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Current-voltage asymmetries and negative differential conductance due to strong electron
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A theory for asymmetric current-voltage characteristics, in particular negative differential conductance, for
double quantum dots with strongly correlated electron states is formulated. By expressing the double quantum
dot in terms of its many-body eigenstates, a diagrammatic technique for Hubbard operator nonequilibrium
Green’s functions is employed. The Green’s function for the double quantum dot is calculated beyond mean
field theory, and it is found that the spectral weights of the conductive transitions in the double quantum dot
redistribute dynamicallybias voltage dependenthe resulting asymmetric current-voltage characteristics and
negative differential conductance is discussed in terms of the relative level spacing in the two quantum dots
and the hopping rate between the quantum dots. Numerical results of the current-voltage characteristics are
presented and compared to experiments.
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I. INTRODUCTION of NDC normally occur in semiconductor double- and multi-

) o barrier structuréd2 and can then be referred to as band-
Experimental current-voltag@l-V) characteristics of me- edge effectd314 Transport experiments on DQDs fabricated
soscopic quantum systems, e.g., quantum @@Bs), double  from semiconductor hetero-structures have displayed sharp
quantum dotgDQDs), coupled carbon nano-tubgENTS),  resonant peak® which are related to the energy distance
or quantum wires, etc., often show a more or less probetween the levels in the two QDs approaches zero. This in

nounced asymmetry, with respect to the bias voltage. turn, creates a resonant state in the D¥Blignments of the
Typically these observations are made for man-made nandevels in the two QDs, however, are expected to create sym-
devices where one part typically has a complex electronignetric J-V characteristics having sharp resonant peaks with
structure and conductivity(interacting region that is large peak-to-valley ratios, in contrast to the observations in
coupled to two, or more, noncomplex regiof@ontacts or Ref. 10. Thus, when the interacting region, e.g., DQD, is
reservoiry. The complexJ-V characteristics becomes par- coupled to metallic contacts, having a conduction band width
ticularly apparent in systems where the interacting region if the order of electron volts, such explanations have to be
asymmetrically coupled to the left and right contacts. Suchdiscarded. Normally, one expects that the current should in-
asymmetries are frequently argued to be effects of impuritiegrease with increasing bias voltage, possibly with plateaux
introduced during the growth process or differences in interdue to the zero-dimensional confined energy levels of the
face roughness of the oxide layers between the contacts amgteracting region. The NDC observed in Ref. 10 was sug-
the interacting regioft® Another mechanism that may intro- gested to be an effect of resonant tunneling between the dis-
duce asymmetries in thé-V, or differential conductance crete levels in each dot, although the details of the process
(dJ/dV), characteristics are unintentional backgroundare not specified® Furthermore, the observed asymmetric
charges which additionally contribute a charging energy tappearance of the NDC is hitherto an unexplained effect.
the interacting regioR A third argument that has been sug-  There is a vast literature of theoretical studies on transport
gested is that a higher collector barrier enhances the chargerough DQD in different geometries, e.g., DQD in
storage in the well substantially, thus being responsible foseried”-'8 and in parallel®-2° Most of these studies are de-
different current amplitudes for the back- and forward-biased/oted to DQDs in the Coulomb blockade regime, where es-
device®’ Theoretically, it has been suggested that inelastipecially phenomena related to Kondo-like physics are under
scattering, especially for asymmetric structures, gives differfocus. Although being important for the understanding of
ent contributions in the backward- and forward-biaseffects from strong correlations on the transport through the
direction®® However, a full understanding of the mecha- system, to our knowledge, no-one has yet addressed the
nisms responsible for the observed asymmetries in thquestion of]-V (dJ/dV) asymmetries or asymmetric NDC in
J-V (dJ/dV) characteristics has not yet been put forward. DQDs coupled to metallic contacts.

Recent experiments on double quantum ddXx)Ds) In this paper we propose a theory that ties these two ef-
coupled to metallic contacts show, unexpectedly, asymmetrifects together. By studying an idealized DQD, with one con-
negative differential conductanc@\DC) behavior in the ducting level in each QD, in terms of the eigenstates of the
current-voltage(J-V) characteristicd® The J-V characteris- DQD in the atomic limit, we find that tha-V (dJ/dV) asym-
tics were asymmetric in the sense that the NDC appeareahetries arise due to dnternal asymmetry of the DQD when
only in one half of the bias voltage rangeV,V). Features reservoirs are coupled to the interacting region. Our use of
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bias voltzge (mv)10 FIG. 2. Sketch of the double quantum dot system. The QDs
interact via the interdot Coulomb repulsibhg and hopping. The

FIG. 1. AtypicalJ-V characteristics calculated within the theory coupling strength between the DQD and the left/right contact is
developed in this paper, further discussed in Sec. IV. The uppefienoted byl'™/R.
inset shows a typical experiment&V result on the DQD reported
in Ref. 10. The lower inset shows the geometry of the DQD systemstrong electron correlations within the DQD. In most quan-

tum devices there is more than one electron participating in

many-body states rather than single particle states is motfhe conductance through the interacting region. However, the
vated by the simple and uniform inclusion of intra- and inter-source for the asymmetrid-V characteristics is present in
dot correlations. In the present formulation it is relevant to@ny transition that adds/removes one electron to/from the
study the transitions between states in the DQD, rather thalfiteracting region. Thus, it is appropriate to consider only the
levels. Thus, it will be demonstrated that the probability am-case of single-electron tunneling through the system.
plitudes for the transitions between the stafés 1,n) and In this paper we disregard Kondo-like effects on the sys-
IN,n), wheren is a state label of thil electron configuration tem, since such effects are of main importance for tempera-
of the DQD, are asymmetric with respect to the left and righttures below the Kondo temperatifewhich is not the case
contacts whenever the relative level spacing of the two QD&ere. Second, possibiemal) contributions from the Kondo
is finite. Moreover, the transitiofN,n)(N-1,n| may couple effect cannot by themselves introduce the large degree of
stronger to, say, the left contact wherdhn’}N-1,n|,  asymmetry often observed in experiments, since any Kondo
n’#n, could couple stronger to the right contact. In other®s0nance 1s suppressed by the application of a bias
words one may say that the staiegn) and |N,n’) have voltage._ Neverthe_less, for low fields _such contributions
their main weights on different QDs, although their corre-May slightly amplify the asymmetry introduced by the
sponding wave functions are extended throughout the DQD€chanism proposed in this paper.
The local properties of the DQD are here studied in terms of 1€ rest of this paper is organized as follows. In Sec. I
many-body (Hubbard operator nonequilibrium Green's- We _descrlbe the model for thg DQD which is followed by a
functions (GF beyond mean field theory, and it is found derivation of th_e local properties of the DQD in Sec._III_. We
that the spectral weights for the transitions are dynamicallPréSent numerical results of tiieV (dJ/dV) characteristics
(bias voltage dependentedistributed as the bias voltage is In Sec. IV and the paper is summarized and concluded in
varied. As we shall demonstrate, the internal asymmetry oP€C. V.
the DQD results in a decreased probability amplitude at the
resonance bias voltage for the corresponding transitions,  |l. MODELING THE DOUBLE QUANTUM DOT
which functions asymmetrically with respect to the bias volt-

age. The effects are seen even for DQDs with a Symmem%onnected to external contacts, see Fig. 2. In each of the QDs

externalcoupling to the left and right contacts. . . .
As a result of the theoretical development in this paper Wethere is a large Coulomb repulsitiyg and the QDs interact

. . : ia the charging energy g and the hoppind. In general,
find very good agreement with recent experimental data on .

