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Energy shifts in a magnetic field of hydrogenic 2p−1 and 2p0 levels induced by weak external applied
electric fields are calculated by approximate evaluation of the appropriate second-order perturbation theory
expressions. Results are tabulated over a range of magnetic fields of experimental interest and combined with
a calculation of the shifts of the 1s level energy to give Stark shifts of the 1s→2p−1 and the 1s→2p0

transitions. These latter quantities are of importance in interpreting line shape data in the magnetospectroscopy
of shallow donors in partially compensated GaAs and related semiconductors.

DOI: 10.1103/PhysRevB.70.085210 PACS number(s): 78.30.Fs, 32.60.1i

I. INTRODUCTION

Magneto-optical experiments on shallow donors in high-
purity partially compensated n-type GaAs at low tempera-
tures reveal sharp strong lines arising from transitions from
the 1s ground state to the 2p levels. The wave functions for
these levels are very well described by effective mass theory.
The transitions, especially the 1s→2p−1 transition, show
asymmetric broadenings with tails appearing on the low-
energy side characteristic of Stark-effect broadening.1,2 Elec-
tric fields responsible for Stark broadening arise from the
donor and acceptor ions present in compensated samples.
Quantitative understanding of the breadths of these lines can
give important information on correlations between neutral
and ionized donor sites at low lattice temperatures.

To calculate the portion of this broadening due to the
quadratic Stark effect one would like to evaluate energy
shifts in the relevant donor levels induced by the more or less
random weak electric fields at the locations of the various
neutral donors. Over a range of applied magnetic fields of
interest this can be done, in principle, by second-order per-
turbation theory, treating the electric field as a perturbation
and using the eigenstates of hydrogenic atoms in a magnetic
field as the unperturbed wave functions. Unfortunately an
exact evaluation of the perturbation expressions by direct
calculation seems prohibitively difficult. In this paper an ap-
proximate evaluation of the second-order perturbation series
for the 2p0 and 2p−1 levels is attempted by a well-known
variational method, which has been applied earlier to the 1s
level.3 A calculation of this type has already been carried
out4 for the 2p−1 level, but the slow convergence of the
method employed and the relatively inaccurate 2p−1 wave
functions utilized impair the accuracy of that calculation.
Moreover, the results are presented only graphically and in
such a way to make it difficult to extract quantitative values.
No previously published results for the 2p0 level appear to be
available.

Above and henceforth each state of the hydrogen atom in
a magnetic field is designated by the name of the state at zero
magnetic field from which it evolves when the magnetic field
is turned on adiabatically; abbreviations used are 2p− for
2p−1 and 2p+ for 2p+1 states. The present paper presents
tabulated polarizabilities of the hydrogenic 2p− and 2p0 lev-
els. Typical expected accuracies are estimated to be approxi-

mately 1%; the calculations are believed to be most accurate
at the lower end of the range of magnetic fields considered.

II. PERTURBATION CALCULATIONS

The unperturbed hamiltonianH0 describing a simple hy-
drogenic donor in a uniform magnetic field in thez direction
B is given in the units of this paper by

H0 = − ¹2 − 2/r + sg/id ] /] f + g2r2/4. s1d

The electric field perturbation is

H8 = FW · rW = F+sx + iyd + F−sx − iyd + Fzz

= H8s+d + H8s−d + H8szd, s2d

where

H8s+d = 0.5F+ reif, s3ad

H8s−d = 0.5F− re−if, s3bd

H8szd = Fzz s3cd

with F+=Fx− iFy and F−=Fx+ iFy. The dimensionless elec-

tric force vectorFW is given byFW =−eEWa0/Ry, whereEW is the
uniform electric field,a0 is the donor bohr radius, and Ry is
the donor Rydberg(a0=e0"2/m*e2, Ry=e2/2e0a0, m* is the
conduction band mass ande0 is the static dielectric constant).
The magnetic field has been introduced as usual via the vec-

tor potentialAW =Bs−y/2 ,x/2 ,0d. It appears in Eq.(1) in the
dimensionless parameterg, which is defined by g
="eB/ s2m*cRyd. In Eq.(1) and henceforth(unless otherwise
specified) lengths are taken in units ofa0 and energies in
units of Ry.

