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Stark shifts of 2p hydrogenic states in magnetic fields
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Energy shifts in a magnetic field of hydrogenip_2 and 2y, levels induced by weak external applied
electric fields are calculated by approximate evaluation of the appropriate second-order perturbation theory
expressions. Results are tabulated over a range of magnetic fields of experimental interest and combined with
a calculation of the shifts of thesllevel energy to give Stark shifts of thes+2p_, and the $—2p,
transitions. These latter quantities are of importance in interpreting line shape data in the magnetospectroscopy
of shallow donors in partially compensated GaAs and related semiconductors.
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I. INTRODUCTION mately 1%; the calculations are believed to be most accurate

. . .. atthe lower end of the range of magnetic fields considered.
Magneto-optical experiments on shallow donors in high-

purity partially compensated n-type GaAs at low tempera- Il. PERTURBATION CALCULATIONS

tures reveal sharp strong lines arising from transitions from o . )
The unperturbed hamiltoniad, describing a simple hy-

the 1Is ground state to thelevels. The wave functions for _ K ) L TR L
these levels are very well described by effective mass theong“_)ge_mC donor in a uniform magnetic field in thelirection
is given in the units of this paper by

The transitions, especially thesd 2p_; transition, show
asymme';ric broadening_s with tails appearing on the low- Ho=— V2= 2I + (i) 913 b+ v2pl4. (1)
energy side characteristic of Stark-effect broadedihElec-
tric fields responsible for Stark broadening arise from theThe electric field perturbation is
donor and acceptor ions present in compensated samples. - ) )
Quantitative understanding of the breadths of these lines can H'=F.r=F.(x+iy) + F(x~iy) +F,z
give important information on correlations between neutral =H®+H O+ @, 2)
and ionized donor sites at low lattice temperatures.

To calculate the portion of this broadening due to thewhere
quadratic Stark effect one would like to evaluate energy H'™®) = 0.5, pel® (33)
shifts in the relevant donor levels induced by the more or less TePE T
random weak electric fields at the locations of the various
neutral donors. Over a range of applied magnetic fields of
interest this can be done, in principle, by second-order per-
turbation theory, treating the electric field as a perturbation H'@=Fz (30
a}nd using the eigenstates of hydrogepic atoms in a magneq',gith F.=F,—iF, and F_=F,+iF,. The dimensionless elec-
field as the unperturbed wave functions. Unfortunately an X UYL R =
exact evaluation of the perturbation expressions by directiC force vector is given byF=-eEa,/Ry, whereE is the

calculation seems prohibitively difficult. In this paper an ap-Uniform electric fielda, is the donor bohr radius, and Ry is

—_ 2 * — * .
proximate evaluation of the second-order perturbation serigd'® donor Rydberga,= &g#i°/m €, Ry=e?/2¢a,, m' is the
for the 20, and 2., levels is attempted by a well-known conduction band mass alaglis the static dielectric constgnt

variational method, which has been applied earlier to the 1 The magnetic field has been introduced as usual via the vec-

level3 A calculation of this type has already been carriedtor potentialA=B(-y/2,x/2,0). It appears in Eq(l) in the

out* for the 2o_; level, but the slow convergence of the dimensionless parametery, which is defined by y

method employed and the relatively inaccurafe,2wave  =%eB/(2m'cRy). In Eq.(1) and hencefortigunless otherwise

functions utilized impair the accuracy of that calculation. specified lengths are taken in units af, and energies in

Moreover, the results are presented only graphically and innits of Ry.

such a way to make it difficult to extract quantitative values. The normalized eigenstates ldf, are labeledp,, with the

No previously published results for theRevel appear to be unperturbed energieg,, defined by Hge,=E,¢,. These

available. eigenstates can be classified according to their angular mo-
Above and henceforth each state of the hydrogen atom imentum quantum numbéi along the direction of the mag-

a magnetic field is designated by the name of the state at zeretic field(z direction) and by theirz-parity quantum number

magnetic field from which it evolves when the magnetic fieldP, P,=+1 for eigenstates which do not change sign upon

is turned on adiabatically; abbreviations used ape for reflection of coordinates through the x-y plafie— -2)

