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A theory for asymmetric current-voltage characteristics, in particular negative differential conductance, for
double quantum dots with strongly correlated electron states is formulated. By expressing the double quantum
dot in terms of its many-body eigenstates, a diagrammatic technique for Hubbard operator nonequilibrium
Green’s functions is employed. The Green’s function for the double quantum dot is calculated beyond mean
field theory, and it is found that the spectral weights of the conductive transitions in the double quantum dot
redistribute dynamically(bias voltage dependent). The resulting asymmetric current-voltage characteristics and
negative differential conductance is discussed in terms of the relative level spacing in the two quantum dots
and the hopping rate between the quantum dots. Numerical results of the current-voltage characteristics are
presented and compared to experiments.
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I. INTRODUCTION

Experimental current-voltagesJ-Vd characteristics of me-
soscopic quantum systems, e.g., quantum dots(QDs), double
quantum dots(DQDs), coupled carbon nano-tubes(CNTs),
or quantum wires, etc., often show a more or less pro-
nounced asymmetry, with respect to the bias voltage.1–3

Typically these observations are made for man-made nano-
devices where one part typically has a complex electronic
structure and conductivity(interacting region), that is
coupled to two, or more, noncomplex regions(contacts or
reservoirs). The complexJ-V characteristics becomes par-
ticularly apparent in systems where the interacting region is
asymmetrically coupled to the left and right contacts. Such
asymmetries are frequently argued to be effects of impurities
introduced during the growth process or differences in inter-
face roughness of the oxide layers between the contacts and
the interacting region.4,5 Another mechanism that may intro-
duce asymmetries in theJ-V, or differential conductance
sdJ/dVd, characteristics are unintentional background
charges which additionally contribute a charging energy to
the interacting region.5 A third argument that has been sug-
gested is that a higher collector barrier enhances the charge
storage in the well substantially, thus being responsible for
different current amplitudes for the back- and forward-biased
device.6,7 Theoretically, it has been suggested that inelastic
scattering, especially for asymmetric structures, gives differ-
ent contributions in the backward- and forward-bias
direction.8,9 However, a full understanding of the mecha-
nisms responsible for the observed asymmetries in the
J-V sdJ/dVd characteristics has not yet been put forward.

Recent experiments on double quantum dots(DQDs)
coupled to metallic contacts show, unexpectedly, asymmetric
negative differential conductance(NDC) behavior in the
current-voltagesJ-Vd characteristics.10 The J-V characteris-
tics were asymmetric in the sense that the NDC appeared
only in one half of the bias voltage ranges−V,Vd. Features

of NDC normally occur in semiconductor double- and multi-
barrier structures11,12 and can then be referred to as band-
edge effects.13,14 Transport experiments on DQDs fabricated
from semiconductor hetero-structures have displayed sharp
resonant peaks15 which are related to the energy distance
between the levels in the two QDs approaches zero. This in
turn, creates a resonant state in the DQD.16 Alignments of the
levels in the two QDs, however, are expected to create sym-
metric J-V characteristics having sharp resonant peaks with
large peak-to-valley ratios, in contrast to the observations in
Ref. 10. Thus, when the interacting region, e.g., DQD, is
coupled to metallic contacts, having a conduction band width
of the order of electron volts, such explanations have to be
discarded. Normally, one expects that the current should in-
crease with increasing bias voltage, possibly with plateaux
due to the zero-dimensional confined energy levels of the
interacting region. The NDC observed in Ref. 10 was sug-
gested to be an effect of resonant tunneling between the dis-
crete levels in each dot, although the details of the process
are not specified.10 Furthermore, the observed asymmetric
appearance of the NDC is hitherto an unexplained effect.

There is a vast literature of theoretical studies on transport
through DQD in different geometries, e.g., DQD in
series17,18 and in parallel.18–20 Most of these studies are de-
voted to DQDs in the Coulomb blockade regime, where es-
pecially phenomena related to Kondo-like physics are under
focus. Although being important for the understanding of
effects from strong correlations on the transport through the
system, to our knowledge, no-one has yet addressed the
question ofJ-V sdJ/dVd asymmetries or asymmetric NDC in
DQDs coupled to metallic contacts.

In this paper we propose a theory that ties these two ef-
fects together. By studying an idealized DQD, with one con-
ducting level in each QD, in terms of the eigenstates of the
DQD in the atomic limit, we find that theJ-V sdJ/dVd asym-
metries arise due to aninternal asymmetry of the DQD when
reservoirs are coupled to the interacting region. Our use of
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many-body states rather than single particle states is moti-
vated by the simple and uniform inclusion of intra- and inter-
dot correlations. In the present formulation it is relevant to
study the transitions between states in the DQD, rather than
levels. Thus, it will be demonstrated that the probability am-
plitudes for the transitions between the statesuN−1,nl and
uN,nl, wheren is a state label of theN electron configuration
of the DQD, are asymmetric with respect to the left and right
contacts whenever the relative level spacing of the two QDs
is finite. Moreover, the transitionuN,nlkN−1,nu may couple
stronger to, say, the left contact whereasuN,n8lkN−1,nu ,
n8Þn, could couple stronger to the right contact. In other
words one may say that the statesuN,nl and uN,n8l have
their main weights on different QDs, although their corre-
sponding wave functions are extended throughout the DQD.
The local properties of the DQD are here studied in terms of
many-body (Hubbard) operator nonequilibrium Green’s-
functions (GFs) beyond mean field theory, and it is found
that the spectral weights for the transitions are dynamically
(bias voltage dependent) redistributed as the bias voltage is
varied. As we shall demonstrate, the internal asymmetry of
the DQD results in a decreased probability amplitude at the
resonance bias voltage for the corresponding transitions,
which functions asymmetrically with respect to the bias volt-
age. The effects are seen even for DQDs with a symmetric
externalcoupling to the left and right contacts.

As a result of the theoretical development in this paper we
find very good agreement with recent experimental data on a
DQD system constituted of two coupled carbon nanotubes.10

However, before we go into the details of the theory we
show in Fig. 1 a typical calculatedJ-V characteristics of the
DQD system we consider in this paper. The upper inset in
Fig. 1 displays an example of the experimentalJ-V result
reported in Ref. 10. It should be noted in Fig. 1 that both the
J-V asymmetry as well as the resonant peak are captured
within the theoretical result. In the following sections we
will describe the important features that have to be included
in order to obtain such a result.