The normalized eigenstates ofH0 are labeledwn, with the
unperturbed energiesEn defined by H0wn=Enwn. These
eigenstates can be classified according to their angular mo-
mentum quantum numberM along the direction of the mag-
netic field(z direction) and by theirz-parity quantum number
Pz; Pz= +1 for eigenstates which do not change sign upon
reflection of coordinates through the x-y planesz→−zd
whereasPz=−1 for those that do.

The energy shift of a 2p state can be written in second-
order Rayleigh-Schrodinger perturbation theory as
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DE2p = o
n

uH2p,n8 u2

E2p − En
= a'

s2pdF'
2 + az

s2pdFz
2 s4d

with F'
2 =Fx

2+Fy
2. Calculation of the polarizabilitiesa

'

s2pd and
az

s2pd is the principal goal of this paper.
The sum in Eq.(4) is over all possible intermediate states

n. For the 2p− state, which hasM =−1 andPz= +1, the in-
termediate states appearing in Eq.(4) fall into three catego-
ries, the set of states, designatedS−1,−1, with M =−1 andPz
=−1 [which are coupled to 2p− via the termFzz in Eq. (2)],
the setS−2,1, with M =−2 andPz= +1 (coupled by the term
0.5F−re−if), and the setS0,1, with M =0 and Pz= +1,
(coupled via 0.5F+reif). It is useful to segregate the terms
appearing in the summation in Eq.(4) according to the char-
acter of the intermediate states. Thus one can write

DE2p−
= DE2p−

s1d + DE2p−

s2d + DE2p−

s3d , s5d

where

DE2p−

s1d = o
S−1,−1

uH2p−,n8 u2

E2p−
− En

= o
uH82p−,n

szd u2

E2p−
− En

= az
s2p−dFz

2, s6ad

DE2p−

s2d = o
S−2,1

uH2p−,n8 u2

E2p−
− En

= o
uH82p−,n

s−d u2

E2p−
− En

= bs− 2,1dF'
2 ,

s6bd

DE2p−

s3d = o
S0,1

uH2p−,n8 u2

E2p−
− En

= o
uH82p−,n

s+d u2

E2p−
− En

= bs0,1dF'
2 , s6cd

bs− 2,1d + bs0,1d = a'
s2p−d. s6dd

In Eqs.(6a)–(6c) the notationSsi,j means summation over all
and only intermediate states belonging to setSi,j. It is known
that, aside from the 1s donor ground state, the 2p− state has,
for nonzero magnetic field, the lowest energy of any donor
level appearing in the perturbation theory expressions
above.5 As a result all energy denominators in Eqs.(6a) and
(6b) are negative whereas one energy denominator is positive
(for the 1s intermediate state) in Eqs.(4) and (6c).

Direct exact evaluation of the perturbation sums in Eqs.
(6a)–(6c) is not feasible. One can show, however, that these
perturbation sums are derivable from a variational principle.
For any perturbationH8 [not necessarily the one defined by
Eq. (2) above] the stationary value of the energy functional
FsCd defined by

FsCd =E C*sH0 − E2p−1
dC +E sC*H8w2p−1

+ c.c.d s7d

is equal to the required second-order perturbation expression.
To show this one can expandC in the eigenstates ofH0,
obtaining

C = o
i

ciwi

and

FsCd = o uciu2sEi − E2p−
d + o sci

*Hi,2p−
8 + c.c.d. s8d

Setting the first derivatives of the right-hand side of Eq.(8)
with respect to the real part and to the imaginary part ofci
equal to zero for each value ofi, solving the resulting
(trivial) linear equations for the coefficientsci and substitut-
ing the results into the right-hand side of Eq.(8) leads to the
standard second-order perturbation series. Notice that this
procedure finds a minimum ofFsCd if and only if

H1s,2p−
8 = 0 s9d

(which is satisfied ifH8 is taken to be eitherH8s−d or H8szd),
for in that casec1s=0. OtherwiseFsCd has no lower bound.