2p_, and 2, for 2p,, states. The present paper presentsvhereasP,=-1 for those that do.

tabulated polarizabilities of the hydrogenip_2and 2o, lev- The energy shift of a 2 state can be written in second-

els. Typical expected accuracies are estimated to be approxdrder Rayleigh-Schrodinger perturbation theory as

H'C) = 0.5F_pe'?, (3b)
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H! 2
:E | 2g,n| :a(fp)F2L+a(ZZp)F§ (4)

AE,
P n E2p -Eq

with F2 =F2+F2. Calculation of the polarizabilities'*” and
«® is the principal goal of this paper.
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F(W) =X [e|(Ei - Egp) + 2 (G H{ 5 +CC).  (8)
Setting the first derivatives of the right-hand side of E).

with respect to the real part and to the imaginary part;of
equal to zero for each value af solving the resulting

The sum in Eq(4) is over all possible intermediate states (trivial) linear equations for the coefficientsand substitut-

n. For the 2_ state, which hadd=-1 andP,=+1, the in-
termediate states appearing in E4) fall into three catego-
ries, the set of states, designatgd _;, with M=-1 andP,
-1 [which are coupled to |2 via the termF,z in Eq. (2)],
the setS, ;, with M=-2 andP,=+1 (coupled by the term
0.5F_pe?), and the setS;, with M=0 and P,=+1,
(coupled via 0.5,p€?). It is useful to segregate the terms
appearing in the summation in E@) according to the char-
acter of the intermediate states. Thus one can write

AEp, =AES) +AES) +AES (5)
where
IHap_l? H'S [
AED = > —- =3 = o®F2, (6a)
2P- S_lv_lEZp_ -E, E2p_ = ‘ ‘
Hap o2 S
AER = X o =X = B2, DR,
2p- So1 E2p__En E2p__En -
(6b)
Hap o H 5l
AER) =3 ———=> ———=p(0,DF%, (60

& Exp —Ey Ezp —En

B(-2,1+B(0,1) = o'?-). (6d)

In Egs.(6a—6¢) the notatiors; ; means summation over all
and only intermediate states belonging to$et It is known
that, aside from thesldonor ground state, thep2 state has,

for nonzero magnetic field, the lowest energy of any donor
level appearing in the perturbation theory expressions

above® As a result all energy denominators in E¢sa) and

(6b) are negative whereas one energy denominator is positive

(for the Is intermediate stajein Egs.(4) and(6c).

Direct exact evaluation of the perturbation sums in Egs

ing the results into the right-hand side of E§) leads to the
standard second-order perturbation series. Notice that this
procedure finds a minimum & (V) if and only if

Hisp =0 9
(which is satisfied iH’ is taken to be eitheH’™) or H'@),
for in that casec;s=0. Otherwise~(¥) has no lower bound.

As a rule one does not knoW;,, the function minimiz-
ing F(¥) (when a minimum exisjs One can proceed by
approximating¥,,, by a trial function ¥ which contains
variational parameters. For those cases in which (Byis
satisfied a choice oft which differs from theW¥ ., by a
small function of orderey will produce, when substituted
into Eq. (7), a value which differs from the exact second-
order perturbation correction by an amount only of oreﬁer
This desirable situation occurs fﬂI‘E(Zt) and AE(Z%P) but not
for AE(Z?,;)_ in Egs.(6a—6c¢).

In the event that Eq.9) does not hold one can still retain
the sought-for property that first-order errorsdnlead to
second-order errors in the energy functional simply by or-
thogonalizing¥ to ¢4s. Thus if the orthogonalized function
W is defined by

V=W — (o W)y (10

then one can define the functiorﬁ(l\lf):F(\Tf), which has a

minimum vaIueINZmin such that the second-order energy shift
is given by

|H5.s,2p_|2

. (11
E2p_ - Els

AE2p_ = Emin +
In the present pape¥ ., is approximated by, which is

expanded as a linear combination of certain functions; func-
tionalsF(W¥) are then evaluated and minimized with respect

. _ . (1)
(6a(6¢) is not feasible. One can show, however, that thesd® the expansion coefficients for calculations Ak, and
perturbation sums are derivable from a variational principIeAE(zi)_ of Egs. (6a) and (6b). On the other hand("P) is

For any perturbatiotd’ [not necessarily the one defined by
Eq. (2) abovg the stationary value of the energy functional

F(W) defined by

F(P) = f W (Ho = Egp )W + J (W'H' gz +c.C) (7)

minimized and Eq(11) used for evaluating&E(;”))_ of Eq.