Despite the possible importance of the aforementioned
sources for asymmetricJ-V characteristics, e.g., impurities,
unintentional charging effects, and asymmetric charge stor-
age, we neglect such influences and consider the ideal situa-
tion, in order to illustrate the importance of the effects from

strong electron correlations within the DQD. In most quan-
tum devices there is more than one electron participating in
the conductance through the interacting region. However, the
source for the asymmetricJ-V characteristics is present in
any transition that adds/removes one electron to/from the
interacting region. Thus, it is appropriate to consider only the
case of single-electron tunneling through the system.

In this paper we disregard Kondo-like effects on the sys-
tem, since such effects are of main importance for tempera-
tures below the Kondo temperature,21 which is not the case
here. Second, possible(small) contributions from the Kondo
effect cannot by themselves introduce the large degree of
asymmetry often observed in experiments, since any Kondo
resonance is suppressed by the application of a bias
voltage.22 Nevertheless, for low fields such contributions
may slightly amplify the asymmetry introduced by the
mechanism proposed in this paper.

The rest of this paper is organized as follows. In Sec. II
we describe the model for the DQD which is followed by a
derivation of the local properties of the DQD in Sec. III. We
present numerical results of theJ-V sdJ/dVd characteristics
in Sec. IV and the paper is summarized and concluded in
Sec. V.

II. MODELING THE DOUBLE QUANTUM DOT

Consider two QDs electrostatically coupled in series and
connected to external contacts, see Fig. 2. In each of the QDs
there is a large Coulomb repulsionUA/B and the QDs interact
via the charging energyUAB and the hoppingt. In general,
the interdot Coulomb energyUAB,UA/B, whereas the hop-
ping t,vks, where vks , kPL ,R is the hybridization be-
tween the states in the DQD and the states of the leftsLd and
the right sRd contact.

The energy of the DQD is here modeled by the following
Hamiltonian

HDQD = o
s

«As dAs
† dAs + UAnA↑nA↓ + o

s

«Bs dBs
† dBs

+ UBnB↑nB↓ + UABsnA↑ + nA↓dsnB↑ + nB↓d

+ o
s

st dAs
† dBs + H.c.d, s1d

where dAs/Bs
† sdAs/Bsd creates(annihilates) an electron in

QDA/B at the single-particle energy«As/Bs, whereasnAs

FIG. 1. A typicalJ-V characteristics calculated within the theory
developed in this paper, further discussed in Sec. IV. The upper
inset shows a typical experimentalJ-V result on the DQD reported
in Ref. 10. The lower inset shows the geometry of the DQD system.

FIG. 2. Sketch of the double quantum dot system. The QDs
interact via the interdot Coulomb repulsionUAB and hoppingt. The
coupling strength between the DQD and the left/right contact is
denoted byGL/R.
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=dAs/As
† snBs=dBs/Bs

† d and s denotes the spin. By the com-
plexity of this model and knowing that the intra- and inter-
dot Coulomb repulsions are the largest quantities of the sys-
tem, it is preferable to rewrite it in terms of its many-body
eigenstates, given in Ref. 23 for the caseUB→`. The ener-
gies of the DQD are shown schematically in Fig. 3. The
energy of the DQD can now be written in diagonal form, as
follows:

HDQD = o
p

Eph
p, s2d

where hp;Xpp and Xpq;uplkqu is a Hubbard operator24,25

which describes the transition from the stateuql to upl. In Eq.
(2), the indexp runs over all possible states in the DQD
described by Eq.(1). For bias voltages less thanUA/B and the
level separation of each of the QDs, it is sufficient to con-
sider only transitions between the empty and singly occupied
statesu0l and ugnsl , n=1,2, respectively. Therefore, Eq.(2)
reduces to a sum overpP h0,g1s ,g2sj. It is important to note
that in the experimental situation there may in the DQD be
an unknown, large number of electrons. Since the conducting
channels only involve one or few of the corresponding
many-body states one can make a simplification and identify
the empty state of our model with theN−1 state of the DQD.
The exact eigenenergies for the one-particle many-body
states are given by

Ens =
«As + «Bs + s− 1dnÎs«As − «Bsd2 + 4t2

2
, s3d

for n=1,2, whereas the energy of the empty state isE0=0.

The diagonal description of the DQD is convenient when
the contacts are attached to the system. However, it is impor-
tant to note that the transition matrix elements of the DQD in
general are different for the transitionsu0lkg1su and u0lkg2su.
These matrix elements are given bysdAs8d

0gns

;k0udAs8ugnsl=dss8un1
s and sdBs8d

0gns ;k0udBs8ugnsl
=dss8un2

s , where

un1
s =

E1s − Bs

ÎsE1s − «Bsd2 + t2
,

un2
s =

t
ÎsE1s − «Bsd2 + t2

. s4d

Hence, usdAs8d
0g1su2Þ usdAs8d

0g2su2 and usdBs8d
0g1su2

Þ usdBs8d
0g2su2 whenever«AsÞ«Bs, as can be seen in Table I

and Fig. 4, where the equilibrium properties of the DQD and
the transition matrix elements are listed and plotted, respec-
tively. This situation holds true for most realistic systems
since the sizes of the two QDs in general are different. The
difference of the transition matrix elements influences the
current through the system. Furthermore, through the transi-
tion matrix elements one can control whether an electron
escapes/enters the DQD to/from the left or the right contact.

FIG. 3. (a) Sketch of the energy parameters of the serial DQD
coupled to external contacts. In QDA/B the bare single-particle en-
ergy is«As/Bs (for other parameters we refer to the text). (b) Sche-
matic picture of the energies of the DQD system in the diagonal
representation, wheremL/R is the (quasi-) chemical potential of the
left/right contact. The energy for a transition between the empty
state and one-particle stateugnsl , n=1,2, is denoted byDns. The
arrows illustrate the strengths of the transition probabilities between
the one-particle states in the DQD and the contacts. In this configu-
ration, the higher transitions, e.g.,uN+1lkNu etc., lie outside the
range of conduction.

TABLE I. Equilibrium properties of the DQD given the interdot
Coulomb repulsionUAB=40 meV and the hoppingt=0.75 meV.
The single-particle levels«As/Bs are input parameters.

