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The Shubnikov-de Haas conductivity across the layersszz in layered conductors in a perpendicular magnetic
field B is calculated for coherent and weakly incoherent interlayer electron hopping. In the strong two-
dimensional regimes2pt!" /t0!"Vd szz is a set of sharp peaks periodic in 1/B due to the quantum(non-
Boltzmann) transport only(V is the cyclotron frequency,t is the interlayer hopping integral,t0 is the intralayer
scattering time). The peaks are split if the chemical potentialmsBd has an inverse sawtooth shape. Theszz

minima display a thermally activated behavior, and theszz oscillations are proportional to the derivative of the
magnetization onB as in experiments on ET salts.
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I. INTRODUCTION

The layered organic quasi-two-dimensional conductor
family sBEDT-TTFd2X, or ET salts, attract much interest
because many of their electronic properties are unusual and
similar to those of high-Tc cuprates.1 De Haas-van Alphen
(dHvA) and Shubnikov-de Haas(SdH) studies of the elec-
tronic spectrum in ET salts have shown numerous deviations
from the Lifshitz-Kosevich theory.2 The Fermi surfaces(FS)
within the planes in the ET salts consist of two open one-
dimensional(1D) sheets and closed orbits between them.3,4

In some ET salts the oscillations are much more complex due
to the so-called “forbidden frequencies” in the spectrum of
the SdH and dHvA5 signals caused by magnetic breakdown.

Contrary to the consensus on the shape of the FS within
the planes, there is no agreement about the type of interlayer
electronic transport in some ET salts.6,7 The beats of the
quantum magnetic oscillations observed inb−sETd2I3, b
−sETd2IBr2 and some other organic conductors8,9 testify in
favor of coherent(dispersive) transport across the layers,
which implies a warped cylindrical 3D FS due to the inter-
layer dispersion«spzd. The absence of beats as well can be
attributed to the smallness of the warping. There is an alter-
native view that in some ET salts the interlayer transport is
incoherent and there is no 3D FS.10 Experimental tests of
this point within the standard fermiology picture were done
in Refs. 6 and 7. The results have shown that most
organic conductors have a 3D FS butb9−sBEDT
-TTFd2SF5CH2CF2SO3 (b9 salt) presumably does not. It dis-
plays an incoherent interlayer transport7 for which the dis-
persion«spzd and 3D FS have no meaning, since the inter-
layer tunneling does not preserve the energy of interlayer
hopping«. This is a generalization to the caseBÞ0 of the
definition, adopted in Ref. 11, that incoherent tunneling does
not preserve the momentum. We assume below that« is dis-
tributed with the density of states(DOS) gs«d. In terms of the
gs«d both cases of the coherent and incoherent electron mo-
tion across the layers can be described within the unified
theoretical approach, as will be shown below. In the coherent
case the DOSgs«d can be calculated exactly. In the incoher-
ent case the shape of this function is basically unknown, but

its width is of the order of the interlayer hopping integralt.
The uniquely small value of the tunneling amplitudet in the
b9 compound may be related to the very large size of the
anion SF5CH2CF2SO3.

It was found in Ref. 12 that the SdH signal in theb9 salt
is proportional to the magnetization derivativeB2dM /dB and
the magnetization pattern has an inverse sawtooth profile.
The SdH conductivity minima in theb9 salt exhibit a ther-
mally activated behaviorszz~expf−s"V−E0d /Tg where"V
is the Landau levels(LL ) separation andE0 is a constant.13

The Boltzmann-equation(BE) approach is a firm basis for
the electron theory of metals.14 Recently the importance of
quantum corrections to the SdH effect in ET salts was dis-
cussed in Refs. 15 and 16. We show below that in the strong
2D regime the BE contribution toszzdoes not oscillate at all,
because oscillations in the self-energy and the DOS compen-
sate each other. This surprising result holds even if there is
no 3D FS. Small oscillations ofmsBd (of the order of"V)
strongly affect the shape ofszzsBd and amazingly split the
peaks only ifmsBd has an inverse sawtooth profile. This is in
sharp contrast to the case of 3D conductors, wheremsBd is
fixed at the Fermi levelEf. More precisely, in this paper we
prove analytically that(1) the BE term inszz does not oscil-
late in the strong 2D regime, and the oscillations are solely
due to quantum transport, both for coherent and weakly in-
coherent interlayer electron hopping,(2) we explain the ex-
perimental observations in theb9 salt that the SdH oscilla-
tions are (i) proportional to the magnetization derivative
B2dM /dB,12 and (ii ) display thermally activated behavior.13