As a rule one does not knowCmin, the function minimiz-
ing FsCd (when a minimum exists). One can proceed by
approximatingCmin by a trial function C which contains
variational parameters. For those cases in which Eq.(9) is
satisfied a choice ofC which differs from theCmin by a
small function of ordereC will produce, when substituted
into Eq. (7), a value which differs from the exact second-
order perturbation correction by an amount only of ordereC

2 .
This desirable situation occurs forDE2p−

s1d andDE2p−

s2d but not

for DE2p−

s3d in Eqs.(6a)–(6c).
In the event that Eq.(9) does not hold one can still retain

the sought-for property that first-order errors inC lead to
second-order errors in the energy functional simply by or-
thogonalizingC to w1s. Thus if the orthogonalized function

C̃ is defined by

C̃ = C − kw1suClw1s s10d

then one can define the functionalF̃sCd=FsC̃d, which has a

minimum valueF̃min such that the second-order energy shift
is given by

DE2p−
= F̃min +

uH1s,2p−
8 u2

E2p−
− E1s

. s11d

In the present paperCmin is approximated byC, which is
expanded as a linear combination of certain functions; func-
tionalsFsCd are then evaluated and minimized with respect
to the expansion coefficients for calculations ofDE2p−

s1d and

DE2p−

s2d of Eqs. (6a) and (6b). On the other handF̃sCd is

minimized and Eq.(11) used for evaluatingDE2p−

s3d of Eq.
(6c). In contrast, the calculations of Ref. 4, which use similar
approximations toCmin, determine the coefficients of expan-
sion by rendering the functionalsFsCd stationary with re-
spect to variations of these coefficients. The two approaches
are equivalent forDE2p−

s1d andDE2p−

s2d but not forDE2p−

s3d . In this
latter case the error of the present paper due to errors in the
approximation toC is of second order whereas that of Ref. 4
can be expected to be of first order.

Probably the primary source of error in the present calcu-
lation, however, arises from the fact that exact expressions in
closed form are lacking for any of the unperturbed wave
functionsw2p−1

, w2p0
, or w1s; approximations to these func-
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tions are required for evaluatingFsCd or F̃sCd. Errors in
these unperturbed functions which are of orderew produce
errors in the calculated second order energy correction of the
same order. In the present paper separate variational calcula-
tions are carried out for these approximate unperturbed func-
tions, denotedwsAd. Although wave functions for only the 2p
states listed above and the 1s state are required for the po-
larizability calculations, wave functions for certain additional
states are useful for estimating upper and lower bounds on
the polarizabilities, as will be described. The multiparameter
unperturbed wave functions employed in this paper are of the
form

w1s
sAd = j1ssr,zd, s12ad

w2p−

sAd = re−ifj2p−
sr,zd, s12bd

w2p0

sAd = zj2p0
sr,zd, s12cd

w3d−1

sAd = zre−ifj3d−1
sr,zd, s12dd

w3d−2

sAd = r2e−2ifj3d−2sr,zd, s12ed

w2s
sAd = hf2 − a1sr2 + a1z

2 + bd1/2 + a2r2sr2 + a2z
2d1/2g

3expf− Hr2/2 − ksr2 + az2d1/2 − dz2g − Dw1s
sAdj/N,

s12fd

where

jsr,zd = expf− Hr2/2 − Asr2 + Bz2d1/2r2 − Cz2

− ksr2 + az2 + b2d1/2g/N,

N is the appropriate normalization constant for each state and
D is chosen to guarantee thatw2s