(A) (B) (C)

«As smeVd −3.25 −2.5 −1.75

«Bs smeVd −1.75 −2.5 −3.25

E1s smeVd −3.56 −3.25 −3.56

E2s smeVd −1.44 −1.75 −1.44

usasd0g1su2 0.85 0.5 0.15

usasd0g2su2 0.15 0.5 0.85

usbsd0g1su2 0.15 0.5 0.85

usbsd0g2su2 0.85 0.5 0.15

FIG. 4. The transition matrix elementsusdAsd0g1su2= usdBsd0g2su2
(solid) and usdAsd0g2su2= usdBsd0g1su2 (dashed) as functions of the
relative level spacings«A−«Bd /G for various hopping strengthst /G.
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The plots in Fig. 4 illustrate the dependence of the tran-
sition matrix elementsusdAsd0g1su2= usdBsd0g2su2 (solid) and
usdAsd0g2su2= usdBsd0g1su2 (dashed) on the relative level spac-
ing s«A−«Bd /G for various hopping strengthst /G. As is seen,
the transition matrix elements are equal for a vanishing rela-
tive level spacing, for all hopping strengths. This is under-
stood, since thenEns−«Bs=s−1d2t which gives uun1

s u2

= t2/ s2t2d=1/2=uun2
s u2. This is expected since the states in the

two QDs then are in resonance. Thus, this means that the two
one-particle states are equally distributed throughout the
DQD.

For finite relative level spacings«AB;«As−«BsÞ0d,
though, one of the matrix elements tends to approach 1 and
the other to 0, as 2t /«AB→0. In this situation,Ens−«Bs

<signs«ABd+s−1dn, which leads to that

uun1
s u2 <

fsgns«ABd + s− 1dng2

fsgns«ABd + s− 1dng2 + s2t/«ABd2 ,

uun2
s u2 <

s2t/«ABd2

fsgns«ABd + s− 1dng2 + s2t/«ABd2 .

For definiteness suppose that«AB,0. Then, uu11
s u2=4/s4

+s2t /«ABd2d→1 as u«AB/ s2td u →`, whereasuu21
s u2→0, as is

seen in the upper left panel of Fig. 4. Similarly it is found
that uu12

s u2→0 and uu22
s u2→1. Physically this means that the

stateug1sl has a larger weight on QDA than on QDB while
ug2sl has a larger weight on QDB. The case when«AB.0 is
found in the same way, showing thatuu11

s u2, uu22
s u2→0

whereasuu21
s u2, uu12

s u2→1.
In the opposite limit, e.g.,«AB/ s2td→0, we have that

Ens−«Bs< tfs−1dn+«AB/ s2tdg leading to

uun1
s u2 <

fs− 1dn + «AB/s2tdg2

1 + fs− 1dn + «AB/s2tdg2 → 1

2
,

uun2
s u2 <

1

1 + fs− 1dn + «AB/s2tdg2 → 1

2
,

as is indicated in Fig. 4 for increasingt /G. Hence, the one-
particle states become more and more equally distributed
throughout the DQD for increasing hopping strengths, which
is expected since a large hopping, in general, tends to de-
localize the states in a system.

III. SCATTERING BETWEEN THE STATES

In this section, the nonequilibrium Green’s-function(GF)
of the DQD will be derived and discussed with respect to the
scattering between the states in the DQD. The whole system,
constituted by the DQD and the contacts is modeled by

H = o
ksPL,R

«kscks
† cks + HDQD + o

kns

svknscks
† X0gns + H.c.d,

s5d

where vkns=vkssdsd0gns and ds=dAs or ds=dBs depending
on whether an electron escapes the DQD to the left or the
right contact. The current through this system, as a function

of the applied bias voltage, is expressed by the formula26–28

J = −
e

2h
Imo

ns
E hfGns

L svd − Gns
R svdgGns

, svd

+ ffLsvdGns
L svd − fRsvdGns

R svdgfGns
r svd − Gns

a svdgjdv,

s6d

where Gns
L/Rsvd=2pokPL/R uvknsu2dsv−«ksd is the coupling

strength between thenth DQD state and the left/right con-
tact, whereasfL/Rsvd= fsv−mL/Rd is the Fermi distribution
function andmL/R is the (quasi-) chemical potential of the
left/right contact. In Eq.(6), the Fourier transform of the
lesser, retarded, and advanced DQD GF appear, defined by

Gnsst,t8d = s− idkTX0gnsstdXgns0st8dlU

= s− id
kTSX0gnsstdXgns0st8dl

kTSl
, s7d

where the actionS=expf−iet0
t0−ibH8stddtg and the disturbance

potential

H8std = U0stdh0 + o
ns
SUnsstdhgns + Unss̄stdZgnsgns̄

+ o
s8,mÞn

Unmss8stdZ
gnsgms8D , s8d

in which Zgnsgms8= ugnslkgms8u denotes a transition between
states such that the total spin of the DQD is changed by an
integer. By means of functional derivatives with respect to
the source fieldsUjstd introduced in Eq.(8), a diagrammatic
expansion of the DQD GF is generated in terms of even
powers of the hybridization matrix elementvkns. Physical
quantities are extracted fromGnsst ,t8d in the limit Ujstd
→0. For further details on the definition of the DQD GF, see
Refs. 28–30.

The equation of motion of theGnsst ,t8d is given by

Si
]

] t
− Dns

0 − DUnsstdDGnsst,t8d − Unss̄stdGns̄sst,t8d

− o
s8,mÞn

Unmss8Gms8nsst,t8d

= dst − t8dPnsstd + o
ms8

fPnsms8st
+d + Rnsms8st

+dg

3E
t0

t0−ib

Vms8st,t1dGms8nsst1,t8ddt1. s9d

Here, Gnsms8st ,td;s−idkTX0gnsstdXgms80st8dlU whereas
Gnss̄st ,t8d;Gnsns̄st ,t8d where s̄ denotes the opposite spin
projection of s. Moreover, Pnsms8std;kThX0gns ,Xgms80jstdl
is the end-factorof the DQD GF wherePnsstd; Pnsnsstd,
whereasRnsms8std; ifdss8dnmd /dU0std+d /dUms8nsstdg is the
functional differential operator(note the order of the indices
in the second term of this operator). Finally, the propagator
Vnsst ,t8d=okuvknsu2gksst ,t8d wheregksst ,t8d is the GF for the
electrons in the contacts, satisfying the equation of motion
si ] /]t−«ksdgksst ,t8d=dst− t8d.
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In the present formulation, the DQD GF is constituted of
the product Gnsn8s8st ,t8d=oms1

Dnsms1
st ,t8dPms1n8s8st8d,

whereDnsms1
st ,t8d is thelocator which contains the pole and

self-energy, whereas the end-factor Pms1n8sst8d
carries the spectral weight of the DQD GF. This
means that any functional differentiation of the DQD GF
should be applied to both the locatorDnsms1

st ,t8d as well as
the end-factorPms1n8s8st8d. Hence,

dGnsn8s8st,t8d = oms1
hfdDnsms1

st,t8dgPms1n8s8st8d

+ Dnsms1
st,t8dfdPms1n8s8st8dgj.

