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Recent investigations of fractal conductance fluctuations(FCF) in electron billiards reveal crucial discrep-
ancies between experimental behavior and the semiclassical Landauer-Buttiker(SLB) theory that predicted
their existence. In particular, the roles played by the billiard’s geometry, potential profile, and the resulting
electron trajectory distribution are not well understood. We present new measurements on two custom-made
devices—-a “disrupted” billiard device and a “bilayer” billiard device—designed to directly probe these three
characteristics. Our results demonstrate that intricate processes beyond those proposed in the SLB theory are
required to explain FCF.
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Conductance fluctuations have proven to be a sensitive
probe of electron dynamics and chaotic phenomena in semi-
conductor billiards. These billiards consist of electrons scat-
tering ballistically around a micron-sized two-dimensional
(2D) cavity bounded by shaped walls.1,2 Billiards are typi-
cally defined in the 2D electron gas(2DEG) of an AlGaAs/
GaAs heterostructure using surface gates,3 resulting in a
“soft” potential profile with approximately parabolic walls
and a flat bottom(see Fig. 1).4 At milli-Kelvin temperatures,
quantum interference dominates the electrical conductance
of the billiard, generating reproducible fluctuations as a func-
tion of magnetic field(see Fig. 2).1,2 In 1996, a semiclassical
Landauer-Buttiker(SLB) theory5 was used to predict that
soft-walled billiards support “mixed” chaotic/stable electron
dynamics, leading to fractal conductance fluctuations(FCF)
that exhibit recurring structure at increasingly fine magnetic
field scales,6 and which have since been observed
experimentally.7,8 A number of theoretical studies have fol-
lowed Ref. 5 proposing alternative and sometimes contradic-
tory explanations for fractal conductance fluctuations(FCF).
These new theories include a semiclassical analysis based on
the Kubo formalism,9 a quantum-mechanical analysis of both
the fully chaotic10 and integrable11 regimes, and a 2D tight-
binding model.12 The focus of recent work is to inspire a
more complete understanding of this phenomenon by explor-
ing the roles of dynamics, quantization and coherence in
generating FCF. This has been achieved both by using novel
low-T STM techniques,13 and in our case, by devising ex-
periments that target the key features differentiating the ex-
isting theoretical models.

In this paper, we present three new experiments, designed
to directly target key differences between the contending
theories for FCF.5,9–12 In particular, we address the funda-
mental question of the link between FCF and the underlying
electron trajectory distribution. First, using a “disrupted” bil-
liard device[Fig. 1(a)], we explore the effect of altering the
geometry whilst maintaining a constant confining potential
profile and observe that the resulting change in trajectories
has little effect on the statistical properties of the FCF. Sec-
ond, we reduce the phase coherence time by increasing the

temperature in order to systematically eliminate the contri-
bution of longer trajectories in this device, and find that the
FCF do not respond in the manner expected from the original
SLB theory. Finally, using a “bilayer” billiard device[Fig.
1(b)] we vary the potential profile whilst keeping the geom-
etry constant to test the predicted critical link between profile
and electron dynamics,5 and find that changes in potential
profile only have a measurable effect on the statistics of FCF
in the regime where semiclassical theories are valid.

A key statistical parameter in the study of FCF is the
fractal dimensionDF, which quantifies the scaling relation-
ship between conductance fluctuations at different

FIG. 1. (a) Scanning electron micrograph of the disrupted bil-
liard device showing the surface gates(numbers discussed in text)
that define the empty(left) and disrupted(right) billiards. (b) Sche-
matic (not to scale) of the bilayer billiard device where a common
set of gates defines billiards in shallow and deep 2DEGs. The rela-
tive potential profiles of these two billiards are discussed in the text
and are purely illustrative.
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scales.5,7–13 An important prediction of the semiclassical
Kubo theory9 compared to the SLB theory5 is that, although
the FCF should be affected by the electron dynamics and
softness of the potential profile,DF should be independent of
the detailed geometric shape of the billiard. Two other recent
theories go further and suggest that the existence and prop-
erties of FCF may not depend onany of these three param-
eters. The first reports fractal fluctuations in a strongly quan-
tized nonchaotic billiard11 where a soft-wall profile and its
associated mixed phase-space do not occur. The second re-
ports fractal fluctuations in 2D tight-binding models of both
chaotic and nonchaotic billiards,12 where FCF occurwithout
mixed electron dynamics and the potential profile plays no
role.