sAd is orthogonal tow1s
sAd. The

parameters are varied separately for each magnetic field
strength to minimize the energy of each state in the unper-
turbed HamiltonianH0. The 2p− state wave function in Eq.
(12b) is more general than that employed in Ref. 4, whereA
andb are set equal to zero anda is set equal to 1. Compari-
son of the calculated variational unperturbed energies with
the extremely accurate energies of Ref. 6 shows that in the
range 0.1,g,3.0 the energies obtained fromw2p−

sAd of Eq.
(12b) differ from the corresponding exact values by amounts
which are more than a factor of 10 smaller than those ob-
tained from the wave functions of Ref. 4. Atg=1 the varia-
tional energy obtained from the wave function given by Eq.
(12b) is too high by 0.5310−4 Ry. Errors at smaller fields
are smaller and at larger fields, larger. Errors in the 1s ener-
gies are typically about half as large as those for 2p−. Details
of the energy errors are presented in Table I.[It seems worth
noting that only very small changes in 2s energies were pro-
duced by including the term proportional toa2 in the wave
function of Eq.(12f).]

Three trial functionsCsid employed for calculations of the
polarizability of the 2p−1 state, one for each of the energies
DE2p−

sid , defined in Eqs.(6a)–(6c), are displayed in Eqs.
(13a)–(13c).

Cs1d = Fzfzsa0 + a1r + a2r
2 + a3r

3 + a4r
4d + z3sb0 + b1rd

+ z5c0gw2p−

sAd , s13ad

Cs2d = F−frsa0 + a1r + a2r
2d + r3sb0 + b1r + b2r

2d

+ r5c0ge−ifw2p−

sAd , s13bd

Cs3d = F+fr−1sa0 + a1r + a2r
2d + rsb0 + b1r + b2r

2d

+ r3c0geifw2p−

sAd . s13cd

Only Cs3d need be explicitly orthogonalized to the 1s ground
state wave function since the other two trial functions are
orthogonal by symmetry tos states. The procedure for cal-
culatingaz in Eq. (4) for the 2p−1 state is to substituteCs1d

for C in that equation and minimize the result with respect to
the eight variational parametersa, b, andc appearing in Eq.
(13a). The minimum value so obtained is divided byFz

2 to
obtain the required estimate ofaz. Since bothDE2p−

s2d and

DE2p−

s3d contribute toa' it is necessary to perform two sepa-
rate independent minimizations, one involvingCs2d alone
and the other involvingCs3d othogonalized tof1s

sAd [see Eq.
(10)]. The two minimum values obtained are added together
along with the contribution of the 1s state[which is given by
the second term on the right-hand side of Eq.(11) with varia-
tional wave functions for 1s and 2p− employed in evaluating
the matrix element there]. The result is then divided by 4F'

2

to obtaina'. Values are tabulated in Table II. It should be
noted that the terms in Eqs(13a)–(13c) vary very much in
the size of their contributions. The largest contributions come
from terms involving the smaller powers ofz, r, andr; some
of the higher-power terms prove to be superfluous in many
instances.

Very similar calculations have been carried out for the
polarizability of the 2p0 state. The main differences are that
the trial functions have the form

Cs1d = Fzfz−1sa0 + a1r + a2r
2 + a3r

3 + a4r
4d + zsb0 + b1rd

+ z3c0gw2p0

sAd , s14ad

TABLE I. Energy differences betweenkwsAduH0uwsAdl / kwsAd uwsAdl
and the corresponding energies of Ref. 6 in units of 10−4 donor Ry.
The size of these differences is a measure of the goodness of the
approximate wave functions. If the functionswsAd were exact all
entries would be zero.

