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Magnetic quantum oscillations of the conductivity in layered conductors
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The Shubnikov-de Haas conductivity across the laygpn layered conductors in a perpendicular magnetic
field B is calculated for coherent and weakly incoherent interlayer electron hopping. In the strong two-
dimensional regimé2nt <7/ 7y<#{)) o,,is a set of sharp peaks periodic inBL.due to the quantuntnon-
Boltzmann transport only((} is the cyclotron frequency,is the interlayer hopping integrady is the intralayer
scattering timg The peaks are split if the chemical potentiglB) has an inverse sawtooth shape. Theg
minima display a thermally activated behavior, and édhgoscillations are proportional to the derivative of the
magnetization orB as in experiments on ET salts.
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[. INTRODUCTION its width is of the order of the interlayer hopping integtal
The uniquely small value of the tunneling amplitudia the

The layered organic quasi-two-dimensional conductorﬂ,, compound may be related to the very large size of the

family (BEDT-TTF),X, or ET salts, attract much interest gnion SECH,CF,SO.

because many of their electronic properties are unusual and |t was found in Ref. 12 that the SdH signal in tf#& salt
similar to those of highF, cuprates. De Haas-van Alphen s proportional to the magnetization derivatB&lM/dB and
(dHVA) and Shubnikov-de Haa$dH) studies of the elec- the magnetization pattern has an inverse sawtooth profile.
tronic spectrum in ET salts have shown numerous deviation$he SdH conductivity minima in thg” salt exhibit a ther-
from the Lifshitz-Kosevich theor§.The Fermi surface@S) mally activated behaviow,,xexd —(AQ—Ey)/T] whereA
within the planes in the ET salts consist of two open oneqs the Landau |eve|$|_|_) Separation an(EO is a constant3
dimensional(1D) sheets and closed orbits between thHém. The Boltzmann-equatiotBE) approach is a firm basis for
In some ET salts the oscillations are much more complex dughe electron theory of metaté.Recently the importance of
to the so-called “forbidden frequencies” in the spectrum ofquantum corrections to the SdH effect in ET salts was dis-
the SdH and dHvAsignals caused by magnetic breakdown.cyssed in Refs. 15 and 16. We show below that in the strong
Contrary to the consensus on the shape of the FS withiRp regime the BE contribution ta,,does not oscillate at all,
the planes, there is no agreement about the type of interlay@ecause oscillations in the self-energy and the DOS compen-
electronic transport in some ET séft5The beats of the sate each other. This surprising result holds even if there is
quantum magnetic oscillations observed %+ (ET),l3, 8 no 3D FS. Small oscillations ofi(B) (of the order ofiQ)
—-(ET),IBr, and some other organic conducfotdestify in  strongly affect the shape af,(B) and amazingly split the
favor of coherent(dispersivg transport across the layers, peaks only ifu(B) has an inverse sawtooth profile. This is in
which Imphes a Wal‘ped Cy|indl’ica| 3D FS due to the inter- Sharp contrast to the case of 3D ConductorS, WW&) is
layer dispersiore(p,). The absence of beats as well can befixeq at the Fermi levek;. More precisely, in this paper we
attributed to the smallness of the warping. There is an alterprove analytically thatl) the BE term ino,, does not oscil-
native view that in some ET salts the interlayer transport igate in the strong 2D regime, and the oscillations are solely
incoherent and there is no 3D EFSExperimental tests of que to quantum transport, both for coherent and weakly in-
thIS pOint within the standard fel’miology piCture were donecoherent interlayer e|ectr0n hopp"f@) we exp'ain the ex-
in Refs. 6 and 7. The results have shown that moshperimental observations in the" salt that the SdH oscilla-
organic conductors have a 3D FS byt"-(BEDT  tijons are(i) proportional to the magnetization derivative
-TTF);SKCH,CF,S0; (8" salf) presumably does not. It dis- B2dM/dB,1? and (i) display thermally activated behavibk.
plays an incoherent interlayer transpaior which the dis-  (3) We found a strong effect of the chemical potential oscil-
persione(p,) and 3D FS have no meaning, since the inter-|ations ono,, and predict the peak-splitting effect in the case
layer tunneling does not preserve the energy of interlayef(B) has an inverse sawtooth shape. These results are ob-
hoppinge. This is a generalization to the caBe* 0 of the  tained on the basis of Eq10) for the SdH conductivity
definition, adopted in Ref. 11, that incoherent tunneling doegicross the layers valid, as it is shown in Appendix A, both
not preserve the momentum. We assume belowdhatdis-  for the coherent and weakly incoherent interlayer hopping.
tributed with the density of staté®OS) g(e). In terms of the