We recently reported an experimental study14 of the DF
dependence on tunable parameters such as the enclosed bil-
liard areaA, temperatureT, and the number of conducting
modesn in the entrance and exit quantum point contacts
(QPCs). Remarkably, we found that theDF of the FCF is
directly dependant on an empirical parameterQ that quanti-
fies the resolution of the billiard’s energy level spectrum.
This parameterQ is defined as the ratio of the billiard’s mean
energy level spacingDES to the billiard’s mean energy level
broadeningDEB. The broadeningDEB is affected by the

quantum lifetimetq, which is limited by phase breaking scat-
tering. The relationship betweenDF and Q was discovered
through the observation that all of the measuredDF values
condensed onto a single, well-defined curve as a function of
Q [see Fig. 3(a), solid symbols], referred to as the “Q curve”.
The evolution of FCF charted on theQ curve spans a large
range of billiard parameters. The fluctuations are fractal over
the entire range between the limitsQ→0 andQ>10 where
DF→1 and the fluctuations become nonfractal. Starting at
Q=0 in Fig. 3(a), DF rises sharply with increasingQ, attain-
ing a peak value of,1.5 at exactlyQ=1, and thereafter
decreases linearly with increasingQ.1. In this paper, we
use the “Q curve” discovered in Ref. 14 as a tool to answer
several unresolved questions related to the physics of FCF.

The disrupted billiard device overcomes a key limitation
in Ref. 14, which is that the similar geometries of the bil-
liards used—all were “empty”(no scattering obstacles in the
billiard), rectangular billiards—leads to electron trajectory
distributions sufficiently similar as to escape detection as an
influence onDF. Figure 1(a) shows a scanning electron mi-
crograph of the gate pattern for the disrupted billiard device,
which consists of two billiards, each formed by three inde-
pendently controllable surface-gates. The empty square bil-
liard on the left(gates 1, 2, and 3) is 1 mm wide, with two
QPCs(bottom left corner)15 and serves as a control device
for the experiment. The billiard on the right(gates 4, 5, and
6) is the disrupted billiard—a square nominally identical to
that on the left, but with the addition of a narrow, diagonal,
trajectory disrupting “finger gate” that extends from the cor-
ner between the QPCs to the billiard’s center. This finger
gate is designed to radically alter the electron trajectories

FIG. 2. FCF(bottom axis) for: (a) the empty(upper) and dis-
rupted (lower) billiards and (b) the shallow (upper) and deep
(lower) billiards. The dashed lines are fits to the classical back-
ground. An overlay of FCF traces with classical background fits
subtracted andB.0 (top axis) for: (c) the empty(thin line) and
disrupted(thick line) billiards with n=5 andT=50 mK and(d) the
shallow (thin line) and deep(thick line) billiards with n=2 andT
=50 mK.

FIG. 3. (a) TheDF values from the empty and disrupted billiards
as a function ofQ, overlaid on the originalQ curve from Ref. 14.
(b) The same data as(a) with the addition of the shallow and deep
billiard DF vs Q values. The dashed lines are guides to the eye, and
error bars indicate the expected maximum uncertainty inDF andQ.
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with minimal impact on both the overall geometry estab-
lished by the outer walls(a square billiard) and the enclosed
billiard areaA (the finger-gate reducesA by ,3%). The de-
vices are located within close proximity(,1 mm apart) on
the same chip to ensure closely matched material parameters
(electron densityns=4.231011 cm−2 and mobility m=2.5
3106 cm2/V s) and measurement conditions(e.g., equalT).
For each billiard, we tune the gate biases so that their two
QPCs both transmit eithern=2 or 5 modes each. The com-
bination of proximity and identicalT andn ensures that be-
tween the two devices the measuredtq differs by,10% and
henceQ differs by,2.5% for each data set at a givenT and
n. Devices were mounted in thermal contact with the mixing
chamber of a dilution refrigerator and measured using a low
frequency, constant current lock-in technique.16 Fractal
analysis of the conductance fluctuations was performed using
a modified box-counting method.16,17