g 1s 2p0 2p−1 3d−1 3d−2 2s

0.3 ,0.1 ,0.1 ,0.1 0.25 ,0.1 −0.5

0.5 ,0.1 0.23 0.29 0.27 0.16 0.6

0.8 ,0.1 0.49 0.39 0.41 0.31 0.8

1.0 0.16 0.65 0.52 0.49 0.36 1.0

1.5 0.39 1.0 0.94 0.69 0.60 1.2

2.0 0.71 1.3 1.4 0.81 0.84 1.2

3.0 1.6 1.7 2.3 1.1 1.2 1.0

5.0 3.9 2.1 3.9 1.1 1.6 0.6
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Cs2d = F−frsa0 + a1r + a2r
2d + r3sb0 + b1r + b2r

2d

+ r5c0ge−ifw2p0

sAd , s14bd

Cs3d = F+frsa0 + a1r + a2r
2 + a3r

3d + r3sb0 + b1r + b2r
2d

+ r5c0geifw2p0

sAd . s14cd

HereCs1d is othogonalized tof1s
sAd and the energy correction

due to the 1s state is found from Eq.(11) using the varia-
tional 2p0 wave function. Results are given in Table III.

Finally, for purposes of comparison to the results for the
1s state given in Ref. 3, the following trial functions are
employed:

Cs1d = Fzfzsa0 + a1r + a2r
2 + a3r

3 + a4r
4d + z3sb0 + b1rd

+ z5c0gw1s
sAd, s15ad

Cs2d = F−frsa0 + a1r + a2r
2d + r3sb0 + b1r + b2r

2d

+ r5c0ge−ifw1s
sAd, s15bd

Cs3d = F+frsa0 + a1r + a2r
2d + r3sb0 + b1r + b2r

2d

+ r5c0geifw1s
sAd. s15cd

Obviously no orthogonalization or correction for the 1s con-
tribution is required. Results are compared in Table IV to
those in Ref. 3. Agreement is closer than 0.25% for all values
of g (except forg=5, where the results in Ref. 3 are quoted
to no more than two significant places).

The 1s→2p transitions in the presence of weak electric
fields are shifted from their zero field values by an amount

sa'
s2pd − a'

s1sddF'
2 + saz

s2pd − az
s1sddFz

2. s16d

For convenience in interpolating the coefficients ofF'
2 and

Fz
2 in Eq. (16) at values of magnetic fieldsgd not appearing

in the tables presented here, the tabulated results have been
fit by the following interpolation formulas applicable to 1s
→2p− transitions for 0.3øgø5.0:

sa'
s2p−d − a'

s1sdd = 0.01 − 3.494x − 0.092x2 + 0.048x3

− 0.005x4, s17ad

saz
s2p−d − az

s1sdd = 0.016 − 2.931y − 0.156y2 + 0.096y3

− 0.012y4. s17bd

In Eqs.(17a) and(17b) x=g−1.35 andy=g−1.09. These formu-
las are consistent with values tabulated in this paper to
within 1%.

Similar fitting to the 1s→2p0 transitions for 0.3øg
ø5.0 leads to the interpolation formulas of Eqs.(18a) and
(18b):

sa'
s2p0d − a'

s1sdd = − 0.118 − 3.313v − 0.632v2 + 0.211v3

− 0.021v4, s18ad

saz
s2p0d − az

s1sdd = − 5.979 − 27.761w − 3.00w2 − 2.423w3

+ 0.222w4. s18bd

In Eqs. (18a) and (18b) v=g−0.9 and w=g−0.654. These for-
mulas fit the values inferred from Tables III and IV to well
within 1%.