DQD system constituted of two coupled carbon nanotdbes. ire1 'TSrdOt Sv%ﬂ(r);nb enkergEd AF3<iSUtA|'I’:Z Vr\:hgrr%?zsag:)en hk;)g'
However, before we go into the details of the theory Wengegen thl:ak(gtates . tl;]kg’DQeD nd the statgs of the(lafand

show in Fig 1 a typical calculated-V characteristics of the

. : . . - the right(R) contact.
DQD system we consider in this paper. The upper inset ir _ .
Fig. 1 displays an example of the experimeniaV result The energy of the DQD is here modeled by the following

reported in Ref. 10. It should be noted in Fig. 1 that both the 1amiltonian
J-V asymmetry as well as the resonant peak are captured T T
s . K . = + +
within the theoretical result. In the following sections we Hooo Eg e dag dag + UaNa Al EU 2es dp, Oeo
will describe the important features that have to be included
in order to obtain such a result. +Ughg;Ng| + Uag(Na; +Na ) (Ng; + Ng))
Despite the possible importance of the aforementioned +
sources for asymmetrid-V characteristics, e.g., impurities, +Eg (tdy, dg, + H.C), @)
unintentional charging effects, and asymmetric charge stor- R - .
age, we neglect such influences and consider the ideal situshere dp s, (dass,) Creates(annihilatey an electron in
tion, in order to illustrate the importance of the effects fromQDpp at the single-particle energya,g,, Whereasn,,

current (nA)
o A O A ®

Consider two QDs electrostatically coupled in series and
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TABLE I. Equilibrium properties of the DQD given the interdot
§ Coulo.mb repulgionUAB:4O meV a_nd the hopping=0.75 meV.
[\ ] IN+1XN]| The single-particle levels,, g, are input parameters.
3
(A) (B) ©
ea, (MEV) -3.25 -2.5 -1.75
L U 1 R &g, (MeV) -1.75 -25 -3.25
r wt T A . E,, (meV) ~3.56 -3.25 ~3.56
N Pl 2 R E,, (MeV) -1.44 -1.75 -1.44
e b T N } " ¥4 St |(a,)°710]2 0.85 0.5 0.15
B ¢, [&s “L_“l - |(a,)0720]2 0.15 05 0.85
A, |(b,,) 07102 0.15 0.5 0.85
a) b) |(b,)0720)2 0.85 0.5 0.15

FIG. 3. (a) Sketch of the energy parameters of the serial DQD
coupled to external contacts. In QR the bare single-particle en- The diagonal description of the DQD is convenient when
ergy isep.s, (for other parameters we refer to the fexb) Sche-  the contacts are attached to the system. However, it is impor-
matic picture of the energies of the DQD system in the diagonatant to note that the transition matrix elements of the DQD in
representation, wherg g is the (quasiy chemical potential of the general are different for the transitiof&é(yl,,| and |o><72(r|_
left/right contact. The en;rgy}for a transition between the emptyThese matrix elements are given by(da,.)%%
state and one-particle statg,,), n=1,2, isdenoted byA,,. The — — o 0¥ho =
arrows illustrate the strengths of the transition probabilities between (Oldag|¥00)= 0oty and - (dgy)"= (Older | Yoo)
the one-particle states in the DQD and the contacts. In this configu-
ration, the higher transitions, e.gN+1)N| etc., lie outside the
range of conduction. E;,—Bo

SyorUpn, Where

uO’ -
nl~— [,— 2, .2’
T T . V(Eq, = eg,) 2 +12
=dp,a.(NBs=dg,,) @nd o denotes the spin. By the com-
plexity of this model and knowing that the intra- and inter-
dot Coulomb repulsions are the largest quantities of the sys- t
o L . ) =z —m (4)
tem, it is preferable to rewrite it in terms of its many-body n2 \J—(E e )2+ 2
\E10 Bo

eigenstates, given in Ref. 23 for the cd$g— . The ener-
gies of the DQD are shown schematically in Fig. 3. The
energy of the DQD can now be written in diagonal form, asHence,  [(das)?"1e?# [(da,)92%  and  |(dg,r)*72]?
follows: #|(dg,)°"27|? whenevere o, # £g,, as can be seen in Table |
and Fig. 4, where the equilibrium properties of the DQD and
Hpop = > EphP, (2)  the transition matrix elements are listed and plotted, respec-
p tively. This situation holds true for most realistic systems
since the sizes of the two QDs in general are different. The
where hP=XPP and XP9=|p)(q| is a Hubbard operat&t® difference of the transition matrix elements influences the
which describes the transition from the stafeto [p). In Eq.  current through the system. Furthermore, through the transi-
(2), the indexp runs over all possible states in the DQD tion matrix elements one can control whether an electron
described by Eq(1). For bias voltages less thaiyg and the  escapes/enters the DQD to/from the left or the right contact.
level separation of each of the QDs, it is sufficient to con-
sider only transitions between the empty and singly occupied
states|0) and|y,,», N=1,2, respectively. Therefore, Eq)
reduces to a sum overe {0, vy, ¥2,5- It iS important to note
that in the experimental situation there may in the DQD be
an unknown, large number of electrons. Since the conducting
channels only involve one or few of the corresponding
many-body states one can make a simplification and identify
the empty state of our model with tiNe- 1 state of the DQD.
The exact eigenenergies for the one-particle many-body
states are given by

21012214012

O (e,- )T (e,-e )T
E = 8Aa'-'-sB¢7'+(_ l)nV(sAa_sBa)2+4t2 (3) AB AB
no 2 ' FIG. 4. The transition matrix elemenitl,,)°710?=|(dg,,)°727]?
(solid) and |(da,)°7272=|(dg,)?"1|? (dashedl as functions of the
for n=1,2,whereas the energy of the empty stat&js0. relative level spacinge,—sg)/T for various hopping strengthsI".