The two traces in Fig. 2(a) show the measured conduc-
tance for the empty and disrupted billiards atT=50 mK and
n=5 and reveal FCF superimposed on a smoothly varying
classical background. We isolate this background using a lo-
cally weighted least squares fitting procedure. These fits are
shown as dashed lines in Fig. 2(a) and are qualitatively simi-
lar to traces measured atT=4.2 K, where quantum interfer-
ence fluctuations are heavily suppressed, supporting the va-
lidity of the fits. The two background fits are significantly
different, demonstrating that the finger gate has altered the
electron trajectory distribution in the billiard. This is further
confirmed by the fact that the empty billiard has a larger
overall conductance than the disrupted billiard; the finger
gate acts to obstruct direct trajectory paths between the two
QPCs.18 In order to facilitate a direct comparison of the in-
dividual features of the two sets of fluctuations, we have
subtracted the fitted backgrounds from each trace and over-
laid them in Fig. 2(c). An inspection of these overlaid traces
reveals the expected clear differences in the individual fluc-
tuation features. However, despite these differences, the frac-
tal statistics for the two traces, as quantified byDF, are ef-
fectively identical. This is demonstrated in theQ curve in
Fig. 3(a), where the data for both billiards condense onto the
original curve found in Ref. 14. This result clearly demon-
strates that, in terms of determiningDF, only Q is important.
In particular, provided the enclosed area is the same for the
two billiards, its geometry and the resulting detailed nature
of the electron trajectories do not determine DF. This insen-
sitivity of DF to geometric details contradicts the SLB
theory5 and agrees with Ref. 9.

We now highlight further discrepancies between experi-
mental behavior and the SLB theory.5 The region where
semiclassical theories5,9 are valid happens to center onQ
=1. In this regimetq is sufficiently long that typical electron
waves traverse the billiard without suffering phase-breaking
scattering, and the ratioSof the billiard width to the electron
Fermi wavelength is sufficiently larges,25d for the semi-
classical picture of wave propagation along classical trajec-
tories to hold. Significantly,Q=1 coincides with the peak in
theQ curve and the peakDF of ,1.5 matches the maximum
value predicted by the SLB theory.5,8 We now examine how
the FCF evolves asQ moves away from unity. Consider,
first, reducingQ below 1, which we achieve through a re-

duction oftq. According to Ref. 5,DF is directly related to
the exponentg of a power-law distribution of the areas en-
closed by closed trajectory loops. Therefore,DF should de-
pend only on parameters that directly affectg through rear-
rangements of the area distribution, and hence should not
depend on parameters that determinetq such asT. Instead,
reducing tq should simply render the longer trajectories
phase-incoherent and prevent the largest enclosed areas from
contributing to the FCF. Thus, fluctuations with small mag-
netic field periodDB should be suppressed first, leaving the
large DB fluctuations relatively unaffected.1,5 In Fig. 4, we
show scaling plots obtained from the disrupted billiard
(Fig.1, right) for T=50 mK (top), 500 mK, and 1.2 K(bot-
tom). Not only does the wholeDB spectrum evolve withT,
maintaining the fractal scaling relationship and leading to a
change inDF that depends on bothtq and T, but the lower
DB cut-off in fractal scaling shifts in the opposite direction
to that predicted by the simple SLB theory arguments above.
We also observe this effect in the empty square billiard(Fig.
1, left). Interestingly, the semiclassical Kubo theory9 agrees
with the experimentally observedDF evolution with T and
tq. We observe a similar behavior forQ.1. This is achieved
by increasingDES through a reduction of billiard area. For
smaller billiard areas, the Heisenberg timetH=" /DES is re-
duced, preventing the longer trajectory loops from contribut-
ing to the semiclassical process, and so suppressing the small
DB fluctuations. In contrast to this SLB prediction,5 we find
that thewhole DB spectrum evolves to maintain the fractal
scaling relationship, similar to theQ,1 case. In summary,
in moving away fromQ=1 (whether by increasing or de-
creasingQ) we find that theDB range over which the FCF
are observed does not decrease, contradictory to the behavior
predicted by the SLB theory.5 Instead, the fractal character is
preserved andDF evolves smoothly, decreasing gradually to-
wards 1. A consequence is that the FCF are observed over
substantially larger ranges ofQ than predicted, persisting
well beyond the range of conditions required for the semi-
classical theories to be valid. This behavior is, however, con-
sistent with aspects of the other theoretical studies,10–12

which indicate the that FCF can exist for highQ,11 well
outside the conditions required by Refs. 5 and 9. However, at
present, a detailed explanation for our observation of the

FIG. 4. Fractal scaling plots for FCF data obtained from the
disrupted billiard forT=50 mK (top), 500 mK, and 1.2 K(bottom).
The linear fits yieldDF values of 1.51, 1.43, and 1.20, respectively.
Arrows indicate the lower cutoffs for fractal behavior, which occur
at log10 DB=−2.09, −2.18, and −2.43, respectively. The expected
uncertainty on these lower cut-offs is indicated by the error bar.
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FCF atboth high and lowQ is lacking.
We now turn to the role of potential profile in determining