(60). In contrast, the calculations of Ref. 4, which use similar
approximations toV,,;,, determine the coefficients of expan-
sion by rendering the functional(V) stationary with re-
spect to variations of these coefficients. The two approaches

are equivalent foAE(zlp)_andAE(Z?_ but not forAE(Z‘? . In this

is equal to the required second-order perturbation expressiofyter case the error of the present paper due to errors in the

To show this one can expandl in the eigenstates dfly,
obtaining

‘I’:ECM
I

and

approximation to¥ is of second order whereas that of Ref. 4
can be expected to be of first order.

Probably the primary source of error in the present calcu-
lation, however, arises from the fact that exact expressions in
closed form are lacking for any of the unperturbed wave
functions Pap_ys Papy OF @1 approximations to these func-
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. . . ~ . ; A A Al A
tions are required for evaluating(¥) or F(W). Errors in TABLE I. Energy differences betwedg! _)|H0|fp( (™)
and the corresponding energies of Ref. 6 in units of tbnor Ry.

these unperturbed functions which are of ordgrproduce he size of these diff ;  th q  th
errors in the calculated second order energy correction of thé erg‘:(ziﬁ];e v\?asvee ]:ur?é‘;gﬁzs Ilfs tﬁemfiiil:ige Ogn) wir%ogxgstSZIF €
same order. In the present paper separate variational calcu@®” '

entries would be zero.

tions are carried out for these approximate unperturbed func:
tions, denoteds”. Although wave functions for only thep2

states listed above and the 4tate are required for the po- Is 2P0 2p1 841 3do 2s
larizability calculations, wave functions for certain additional 0.3 <01 <01 <01 025 <01 -0.5
states are useful for estimating upper and lower bounds on g 5 <01 023 029 027 016 06
the potlart;z?jbmtles,fas vt\{|II be deslcnbgq. Irr]l_e mquparam?ttﬁr _ <01 049 0.39 0.41 0.31 0.8
;Jonrpr)r?r urbed wave functions employed in this paper are of the | 0.16 065 052 0.49 0.36 10
A 15 0.39 1.0 0.94 0.69 0.60 1.2
o1 = &1(p.2), (129 2.0 071 1.3 14 081 084 1.2
) is 3.0 1.6 1.7 2.3 1.1 1.2 1.0
— .l
Pap_ = PE 2 (p12), (12b 50 39 21 39 11 16 06
Py = Zeapy(P:2), (129
WD = F [7(ag+ayr +aor 2+ agrd + ayr) + 22(by + byr)
o5 =20 &y (p,2), (12d) + ool (133
<PE°,Ad)_2 = p°€ ?%&34-2(p.2), (12¢ W@ =F_[p(ag+ayr +ayr?) + p3(bg + byr +byr?)
+p°Cole el (13b)
¢ ={[2 ~ay(p? + asZ + B)M2+ agp¥(p? + ap?))M?] Pl e
_ 219 _ 2 1/2 _ _ (A)
xexf— Hp’l2 = k(p® + az’) 2 = 6] - D@ }IN, WO = F,[pYag +agr + aor ) + p(by + by +byr 2)
(12f)

+ pcolé el . (130

where
Only ¥® need be explicitly orthogonalized to the ground
state wave function since the other two trial functions are
orthogonal by symmetry ts states. The procedure for cal-
culating a; in Eq. (4) for the 2p_, state is to substitutd®