085301-3



J. FRANSSON AND O. ERIKSSON PHYSICAL REVIEW B0, 085301(2004

The plots in Fig. 4 illustrate the dependence of the tran-of the applied bias voltage, is expressed by the forfiotd
sition matrix elementg(d,,)®"2|?>=|(dg,)°%2¢? (solid) and
|(dan)°721%=|(dg,)°"1? (dashedl on the relative level spac- 5= ZimS ([t (0) - TR (0)]G5,(w)
ing (ep—eg) /I for various hopping strengthél. As is seen, 2h "%
the transition matrix elements are equal for a vanishing rela- L B R r _ ~a
tive level spacing, for all hopping strengths. This is under- *@)Tp(0) = fr(@)Thp(0) J[Ghy(w) = Ghy(w)lido,
stood, since thenE,,—eg,=(-1)%t which gives |uZ|? (6)
—12 2\ — —117 |2 ic i H H
=t?/(2t*)=1/2=|up,|*. This is expected since the states in the, ore TYR(0) =275y . ok 20— £1,) i the coupling

two QDs then are in resonance. Thus, this means that the Wgo o4 hetween theth DQD state and the left/right con-
one-particle states are equally distributed throughout th‘?act, wheread (@) =f(w—pu_r) is the Fermi distribution

DQD. . : ; : :
- . . _ function andyw i is the (quasiy chemical potential of the
For finite relative level spacindeas=ea,~¢8,70), | ft/right contact. In Eq.(6), the Fourier transform of the

though, one of the matrix elements tends to approach 1 andsser retarded. and advanced DQD GF appear, defined by
the other to 0, ast2g,5— 0. In this situation,E,,—&g, ' ' '

~ sign(sxp) +(~1)", which leads to that Gy (t,)) = (= i )(TXOMa(t) XnO(t"))
ey ~ [sgrieap) + (- D" = (=) (TSXa(£) X70(1")) )
" [sgrieag) + (- D"+ (2t/eag)? TS ’
) where the actiors=exd i {g“BH’(t)dt] and the disturbance
ug, 2 ~ (2epp) _ potential
" [sgrieag) + (- )"+ (2t/epp)? H = UgOh+'S, (U (Ohthos U (21000
4 = + no + noYno
For definiteness suppose thafg<0. Then, [uf,[?=4/(4 0 m,( ne noe
+(2t/epap)®) — 1 as|epg/ (2t)| — =, whereadug,|>— 0, as is
seen in the upper left panel of Fig. 4. Similarly it is found + > Unma/(t)zy”"ym”), (8)
that |u{,|>—0 and|ug,]>— 1. Physically this means that the o' m#n

state|y,,) has a larger weight on QDthan on QR while
|12, has a larger weight on QD The case whespg>0 is
found in the same way, showing thau{;|? |ug,)?—0
whereagug,|?, [uf,]2— 1.

In the opposite limit, e.g.gag/(2t) —0, we have that
Eno—eg,~t[(-1)"+epg/(2t)] leading to

in which Z"o7mo’ =|y. M ym| denotes a transition between
states such that the total spin of the DQD is changed by an
integer. By means of functional derivatives with respect to
the source fields),(t) introduced in Eq(8), a diagrammatic
expansion of the DQD GF is generated in terms of even
powers of the hybridization matrix elemeng,,. Physical

2 [(= D"+ eng/(20)]2 1 quantities are extracted fror®,,(t,t’) in the limit Ut)
Upg|™ = — N 2 7 o — 0. For further details on the definition of the DQD GF, see
LHED a0 2 Refs. 28-30.
1 1 The equation of motion of th&,,(t,t') is given by
|Ug2|2 = 1+[(-1)"+e B/(2t)]2 - 5’ . d 0
A IE - Anzr - AUna(t) Gno(tut’) - UnoE(t)GnFo(t-t,)
as is indicated in Fig. 4 for increasingl’. Hence, the one-
particle states become more and more equally distributed - E Unmoo’Gmono(t,t)
throughout the DQD for increasing hopping strengths, which o' m#n
is expected since a large hopping, in general, tends to de- . .
localize the states in a system. = 3(t = t')Ppo() + 2 [Prgmor (1) + Rogmer (t9)]
mo’
to—iﬁ
I1l. SCATTERING BETWEEN THE STATES ,
Xf Vmu’(t,tl)Gma’na(tl-t )dtl- (9)
t

In this section, the nonequilibrium Green’s-functi@®F) 0
of the DQD will be derived and discussed with respect to thejere, G, .. . (t,t) = (=i )(TXO"o(t)Xm'O(t")),  whereas
scattering between the states in the DQD. The whole systeng (t,t')=G,,=(t,t') where o denotes the opposite spin
constituted by the DQD and the contacts is modeled by prlgj(trac';ion ofor Moreover, P (1) = (T{XO%e, Xm0} (1)

- + t 0Vne is the end-factorof the DQD GF whereP,,,(t) = Py, (t),
M= et Moot 2 (X ) (1) 2116, Syl U0+ 5 U] 1t
(5) functional differential operatomote the order of the indices
in the second term of this operatoFinally, the propagator
Where vy, =vi(d,) " and d,=dp, or d,=dg, depending  V,,(t,t")== vkl O (t,t") whereg,,(t,t') is the GF for the
on whether an electron escapes the DQD to the left or thelectrons in the contacts, satisfying the equation of motion
right contact. The current through this system, as a functiofii ¢/ ot—e,,) gy, (t,t’) = 8(t-t’).
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In the present formulation, the DQD GF is constituted ofsecond term of Eq10) gives a contribution to the transition
the product Gm,n,(,,(t,t’):Em(,anUm,,l(t,t’)Pmaln,U,(t’), energy due to kinematic interactions between the one-
whereDy,,m, (t,1') is thelocator which contains the pole and particle states induced by the presence of the conduction
self-energy, ~ whereas the  end-factor Pp, v(t') electrons in the contacts. 'Thi_s is a qharacteristic featur(_e for
carries the spectral weight of the DQD GF. This Complexes of systems with interactions between localized

means that any functional differentiation of the DQD GF and delocalized electrons. .
should be applied to both the locatdp,m,, (t,t') as well as Now, identify the dressed transition energy,(t) by

the end-factoP,, . (t'). Hence, A, () = Agg+i2 (1= 818,)
5Gnon’o’(tat’) = zmol {[mnomal(tyt’)]Pmaln'(r’(tl) ¢ :T;r
-
+ Dna'ma'l(t!t,)[5Pmaln'U’(t,)]}' X Jt Vmo’(titl)Dmo" (tl!t+)dtl (11)

0
For the functional differentiation of the locator, the matrix
propertyDD™*=1=D"!D is employed, thus giving

mnan’o—’(trt,) = E Dnamﬂ'l(t1t’)[épm(rln’o”(t’)]

moy

and the dressed end-factBy, (t,t") by
Pr‘lu'(t!t,) = 6(t - t,)Pﬂ(r(t) + I 2 Km(f’n(f(t+1tl)

mo’

. to-i
to-iB 0 ,
— 2 2 Dnomol(t:tl) X Jt Vg (t,11) D (t1, 1) dy . (12
mm m’019103% tg 0
><[5D'1 (tot0)] Notice that the p_ropagatd{ma,m(t,t’) is zero yvhe_nm:n
moym’ ot 72073 and o’ =0. Thus, it is not necessary to explicitly insert the
X Dyt g1, (Lt P (1) ity ity it factor (1- 6,0, ,) into the expression given in E¢L2), as

it is done in Eq(11). However, in both the dressed transition
In the limit of zero source fieldsl(t) — 0, all components of ~energy and end-factor the contributionnatn, s’ =o has to
the DQD Green’s-function matrix that do not conserve eithewvanish in order to exclude self-interactions within the sys-
spin or orbital moments vanish, although functional deriva-tem. In the given notation, the DQD GF can be writterjias
tives thereof may be finite. Scattering between the onethe limit U(t)— 0]
particle statesy,,) and|y,,) are included in the first order
correction with respect to the number of functional deriva- (i— —Am>Gm(t,t’)
tives applied both to the locator and the end-factor of the