g(e) both cases of the coherent and incoherent electron mo- !l BASIC EQUATIONS FOR THE COHERENT
tion across the layers can be described within the unified AND WEAKLY INCOHERENT INTERLAYER
theoretical approach, as will be shown below. In the coherent CONDUCTIVITY

case the DO§)(¢) can be calculated exactly. In the incoher-  The calculation of the conductivity across the layers dif-
ent case the shape of this function is basically unknown, bufers for coherent and incoherent ca8&3he coherent case
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implies a 3D FS with the dispersion across the laydps).
The corresponding velocity is,(p,) =d=(p,)/dp, and the

conductivity o, is given by the standard Kubo formula.

Written in terms of the Green functio®,(E)=[E-E,
-3(E, )] it yields®

2he? d f
== vi(n) f ;E[Im G,,(E)]2<— ‘9—>, (1)

Tzz= "y JE

n

where »=n, p, is the Landau state anél, is the Landau
energy spectrum

E,=hQ(n+1/2) +&(p,), (2)

V is the volume,f(E) is the Fermi function, an&(E, ») is
the self-energy. In the incoherent case the momeryliis

not preserved and the Kubo EQ) is inappropriate since the
energy of the interlayer hoppingis itself a quantum number

distributed with the DOSy(e). The conductivityo,, in that
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e(p,)=tcodap,/#). The corresponding DO§(¢) and the
velocity v,(¢e) in this model are

gle) == (- ¢?) ®

ve) = ;j(tz - )2, 9)

The Kubo Eq.1) now takes the form

_ue? : - 2]
T2= % JdEdsg(a)vZ(s)[lm Gn.(E)] E)

(10

Equation(10) is written in terms of the energy and formally
does not require a conservation of the momenymThis
provokes a natural question concerning the applicability of

case is prOportional to the tunneling rate between the adj@q (10) to a more gener&incoheren} case when both the

cent layerg?®1!

DOS andv?(e) deviate from the simple form of Eqe8) and

To calculate it, we take the single particle tunneling g) More precisely, the question is, does Ef0) work at

HamiltonianH, between the adjacent layers in the form

He= >t (). )

77’

least for the weakly incoherent interlayer electron hopping?
The analysis of this point done in Appendix A gives a posi-
tive answer.

It is shown in Appendix A that in the limif7>1, nec-

Here () andy;(n') stand for the creation and annihilation essary for the quantum oscillations, and under the condition

electron operators in the upp@r and lower(l) layers in the

of the weak incoherence, only states withe’ contribute

Landau stater. The tunneling matrix elements satisfy the into Eq.(6) for the conductivity which takes very much the
conditiont,,,,=t,, and the current between the layers can be>ame form as that in Eq10)

written as follows*!
e
| = . 2/ |t,7,,,|2f [f(E-eU) - f(E)]im G,(E)
mn

XIm G, (E - eU)dE, (4)

U is the voltage between the layers. The conductivifyis
given by the derivativ¥

_afa
T2z A(dU)U:o ©

and takes the form
e%a of
0= r > |t,,,,,|2f (— &—E)Im G,(B)ImG,,(E)dE.
77

(6)

Ais the area of the layers aiads the distance between them.