For the functional differentiation of the locator, the matrix
propertyDD−1= I =D−1D is employed, thus giving

dGnsn8s8st,t8d = o
ms1

Dnsms1
st,t8dfdPms1n8s8st8dg

− o
mm8m9

o
s1s1s3

E
t0

t0−ib

Dnsms1
st,t1d

3fdDms1m8s2

−1 st2,t3dg

3 Dm8s2m9s3
st3,t8dPm9s3n8s8st8ddt1 dt2 dt3.

In the limit of zero source fieldsUjstd→0, all components of
the DQD Green’s-function matrix that do not conserve either
spin or orbital moments vanish, although functional deriva-
tives thereof may be finite. Scattering between the one-
particle statesug1sl and ug2s8l are included in the first order
correction with respect to the number of functional deriva-
tives applied both to the locator and the end-factor of the
DQD GF. Keeping these observations in mind, one finds that
the resulting expression forRnsms8st

+dGms8nsst1,t8d in Eq.
(9) can be written as

o
ms8

Rnsms8st
+dE

t0

t0−ib

Vms8st,t1dGms8nsst1,t8ddt1

= i o
ms8

s1 − dmndss8d

3SKms8nsst+,t8dE
t0

t0−ib

Vms8st,t1dDms8st1,t8ddt1

+E
t0

t0−ib

Vms8st,t1dDms8st1,t
+ddt1 Gnsst+,t8dD . s10d

Here, Kms8nsst ,t8d;s−idkTZgms8gnsstdZgnsgms8st8dlU is the
GF for the Bose-like scattering processes between the differ-
ent one-particle states, which satisfies the equation
of motion si ] /]t−Dnsms8dKms8nsst ,t8d=dst− t8dfPms8std
−Pnsstdg , Dnsms8;Dns−Dms8, where Dns is the dressed
transition energy for the transitionu0l→ ugnsl, defined below.

The first term on the right-hand side of Eq.(10), plays an
essential role in the understanding of the scattering effects
that influence the transport through the system. In particular,
this term is a key part for the explanation of the current-
voltagesJ-Vd asymmetries as well as the asymmetric nega-
tive differential resistance, as will be discussed below. The

second term of Eq.(10) gives a contribution to the transition
energy due to kinematic interactions between the one-
particle states induced by the presence of the conduction
electrons in the contacts. This is a characteristic feature for
complexes of systems with interactions between localized
and delocalized electrons.

Now, identify the dressed transition energyDnsstd by

Dnsstd = Dns
0 + i o

ms8

s1 − dnmdss8d

3 E
t0

t0−ib

Vms8st,t1dDms8st1,t
+ddt1 s11d

and the dressed end-factorPnsst ,t8d by

Pnsst,t8d = dst − t8dPnsstd + i o
ms8

Kms8nsst+,t8d

3 E
t0

t0−ib

Vms8st,t1dDms8st1,t8ddt1. s12d

Notice that the propagatorKms8nsst ,t8d is zero whenm=n
and s8=s. Thus, it is not necessary to explicitly insert the
factor s1−dnmds8sd into the expression given in Eq.(12), as
it is done in Eq.(11). However, in both the dressed transition
energy and end-factor the contribution atm=n,s8=s has to
vanish in order to exclude self-interactions within the sys-
tem. In the given notation, the DQD GF can be written as[in
the limit Ujstd→0]

Si
]

] t
− DnsDGnsst,t8d

= Pnsst,t8d +E
t0

t0−ib

Pnsst,t1dVnsst1,t2dGnsst2,t8ddt1 dt2.

s13d

The DQD GF in Eq.(13) with the correction given in Eq.
(10) will henceforth be referred to as thefull loop approxi-
mation, whereas the approximation with the bare end-factor
and with the dressed transition energies is the so-calledloop
correction.29,28 The approximation where both the end-
factors and transition energies being bare is the well-known
Hubbard I approximation(HIA ).24,25,30,31As is known, the
HIA is a mean field approximation which is also the case for
the loop correction in the sense that the spectral weight is
energy independent. However, it should be noted that these
quantities may vary under influence of external fields. We
emphasize though, that the loop correction contains a renor-
malization of the transition energies that is strongly dynami-
cally dependent on the properties in the conduction bands
and the hybridization between the localized and delocalized
states, see Refs. 28, 29, and 32. Thus, this approximation
goes far beyond any standard mean field theory. In the full
loop approximation, the dressing of the end-factor introduces
an energy dependence of the spectral weight, which will be
further discussed in the following section. Moreover, in this
approximation also the spectral weight and the imaginary
part of the self-energy become explicitly dependent on exter-
nal field, e.g., the bias voltage in the present case.
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A. Basic properties of the DQD GF

In this paper the transport through the DQD will be ana-
lyzed in the stationary regime, which makes it preferable to
Fourier transform the equations into energy variables, that is

siv − DnsdGnssivd = Pnssivd + PnssivdVnssivdGnssivd.

s14d

In this regime, the dressed transition energy becomes

Dns = Dns
0 + o

ms8

s1 − dnmdss8d o
kPL,R

uvkms8u
2

2p

3E f− 2 Im Dms8
r svdg

fs«ks8d − fsvd

«ks8 − v
dv, s15d

where Dms8
r svd is the retarded form of the dressed DQD

locator for the transitionu0l→ ugms8l. The second term of Eq.
(15) gives a shift of the energy of the transitionu0l→ ugmsl
from interactions between the different one-particle states
and the conduction electrons in the contacts. It is clear from
this equation that contributions from self-interactions are ex-
cluded, since it is the strong Coulomb repulsion acting be-
tween the localized states in the DQD that causes the shift,
however, induced by the presence of the conduction elec-
trons in the contacts. It is also clear that the shift increases as
the (quasi-) chemical potential in one(or both) of the con-
tacts approaches any of the transition energies involved in
the sum on the right-hand side of Eq.(15). This is illustrated
in Fig. 5 where we show the dressed transition energies as
functions of the bias voltage for the case(A) in Table I. We
note that the cases listed in Table I are reasonable for sizes of
the QDs&10–100 nanometers each. It may be seen from the
figure that sharp dips inDns are found at specific bias volt-
ages. If the couplings to the left and the right contact are
asymmetric, that is, if the hybridization between the local-
ized state in the DQD and the states in the left contact is
different from that to the right contact, then the shift of the
transition energies becomes different when the bias voltages
is applied in forward direction compared to the reverse
biased system. In Fig. 5 the couplingsGL=GRfGa