TABLE II. Polarizabilities of the hydrogenic 2p− level as de-
fined in Eq.(4) vs dimensionless magnetic fieldg. The quantitiesaz

anda' are for electric fields respectively parallel and perpendicular
to the magnetic field.

g az
s2p−d a

'

s2p−d bs0,1d

0.3 −11.3 −17.9 −3.73

0.5 −7.08 −9.61 −1.06

0.8 −4.48 −5.30 −0.20

1.0 −3.59 −3.97 −0.035

1.5 −2.37 −2.34 0.087

2.0 −1.76 −1.60 0.104

3.0 −1.16 −0.94 0.092

5.0 −0.68 −0.47 0.062

TABLE III. Polarizabilities of the hydrogenic 2p0 level as de-
fined in Eq.(4) vs dimensionless magnetic fieldg. The quantitiesaz

anda' are for electric fields respectively parallel and perpendicular
to the magnetic field.

g az
s2p0d a

'

s2p0d

0.3 −104 −12.5

0.5 −66.0 −8.10

0.8 −46.2 −5.30

1.0 −39.5 −4.31

1.5 −30.5 −2.96

2.0 −25.8 −2.27

3.0 −20.8 −1.58

5.0 −16.3 −1.01

TABLE IV. Comparison of polarizabilities of the hydrogenic 1s
level vs dimensionless magnetic fieldg. QuantitiesasPd are calcu-
lated in the present paper whereas those designatedas3d are taken
from Ref. 3.

g azsPd azs3d a'sPd a's3d

0.3 −0.9713 −0.9737 −0.8927 −0.8937

0.5 −0.8384 −0.8366 −0.7099 −0.7110

0.8 −0.6759 −0.6773 −0.5228 −0.5227

1.0 −0.5983 −0.5982 −0.4381 −0.4384

1.5 −0.4618 −0.4629 −0.3051 −0.3050

2.0 −0.377 −0.378 −0.2296 −0.230

3.0 −0.276 −0.277 −0.1494 −0.149

5.0 −0.182 −0.182 −0.0838 −0.083
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A partial check on Tables II and III can be obtained by
calculating upper and lower bounds on the magnitude ofa'

andaz. The basic inequality underlying such calculations is

k2puH82u2pl = o
n

k2puH8unlknuH8u2pl ù ukmuH8u2plu2.

Thus if the lowest-energy intermediate stateull lies above
u2pl in energy then

uH2p,l8 u2

sEl − E2pd
ø o

n

uH2p,n8 u2

En − E2p
ø

k2puH82u2pl
sEl − E2pd

. s19d

The inequalities of Eq.(19) are rigorous when exact unper-
turbed states are employed, but it can be expected that they
would hold also for the quite accurate unperturbed states
employed in this paper. For those perturbation sums consid-
ered here in which the 1s state occurs the inequalites can
easily be modified by omitting that intermediate state from
the perturbation sum and then adding its contribution back at
the end of the calculation.[In that case one replaces
k2puH82u2pl on the right-hand side of Eq.(19) by
k2puH82u2pl− uk1suH8u2plu2.]

Surprisingly the six unperturbed functions of Eqs.(12)
suffice for calculating useful bounds for the various polariz-
ability coefficients over the range of magnetic fields consid-
ered in this paper. An example of such bounds, forg=1, is
given in Eqs.(20a)–(20d). Statesuw3d−1

sAd l and uw3d−2

sAd l defined
in Eqs. (12d) and (12e) have been employed in matrix ele-
ments required for the calculation of the bounds of Eqs.
(20b) and (20c) and Eq.(20a), respectively:

3.93ø ua'
s2p−du ø 4.93, s20ad

3.41ø uaz
s2p−du ø 3.73, s20bd

4.275ø ua'
s2p0du ø 4.395, s20cd

39.27ø uaz
s2p0du ø 40.05. s20dd

The tight bracketing ofa indicated in Eqs.(20b) and (20c)
and in Eq.(20d) is a consequence of relatively strong cou-
pling to the 3d−1 and 2s states, respectively. The close prox-
imity of ua

'

s2p−du to its lower bound is likewise due to strong
coupling to the 3d−2 level; the large value ofuaz

s2p0du is mainly
attributable to the small energy difference between the 2p0
and 2s levels.

