hold also for coupled dots. To go beyond thesglowly with the interaction strength.

qualitative statements we present in Fig. 8 the posit\is The results shown in Figs. 6 and 7 are obtained by taking
of two edge doublet$i=9,10,11,12 as a function of the into account the total Coulomb interaction. However, one
interaction strengtty, at fixed interdot tunnel coupling. We asks usually how important the interdot interaction is, in par-

‘ T T I‘ T T kl“ I\‘;\ T ‘K y\ 295
T . Y - - - {29
1 1 @y - A (b
| 1§ | ¢ A . N N 2.85
. Ny g .
-—— e — W — S e
- h | X - i N N {28
3 Y i A\ \ \ \
\ \ LN N\ \_ \{ 27 Vve
[N [ N [ [N ) ) ) 3
(0 - E—— . T 1 27
Y 1 D | = - .
3 A 1 Y - Y A X ] 265
1 1 \ L L\ L {
{ i i AN A\ \| 26
A L L AN . N, YO
iy o 1 1 S 1 M. | 255
\l\n ‘\l\ .\\.\ T T |-=“| T ‘.‘ 2.95
Y ~ NN ARl L N W 2o
L N N N - - Y - ] 285
g e .
B Y ~ - L - N - 4 28
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- - - . D ~ .
- - = g N - 3 2.6
B, S 1 - 1 . “ |“ “I

256 26 266 27 275 28 285 29 295 255 26 205 27 2.75 28 285 20 296
Vgl Vg1

FIG. 4. Charging diagrams for a double dot in the strong magnetic (i#ld,=0.15, 7=0.4). (@) 7,;=0.2, (b) 7,t=0.4, (¢) 7,,,=0.6,
(d) 7ine=1.
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FIG. 5. The drift with the magnetic field of the twin peaks from the conductance spectrum of a noninteracting do(be&isites per
dot) for two values of the tunnel couplinga) 7,,=0.2, (b) 7,,;=0.6. For both caseB:=0.

ticular when the dots are small. This contribution representsance spectrum of a double dot composed of two dots having
an additional term compared to the intradot Coulomb repul5x 8 sites each with and without the interdot interaction.
sion, and it was suggested that the strenggtof the interdot  The latter increases the width of the peaks even further, lead-
interaction is smaller than the intradot interaction strergth ing also to a reduction in the depth of the multiplets. This
because of the screening produced by the metallic gates bexplains the poor resolution of the doublet arotg2.35
tween neighboring dof. shown in Fig. %a).

The interdot term should accentuate the interaction effects The progressive character of the level splitting and the
observed in the transmission through a single dot. Furthereontribution of the interaction in comparison to the noninter-
more, since the interaction energy is positive, in the presencacting case is shown in Fig. 10 for three well-defined dou-
of the additional interdot electrostatic coupling the wholeblets in the region of edge states. Figurgal(presents our
transmittance spectrum is pushed upward on the energgsults for the transmittance and the number of electrons ac-
scale, corresponding to smaller gate voltages. This is noticecommodated in the double-dot system as a function of the
by comparing Figs. @) and 9b) which shows the transmit- gate voltage and reveals the addition of two electrons at each

0.35 r r r r . r r r r r
(a) (b)

0.3} i

o

© N

oo
T T
: T

o
=
(&)}
T

T

Transmittance
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o

Sl AL WAL A

0.5 1 1.5

ro-
O
oY
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4l
(5
Ny
N
(6

035} i L

o
o
o
T

Transmittance
(o]
T (=)
[6)] N

o
o
T

0.05} d

FIG. 6. The dependence of the transmittance spectrum of a doubl{baldhg 8% 8 sites per doton the interdot coupling;,; at fixed
interaction strengthiy =U,=0.1 and¢/ ¢9=0.15,E=0. () 71,;=0.2,(b) 73,t=0.4,(C) 71,;=0.8,(d) 7in;=1. The peaks behavior reproduces the
experimental observations; a usual peak is tunnel split into a multiplet and the splitting increaseg; with