Comparing this equation with the Kubo E@l) we see a
similarity with the principal difference in that in E¢g) there

is a double summation over the Landau quantum numbers

Another difference is that in the coherent cagen, p, and
the spectrum is given by E@2). In the incoherent case
=n, ¢ and

E,=hQ(n+1/2) +e. (7)

0= %‘% f g(s)|ts,s|2(— %)[Im Gh.o(E)PdEde.

11

The weak incoherence means that neither the intralayer scat
tering nor the interlayer hopping cannot mix Landau levels
with different indicesn in the quantum limitQr>1. The
latter also implies that the width of the DQfe) (i.e., the
typical value of the hopping integralsis much less than the
Landau levels separatiofi(). Under these conditions it is
reasonable to approximate the tunneling matrix elements by
(12

t77:7/’ = ta,a’ nn’ -

Comparing Egs(10) and(11) we see that they become iden-
tical if one takes into account that the velocitye) in the
incoherent case is determined by the diagonal tunneling ma-
trix elements only

Its,cla
N2

vle) = (13

We arrive therefore at the important conclusion that @Q)
is valid both for coherent and weakly incoherent cases. In the
first case the momentumy is preserved and there is a 3D FS

in the system. The DOS and the veloci§(e) are functions
of p, in that case. In the incoherent case the D§) is a

In the coherent case for the model taking account of onlynontrivial function of the hopping integrats ., anduv,(¢) is
nearest layer hopping the dispersion across the layers &so related to them by E@13).
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lll. SDH OSCILLATIONS 2aripe
Ip=fdsg(s)ex . (18)
Using the results, obtained in EqgA11) and (A12) in hQ

Appendix A, we can rewrite Eq10) in the following form:

The irregular layer-stacking produces peaksgia) which
o d4E . alike the intralayer scattering yield a Dingle-like exponents
J in 1,.21 Magnetic breakdowhand superconductivi&f modu-
=R - 1)PN —AE|-—], (14 p . . .
u=ooRe 2 (-1) ZZ(p)J 21 ol )< aE)’ (14 late the factorl , too producing effects in the scattering rate
which will be discussed elsewhere.

whereo,=€2®/ VP, (P is the flux through the sample and ~ Using the conditionfdeg(e)=1 and the summation rule

p=—

dy=2m#hc/eis the flux quantum The other quantities in Eq. o h
(14) are N S) = — 1)PgIPx 5= sinh\ 19
Sk 9) p:E_x( JPe " cosp cosh\ + cosé (19
5 2mipe . . .
N,{p) = [ deg(e)vy(e)ex P b (15  one can rewrite Eq17) in the integral form
1 1
== f deg(e)SA, (E,e)] (20
2mipE 1 27|p| 7(B) 1
Ay(E) = ex + Ro(p,E). -
AQ J\Im3(E)| #Q [N(E)=27/Q7, 8E,e)=2m(E+¢)/7Q]. Combining Egs.

(16) (19), (20), and(14) we can write the SdH conductivity as a
sum of the Boltzmanr(og) and quantum(og) terms o,

The function Ry(p, E)=exp(—2#|p|[Im(E)|/#Q) general- =og+0q, Where
izes the Dingle factor to the case of the energy-dependent dE
self-energy>(E). The factorN,/p) is determined by the UB:GOJdS_g(S)U§(8)<
DOS g(e) and valid both for coherent and incoherent inter- ™
layer electron hopping. The functioh,(E) was calculated ; .
provided thatX(E) depends only on the energy which is _ E 2, [ 9F\2m 9
always the case for large LL numberE/AQ> 1, so that Q= Uof ds;g(s)vz(s)(ﬁ)EKSD\’&(E‘F’)]'
S(E,n)=3(E). The inverse scattering time 4(E) (22)
=|ImX(E)|/# in the self-consistent Born approximation
(SCBA) is proportional to the total DOS, i.eN(E)/N(0)  In the g” salt the strong 2D regime @ <#/71y<A()
=70/ 7(E),}"18 where N(0) is the DOS for the 2D electron holds*** This implies that one can puts=A(E)
gas andr, is the intralayer scattering time. The oscillations =27E/%€) in Eq. (20) which becomes