=2pokPauvksu2dsv−«ksd ,a=L ,Rg, however, the couplings
of each DQD transition become asymmetric with respect to
the left and right contacts, i.e.,Gns

L ÞGns
R , due to the asym-

metry of the transitionsu0lkgnsu inside the DQD. It should be
emphasized that the result given in Eq.(15) also holds for
the nonequilibrium situation since the dressed transition en-

ergy, Eq.(11), only depends on one time variable.
The corresponding dressed end-factor can be written as

Pnssivd = Pns − o
ms8

Pms8 − Pns

2p

3E f− 2 Im Dms8
r sv8dg o

kPL,R

uvkms8u
2

«ks8 − v8

3 S fs«ks8d − fnBsDnsms8d + 1g

iv − Dnsms8 − «ks8

−
fsv8d − fnBsDnsms8d + 1g

iv − Dnsms8 − v8
Ddv8, s16d

where nBsxd is the Bose function. The expression for the
dressed end-factor given in Eq.(16) applies to nonequilib-
rium, however, it is inconvenient to use in such situations.
The reason is that the chemical potential of the DQD is not
known in the nonequilibrium case, whereas in equilibrium it
is reasonable to introduce a common chemical potential for
the system which equals the chemical potentials of the con-
tacts.

The expression in Eq.(16) can be used to understand the
basic mechanisms for the scattering between the one-particle
states. First of all it should be noticed that any contribution
in the sum over the statesugms8l vanishes wheneverPms8
=Pns, that is, whenever the spectral weights of the transitions
u0l→ ugnsl and u0l→ ugms8l are equal. Second, the leading
contribution from the dressing of the end-factor, the first
term of Eq. (16), has an imaginary part which is peaked
aroundDns. To illustrate this with a simple model, we put
−2 Im Dms8

r sv8d=2pdsv8−Dms8d, assumek-independent hy-
bridization matrix elements,vks→vs, and wide and flat con-
duction bands in the contacts. These simplifications lead to
the retarded end-factor

Pns
r svd = Pns − o

ms8

Pms8 − Pns

v − Dns
o

a=L,R
Gms8

a

3 SlogU ma − Dms8

v − Dnsms8 − ma
U −

i

2
fasv − Dnsms8dD .

The real part of this expression appears to be diverging for
bias voltages such thatma<Dms. However, due to the finite
width of the dressed locatorDms8

r sv8d, used in the calcula-
tions for the current discussed in Sec. IV, its contribution to
the dressing is less important. The physical effect from the
dressing of the end-factor is an increased or decreased spec-
tral weight for the corresponding GF, depending on the sign
of the differencePms8−Pns. Hence, the ability for an elec-
tron to tunnel through the DQD via the transitionugnslk0u is
highly affected by the scattering between the one-particle
states. It should be emphasized, however, that this is a dy-
namical process which strongly depends on the bias voltage
and, in addition, on the strength of the couplings to the left
and the right contacts. We discuss this in more detail below.

FIG. 5. Dressed transition energies as functions of the bias volt-
age for case(A) in Table I with GL/R=0.375 meV atT=5 K.

J. FRANSSON AND O. ERIKSSON PHYSICAL REVIEW B70, 085301(2004)

085301-6



B. Nonequilibrium equations

The correct nonequilibrium expressions for the DQD GF,
hence also for the end-factor, are found by applying the Lan-
greth rules for analytical continuation.33 Thus, the lesser
DQD GF becomes

Gns
, svd = Gns

r svdVns
, svdGns

a svd + Dns
r svdPns

, svd

3f1 + Vns
a svdGns

a svdg, s17d

where the retarded/advanced DQD GF is given by

Gns
r/asvd =

Pns
r/asvd

v − Dns − Pns
r/asvdVns

r/asvd
. s18d

Here, the retarded/advanced interaction operatorVns
r/asvd

=Lnssvd7 iGnssvd /2, whereas its lesser counterpart is given
by Vns

, svd= iffLsvdGns
L svd+ fRsvdGns

R svdg.
By inspection of Eq.(12) one finds that the lesser form of

the dressed end-factorPnssivd is given by

Pns
, svd =

i

2p
o
ms8

E Kms8ns
, sv − «dfVms8

r s«dDms8
, s«d

+ Vms8
, s«dDms8

a s«dgd«, s19d

whereas the retarded/advanced form of the dressed end-
factor becomes

Pns
r/asvd = Pns +

i

2p
o
ms8

E „Kms8ns
r/a sv − «d

3 fVms8
r s«dDms8

, s«d + Vms8
, s«dDms8

a s«dg

+ fKms8ns
, sv − «d + Kms8ns

r/a sv − «dg

3 Vms8
r/a s«dDms8

r/a s«d…d«. s20d

Here, Kms8ns
, svd=−i2psPms8−PnsdnBsDnsms8ddsv−Dnsms8d

whereasKms8ns
r/a svd=sPms8−Pnsd / sv−Dnsms8± idd. Finally,

the retarded/advanced and lesser forms of the dressed locator
are given by

Dns
r/asvd =

1

v − Dns − Pns
r/asvdVns

r/asvd

and

Dns
, svd = Dns

r svdfPns
r svdVns

, svd + Pns
, svdVns

a svdgDns
a svd,

respectively.
It is clear that the retarded/advanced and lesser counter-

parts of the dressed end-factor are necessary in order to cal-
culate the corresponding forms of the DQD GF, cf. Eqs.(17)
and(18). However, these expressions are also needed to find
the nonequilibrium population numbers for the transitions
ugnslk0u. The average of these population numbers are found
from the identity

Nns =
1

2p
ImE Gns

, svddv s21d

and the boundary condition 1=N0+onsNns.