AL AL I IR LML A LA AL

| 15 5 25 0. T 15 5 )
Vgate Vgate

085303-6



TUNNELING PROPERTIES OF QUANTUM DOT ARRAYS. PHYSICAL REVIEW B 70, 085303(2004)

0.3

025}

Transmittance
o
o ©
(4] n

o©
o

0.05
0 2 L L
1.4 17 0.45 0.55 0.6 0.65
(a) (b) Vgate

FIG. 7. The peak splitting at different values gf; for edge(a) and bulk(b) subpeaksr;,;=0.2(solid line), 7,,,=0.4 (long-dashed ling
Tnt=0.8 (dashed ling and 7,,;=1 (dotted ling.

doublet. This represents the so-called bunching effect which Ry = (021943 — 912934)/D, (11)
means that twgor more electrons are added almost simul-

taneously within the dots; in our case the bunching is due t¢) peing a 3< 3 subdeterminant of the matrg,g. Obviously,

the interdot coupling and is present as long as the saturatiope minima of the conductance occur in-between the reso-

has not yet set in. Figure i) shows the magnitude of the 3 ces and in the same place the maxima of the Hall resis-
splitting AV, (n=1,2,3 as a function of the interdot cou-
pling 7,y at U=U,=0.5 andU=U,=0 and evidently demon- 0.35
strates thati) AV, depends on the peak indexi.e., differ- ’ ) ) ) ) ) '(a)
ent peaks have different robustness to splitticip; AV, is osl
progressive withr,,; the slope ofAV,, while staying posi- ) H
tive, decreases with,; (iii) the presence of the Coulomb 05l H
interaction gives rise to a larger splitting VvV, and to a
more rapid saturation compared to noninteracting césfe.
draw the splitting as function ofﬁn in order to keep the
analogy with experimental curves which are presented in D0 15|
terms of internal conductancg,>.) g
The peak structure of the transmittargcenductancema- o1l
trix impose specific behavior on the Hall resistance. More

0.2}

mittance

Tr
—_—
-—

precisely any minimum of the conductance gives rise to a o.05}
maximum inRy, according to the formula J J k
.Y
8 ' ' ' gthpeak — 038 . . . . . .
25 10-th peak - | (b)
B 11-th peak - 0.3t
2 12-th peak --a- |
0.25} ﬂ
515 B xj\\ l 8
2 TR é 0.2}
g 05L 8 o -‘: e . ‘x\_x\\x 4 § .
T, T R - |_
ol o e ] 0.1 U U u
i B WAV RTRIATAY
- 02 04 06 08 1 0 J \ A .

05 i P, R 3

1.5
Interaction strength Vgate

FIG. 8. The peak positionv“) of two edge doublets from the FIG. 9. Contribution of the interdot Coulomb interactioga)
transmittance spectrum of a double d8tx8 sites per dotas a  Transmittance spectrum in the presence of both interdot and intra-
function of the interaction strengtd (U=U,, i=9,10,11,125, dot interactionU=U,=0.5). (b) The same in the presence of intra-
=0.4, Er=0). The distance between the doublets as well as theidot electron-electron interaction on{{J=0.5,U,=0). The param-
splittings increase smoothly with. eters arer,t=0.2,7=0.4, EL=0.
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0.35 T T T T r T 14 25
-113
0.30} — 20
025}
8 8 s 1T
g 0.20} o S
E=1 = %
E g_ g 10
2015} ? 5 =
o o s
= 8 2 T s}
0.10t
7
0
0.05} 6
| A N S AN @ s
08 1 1.2 14 1.6 1.8 2 22
(a) Vgate o5

Hall resistance
- - N
o o o
T

AVp,
(5]