DQD GF. Keeping these observations in mind, one finds that to~if3
the resulting expression foR,,my(t")Gmeno(ts,t)) in EQ. =Ppo(t,t’) + f P (t,t) Vig(t1, t2) Gy (to, t')dty dt,.
(9) can be written as to
to-if (13
+ !
2/ Riomor (1 )ft Ving' (6,0) G (1, 1) dty The DQD GF in Eq(13) with the correction given in Eq.
me 0 (10) will henceforth be referred to as thell loop approxi-
=i > (1= 8n10yer) mation whereas the approximation with the bare end-factor
mo’ and with the dressed transition energies is the so-cédieul

toip :csorrectionz’*28 The approxi_matibon WEere _bo;[]h theII Ifznd-
T , actors and transition energies being bare is the well-known
X<Km"'””(t ! )Jto Vi (1,84) D (13, 1)lty Hubbard | approximatiofHIA ).2425:3031As is known, the
o HIA is a mean field approximation which is also the case for
fo » + + the loop correction in the sense that the spectral weight is
¥ ; Ving (1, 14) D (12, )dlty Go{U,17) ] (10) energy independent. However, it should be noted that these
) ] quantities may vary under influence of external fields. We
Here, Kigrno(t,t)=(=i)(TZMm Me(t)Z¥"m' (1)) is the  emphasize though, that the loop correction contains a renor-
GF for the Bose-like scattering processes between the diffemalization of the transition energies that is strongly dynami-
ent one-particle states, which satisfies the equatiogally dependent on the properties in the conduction bands
of motion (i 9/ A= Apgme)Kimgne(t, 1) =8t—t")[Ppe () and the hybridization between the localized and delocalized
—Pro(D], Angmer =An,—An,r, Where A, is the dressed states, see Refs. 28, 29, and 32. Thus, this approximation
transition energy for the transitid@) — | y,,), defined below. goes far beyond any standard mean field theory. In the full
The first term on the right-hand side of H40), plays an  loop approximation, the dressing of the end-factor introduces
essential role in the understanding of the scattering effectan energy dependence of the spectral weight, which will be
that influence the transport through the system. In particulafurther discussed in the following section. Moreover, in this
this term is a key part for the explanation of the current-approximation also the spectral weight and the imaginary
voltage (J-V) asymmetries as well as the asymmetric negapart of the self-energy become explicitly dependent on exter-
tive differential resistance, as will be discussed below. Thenal field, e.g., the bias voltage in the present case.

0
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24 ergy, Eq.(11), only depends on one time variable.
_Q:GW The corresponding dressed end-factor can be written as
28

&

<
. Pm r I:)n

o 44 Ppliw) =Py, — > ———

4 46 , 24T
4.8 mo
-10 0 10 r |Ukm |
bias voltage (mV) X J [-2ImD,.( ,)]kELR e — '
€ (o8
FIG. 5. Dres_sed transitiqn energies as functions of the bias volt- f(erg) = [Na(Angmer) + 11
age for cas€A) in Table | with'Y/R=0.375 meV aff=5 K. A
10 = Bpoeme’ ~ Ekg’

In this paper the transport through the DQD will be ana- iw=Anymer — @'
lyzed in the stationary regime, which makes it preferable to

Fourier transform the equations into energy variables, that i§here ng(x) is the Bose function. The expression for the

(iw = Any) G (i®) = Ppo(io) + Ppy(i @) Vo (iw) Gpy (i) dressed end-factor given in E¢L6) applies to nonequilib-
rium, however, it is inconvenient to use in such situations.

A. Basic properties of the DQD GF fw") = [Ng(Angmer) + 1
[ B\2nom, ] da)’, (16)

(14) The reason is that the chemical potential of the DQD is not

In this regime, the dressed transition energy becomes known in the nonequilibrium case, whereas in eqU”ibriUm it
is reasonable to introduce a common chemical potential for

0 v S (1-¢ ) D vk | the system which equals the chemical potentials of the con-

hm, LR 2m tacts.

The expression in Eq16) can be used to understand the
f(eyyr) — f(w) basic mechanisms for the scattering between the one-particle

f[ 2 Im Dy, (w)]ﬁdw’ (15 states. First of all it should be noticed that any contribution

in the sum over the statdsy,,,) vanishes whenever,,,
where D[m,(w) is the retarded form of the dressed DQD =P,,, thatis, whenever the spectral weights of the transitions
locator for the transitiof0) — | ym,). The second term of Eq. [0} —|¥ns) @nd|[0)—|ym,) are equal. Second, the leading
(15) gives a shift of the energy of the transiti¢é® — | yim,) contribution from the dressing of the end-factor, the first
from interactions between the different one-particle state$erm of Eq.(16), has an imaginary part which is peaked
and the conduction electrons in the contacts. It is clear fron@roundAn,. To illustrate this with a simple model, we put
this equation that contributions from self-interactions are ex=2 Im D} ,(0')=278(w' = Ap,), assumé-independent hy-
cluded, since it is the strong Coulomb repulsion acting bebridization matrix elements,,— v, and wide and flat con-
tween the localized states in the DQD that causes the shiftjuction bands in the contacts. These simplifications lead to
however, induced by the presence of the conduction eledhe retarded end-factor

trons in the contacts. It is also clear that the shift increases as

the (quasiy chemical potential in onéor both of the con- Pro’ — Pro

tacts approaches any of the transition energies involved in Pho(®) =Py, = E A > F

the sum on the right-hand side of Ed5). This is illustrated mo’ @7 Fno a=LR

in Fig. 5 where we show the dressed transition energies as = A i

functions of the bias voltage for the cag@®) in Table |. We (Iog Y -—f (- Anama,)),
note that the cases listed in Table | are reasonable for sizes of © = Anomor = Ma| 2

the QDs< 10-100 nanometers each. It may be seen from the

figure that sharp dips ia,,, are found at specific bias volt- The real part of this expression appears to be diverging for
ages. If the couplings to the left and the right contact areias voltages such that,~ m(r However, due to the finite
asymmetric, that is, if the hybridization between the local-width of the dressed locatdd; ,(w'), used in the calcula-
ized state in the DQD and the states in the left contact isions for the current d|scussed in Sec. IV, its contribution to
different from that to the right contact, then the shift of thethe dressing is less important. The physical effect from the
transition energies becomes different when the bias voltagetressing of the end-factor is an increased or decreased spec-
is applied in forward direction compared to the reversetral weight for the corresponding GF, depending on the sign
biased system. In Fig. 5 the couplingE-=I'~T* of the differenceP,,,»—P,,. Hence, the ability for an elec-
=273 c o| Vol *S@—£4,) , @=L, R], however, the couplings tron to tunnel through the DQD via the transitipp,,){0| is