(3) We found a strong effect of the chemical potential oscil-
lations onszz, and predict the peak-splitting effect in the case
msBd has an inverse sawtooth shape. These results are ob-
tained on the basis of Eq.(10) for the SdH conductivity
across the layers valid, as it is shown in Appendix A, both
for the coherent and weakly incoherent interlayer hopping.

II. BASIC EQUATIONS FOR THE COHERENT
AND WEAKLY INCOHERENT INTERLAYER

CONDUCTIVITY

The calculation of the conductivity across the layers dif-
fers for coherent and incoherent cases.10 The coherent case
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implies a 3D FS with the dispersion across the layers«spzd.
The corresponding velocity isvzspzd=]«spzd /]pz, and the
conductivity szz is given by the standard Kubo formula.
Written in terms of the Green functionGhsEd=fE−Eh

−SsE,hdg−1 it yields15

szz=
2"e2

V
o
h

vz
2shd E dE

p
fIm GhsEdg2S−

]f

]E
D , s1d

where h=n, pz is the Landau state andEh is the Landau
energy spectrum

Eh = "Vsn + 1/2d + «spzd, s2d

V is the volume,fsEd is the Fermi function, andSsE,hd is
the self-energy. In the incoherent case the momentumpz is
not preserved and the Kubo Eq.(1) is inappropriate since the
energy of the interlayer hopping« is itself a quantum number
distributed with the DOSgs«d. The conductivityszz in that
case is proportional to the tunneling rate between the adja-
cent layers.10,11

To calculate it, we take the single particle tunneling
HamiltonianHt between the adjacent layers in the form

Ht = o
h,h8

thh8cu
+shdclsh8d. s3d

Herecu
+shd andclsh8d stand for the creation and annihilation

electron operators in the uppersud and lowersld layers in the
Landau stateh. The tunneling matrix elements satisfy the
conditionthh8= th8h

* and the current between the layers can be
written as follows:11

I =
e

"
o
h,h8

uthh8u
2E ffsE − eUd − fsEdgIm GhsEd

3Im Gh8sE − eUddE, s4d

U is the voltage between the layers. The conductivityszz is
given by the derivative10

szz=
a

A
S dI

dU
D

U=0
s5d

and takes the form

szz=
e2a

"A
o
h,h8

uthh8u
2E S−

]f

]E
DIm GhsEdIm Gh8sEddE.

s6d

A is the area of the layers anda is the distance between them.
Comparing this equation with the Kubo Eq.(1) we see a
similarity with the principal difference in that in Eq.(6) there
is a double summation over the Landau quantum numbersh.
Another difference is that in the coherent caseh=n, pz and
the spectrum is given by Eq.(2). In the incoherent caseh
=n, « and

Eh = "Vsn + 1/2d + «. s7d

In the coherent case for the model taking account of only
nearest layer hopping the dispersion across the layers is

«spzd= t cossapz/"d. The corresponding DOSgs«d and the
velocity vzs«d in this model are

gs«d =
1

p
st2 − «2d−1/2, s8d

vzs«d =
a

"
st2 − «2d1/2. s9d

The Kubo Eq.(1) now takes the form

szz=
2"e2

pV
o
n
E dEd«gs«dvz

2s«dfIm Gn,«sEdg2S−
]f

]E
D .

s10d

Equation(10) is written in terms of the energy and formally
does not require a conservation of the momentumpz. This
provokes a natural question concerning the applicability of
Eq. (10) to a more general(incoherent) case when both the
DOS andvz

2s«d deviate from the simple form of Eqs.(8) and
(9). More precisely, the question is, does Eq.(10) work at
least for the weakly incoherent interlayer electron hopping?
The analysis of this point done in Appendix A gives a posi-
tive answer.