The plots in Fig. 6(b) display the total population numbers
Nn=osNns , n=1,2, for theone-particle states as functions
of the bias voltage for the parameters used for case(A),
given in Table I. The population numbersNn, are almost
equal in the region around equilibrium. However, it may be
seen from Fig. 6 that as the bias voltage is increased in the
forward directionsmL−mR.0d, the population ofug2slkg2su
decreases whereas the population ofug1slkg1su remains more
or less constant. This behavior reflects the difference of the
coupling strengths for the two transitionsu0lkgnsu , n=1,2.
The first transitionsn=1d couples weaker to the right contact
than the secondsn=2d and, hence prohibits electrons to flow
through the DQD via this transition. Therefore, the popula-
tion of this transition remains constant around its maximum
value, for a large range of forward bias voltages. For back-
ward bias voltagessmL−mR.0d, the case is quite the oppo-
site, since then the first transition couples stronger to the left
contact than the second(see Fig. 6). Hence a larger amount
of electrons can flow through the DQD via the first transition
and, thus, the population decreases very rapidly as this tran-
sition becomes resonant.

However, there is a hump and a dip in Fig. 6 forN1
around 9 and −11 mV, respectively, both which are caused
by the dressing of the end-factor. This fact is emphasized in
Fig. 6(a) which shows a comparison of the two mean field
approximations, HIA(dotted) and with the loop correction
(dashed), and the full loop approximation(solid). The figure
illustrates a logarithmic plot of the quotientN2/N1 as a func-
tion of the bias voltage in the three approximation schemes.
The dynamical(bias voltage dependent) effects from the
dressed end-factor tend to modify the populations of the tran-
sitions for bias voltages aroundDns, discussed in the previ-
ous section. This modification leads to a further decrease of
N1 for bias voltages around −11 mV since the difference
P2s−P1s.0, cf. Eq.(16), whereas for bias voltages around
9 mV the differenceP2s−P1s,0 which leads to the hump
in N1. In mean field theory, the electrons flow through the
DQD directly via the transitionsugnslk0u. This is expected
since the transversal transitionsug1slkg2su, andug2slkg1su, are
not included into the Hamiltonian, Eq.(5). However, the
dynamical(voltage dependent) behavior of the dressed end-
factor, which includes effects from these transitions, ruins
this scenario since it tends to decrease(increase) the popula-
tion numberN1 around −11 mVs9 mVd. Hence, the correc-
tion diagram from scattering between the one-particle states
in the DQD tends to prevent electrons in the contacts to

FIG. 6. Dressed population numbersNn=os Nns , n=1,2, as
functions of the bias voltage for case(A) in Table I.
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tunnel through the DQD via the transitionug1slk0u.
As a result of this dynamical redistribution of the spectral

weights, it is expected that the current through the DQD for
bias voltages around −11 mVs9 mVd in the full loop ap-
proximation will be less than the corresponding currents
given within the mean field approximations. Nevertheless,
since both transitions from the empty state to the one-particle
states, ugnslk0u , n=1,2, are resonant around −11 mV
whereas onlyug2slk0u is resonant around 9 mV, it is also
expected that the influence of this dynamical re-distribution
on the resulting current should be larger in the former case
than in the latter. This will be further discussed in the fol-
lowing section. The asymmetry of the positions of the hump
and the dip with respect to the forward and backward biased
system is related to the asymmetric renormalization of the
transition energies, as can be seen in Fig. 5.

IV. CURRENT-VOLTAGE CHARACTERISTICS

In this section we will analyze the calculated current un-
der various circumstances. The important parameters in the
present context are the level separation«A−«B, that is the
relative positions of the levels in QDA/B, and the hopping
strength between the two QDs. These should be compared
with the coupling strengthsGL/R between the DQD and left/
right reservoir. The parameters for Coulomb repulsion inter-
nally and between the QD are irrelevant as long as we re-
strict the discussion to bias voltages such that only the
transitions between the empty state and the one-particle
states contribute to the conductance. For bias voltages such
that the states with more than one particle contribute to the
conduction, a more complete analysis has to be done in ad-
dition to the one in the present case. However, we expect that
similar effects, as the one discussed here, related to the
dressed end-factors, will be present also in this case. Hence,
the resultingJ-V asymmetries and possible negative differ-
ential conductance will be amplified when transitions to
states with more than one electron are included.

In the stationary regime, the nonequilibrium properties of
the DQD are found from self-consistent calculations of Eqs.
(15), (17), (18), and (21) for each value of the bias voltage
Vbias=smL−mRd /e. The bias voltage is inserted into the
dressed transition energy, Eq.(15) and the lesser interaction
propagatorVns

, svd, and thereafter in the DQD GF. In this
fashion, the voltage dependence of the dressed end-factor
(and transition energies) is taken into account and, hence, the
voltage dependence of the population numbers of the transi-
tions between the empty state and the one-particle states.
Thus, the dynamical behavior of the spectral weights(end-
factors) will be included when the bias voltage is varied and
the condition for an increased scattering between the one-
particle states becomes fulfilled, leading to theJ-V asymme-
tries and negative differential resistance to be discussed in
the following.

The current in this paper is calculated by means of the
expression given in Eq.(6) where the DQD GF is given
within the full loop approximation(dressed transition ener-
gies and end-factors), the loop correction(dressed transition
energies and bare end-factors) and the HIA(bare transition

energies and end-factors). The corresponding differential
conductancesdJ/dVd is computed as a numerical derivative
of the current with respect to the bias voltage. The numerical
derivative has been chosen since an accurate analytical ex-
pression is available only in the low bias regime, e.g., in
linear response. The reason for this is that both the transition
energies and end-factors, hence the DQD GFs and their self-
energies, are bias voltage dependent. Although some proper-
ties of theJ-V asymmetries are seen already in the linear
response theory, the more interesting nonlinear features of
the current through the DQD comes about at higher fields.
Moreover, the negative differential conductance behavior
will not be seen in a linear response theory and therefore we
disregard any analysis within this regime.

A. Asymmetric current-voltage

An example of theJ-V characteristics and corresponding
dJ/dV for the DQD system with parameters according to the
configuration listed in Table I(A) is shown in the upper and
lower panels of Fig. 7, respectively. First we note that the
two currents in the two mean field approximations, HIA(dot-
ted) and loop correction(dashed), are shifted in the sense
that the two transitions become resonant at lower bias volt-
ages in the HIA than in the loop correction. This is under-
stood from the discussion of the renormalization of the tran-
sition energies in Sec. III A, since it tends to push the
transition energies deeper below the equilibrium chemical
potential of the system. Naturally then the peaks in the
dJ/dV calculated within the HIA appear at lower fields than
the corresponding peaks in the loop correction. The loop
correction gives rise to a slight asymmetry of the magnitude
of the peaks in thedJ/dV curve, where the first peak for
forward-bias voltages(around 5 mV) is a little bit lower than
the second. For backward-bias voltages the situation is the
opposite. This behavior is also understood from the asym-
metric renormalization of the transition energies, see Fig. 5.
However, the effect on the resulting current from this asym-
metric renormalization is negligible.