of each DQD transition become asymmetric with respect tdiighly affected by the scattering between the one-particle
the left and right contacts, i.el}s #T'R | due to the asym- states. It should be emphasized, however, that this is a dy-
metry of the transition{0){y,,| inside the DQD. It should be namical process which strongly depends on the bias voltage
emphasized that the result given in E5) also holds for and, in addition, on the strength of the couplings to the left
the nonequilibrium situation since the dressed transition enand the right contacts. We discuss this in more detail below.
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B. Nonequilibrium equations ~ [a — /ﬂolz/ploqoapp/ur/mal/aﬂ
= - conmedion
The correct nonequilibrium expressions for the DQD GF, = !
hence also for the end-factor, are found by applying the Lan- g0
greth rules for analytical continuatiéd.Thus, the lesser
DQD GF becomes ~ 0.15
=
G () = Gl () Vi, (0) Gl () + Dy () P () Z 008
X[1+ Vi, (0)Gh (w)], (17) H0 o 10
where the retarded/advanced DQD GF is given by bias voliage (mV)
Pr/a(w) FIG. 6. Dressed population numbek;==, N,,, n=1,2, as
GL’;‘(&,) = no (18 functions of the bias voltage for cag&) in Table I.

® = Any— PP(0)V3(0)
) ) The plots in Fig. €b) display the total population numbers

Here, the retarded/advanced interaction operatff(w) N,==,N,,, n=1,2, for theone-particle states as functions

=Ano(w) il (0)/2, whereas its lesser counterpart is givenof the bias voltage for the parameters used for o@se

by Vi (@) =i[f (0)T (o) +fr(0)R (w)]. given in Table I. The population numbels,, are almost
By inspection of Eq(12) one finds that the lesser form of equal in the region around equilibrium. However, it may be
the dressed end-factdt,, (iw) is given by seen from Fig. 6 that as the bias voltage is increased in the
_ forward direction(u, —ug>0), the population of y,,){va,]
| . .
P< (@) = — JK< (w=8)[V (e)D= (e decreases whereas the populatiomgf){y,,| remains more
no(@) 277%, monol [V (8)Drry (2) or less constant. This behavior reflects the difference of the

_ A coupling strengths for the two transitiof®<{y,,|, n=1,2.
+V,.(e)D.()]de, (19 The first transitior(n=1) couples weaker to the right contact
whereas the retarded/advanced form of the dressed ena}an the secon(h:Z_) ant_j, hencc_a_proh|b|ts electrons to flow
rough the DQD via this transition. Therefore, the popula-
factor becomes . . . . ) !
tion of this transition remains constant around its maximum

i value, for a large range of forward bias voltages. For back-
Pr/a =P + _2 Kr/a _ : | S

no(®) = Py o (Kingrno(@ = &) ward bias voltage$u, — ur>0), the case is quite the oppo-
mo site, since then the first transition couples stronger to the left

% [V;HUI(S)D;U,(S) +V;ar(8)D§w(8)] contact than the seconidee Fig. 6. Hence a larger amount

of electrons can flow through the DQD via the first transition
+ [K;U,na(w -g)+ K:T/S,m(w -g)] and, thus, the population decreases very rapidly as this tran-
a a sition becomes resonant.
X Voo (e)Dp(e))de. (20) However, there is a hump and a dip in Fig. 6 fdf

- ) around 9 and -11 mV, respectively, both which are caused
Here, Ky po(@)==127(Prgr = Pno)Ne(Anomer) 8(@=Anomer) by the dressing of the end-factor. This fact is emphasized in
whereasK[?, ()= (Pyy=Pno)/ (0=Anmy£i8). Finally,  Fig. 6a) which shows a comparison of the two mean field
the retarded/advanced and lesser forms of the dressed locatgproximations, HIA(dotted and with the loop correction
are given by (dashegl and the full loop approximatio¢solid). The figure
1 illustrates a logarithmic plot of the quotieNt/N; as a func-
tion of the bias voltage in the three approximation schemes.
© = Ay = Phi(@)Vid(w) The dynamical(bias voltage dependeneffects from the
dressed end-factor tend to modify the populations of the tran-
sitions for bias voltages arounti,,, discussed in the previ-
Dpo(@) =D (@)[Pr(@)Vi (@) + Pr(0) Vi, (0) ID3(w), ous section. This modification leads to a further decrease of
. N; for bias voltages around —-11 mV since the difference
respectively. P,,—P1,>0, cf. Eq.(16), whereas for bias voltages around
It is clear that the retarded/advanced and lesser counteg my the differenceP,, - Py, <0 which leads to the hump

parts of the dressed e_nd-factor are necessary in order to cgly N,. In mean field theory, the electrons flow through the
culate the corresponding forms of the DQD GF, ¢f. H48) DD directly via the transition$y,,)0|. This is expected

and(18). However, these expressions are also needed to fi "
IO ! - nce the transversal transitio , and ,are
the nonequilibrium population numbers for the transitions o) (7201 [720) (7101

. ot included into the Hamiltonian, Eq5). However, the
|f2/(;?ri <?r|1é Tiggnii\:f,rage of these population numbers are founaynamical(voltage dependenbehavior of the dressed end-

factor, which includes effects from these transitions, ruins

Dha(w) =

{08

and

1 this scenario since it tends to decreéisereasg the popula-
Npo = 2—Im f Gpolw)dw (21)  tion numberN; around =11 m(9 mV). Hence, the correc-
T tion diagram from scattering between the one-particle states
and the boundary condition INg+2,,,N- in the DQD tends to prevent electrons in the contacts to
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tunnel through the DQD via the transitidp,,,){0|. 10
As a result of this dynamical redistribution of the spectral
weights, it is expected that the current through the DQD for
bias voltages around —11 mi® mV) in the full loop ap- _ Tl Tocp> T
proximation will be less than the corresponding currents N0 femrZln | [ — oporadion

current (nA)
o

...... HiA
given within the mean field approximations. Nevertheless, & ,"\ oy
since both transitions from the empty state to the one-particle £ 1 K "“ KoV
states, |y,,{0|, n=1,2, are resonant around -11 mV § , ) .
whereas only|y,,){0| is resonant around 9 mV, it is also ° 0 =
expected that the influence of this dynamical re-distribution 10 0 10
on the resulting current should be larger in the former case bias voltage (mV)

than in the latter. This will be further discussed in the fol-

lowing section. The asymmetry of the positions of the hump FIG. 7. J-V characteristicsupper panel and dJ/dV (lower
and the dip with respect to the forward and backward biasedane) for the DQD calculated in the full loop approximation
system is related to the asymmetric renormalization of thésolid), with the loop correctioridashegl and within the HIA(dot-
transition energies' as can be seen in F|g 5. teG) Parameters are taken from C&ge in Table I.