It is shown in Appendix A that in the limitVt@1, nec-
essary for the quantum oscillations, and under the condition
of the weak incoherence, only states with«=«8 contribute
into Eq. (6) for the conductivity which takes very much the
same form as that in Eq.(10)

szz=
e2a

"A
o
n
E gs«dut«,«u2S−

]f

]E
DfIm Gn,«sEdg2dEd«.

s11d

The weak incoherence means that neither the intralayer scat-
tering nor the interlayer hopping cannot mix Landau levels
with different indicesn in the quantum limitVt@1. The
latter also implies that the width of the DOSgs«d (i.e., the
typical value of the hopping integralst) is much less than the
Landau levels separation"V. Under these conditions it is
reasonable to approximate the tunneling matrix elements by

th,h8 < t«,«8dn,n8. s12d

Comparing Eqs.(10) and(11) we see that they become iden-
tical if one takes into account that the velocityvzs«d in the
incoherent case is determined by the diagonal tunneling ma-
trix elements only

vzs«d =
ut«,«ua

"Î2
. s13d

We arrive therefore at the important conclusion that Eq.(10)
is valid both for coherent and weakly incoherent cases. In the
first case the momentumpz is preserved and there is a 3D FS
in the system. The DOS and the velocityvz

2s«d are functions
of pz in that case. In the incoherent case the DOSgs«d is a
nontrivial function of the hopping integralst«,« andvzs«d is
also related to them by Eq.(13).
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III. SDH OSCILLATIONS

Using the results, obtained in Eqs.(A11) and (A12) in
Appendix A, we can rewrite Eq.(10) in the following form:

szz= s0 Re o
p=−`

`

s− 1dpNzzspd E dE

2p
ApsEdS−

]f

]E
D , s14d

wheres0=e2F /VF0V (F is the flux through the sample and
F0=2p"c/e is the flux quantum). The other quantities in Eq.
(14) are

Nzzspd =E d«gs«dvz
2s«dexpS2pip«

"V
D , s15d

ApsEd = expS2pipE

"V
DS 1

uIm SsEdu
+

2pupu
"V

DRDsp,Ed.

s16d

The function RDsp,Ed=exps−2pupuuImSsEdu /"Vd general-
izes the Dingle factor to the case of the energy-dependent
self-energySsEd. The factor Nzzspd is determined by the
DOS gs«d and valid both for coherent and incoherent inter-
layer electron hopping. The functionApsEd was calculated
provided thatSsEd depends only on the energy which is
always the case for large LL numbern<E/"V@1, so that
SsE,nd<SsEd. The inverse scattering time 1/t sEd
= uImSsEdu /" in the self-consistent Born approximation
(SCBA) is proportional to the total DOS, i.e.,NsEd /Ns0d
=t0/t sEd,17,18 whereNs0d is the DOS for the 2D electron
gas andt0 is the intralayer scattering time. The oscillations
of the NsEd /Ns0d for the arbitrary layer-stacking[arbitrary
gs«d] and the corresponding oscillations of thet0/tsEd can
be presented as a series of the following form:19

t0

t sEd
= 1 + 2 Reo

p=1

`

s− 1dpRDsp,EdIp expS2pipE

"V
D .

s17d

Here, as in Refs. 15 and 16, we adopt that electrons scatter
only within the layers and the interlayer hopping is indepen-
dent of scattering. This permits us to study different regimes
within the one approach: 2ptù" /t0 (Ref. 15) and 2pt
!" /V.16 In the case 2pt!" /t0!"V, which we call the
strong 2D regime in what follows, the hopping integrals are
very small and the system, in fact, is nearly two-dimensional.
The validity conditions of the SCBA in this case are the same
as those established in Ref. 20 for the 2D case. Namely, the
random impurity potential correlations must decay at the
spatial scale much less than the magnetic lengthl
=s"e/cBd1/2. The strong 2D regime implies as well the inco-
herence as it was defined in Ref. 10 since the tunneling time
" / t@t0 and many intralayer scattering events occur before
the electron hopping to the neighboring layer.