N is the appropriate normalization constant for each state angr W in that equation and minimize the result with respect to
D is chosen to guarantee thaf,’ is orthogonal top!Y. The  the eight variational parameteasb, andc appearing in Eq.
parameters are varied separately for each magnetic field3g. The minimum value so obtained is divided 5§ to

strength to minimize the energy of each state in the unpefptain the required estimate af, Since bothAEY and
turbed HamiltoniarH,. The Zo_ state wave function in Eq. AED® contribute toa. it is necessary to perform t\‘/)\; i
(12b) is more general than that employed in Ref. 4, whire 2p_ a% o y ] pe 0_ 0 sépa
and g are set equal to zero andis set equal to 1. Compari- rate independent minimizations, one mvolvn}g‘z) alone
son of the calculated variational unperturbed energies wit@nd the other involving?® othogonalized top'y [see Eq.
the extremely accurate energies of Ref. 6 shows that in thel0)]. The two minimum values obtained are added together

range 0.k y<3.0 the energies obtained fm@/;)_ of Eq. along with the contribution of theslstate[which is given by

&(p,2) = exd— Hp?12 = A(r? + BA)Y?p? - CZ
- k(p?+ aZ2+ BAHYAIN,

(12b) differ from the corresponding exact values by amount
which are more than a factor of 10 smaller than those o
tained from the wave functions of Ref. 4. At=1 the varia-
tional energy obtained from the wave function given by Eq.
(12b) is too high by 0.5<10* Ry. Errors at smaller fields
are smaller and at larger fields, larger. Errors in thestier-
gies are typically about half as large as those far. Details
of the energy errors are presented in Tablgtlseems worth
noting that only very small changes iis nergies were pro-
duced by including the term proportional & in the wave
function of Eq.(12f).]

Three trial functionsl'") employed for calculations of the
polarizability of the 3_, state, one for each of the energies
AEg:J , defined in Egs.(6a—6¢c), are displayed in EQs.

(133~(130).

the second term on the right-hand side of 8d) with varia-

Stional wave functions for 4and 2_ employed in evaluating

the matrix element thefeThe result is then divided byF4
to obtain« . Values are tabulated in Table II. It should be
noted that the terms in Eq4.3a—(13¢ vary very much in
the size of their contributions. The largest contributions come
from terms involving the smaller powers gfp, andr; some
of the higher-power terms prove to be superfluous in many
instances.

Very similar calculations have been carried out for the
polarizability of the P, state. The main differences are that
the trial functions have the form

,\I,(l) - FZ[Z—l(aO + alr + azr 2 + a3r3 + a4r4) + Z(bo + bll’)

+ Zcolely (148
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TABLE Il. Polarizabilities of the hydrogenic®2 level as de- TABLE IV. Comparison of polarizabilities of the hydrogenis 1
fined in Eq.(4) vs dimensionless magnetic fiejd The quantitiesy, level vs dimensionless magnetic fiejd Quantitiesa(P) are calcu-
anda, are for electric fields respectively parallel and perpendicularated in the present paper whereas those designrg@dare taken

to the magnetic field. from Ref. 3.
y o o2 B0,1) Y a/P) a(3) a,(P) a,(3)
7 L ) Z z 1 1

0.3 -11.3 -17.9 -3.73 0.3 -0.9713 -0.9737 -0.8927 -0.8937
0.5 -7.08 -9.61 -1.06 0.5 -0.8384 -0.8366 -0.7099 -0.7110
0.8 -4.48 -5.30 -0.20 0.8 -0.6759 -0.6773 -0.5228 -0.5227
1.0 -3.59 -3.97 -0.035 1.0 —-0.5983 -0.5982 -0.4381 -0.4384
1.5 -2.37 -2.34 0.087 1.5 -0.4618 -0.4629 -0.3051 —-0.3050
2.0 -1.76 -1.60 0.104 2.0 -0.377 -0.378 -0.2296 -0.230
3.0 -1.16 -0.94 0.092 3.0 -0.276 -0.277 -0.1494 -0.149
5.0 -0.68 -0.47 0.062 5.0 -0.182 -0.182 -0.0838 -0.083

V@ =F_[p(ag+ayr +ayr?) + p*(bg + by +b,r ?) VO =F [p(ag+ayr +ayr?) + p3(by+ byr +byr?)