IV. CURRENT-VOLTAGE CHARACTERISTICS energies and end-factorsThe corresponding differential
conductancédJ/dV) is computed as a numerical derivative

In this section we will analyze the calculated current un-of the current with respect to the bias voltage. The numerical
der various circumstances. The important parameters in thgerivative has been chosen since an accurate analytical ex-
present context are the level separatig-eg, that is the  pression is available only in the low bias regime, e.g., in
relative positions of the levels in Qfg, and the hopping linear response. The reason for this is that both the transition
strength between the two QDs. These should be compareshergies and end-factors, hence the DQD GFs and their self-
with the coupling strengthE“/R between the DQD and left/ energies, are bias voltage dependent. Although some proper-
right reservoir. The parameters for Coulomb repulsion interties of theJ-V asymmetries are seen already in the linear
nally and between the QD are irrelevant as long as we reresponse theory, the more interesting nonlinear features of
strict the discussion to bias voltages such that only thehe current through the DQD comes about at higher fields.
transitions between the empty state and the one-particlgloreover, the negative differential conductance behavior

states contribute to the conductance. For bias voltages sugfill not be seen in a linear response theory and therefore we
that the states with more than one particle contribute to thejisregard any analysis within this regime.

conduction, a more complete analysis has to be done in ad-
dition to the one in the present case. However, we expect that _
similar effects, as the one discussed here, related to the A. Asymmetric current-voltage

dressed end-factors, will be present also in this case. Hence, An example of thel-V characteristics and corresponding
the resultingJ-V asymmetries and possible negative differ-dJ/dV for the DQD system with parameters according to the
ential conductance will be amplified when transitions toconfiguration listed in Table (A) is shown in the upper and
states with more than one electron are included. lower panels of Fig. 7, respectively. First we note that the
In the stationary regime, the nonequilibrium properties oftwo currents in the two mean field approximations, Ht#t-
the DQD are found from self-consistent calculations of Egsted) and loop correction(dasheg, are shifted in the sense
(15), (17), (18), and(21) for each value of the bias voltage that the two transitions become resonant at lower bias volt-
Vbias= (L~ mgr)/€. The bias voltage is inserted into the ages in the HIA than in the loop correction. This is under-
dressed transition energy, E@.5) and the lesser interaction stood from the discussion of the renormalization of the tran-
propagatorV,, (w), and thereafter in the DQD GF. In this sition energies in Sec. Il A, since it tends to push the
fashion, the voltage dependence of the dressed end-factbansition energies deeper below the equilibrium chemical
(and transition energigss taken into account and, hence, the potential of the system. Naturally then the peaks in the
voltage dependence of the population numbers of the trans@J/dV calculated within the HIA appear at lower fields than
tions between the empty state and the one-particle statethe corresponding peaks in the loop correction. The loop
Thus, the dynamical behavior of the spectral weigletsd-  correction gives rise to a slight asymmetry of the magnitude
factorg will be included when the bias voltage is varied andof the peaks in thell/dV curve, where the first peak for
the condition for an increased scattering between the onderward-bias voltage&@round 5 mV is a little bit lower than
particle states becomes fulfilled, leading to th¥ asymme-  the second. For backward-bias voltages the situation is the
tries and negative differential resistance to be discussed iopposite. This behavior is also understood from the asym-
the following. metric renormalization of the transition energies, see Fig. 5.
The current in this paper is calculated by means of theHowever, the effect on the resulting current from this asym-
expression given in Eq6) where the DQD GF is given metric renormalization is negligible.
within the full loop approximatior(dressed transition ener- When the dressing of the end-factors are included into the
gies and end-factoysthe loop correctior{dressed transition calculations, i.e., the full loop approximatiofsolid), the
energies and bare end-factpend the HIA(bare transition asymmetry of thel-V characteristics as well as thR)/dV
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current (nA)
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current (nA)
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bias voltage (mV) bias voltage (mV)

FIG. 8. Symmetry of thel-V characteristics andlJ/dV with FIG. 9. J-V characteristics andJ/dV for different relative level
respect to the relative positions of the levels in the QDs. The plotspacing(ea—eg)/I' <0 in the two QDs and fixed hopping strength
are calculated fot/T'=1. (t/I'=1) between the QDs.

curve becomes obvious. Consider the backward-biased sy&eflections of one another, as is seen in the lower panel of
tem at first. The large increase of the current seen in the loopid- 8. Clearly, it is sufficient to further analyze the case of
correction in the range -3 to =7 mV, remains in the full (ea=£g)/I'<<0 (or (ep=&g)/I">0) only.
loop approximation, since the spectral weights are almost Now, consider varying the relative level spacing,
equal down to about =7 mV in the two cases. However, as €g)/I'<<0. From Fig. 4 we see that when the levels in the
the bias voltage approaches the range where the dynamica¥o QDs are aligned, the transition matrix elements
effects of the dressed end-factors become important, the culfda,)®?"|?=|(dg,)°*|?, n=1,2,which leads to a symmetric
rent does not increase in a step-like fashion. T#dV  J-V curve since the coupling of the transitiong,)(0| to the
shows a double peak with a small amplitude and a minimunieft and right contacts are equal. For a finite relative level
around —11 mV, which is where the dressed population numspacing, the transition matrix elements become distinct, for
ber N; has its corresponding minimum, cf. Fig(§. Simi-  all values of the hopping Thus, the asymmetry imposed on
larly for forward-bias voltages, the amplitude of the stepthe system will provide an asymmetiieV (dJ/dV) charac-
around 5 mV is less in the full loop approximation than in teristics, which is clearly seen in Fig. 7. In the upplewer)
the loop correction, which is understood as an effect of thepanel of Fig. 9 we illustrate the increasing asymmetry of the
scattering between the one-particle states causing a dg-V (dJ/dV) characteristics with respect to an increasing
creased probability for electrons to undergo the transitiorelative level spacing, for a fixed hoppitd. As is seen, the
|72,)(0] in the DQD. Hence, the resulting currents in the current is only slightly asymmetric for small values (@f,
three different approximations, can be understood from the ¢;)/T", whereas the asymmetry increases with increasing
discussion about the population numbers of the transitionfevel spacing. This clearly demonstrates the large influence
between the empty state and the one-particle states in thsf the scattering between the one-particle states as a result of
previous section. Having analyzed the difference of the thregne enlarged degree of asymmetric coupling to the left/right
approximation schemes, we now proceed to investigate theontacts, due to the growing level spacing.
resulting currents through the DQD in the full loop approxi-  Next, we let the relative level spacing be fixed and vary
mation. the hoppingt/T". From Fig. 4 it is clear that the degree of
The relative positions of the discrete levels in the twoasymmetry is large for low hopping rates, whereas for high
QDs are of main importance in order to understand theyopping rates the asymmetry is somewhat smaller. This is
asymmetry of thel-V characteristics of the system, as wasclear, since the transition matrix elemé(d,,,) "°?=|ug,|?
point(_eq out in _Sec. II. When the two levels are aligned, the_, 1/2 in the limitt— o for any relative level spacing such
transition matrix elementéd,,)®’ and (dg,)*, N=1,2,  that (e4-eg)/t— 0. Thus, one would expect that the asym-
are equal. As the difference,—sg <0, the lower DQD or-  metry of theJ-V characteristics becomes small for high tun-
bital couples strong/weak to the left/right contact, whereaseling probabilities between the QDs. This is clearly seen in
the upper orbital couples strong/weak to the right/left CON-Fig. 10, which displays the curreatpper pangland differ-
tact. In the case of,—eg>0, the couplings of the DQD ential conductance(lower panel for various hopping
orbitals to the left and right contacts become the oppositestrengthg/T. One should note that a large hopping results in
Thus it is gxpected that thé~\/_ characteristics shoul_d be 3 large separation of the transition energlgs, which even-
mirrored with respect to the differenag-zg. By varying  tyally leads to that,,, cf. Fig. 3b), becomes positive for
the differences,~eg for fixed coupling strengths to the left/ jncreasingt/T. This is the case fot/T=5 (dash-dotteylin
right contacts, we see in the upper panel of Fig. 8 that this ijg. 10, showing that,, lies in the vicinity of the equilib-
indeed the case. For a negative differexselid), €.9.,(ea  rium chemical potentialy, which gives a high conductance
-ep)/I'<0, the current flattens fonegativebias voltages for low bias voltages. Nevertheless, the plots in Fig. 10 dem-
around A, , whereas in the opposite caégashedi e.g.,  onstrate that the system, hence the resulting current, becomes
(ea—ep)/I'>0, the current flattens fquositivebias voltages increasingly asymmetric a¢I"— 0 and decreasingly asym-
around _Am' The correspondindJ/dV plots show perfect metric ast/T"— oe.
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FIG. 10. J-V characteristics andJ/dV for different hopping FIG. 12. J-V characteristics andJ/dV for increasing relative
strengthst/I" and fixed level spacingea—eg)/I'=-2. level spacing(ex—¢g)/T" given a fixed hopping rate/I'=1. Note