The layer-stacking influences thet sEd through the factor
Ip in Eq. (17),

Ip =E d«gs«dexpS2pip«

"V
D . s18d

The irregular layer-stacking produces peaks ings«d which
alike the intralayer scattering yield a Dingle-like exponents
in Ip.

21 Magnetic breakdown5 and superconductivity22 modu-
late the factorIp too producing effects in the scattering rate
which will be discussed elsewhere.

Using the conditioned«gs«d=1 and the summation rule

Ssl,dd = o
p=−`

`

s− 1dpe−upul cospd =
sinhl

coshl + cosd
s19d

one can rewrite Eq.(17) in the integral form

1

t sEd
=

1

t0
E d«gs«dSfl,dsE,«dg s20d

flsEd=2p /Vt ,dsE,«d=2psE+«d /"Vg. Combining Eqs.
(19), (20), and(14) we can write the SdH conductivity as a
sum of the BoltzmannssBd and quantumssQd terms szz

=sB+sQ, where

sB = s0E d«
dE

p
gs«dvz

2s«dS−
]f

]E
DtSfl,dsE,«dg, s21d

sQ = s0E d«
dE

p
gs«dvz

2s«dS ]f

]E
D2p

V

]

]l
Sfl,dsE,«dg.

s22d

In the b9 salt the strong 2D regime 2pt!" /t0!"V
holds.13,14 This implies that one can putd<DsEd
=2pE/"V in Eq. (20) which becomes

t sEdSsl,Dd = t0. s23d

Equation(23) has an important consequence. It means a can-
cellation of the oscillations in the Boltzmann termsB, and
for szz, we have

szz= stE dE

p
S−

]f

]E
DF1 − l0

]

]l
Ssl,DdG , s24d

wherest=s0kvz
2lt0 andl0=2p /Vt0. The average of the ve-

locity squared is given bykvz
2l=ed«gs«dvz

2s«d. The function
l0] /]lSsl ,Dd has sharp peaks at the LLEn="Vsn+1/2d in
the casel0!1. Under these conditions, cosDsEnd<−1 and
Eq. (23) can be written asl<l0 cothsl /2d, which has only
the one rootl<s2l0d1/2. Finally, we obtain(see Appendix B
for details)

szz< stE dE

p
S−

]f

]E
Df1 +Îl0/2Nsn,Edg, s25d

where

Nsn,Ed =
1

p
o

n=−`

`
n

sn + 1/2 −E/"Vd2 + n2 s26d

andn=Î2l0/2p=1/ÎpVt0. We conclude, therefore, that the
oscillations inszz in the strong 2D regime arise from the
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quantum term only, which cannot be obtained using the BE
approach. In the opposite limit, 2pt."V ,l0.1, the quan-
tum termsQ gives small corrections to the BE oscillatingsB
term in szz.

15 In the dirty case,l@1 andsQ~exps−ld!1.
For the temperatureT@" /t0, the oscillating part of the

conductivity Eq.(25) becomes

s̃zz< st
"V

4T o
n

cosh−2SEn − m

T
D , s27d

where st=st /ÎpVt0. The sharply peaked function in the
right-hand-side(rhs) of Eq. (27) is well known. It describes
the quantum magnetic oscillations of the ultrasound absorp-
tion in metals.14 Under the condition"V /T@1, the conduc-
tivity s̃zz at the maxima(i.e., whenEn=m) is given by s̃zz
=st"V /4T. At the minima(i.e., when the chemical potential
m falls between the LL) the conductivitys̃zz is exponentially
small: s̃zz=st"V /4T expf−s"V−E0d /Tg (E0 is a position of
the m between the LL). Such behavior of thes̃zz was found
in the b9 salt at fields 20-60T and temperatures 1–4 K.13 At
T!" /t0 one can approximates−]f /]Ed by dsE−md, to ob-
tain

s̃zz< st
sinhs2pnd

coshs2pnd + coss2pm/"Vd
. s28d

This regime is more appropriate to the experiments of Ref.
12. The magnetization oscillations in a layered 2D electron
gas can be described by the sum