A)

+p°Cole™ el | (14b) +pPcolé el (150

Obviously no orthogonalization or correction for the don-
tribution is required. Results are compared in Table IV to

WO =F,[p(ag+ayr +apr 2 +agr’) + p¥(bg + byr +b,r?) those in Ref. 3. Agreement is closer than 0.25% for all values
+ pSc,le? (P(A). (140 of v (except fory=5, where the results in Ref. 3 are quoted
2Po to no more than two significant plages

The 1s—2p transitions in the presence of weak electric
Here¥® s othogonalized tQ/,(ﬁ) and the energy correction fields are shifted from their zero field values by an amount
due to the & state is found from Eq(11) using the varia- 2 19\ =2 2 15\ 2
tional 2p, wave function. Results arg( gizlen ingTabIe . (o = aTF] + (@ - ). (16)
Finally, for purposes of comparison to the results for theFor convenience in interpolating the coefficientsFgf and
1s state given in Ref. 3, the following trial functions are F§ in Eq. (16) at values of magnetic fieltty) not appearing
employed: in the tables presented here, the tabulated results have been
fit by the following interpolation formulas applicable ts 1

Py = Fz(ag+ ayr + ayr 2, agr 34 aur 4 4 z3(b0 +byr) — 2p_ transitions for 0.3< y=<5.0:

R (159 (a?) - a!!¥) =0.01 - 3.494 - 0.092 + 0.0488
- 0.005¢, (178

W@ =F_[p(ag+ayr +ar?) + p3(bg + byr +by,r? (/%) - 0{19) = 0.016 - 2.93¢ — 0.156/% + 0.096/°
+ pPcole oy, (15b) ~0.0134. (17b)

In Egs.(173 and(17b) x=y **andy=y"1%, These formu-

TABLE lII. Polarizabilities of the hydrogenic & level as de- las are consistent with values tabulated in this paper to
fined in Eq.(4) vs dimensionless magnetic fiejd The quantitiesy, within 1% pap

anda, are for electric fields respectively parallel and perpendicular . - .
to thcgmagnetic field. P yP Perp Similar fitting to the 5— 2p, transitions for 0.3<7y
=<5.0 leads to the interpolation formulas of E¢$8a and

y o290 o2 (18by:

0.3 104 125 (% - o!¥)=~0.118 - 3.318 - 0.632,? + 0.211°

0.5 -66.0 -8.10 -0.021%, (189
0.8 -46.2 -5.30

1.0 -39.5 -4.31 (a?P0 - o19) = - 5,979 - 27.76W - 3.000° - 2.423V°

1.5 -30.5 -2.96 +0.2290 (18b)
2.0 -25.8 -2.27

3.0 -208 -158 In Egs. (18a and (18b) v=v"%° andw=y79%% These for-
5.0 -16.3 101 mulas fit the values inferred from Tables Ill and IV to well

within 1%.
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A partial check on Tables Il and Ill can be obtained by = TABLE V. Comparison of two calculations at=1 of the quan-
calculating upper and lower bounds on the magnitude of tity 45(0,1) as defined in Eq(6c). The number of parameters in the

and a,. The basic inequality underlying such calculations is trial wave function for the polarizability is equal to the number at
the top of each column. The row entries labeled “present” are from

(2p|H"?2p) = X (2p|H’[n)(n|H’|2p) = [{m[H’|2p)|2. the present calculation. The row labeled “Ref. 4” are calculated by
n the method of Ref. 4no orthogonalization to &) but using the

wave functions of the present paper. It is expected that the “present”

row gives an upper bound tg340, 1). (That would certainly be true

if the wave functionsp'™ were exacy.

Thus if the lowest-energy intermediate stdifelies above
|2p) in energy then
|Hép,l|2 = 2 |Hép,n|2 < <2p|H,2|2p>.
(EI - E2p) n En - E2p (EI - E2p)

(19  Pparameters 1 2 3 4 6

Present 0.555 -0.0299 -0.1339 -0.1408 -0.1409

The inequalities of Eq(19) are rigorous when exact unper-
2.55 -0.019 -0.1229 -0.1248

turbed states are employed, but it can be expected that the@ef‘ 4
would hold also for the quite accurate unperturbed states

employed in this paper. For those perturbation sums consid- . . . -
ered here in which theslstate occurs the inequalites can perturbation theory outside of its range of validity. At very

easily be modified by omitting that intermediate state fromweak magnetic fields where the electric field matrix elements
oupling 2 states to & are comparable to the magnetic

the perturbation sum and then adding its contribution back ! L
the end of the calculation[in that case one replaces shifts of the unperturbed levels it is much more accurate to