that the solidJ-V curve is the same as one given in Fig. 1.
Both in Figs. 9 and 10 it is seen that the amplitude of the

current tends :q increasetr?s trtle sy?tem bectqmeslmmeta&%ased asymmetry of theV (dJ/dV) characteristics. The
more = Symmetric, - 1.€., € transition ~malrix €lemen Sopposite case, e.d_R/T'->1, tends to force the system into
|(.dA‘T)OynU|2'|(dB“)OW|2H1/2’ n;1,2. This is ”expected a more symmetric behavior, with respect to the bias voltage.
since an equally strong coupling of the transition,)0|  The external asymmetry, however, does not substantially
with respect to the left and right contacts means that thensgiy the current for either case, as is seen in Fig. 11. It
corre_sponding DQD orbital extends with uniform probability go1d pe emphasized, that any mean field reghét does
amplitude throughout the DQD. As the DQD becomesnqt account for level shifts as functions of the bias voljage
strongly asymmetric, in the sense that the transition mat_rpg,vomd give perfectly symmetrid-V (dJ/dV) characteristics
eIemgnts approachgs 1 or 0, one finds a large prot_)ablll%r all cases considered in Fig. 11. Hence, we conclude that
amplitude of the orbital in one of the QDs and a small in thetheJ-V (dJ/dV) asymmetries arise due to scattering between

other one, as discussed in Sec. Il. The conductivity of thl?he DQPD states. The effects from these scattering processes

DQDis clo_sely related to this fa_ct, since a strong IO(?alizatio”‘oecome amplified by the strong localization of the DQD or-
of a state in one of the QDs yields a weak tunneling _pmbbitals to one of the QDs, as a result of the relative level
ability through the other, hence the overall current is re-

spacing in the two QDs and the strongly correlated electron
duced. states within the DQD.

In experiments, it is rather difficult to establish a perfect
symmetry of the tunnel barriers between the DQD with re-
spect to the left and right contacts3” which means that the
couplingsI'R are distinct. Motivated by this, we have also  In this subsection we address the question of the asym-
studied the additional effect on tdeV (dJ/dV) asymmetries metric NDC, recently found in experimerisin order to do
arising due to theexternalasymmetric coupling, shown in this, we capture the main important property of the two car-
Fig. 11 for two asymmetric couplings which are compared tobon nano-tubesCNTs), coupled via a Si@tunnel barrier, as
the case of symmetric couplings. However, due to the finitedescribed in the experimental work of Ref. 10, namely, the
level spacing and low hopping rate there isiaternalasym-  level quantization. It should be noted that, the CNTs may
metry of the DQD, as previously discussed. One notes that suffer from various anisotropy effects and other conditions,
strong coupling to the left conta¢FR/T- < 1) amplifies the ~ which we neglect here. The level separation in the experi-
internal asymmetry of the DQD resulting in a further in- mental CNT is of the order of-10 meV and the intra-CNT
Coulomb repulsions are at least in this order. Thus, for suf-
ficiently low bias voltages it is appropriate to adopt the
model for the DQD given in Eq(l), with one conducting
level in each QD, and thus the developed theory in Sec. Ill.
By using this approach we can directly study the interactions
that give rise to the observed NDC.

From the lower panel in Fig. 9, it is clear that the double
peaks appearing for negative bias voltages separate as the
relative level spacings,—eg)/I" grows. Simultaneously, the
valley between the peaks approaches zero conductance.
Hence, from this picture the first requirement, for a region of
NDC to appear in the-V (dJ/dV) characteristics, is to in-
crease the relative level spacifg,—¢cg)/I". The second re-

FIG. 11. J-V characteristics andJ/dV for various left and right —quirement is a low hopping raté/I", which was illustrated
couplingsI'*/TR given the hopping strengttil'=1 and level spac- in Fig. 10. For a fixed hopping rate and increasing relative
ing (ep—eg)/T=-2. level spacing, we find that this is indeed the case, as is leg-

B. Negative differential conductance

current (nA)

dJ/dV (nS)

-10 0 10
bias voltage (mV)
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V. SUMMARY AND CONCLUSIONS

In summary, we have studied the transport properties of a
DQD coupled to external contacts, with respecirtternal
asymmetries resulting from the relative level spacig
—¢g and the hopping ratebetween the QDs. By expressing
the DQD in terms of its exact many-body eigenstdtaghe
atomic limit), it was found that the transitions between the
empty state and the one-particle states were asymmetrically
coupled to the left and right contacts, for finite relative level
10 0 10 spacing and hopping rate. A theory &V (dJ/dV) asym-