M̃ = M0o
p=1

`
s− 1dp

p
exps− 2pnpdsinS2pmp

"V
D . s29d

Neglecting small corrections of the order of" /t0m!1, we
can establish a relation between the SdH conductivity of Eq.
(28) and the magnetization

s̃zz

st
< AB2 ]

]B

M̃

M0
, s30d

whereA=e" /pmcm. SinceAB."V /pm!1 one may con-
clude that the relative amplitude of the SdH oscillations
s̃zz/st is much less than the relative magnetization amplitude

M̃ /M0. Equation(30), known for 3D metals, was established
experimentally in theb9 salt12 and proved above for the
quasi 2D case.

In ET salts it is believed that 1D sheets of the FS play the
role of the electron reservoir, which stabilizes the chemical-
potential oscillations.23–25 In Ref. 16, a semiphenomenologi-
cal equation for ImSsEd was used that has a nearly
E-independent solution for some strengths of the model res-
ervoir. The authors gave a thorough numerical analysis of the
SdH conductivity in the 2D regime for coherent electron
hopping across the layers in thet-approximationst sEd=Gd.
The t-approximation means that Eq.(23) is invalid andt
=G in Eqs.(21) and(22). In the strong 2D regime, this sim-
ply leads to the redefinition of thest and n in the above
equations:st=sG /ps1+Îp /VGd wheresG=st with t0=G,
n=1/VG.

IV. CHEMICAL POTENTIAL OSCILLATIONS
AND THE PEAK-SPLITTING EFFECT

The chemical potential in all the above results enters as a
parameter. In real systemsmsBd is an oscillating function of
B, depending on the dimensionality, the shape of the FS and
other parameters. The inverse sawtooth dHvA oscillations
observed in theb9 salt12 implies a fixed value ofmsBd in this
salt. Theoretical considerations of the chemical-potential os-
cillations in 2D conductors23–29show that the shape ofmsBd
varies from the direct to the inverse sawtooth depending on
the different types of reservoirs for the electron states due to
impurities, 1D sheets of the FS, etc. The equation formsBd in
the 2D case is well known. Its oscillating partm̃ /"V is pro-

portional to theM̃ /M0, and is given by the sum in Eq.(29),
which can be completed to yield

m = Ef ±
"V

p
arctanS sins2pm/"Vd

en + coss2pm/"VdD . s31d

The sign(2) here stands for the direct sawtooth and(1) for
the inverse sawtooth. The amplitude of these oscillations is
of the order of the"V which is small compared with the
Fermi energyEf. Combining Eqs.(28) and (31),we studied
numerically how the shape of the chemical-potential oscilla-
tions influences the peaks of the SdH conductivity. The re-
sults are shown in Figs. 1 and 2. We consider three cases:(i)
the fixed value of the chemical potential;(ii ) the direct saw-
tooth shape ofmsBd (Fig. 1); and (iii ) the inverse sawtooth
shape ofmsBd (Fig. 2). Although the relative amplitudes of

FIG. 1. The SdH conductivity[Eq. (28)] X=s̃zzsBd /st and the
chemical potentialY=msBd as a function of the magnetic field(in
arbitrary units). The msBd has a shape of the direct sawtooth[Eq.
(31) with m<Ef in the rhs].
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the chemical potential oscillations are small, their shapes
have a strong impact on the shape of the SdH peaks. The
peaks are split in case(iii ). Therefore the shape of the SdH
peaks and the type of the functionmsBd are correlated. All
figures are drawn for the same values of the parameters, but
have different peak widths. We conclude, therefore, that the
shape of the functionmsBd also influences the peak width.
The narrowest peaks are for the direct sawtoothmsBd (Fig.
1), and broadest peaks are for the inverse sawtooth(Fig. 2),
compared to the(unshown) case of a fixedmsBd. The reason
for the peak-splitting is as follows. The peaks occur ifm
="Vsn+1/2d. This condition in terms of the variabley
=tanpx, wherex=n+1/2−Ef /"V, yields near each peak the
equationfsen+1ds1+y2d−2±2gy=0. For the direct sawtooth
(1), this equation has only one real rooty1=0 and two
imaginary rootsy2,3= ± i. For the inverse sawtooth, there are
three real roots:y1=0, y2,3= ± fs3−end / sen+1dg1/2. This re-
sults in three peaks: one at the LL, and two symmetric sat-
ellites, as in Fig. 2. The peak-splitting effect is less pro-
nounced for largern. For en.3 only one root, y1=0,
survives, but this is irrelevant to the present casen!1. One
can see in Fig. 2 a decrease of the peak-splitting with de-
creasingB.