2 o ; diagonalize directly the %4 Hamiltonian matrix formed
ggm’2I325_|(<325|:|f7|82p>r||29]ht hand side of Eq(l9) by from the %, 2p_, 2p,, and 2, basis functions. This leads to

Surprisingly the six unperturbed functions of E¢$2) the equation
suffice for calculating useful bounds for the various polariz-
ability coefficients oger the range of magnetic fields F2:onsid- _ |<25|H,(+)|‘P2p_>|2 N |<25|H,(_)|‘1"2p+>|2 + |<23|H’(Z)|‘1"Zpo>|2
ered in this paper. An example of such bounds, ferl, is (E+v) (E-v) (E+4y%)
given in Eqs.(209—20d). States¢y; ) and |l ) defined 21)
in Egs.(12d) and (12¢) have been e_#nployed in matrix ele-
ments required for the calculation of the bounds of Eqs\yhereE in Eq. (21) is the difference in energy between a

(20b) and(200) and Eq.(20a), respectively: perturbed energy and the energy of the zero-fiet@ states
3.93< [o/®)| < 4.93, (209  (~Ry/4). Normalized zero-field wave functions may be used
in calculating the matrix elements; only the lowest order
3.41< |a(z2p_)| <3.73, (20b) term in y has been retained in each energy denominator. In

such weak magnetic fields, of course, the energy shifts of the
levels are no longer linear in the squares of the components
of the electric field vector.

(2po) Finally, it is of interest to compare the rate of convergence
39.27< [a; ™| < 40.05. (20d) of calculations with and without orthogonalization of the

The tight bracketing ofx indicated in Eqs(20b) and (20¢) trial functiqn \If to _the Is state. In the present paper_such
and in Eq.(200) is a consequence of relatively strong cou- Orthogonalization is made, whereas it is omitted in the
imity of |a®™)| to its lower bound is likewise due to strong for W in Eq. (130 is employed for the approximate evalu-
coupling to the @_, level: the large value dh;2po)| is mainly ation of 8(0, 1) defined in Eq(6¢). These trial functions are,

attributable to the small energy difference between thg 2 N U, defined by Eq130). Consider the ordered parameter
list given below.

4.275< |a'?)| < 4.395, (200

and Z levels.
It is evident from Tables II-IV that the magnitudes of all
the polarizabilites decrease with increasing magnetic field. (ap,21,00,b1,25,Co) -

That is a consequence of both magnetic compression of the
wave functiongarising from the termy?p?/4 in Ho), which  An n-parameter trial function is defined as a function given
reduces the matrix elements of the electric field, and theyy Eq.(13c) such that the first n parameters of the list are
increase of energy separations between levels, which insptimized and all other parameters fixed at zgfhus, for
creases the magnitudes of the energy denominators. example, a three-parameter wave function will employ only
Both o/ and o/*™ diverge in the limity— 0 at fixed  the parametera,, a;, andby.) It is to be hoped that the value
electric field[the singularity ofa(fp‘l) arises from the diver- obtained forB(0,1) will converge rapidly with increasing
gence ofB3(0,1) in Eq. (6c)]. These divergences are causednumber of optimized parameters. A comparison of the con-
by vanishing energy denominators associated with the devergence fory=1 is given in Table V. It appears that or-
generacy of B and Z states aty=0. However, they are thogonalization speeds convergence. Similar results are ob-
unphysical and result from the use of Rayleigh-Schrodingetained at other values of.
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I1l. CONCLUSION ally. The results are tabulated over a range of dimensionless
magnetic field,y, between 0.3 and 5.0. Interpolation formu-
Calculations of the polarizability of a hydrogen atom in las are displayed which are expected to enable calculation of
its 1s, 2p_ and 2, states for electric fields parallel and per- quadratic Stark effect shifts of magneto-optical transitions
pendicular to an applied magnetic field are formulated ads— 2p_ and ls— 2p, in weak electric fields to an accuracy
energy minimization problems, which are solved variation-of approximately 1%.
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