DF. This is achieved using the bilayer billiard device shown
schematically in Fig. 1(b), which features a pair of parallel,
closely spaced 2DEGs at depths of 90 nm(shallow) and
140 nm(deep) beneath the heterostructure surface. The con-
cept, architecture, fabrication and initial characterization of
this device are detailed in Ref. 19, and here we use this
device to study the relationship between FCF and potential
profile. In brief, a single set of three surface gates with a
geometry identical to the left hand(empty) billiard in Fig.
1(a) are used to define both the deep and shallow billiards,
which, as a result, have the same nominal geometry but dif-
fering potential profile by virtue of their different depths be-
neath the surface gates. Using a selective gating
technique,16,19the billiards can be measured independently in
a two-step process. The 2DEGs have matchedns=2.9
31011 cm−2, similar mobilities[m=1.33106 (shallow) and
1.13106 cm2/V s (deep)] and identicalT. For both billiards,
the gates are tuned so that both QPCs have matchingn=2, 5
or 8. Under these conditions, the two billiard areasA differ
by ,15%.19 Based on the data in Ref. 14, we predict that this
difference inA produces less than a 1% change inDF. In
terms of geometry(n, A and gate shape), the two billiards are
essentially identical.19 To determine the profiles of the two
billiards, we used a self-consistent Schrödinger-Poisson
model.4 The shallow billiard has the softer profile due to the
smaller gate bias required to define it.19 The potential gradi-
ent at the Fermi energy(used as a measure of softness) dif-
fers by a factor of 3 between the two billiards and the two
profiles differ by ù0.5 meV (corresponding to 5% ofEF)
across more than a quarter of the width of the billiard. Given
the predicted critical sensitivity to profile,5 this difference is
expected to significantly impact on the details of the FCF
predicted by the SLB and Kubo theories.5,9

Typical FCF for the shallow and deep billiards are shown
in Fig. 2(b). A procedure identical to that employed for the
traces in Figs. 2(a) and 2(c) is used to produce the fitted
backgrounds in Fig. 2(b) and the overlay of the background-
subtracted FCF in Fig. 2(d). The two classical background
fits in Fig. 2(d) are strikingly similar, confirming that the
shallow and deep billiards have the same nominal geometry
(i.e., size and shape). Figure 2(d) demonstrates that the dif-
fering wall profile induces a significant change in the precise
details of the FCF as expected if the dynamics have strong
dependence on profile, and intuitively, one might expect that
the fractal scaling has changed, as predicted by the semiclas-

sical theories.5,8,9 In Fig. 3(b), theDF vs Q data obtained for
the deep and shallow billiards is superimposed on the origi-
nal data from Ref. 14. Two separate results are indicated in
this new data. In the regimeQ,1, theDF vs Q behavior of
the deep and shallow billiards agree well within experimen-
tal uncertainties. In other words, although the difference in
billiard profile is sufficient to induce changes in the indi-
vidual features of the FCF, the statistical characteristics of
the FCF are not affected.In the vicinity of Q=1, however, the
DF values obtained for the deep billiard (with the harder
wall profile) are significantly lower than those measured for
the shallow billiards. Here, the conditions required by the
semiclassical theories5,8,9 are satisfied, andDF is observed to
be sensitive to changes in potential profile, in good agree-
ment with theory.5,9 The dashed line in Fig. 3(b) indicates a
predicted trend for the deep billiard, where the change to a
harder potential profile suppresses the peakDF whilst main-
taining the general form of theQ curve. Unfortunately, high
Q measurements for the deep billiard were not possible due
to difficulties in defining small billiards with controlled
QPCs on the bilayer heterostructure.

In conclusion, we have presented targeted experiments on
two new devices aimed at directly probing the impact of
billiard geometry and soft-wall profile on the properties of
FCF to better understand the role of dynamics, quantization
and coherence in generating FCF. We found thatDF is unaf-
fected by the change in geometry induced by the introduction
of a trajectory disrupting “finger gate.” This insensitivity
contradicts the SLB theory for FCF(Ref. 5) but is in general
agreement with other recent theories.9–12 The role of poten-
tial profile depends on whether semiclassical conditions exist
within the billiard. In the vicinity ofQ=1, DF is sensitive to
the potential profile, in agreement with Refs. 5 and 9. How-
ever, for Q,1, where the semiclassical approximation
breaks down,DF is insensitive to profile; no theory for FCF
currently exists for this regime. Our results suggest that more
complicated processes than those predicted in the semiclas-
sical models are responsible for the observed behavior of
FCF.
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