V. RESULTS AND CONCLUSIONS

In this paper we developed an approach to the problem of
the SdH oscillations in layered conductors with an arbitrary
stacking and valid both for the coherent and incoherent elec-
tron hopping between the layers[see Eqs.(10)–(13)]. Above
the well-known layer-stacking factorIp given by Eq.(18) a

factor,Nzzspd, defined by Eq.(15) was introduced. This fac-
tor, contrary to theIp, enters only to the SdH conductivity
Eq. (14).

In the coherent case the DOS is given by Eq.(8) and both
factors can be easily calculated:Ip=J0s2ptp/"Vd and
Nzzspd=a2tV /2p"pJ1s2ppt/"Vd. Here Jpsxd is a Bessel
function. Substituting these factors into Eqs.(14)–(17), we
recover the results in Refs. 15 and 16. In the strong 2D
regime the conductivity across the layers is proportional to
the st=s0kvz

2lt0. In the coherent case the average of the
velocity squaredkvz

2l=edegs«dvz
2s«d is easy to calculate. In

the strong 2D regime it equals tokvz
2l=1/2sat/"d2. The same

result holds also for the incoherent case if the matrix ele-
ments in Eq.(13) independent of the energyt«,«= t. In gen-
eral, under the conditions of irregular layer-stacking, some
states in the DOSgs«d can be localized. If all the states are
localized thenkvz

2l=0. Correspondingly,st=0 and there is
no conductivity across the layers. On the other hand, if
kvz

2lÞ0 the quantityst→` whent0→`. Physically this is
because the intralayer scattering is the only channel of scat-
tering in our model and switching it off makes the system an
ideal conductor. All the previous theories10,15,16 display the
same behavior in the limitt0→`.

Localization and incoherence effectively change the hop-
ping between the layers. Quantitatively these effects are de-
termined by thekvz

2l=ed«gs«dvz
2s«d which is difficult to cal-

culate in general. Qualitatively, the effect can be estimated as
follows. In the strong 2D regime the inequality 2pt!" /t0

implies that a large number of in-plane scattering takes place
before the interlayer hopping. This, as was shown in Ref. 30,
makes the hopping time effectively larger by the factorg
=" / tt0@1 and the quantitykvz

2l=1/2sat/"d2 by the factor
g−2 smaller than in the coherent case.

In conclusion, we have shown that in the strong 2D re-
gime the quasiclassical Boltzmann contribution toszz does
not oscillate and SdH effect is entirely due to the quantum-
transport mechanism. TheszzsBd minima display thermally
activated behavior andszz~B2dM /dB in agreement with ex-
periments on theb9. We predict a strong impact of the small
chemical-potential oscillations on the shape of peaks in
szzsBd. A detailed description and generalization to the mag-
netic breakdown will be published elsewhere.
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APPENDIX A

Substituting Eq.(12) into Eq. (6), we have

szz=
e2a

"A
E gs«dgs«8dut«,«8u

2S−
]f

]E
DMsE,«,«8ddEd«d«8,

sA1d

where

MsE,«,«8d = o
n

Im Gn,«sEdIm Gn,«8sEd. sA2d

Using the identity

o
n=−`

`

dfE − « − "Vsn + 1/2dg

=
1

"V
Re o

p=−`

`

s− 1dpexpF i2ppsE − «d
"V

G , sA3d

we obtain

MsE,«,«8d =
1

"V
Reo

p

s− 1dpGpsE,«,«8d. sA4d

The functionGpsE,« ,«8d is given by the integral

GpsE,«,«8d

=E
−`

` n2 exps2pipx/"Vd
fsE * − « − xd2 + n2gfsE * − «8 − xd2 + n2g

dx.