0 0.2 04 0.6 0.8 1

(0) Tt

FIG. 10. (a) Three split peaks corresponding to the edge states
mapped onto the electronic occupation number calculatedrfor 15}
=0.4 andr;=0.1(U=U.=0.5,EL=0). The rather smooth curve of
the number of particles indicates that the charge quantization ig 10}
somewhat poor, nevertheless it can be observed that at each doub%
the number of electrons increases by twio) The magnitude of T 5}
splitting AV,, versus the interdot coupling for the three doublets
from above, for both non-interactingJ=U,=0) and interacting 0
case(U=U,=0.5.

esistance

tance can be found, resulting in an oscillating behavior of thd®) Veate

Hall reSIStan]C(.E. Such a behaylor was put into evidence for FIG. 11. The oscillatory behavior of the Hall resistance for an
single dots in in the case of pinched contacts to the Ié%‘ds'interacting double dot in high magnetic field regirié=U,=0.5

In the present case of multiple dots, the interdot coupling / 6=0.15, 7=0.4) for several interdot tunnel Coup”ngé) T,m’
should add its own pattern because the splitting of the energ¥g » () 7 =0.6,(c) r,,=1. The small amplitude oscillations due
levels gives rise to a richer aspect of the transmittance spegs the splitting are more evident in the ranyg>0 where the

trum. In Fig. 11 we show plots of the Hall resistance for anspectrum is covered by edge states. The same gate potential is ap-
interacting double dot at different interdot couplings. Oneplied on both dots an&g=0.

notices that at smalt,,; [Fig. 11(@)] there are two types of
oscillations that correspond to the doublet structure of the

resonances. The large amplitude oscillations correspond to

the minima between two doublets while the small oscilla-6(P) from Ref. 19. To the best of our knowledge such a
tions are due to the local minima found between two peak®roperty has not yet been observed experimentally.
composing a doublet. By increasing the interdot coupling Finally, as an illustration of our recursive method we
(and hence the splittinghe local minima get smaller; con- presentin Fig. 12 the multiple subpeak structure of the trans-
sequently the amplitude of thig, oscillations is enhanced mittance through a chain of 10 dots, together with its phase
and at perfect couplinfFig. 11(c)] all maxima become com- evolution as a function of the plunger gate voltage, which
parable. In this case the oscillation pattern resembles the orsfows sudden jumps by between each subpeak of the mul-
of a single(bigge dot [compare for instance Figs. @ and tiplet.
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1 v - - T - — 2! obtain results in the whole range of variation of these param-
0.9 -|20 eters. We have shown that the multiplet structure is deter-
0.8l -1 mined by the tunnel coupling between the dots, while the
07 18 Coulomb interaction gives rise to a significant additional
o 1 147 width of the peaks and increases the splitting. The latter satu-
8 ) . i
c 06§ 16 o rates at perfect interdot coupling. The strong magnetic field
£ o035 i 3 leads to specific features summarized as folloys.The
é 04l 1% = splitting depends on the nature of the states from which it
= 03 -|14 evolves(bulk or edge. States show different robustness to
T -[13 splitting. (ii) At small and moderate interdot couplings, one
0.2 ’ -[12 obtains weak oscillations in the Hall resistance in addition to
01} { bUUUU 111 thr—_z usugl qne:{iii) The position of_the pegk(sa.nd subpe_alas
0 : : i , , , 10 shifts with increasing magnetic field; this yields a diagram
282 283 284 285 286 287 288 28 29 (Fig. 5 which is similar to what was found experimentally
Vgate by Livermoreet al?

Finally, the stability diagrams of double dots in strong

FIG. 12. Multiplet in the transmittance spectrum of an array Ofmagnetic field were reproduced. As shown by Holleitaer

10 dots(5x 8 sites eachand the transmission phase as a function _ 5¢ . S .
of the gate potential in the strong field reginge ¢y=0.15. The al.#® the investigation of such diagrams for a double-dot em-

transmittance is measured in unitsedfh and the phase in units of bedded in a mesoscopic ring is the first step in understanding

7. The phase increases by on each subpeak of the multiplet. th€ quantum transport through Aharonov-Bohm interferom-
Other parameters are=0.2, 7,,=0.2. eters with quantum dots. A theoretical approach to this topic
will be explored elsewhere.
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