When the dressing of the end-factors are included into the
calculations, i.e., the full loop approximation(solid), the
asymmetry of theJ-V characteristics as well as thedJ/dV

FIG. 7. J-V characteristics(upper panel) and dJ/dV (lower
panel) for the DQD calculated in the full loop approximation
(solid), with the loop correction(dashed) and within the HIA(dot-
ted). Parameters are taken from case(A) in Table I.
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curve becomes obvious. Consider the backward-biased sys-
tem at first. The large increase of the current seen in the loop
correction in the range −3 to −7 mV, remains in the full
loop approximation, since the spectral weights are almost
equal down to about −7 mV in the two cases. However, as
the bias voltage approaches the range where the dynamical
effects of the dressed end-factors become important, the cur-
rent does not increase in a step-like fashion. ThedJ/dV
shows a double peak with a small amplitude and a minimum
around −11 mV, which is where the dressed population num-
ber N1 has its corresponding minimum, cf. Fig. 6(b). Simi-
larly for forward-bias voltages, the amplitude of the step
around 5 mV is less in the full loop approximation than in
the loop correction, which is understood as an effect of the
scattering between the one-particle states causing a de-
creased probability for electrons to undergo the transition
ug2slk0u in the DQD. Hence, the resulting currents in the
three different approximations, can be understood from the
discussion about the population numbers of the transitions
between the empty state and the one-particle states in the
previous section. Having analyzed the difference of the three
approximation schemes, we now proceed to investigate the
resulting currents through the DQD in the full loop approxi-
mation.

The relative positions of the discrete levels in the two
QDs are of main importance in order to understand the
asymmetry of theJ-V characteristics of the system, as was
pointed out in Sec. II. When the two levels are aligned, the
transition matrix elementssdAsd0gns and sdBsd0gns , n=1,2,
are equal. As the difference«A−«B,0, the lower DQD or-
bital couples strong/weak to the left/right contact, whereas
the upper orbital couples strong/weak to the right/left con-
tact. In the case of«A−«B.0, the couplings of the DQD
orbitals to the left and right contacts become the opposite.
Thus it is expected that theJ-V characteristics should be
mirrored with respect to the difference«A−«B. By varying
the difference«A−«B for fixed coupling strengths to the left/
right contacts, we see in the upper panel of Fig. 8 that this is
indeed the case. For a negative difference(solid), e.g., s«A

−«Bd /G,0, the current flattens fornegativebias voltages
around 2Dg1s

, whereas in the opposite case(dashed), e.g.,
s«A−«Bd /G.0, the current flattens forpositivebias voltages
around −2Dg1s

. The correspondingdJ/dV plots show perfect

reflections of one another, as is seen in the lower panel of
Fig. 8. Clearly, it is sufficient to further analyze the case of
s«A−«Bd /G,0 (or s«A−«Bd /G.0) only.

Now, consider varying the relative level spacing,s«A

−«Bd /G,0. From Fig. 4 we see that when the levels in the
two QDs are aligned, the transition matrix elements
usdAsd0gnsu2= usdBsd0gnsu2, n=1,2,which leads to a symmetric
J-V curve since the coupling of the transitionsugnslk0u to the
left and right contacts are equal. For a finite relative level
spacing, the transition matrix elements become distinct, for
all values of the hoppingt. Thus, the asymmetry imposed on
the system will provide an asymmetricJ-V sdJ/dVd charac-
teristics, which is clearly seen in Fig. 7. In the upper(lower)
panel of Fig. 9 we illustrate the increasing asymmetry of the
J-V sdJ/dVd characteristics with respect to an increasing
relative level spacing, for a fixed hoppingt /G. As is seen, the
current is only slightly asymmetric for small values ofs«A

−«Bd /G, whereas the asymmetry increases with increasing
level spacing. This clearly demonstrates the large influence
of the scattering between the one-particle states as a result of
the enlarged degree of asymmetric coupling to the left/right
contacts, due to the growing level spacing.

Next, we let the relative level spacing be fixed and vary
the hoppingt /G. From Fig. 4 it is clear that the degree of
asymmetry is large for low hopping rates, whereas for high
hopping rates the asymmetry is somewhat smaller. This is
clear, since the transition matrix elementusdAsdgns0u2= uun1

s u2
→1/2 in the limit t→` for any relative level spacing such
that s«A−«Bd / t→0. Thus, one would expect that the asym-
metry of theJ-V characteristics becomes small for high tun-
neling probabilities between the QDs. This is clearly seen in
Fig. 10, which displays the current(upper panel) and differ-
ential conductance(lower panel) for various hopping
strengthst /G. One should note that a large hopping results in
a large separation of the transition energiesD1s, which even-
tually leads to thatD2s, cf. Fig. 3(b), becomes positive for
increasingt /G. This is the case fort /G=5 (dash-dotted) in
Fig. 10, showing thatD2s lies in the vicinity of the equilib-
rium chemical potential,m, which gives a high conductance
for low bias voltages. Nevertheless, the plots in Fig. 10 dem-
onstrate that the system, hence the resulting current, becomes
increasingly asymmetric ast /G→0 and decreasingly asym-
metric ast /G→`.

FIG. 8. Symmetry of theJ-V characteristics anddJ/dV with
respect to the relative positions of the levels in the QDs. The plots
are calculated fort /G=1.

FIG. 9. J-V characteristics anddJ/dV for different relative level
spacings«A−«Bd /G,0 in the two QDs and fixed hopping strength
st /G=1d between the QDs.
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Both in Figs. 9 and 10 it is seen that the amplitude of the
current tends to increase as the system becomes more and
more symmetric, i.e., the transition matrix elements
usdAsd0gnsu2, usdBsd0gnsu2→1/2, n=1,2. This is expected
since an equally strong coupling of the transitionugnslk0u
with respect to the left and right contacts means that the
corresponding DQD orbital extends with uniform probability
amplitude throughout the DQD. As the DQD becomes
strongly asymmetric, in the sense that the transition matrix
elements approaches 1 or 0, one finds a large probability
amplitude of the orbital in one of the QDs and a small in the
other one, as discussed in Sec. II. The conductivity of the
DQD is closely related to this fact, since a strong localization
of a state in one of the QDs yields a weak tunneling prob-
ability through the other, hence the overall current is re-
duced.