sA5d

Here we denoten= uIm SsEdu and E* = E−ReSsEd. The
poles at the complex plane which has the function in the
integral(A5) are of the first order if«Þ«8 and of the second
order for «=«8. Therefore, the calculation of the function
GpsE,« ,«8d differs for the cases«=«8 and«Þ«8. In the case
«Þ«8, we have

GpsE,«,«8d = pn expF2p
sipE * − upund

"V
GFnsp,«,«8d,

sA6d

where we denoted

Fnsp,«,«8d =
1

« − «8
3expS−

2pip«

"V
D

« − «8 − in
+

expS−
2pip«8

"V
D

« − «8 + in
4 .

sA7d

Therefore, «=«8 is a singular point for the function
GpsE,« ,«8d. Substituting Eq.(A6) into Eq. (A4) and using
the summation rule(19), we have

MsE,«,«8d =
pfgs« − «8d

"2V2 fS* sE,«d + S* sE,«8dg.

sA8d

Here the sumS* sE,«d;Sfl ,dsE,−«dg is defined by Eq.
(19) and

fgs« − «8d =
g

S« − «8

"V
D2

+ g2

sA9d

with g=s2/Vtd. In the quantum limitVt@1 the parameter
g!1 is small and one can approximatefgs«−«8d by the d
function

fgs« − «8d < p"Vds« − «8d. sA10d

This means thatMsE,« ,«8d~ds«−«8d and only a singular
point «=«8 contribute into the conductivityszz in the limit of
interestVt@1. From Eq.(6) in this case we have

szz=
e2a

"A
E gs«dut«,«u2S−

]f

]E
DMsE,«,«ddEd«. sA11d

Here the functionMsE,« ,«d is given by Eq.(A2) for the
coinsiding arguments«=«8. For this case, after the calcula-
tion of the integral(A5), it can be also written as a sum(A4)
with the

GpsE,«,«d =
p

2
expF2p

ipsE * − «d − upun
"V

GS1

n
+

2pupu
"V

D .

sA12d

Substituting Eq.(A12) into Eq. (A11) we can discard the
difference betweenE andE* because the steady part of the
ReSsEd gives just a shift to the Fermi energyEf. The oscil-
lations in the ReSsEd are smooth because of the dispersion
relation giving the ReSsEd as an integral of the(oscillating)
imaginary part ImSsEd. The amplitude of the oscillations in
the ReSsEd are much less than"V in the limit Vt@1 and
can be neglected(see also Ref. 15 in this connection)

APPENDIX B

Equation(24) for szz in an explicit form reads

szz= stE dE

p
S−

df

dE
DF1 − l0

1 + coshl cosD

scoshl + cosDd2G .

sB1d

The quantitylsEd satisfies Eq.(23) which takes the form

l = l0
sinhl

coshl + cosD
. sB2d

Using the identity

1

p
o

p=−`

`
n

sn + ad2 + n2 =
sinh 2pn

cosh 2pn − cos 2pa
sB3d

we can rewrite the second term in the brackets in Eq.(B1) as
follows:

1 + coshl cosD

scoshl + cosDd2 =
1 + coshl cosD

scoshl + cosDdsinhl
Nsn,Ed,

sB4d

where
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Nsn,Ed =
1

p
o

n=−`

`
n

Sn +
1

2
−

E

"V
D2

+ n2

sB5d

and n=l /2p=sVtd−1. Since we are interested in the limit
l!1 at whichNsn ,Ed is a set of sharp delta peaks centered
at the Landau levelsEn we can use the relations cosDsEnd

=−1. Equation(B2) can be written in this limit as

l < l0 cothsl/2d. sB6d

It has only the one rootl<s2l0d1/2!1. Taking all this into
account we can rewrite Eq.(B1) in the following form:

szz= stE dE

p
S−

df

dE
Df1 +Îl0/2Nsn,Edg. sB7d
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