bias voltage (mV) metries was developed, beyond mean field theory, showing
that the internal asymmetries give rise to an amplification of
the effect of the dynamicdbias voltage dependentedistri-
bution of the spectral weights for these transitions. This re-
ible in Fig. 12. Here, the couplinds®/Tt=1. In Sec. IV Ait  sults in a decreased probability amplitude for the transitions
was suggested that thleV asymmetries arise due to a sub- at bias voltages corresponding to their resonance values. The
stantial decrease of the population numbgr resulting in  J-V (dJ/dV) characteristics was analyzed as a function of the
that the transitiory,,,)(0| becomes less available for conduc- relative level spacing and hopping rates. It was found that a
tion. By the same argument, the NDC is the result of a furlarge relative level spacingea—eg|/T'=2, where I'=T'"
ther decreased availability, eventually completely blocking*I'?is the sum of the couplings to the left and right contacts,
any conduction through the DQD vig,,)0|. In the lower  gives a noticeably asymmetrizV (dJ/dV) characteristics,
panel of Fig. 12, it is seen how the valley between the twoor small hopping rates/T'<1. TheJ-V (dJ/dV) character-
conductance peaks evolve from being positive to negative astics show a region of NDC at one half of the range of bias
the relative level spacing grows, for negative bias voltagesvoltages, for sufficiently large relative level spacifga
The transition|y,,)(0| starts to conduct for bias voltages —eg|/I'=8/3, given t/I'~1). This behavior is in good
slightly below its corresponding resonance value, due to the@greement with the recent experimental finding on DQDs
finite width of the transition. For increasingipegative val-  constructed from a CNT with a SiQunnel barrier deposited
ues of the bias voltage, the conductance of the transitioen the nano-tubé’
drops and, eventually, becomes more or less unavailable for Experiments on DQD where the relative level spacing
conducting electrons through the DQD, hence, the currerfand possibly the hopping ratean be varied would be very
drops. A further increaseghegative bias voltage results in a intriguing, and would provide valuable information to reach
reestablished conduction through the DQD Vig,)0|,  a better understanding of the asymmetric transport properties
hence the current grows again. The small NDC around 5 m\@f nano-devices.
is most likely due to numerical errors in the numerical dif-
ferentiation, since the current is vanishingly small in this
range of bias voltages. ACKNOWLEDGMENTS

Small hopping rate$/I" between the QDs tend to pre-
serve the asymmetric properties of the DQD whereas larger Valuable discussions with |. Sandalov are acknowledged.
values oft/I" forces the system in to a more symmetric per-J.F. also thanks V. Cheianov, A. Luther, and S. Mirbt for
formance, as discussed in Sec. IV A. This fact is confirmedencouraging and helpful comments. Support from Goran
by noting that the region of NDC vanish for growing’, as  Gustafsson’s foundation, the Foundation for Strategic Re-
seen in Fig. 13, which is calculated for a fixed relative levelsearch (SSH and Swedish National Science Foundation

current (nA)
o hOohL®

-

dJ/dV (nS)

o

FIG. 13. J-V characteristics andJ/dV for increasing hopping
ratet/T" given a fixed relative level spacifga—eg)/I'=-8/3.

spacing and symmetric couplingBR/T'-=1). (VR) is acknowledged.
*Electronic address: Jonas.Fransson@fysik.uu.se 6A. Zaslavsky, V. J. Goldman, D. C. Tsui, and J. E. Cunningham,
IM. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour,  Appl. Phys. Lett.53, 1408(1989.

Science278 252(1997. ’T. Schmidt. M. Tewordt, R. J. Haug, K. von Klitzing, A. Férster,
2J. Reichert, R. Ochs, D. Beckmann, H. B. Weber, M. Mayor, and  and H. Liith, Solid-State Electront0, 15 (1996.

H. v. Léhneysen, Phys. Rev. Let88, 176804(2002. 8G. Klimeck, R. Lake, S. Datta, and G. W. Bryant, Phys. Rev. B
3J. Reichert, H. B. Weber, M. Mayor, and H. v. Léhneysen, Appl. 50, 5484(1994).

Phys. Lett.82, 4137(2003. 9W. Rudzisski and J. Barng Phys. Rev. B64, 085318(2001).
4J. Leo and A. H. MacDonald, Phys. Rev. Le64, 817 (1990. 10K . Ishibashi, M. Suzuki, T. Ida, and Y. Aoyagi, Appl. Phys. Lett.
5D. K. Ferry and S. M. GoodnickJransport in Nanostructures 79, 1864(2001.

(Cambridge University Press, Cambridge, 1997 1T, C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D.

085301-11



J. FRANSSON AND O. ERIKSSON PHYSICAL REVIEW BO, 085301(2004

Parker, and D. D. Peck, Appl. Phys. Le#t3, 588(1983. 26Y. Meir and N. S. Wingreen, Phys. Rev. Le@i8, 2512(1992.
12/, Sibille, J. F. Palmier, H. Wang, and F. Mollot, Phys. Rev. Lett. 2’A.-P Jauho, N. S. Wingreen, and Y. Meir, Phys. ReV5@ 5528

64, 52 (1990. (1994.
13R. Tsu and L. Esaki, Appl. Phys. LetR2, 562 (1973. 283, Fransson, O. Eriksson, and |. Sandalov, Phys. Re\66B
4L, L. Chang, L. Esaki, and R. Tsu, Appl. Phys. Lef4, 593 195319(2002.

(1974). 293. Fransson, O. Eriksson, and |. Sandalov, Phys. Rev. B&t.

I5N. C. van der Vaart, S. F. Godjin, Y. V. Nazarov, C. J. P. M. 226601(2002.
Harmans, J. E. Mooij, L. W. Molenkamp, and C. T. Foxon, Phys.3°I. Sandalov, B. Johansson, and O. Eriksson, Int. J. Quantum
Rev. Lett. 74, 4702(1995. Chem. 94, 113(2003.

18\. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T.3!l. Sandalov, U. Lundin, and O. Eriksson, cond-mat/0011260
Fujisawa, S. Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. (200D.

75, 1 (2003. 323, Fransson, E. Holmstrom, O. Eriksson, and I. Sandalov, Phys.
7M. R. Wegewijs, Y. V. Nazarov, and S. A. Gurvitz, Jpn. J. Appl.  Rev. B 67, 205310(2003.

Phys., Part 140, 1994(2001). 33D.C. Langreth, inLinear and Nonlinear Electron Transport in
18R. Lépez, R. Aguado, and G. Platero, Phys. Rev. L&, Solids Vol. 17 of NATO Advanced Study Institute, Series B:
136802(2002. Physics edited by J. T. Devreese and V. E. van Do(Bfenum,

19T.-S. Kim and S. Hershfield, Phys. Rev. @, 245326(2001). New York, 1976.
20y, Takazawa, Y. Imai, and N. Kawakami, J. Phys. Soc. Jph.  34M. Saitoh, T. Saito, T. Inukai, and T. Hiramato, Appl. Phys. Lett.
2234(2002. 79, 2025(2001).
21C. Lacroix, J. Phys. F: Met. Phyd4.1, 2389(1981. 35T, Junno, S.-B. Carlsson, H. Q. Xu, L. Samuelsson, A. O. Orlov,
223, Hershfield, J. H. Davies, and J. W. Wilkins, Phys. Rev. Lett. and G. L. Snider, Appl. Phys. LetB0, 667 (2002.
67, 3720(1991). 36Y. Shimada, K. Hirakawa, M. Odnoblioudov, and K. A. Chao,
23]. Fransson, O. Eriksson, and |. Sandalov, Photon. Nanostict. Phys. Rev. Lett.90, 046806(2003.
be published S7C. Thelander, T. Martensson, M. T. Bjork, B. J. Ohlsson, M. W.
243, Hubbard, Proc. R. Soc. London, Ser.2X6, 238(1963. Larsson, L. R. Wallenberg, and L. Samuelsson, Appl. Phys. Lett.
25J. Hubbard, Proc. R. Soc. London, Ser.2K7, 237 (1963. 83, 2052(2003.

085301-12