In experiments, it is rather difficult to establish a perfect
symmetry of the tunnel barriers between the DQD with re-
spect to the left and right contacts,34–37which means that the
couplingsGL/R are distinct. Motivated by this, we have also
studied the additional effect on theJ-V sdJ/dVd asymmetries
arising due to theexternalasymmetric coupling, shown in
Fig. 11 for two asymmetric couplings which are compared to
the case of symmetric couplings. However, due to the finite
level spacing and low hopping rate there is aninternal asym-
metry of the DQD, as previously discussed. One notes that a
strong coupling to the left contactsGR/GL,1d amplifies the
internal asymmetry of the DQD resulting in a further in-

creased asymmetry of theJ-V sdJ/dVd characteristics. The
opposite case, e.g.,GR/GL.1, tends to force the system into
a more symmetric behavior, with respect to the bias voltage.
The external asymmetry, however, does not substantially
modify the current for either case, as is seen in Fig. 11. It
should be emphasized, that any mean field result(that does
not account for level shifts as functions of the bias voltage)
would give perfectly symmetricJ-V sdJ/dVd characteristics
for all cases considered in Fig. 11. Hence, we conclude that
theJ-V sdJ/dVd asymmetries arise due to scattering between
the DQD states. The effects from these scattering processes
become amplified by the strong localization of the DQD or-
bitals to one of the QDs, as a result of the relative level
spacing in the two QDs and the strongly correlated electron
states within the DQD.

B. Negative differential conductance

In this subsection we address the question of the asym-
metric NDC, recently found in experiments.10 In order to do
this, we capture the main important property of the two car-
bon nano-tubes(CNTs), coupled via a SiO2 tunnel barrier, as
described in the experimental work of Ref. 10, namely, the
level quantization. It should be noted that, the CNTs may
suffer from various anisotropy effects and other conditions,
which we neglect here. The level separation in the experi-
mental CNT is of the order of,10 meV and the intra-CNT
Coulomb repulsions are at least in this order. Thus, for suf-
ficiently low bias voltages it is appropriate to adopt the
model for the DQD given in Eq.(1), with one conducting
level in each QD, and thus the developed theory in Sec. III.
By using this approach we can directly study the interactions
that give rise to the observed NDC.

From the lower panel in Fig. 9, it is clear that the double
peaks appearing for negative bias voltages separate as the
relative level spacings«A−«Bd /G grows. Simultaneously, the
valley between the peaks approaches zero conductance.
Hence, from this picture the first requirement, for a region of
NDC to appear in theJ-V sdJ/dVd characteristics, is to in-
crease the relative level spacings«A−«Bd /G. The second re-
quirement is a low hopping rate,t /G, which was illustrated
in Fig. 10. For a fixed hopping rate and increasing relative
level spacing, we find that this is indeed the case, as is leg-

FIG. 12. J-V characteristics anddJ/dV for increasing relative
level spacings«A−«Bd /G given a fixed hopping ratet /G=1. Note
that the solidJ-V curve is the same as one given in Fig. 1.

FIG. 10. J-V characteristics anddJ/dV for different hopping
strengthst /G and fixed level spacings«A−«Bd /G=−2.

FIG. 11. J-V characteristics anddJ/dV for various left and right
couplingsGL /GR given the hopping strengtht /G=1 and level spac-
ing s«A−«Bd /G=−2.
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ible in Fig. 12. Here, the couplingsGR/GL=1. In Sec. IV A it
was suggested that theJ-V asymmetries arise due to a sub-
stantial decrease of the population numberN1, resulting in
that the transitionug1slk0u becomes less available for conduc-
tion. By the same argument, the NDC is the result of a fur-
ther decreased availability, eventually completely blocking
any conduction through the DQD viaug1slk0u. In the lower
panel of Fig. 12, it is seen how the valley between the two
conductance peaks evolve from being positive to negative as
the relative level spacing grows, for negative bias voltages.
The transitionug1slk0u starts to conduct for bias voltages
slightly below its corresponding resonance value, due to the
finite width of the transition. For increasingly(negative) val-
ues of the bias voltage, the conductance of the transition
drops and, eventually, becomes more or less unavailable for
conducting electrons through the DQD, hence, the current
drops. A further increased(negative) bias voltage results in a
reestablished conduction through the DQD viaug1slk0u,
hence the current grows again. The small NDC around 5 mV
is most likely due to numerical errors in the numerical dif-
ferentiation, since the current is vanishingly small in this
range of bias voltages.

Small hopping ratest /G between the QDs tend to pre-
serve the asymmetric properties of the DQD whereas larger
values oft /G forces the system in to a more symmetric per-
formance, as discussed in Sec. IV A. This fact is confirmed
by noting that the region of NDC vanish for growingt /G, as
seen in Fig. 13, which is calculated for a fixed relative level
spacing and symmetric couplingssGR/GL=1d.

V. SUMMARY AND CONCLUSIONS

In summary, we have studied the transport properties of a
DQD coupled to external contacts, with respect tointernal
asymmetries resulting from the relative level spacing«A
−«B and the hopping ratet between the QDs. By expressing
the DQD in terms of its exact many-body eigenstates(in the
atomic limit), it was found that the transitions between the
empty state and the one-particle states were asymmetrically
coupled to the left and right contacts, for finite relative level
spacing and hopping rate. A theory forJ-V sdJ/dVd asym-
metries was developed, beyond mean field theory, showing
that the internal asymmetries give rise to an amplification of
the effect of the dynamical(bias voltage dependent) redistri-
bution of the spectral weights for these transitions. This re-
sults in a decreased probability amplitude for the transitions
at bias voltages corresponding to their resonance values. The
J-V sdJ/dVd characteristics was analyzed as a function of the
relative level spacing and hopping rates. It was found that a
large relative level spacingu«A−«Bu /G*2, where G=GL

+GR is the sum of the couplings to the left and right contacts,
gives a noticeably asymmetricJ-V sdJ/dVd characteristics,
for small hopping ratest /G&1. TheJ-V sdJ/dVd character-
istics show a region of NDC at one half of the range of bias
voltages, for sufficiently large relative level spacing(u«A
−«Bu /G*8/3, given t /G,1). This behavior is in good
agreement with the recent experimental finding on DQDs
constructed from a CNT with a SiO2 tunnel barrier deposited
on the nano-tube.10

Experiments on DQD where the relative level spacing
(and possibly the hopping rate) can be varied would be very
intriguing, and would provide valuable information to reach
a better understanding of the asymmetric transport properties
of nano-devices.
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