It is evident from Tables II–IV that the magnitudes of all
the polarizabilites decrease with increasing magnetic field.
That is a consequence of both magnetic compression of the
wave functions(arising from the termg2r2/4 in H0), which
reduces the matrix elements of the electric field, and the
increase of energy separations between levels, which in-
creases the magnitudes of the energy denominators.

Both a
'

s2p−1d andaz
s2p0d diverge in the limitg→0 at fixed

electric field[the singularity ofa
'

s2p−1d arises from the diver-
gence ofbs0,1d in Eq. (6c)]. These divergences are caused
by vanishing energy denominators associated with the de-
generacy of 2p and 2s states atg=0. However, they are
unphysical and result from the use of Rayleigh-Schrodinger

perturbation theory outside of its range of validity. At very
weak magnetic fields where the electric field matrix elements
coupling 2p states to 2s are comparable to the magnetic
shifts of the unperturbed levels it is much more accurate to
diagonalize directly the 434 Hamiltonian matrix formed
from the 2s, 2p−, 2p0, and 2p+ basis functions. This leads to
the equation

E =
uk2suH8s+duw2p−

lu2

sE + gd
+

uk2suH8s−duw2p+
lu2

sE − gd
+

uk2suH8szduw2p0
lu2

sE + 4g2d
,

s21d

whereE in Eq. (21) is the difference in energy between a
perturbed energy and the energy of the zero-fieldn=2 states
s−Ry/4d. Normalized zero-field wave functions may be used
in calculating the matrix elements; only the lowest order
term in g has been retained in each energy denominator. In
such weak magnetic fields, of course, the energy shifts of the
levels are no longer linear in the squares of the components
of the electric field vector.

Finally, it is of interest to compare the rate of convergence
of calculations with and without orthogonalization of the
trial function C to the 1s state. In the present paper such
orthogonalization is made, whereas it is omitted in the
method of Ref. 4. To this end a sequence of trial functions
for Cs3d in Eq. (13c) is employed for the approximate evalu-
ation ofbs0,1d defined in Eq.(6c). These trial functions are,
in turn, defined by Eq.(13c). Consider the ordered parameter
list given below.

sa0,a1,b0,b1,a2,c0d.

An n-parameter trial function is defined as a function given
by Eq. (13c) such that the first n parameters of the list are
optimized and all other parameters fixed at zero.(Thus, for
example, a three-parameter wave function will employ only
the parametersa0, a1, andb0.) It is to be hoped that the value
obtained forbs0,1d will converge rapidly with increasing
number of optimized parameters. A comparison of the con-
vergence forg=1 is given in Table V. It appears that or-
thogonalization speeds convergence. Similar results are ob-
tained at other values ofg.

TABLE V. Comparison of two calculations atg=1 of the quan-
tity 4bs0,1d as defined in Eq.(6c). The number of parameters in the
trial wave function for the polarizability is equal to the number at
the top of each column. The row entries labeled “present” are from
the present calculation. The row labeled “Ref. 4” are calculated by
the method of Ref. 4(no orthogonalization to 1s) but using the
wave functions of the present paper. It is expected that the “present”
row gives an upper bound to 4bs0,1d. (That would certainly be true
if the wave functionswsAd were exact.)

Parameters 1 2 3 4 6

Present 0.555 −0.0299 −0.1339 −0.1408 −0.1409

Ref. 4 2.55 −0.019 −0.1229 −0.1248
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III. CONCLUSION

Calculations of the polarizability of a hydrogen atom in
its 1s, 2p− and 2p0 states for electric fields parallel and per-
pendicular to an applied magnetic field are formulated as
energy minimization problems, which are solved variation-

ally. The results are tabulated over a range of dimensionless
magnetic field,g, between 0.3 and 5.0. Interpolation formu-
las are displayed which are expected to enable calculation of
quadratic Stark effect shifts of magneto-optical transitions
1s→2p− and 1s→2p0 in weak electric fields to an accuracy
of approximately 1%.
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