- j—;) 9\, 8(E,e)], (21)

of the N(E)/N(0) for the arbitrary layer-stackinfarbitrary E _
- S NA) = 1. 23
g(e)] and the corresponding oscillations of thg {E) can (B)SNA) =1 23
be presented as a series of the following fdfin: Equation(23) has an important consequence. It means a can-
cellation of the oscillations in the Boltzmann tersg, and
* ; for o,, we have
2mipE
70 _142ReS (- 1)pRD(p,E)Ipexp<7T—p). “
o=, | —(=—= | 1-N—S(\,4) |, (24)
(17) m\ JE )N

_ 2 _ )
Here, as in Refs. 15 and 16, we adopt that electrons scatt%‘lorzereaf_UO(UZ)TO andio=2m/ (17 The average of the ve

only within the layers and the interlayer hopping is indepen- ity squared is given bf('v§>=fd8g(s)v§(s). The functipn
der¥t of scatteringy. This permits us toystudypgiffgrent reg?meg‘o’?/ dAS(\,A) has sharp peaks at the H,=Q(n+1/2) in

within the one approach: @=#/7, (Ref. 15 and 27t (e casé\o<1. Under these conditions, cAsE,)~-1 and
<#/Q.18 In the case 2t<#h/m<#Q, which we call the Eg. (23) can be written ag = \q coth(\/2), which has only
strong 2D regime in what follows, the hopping integrals arethe one root = (2xo)*'2 Finally, we obtain(see Appendix B
very small and the system, in fact, is nearly two-dimensionalfor detaily

The validity conditions of the SCBA in this case are the same dE/  of
0227 O-TJ

as those established in Ref. 20 for the 2D case. Namely, the —(— E)H +\\o/2N(r,E)], (25)
T

random impurity potential correlations must decay at the
spatial scale much less than the magnetic length \\here
=(helcB)Y2. The strong 2D regime implies as well the inco-
herence as it was defined in Ref. 10 since the tunneling time v
hlt> 19 and many intralayer scattering events occur before N(»,E) = . > (n+1/2 —~E/HQ)2 + 12 (26)
the electron hopping to the neighboring layer. =

The layer-stacking influences the(E) through the factor andv=12\q/27=1/\7 7, We conclude, therefore, that the
I, in Eq. (17), oscillations ina,, in the strong 2D regime arise from the

o0
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guantum term only, which cannot be obtained using the BE 20
approach. In the opposite limit,2>#A(, =1, the quan- 17.5
tum terma? gives small corrections to the BE oscillatiog 15
term in o, In the dirty caser>1 andogcexp(-\) <1. 15 5
For the temperatur@>*#/ 7, the oscillating part of the w10
conductivity Eq.(25) becomes -
hQ E,—u 5
~ cof Zn M
Tyy (rt4T§n‘,cosh ( = ) (27) 5 -
_—
where =0,/ \7 Q1. The sharply peaked function in the 0.25 0.3 0.35 0.4 0.45 0.5
right-hand-sidgrhs) of Eq. (27) is well known. It describes (@) B
the quantum magnetic oscillations of the ultrasound absorp- 10.15
tion in metalst* Under the conditio:Q)/T> 1, the conduc- A /
tivity 7, at the maxima(i.e., whenE,=u) is given byo,, 10.1 / /
=g;hQ/4T. At the minima(i.e., when the chemical potential 10.05 /
u falls between the Lhthe conductivityo,, is exponentially o 10 / / /
small: o,,=0:hi Q1 4T exd —(hQ—Eg)/ T] (Ey is a position of / / / /
the u between the L)L Such behavior of the,, was found 9.95 / / /
in the B salt at fields 20-60 and temperatures 1—4 R At 9.9 V4 /
T<hl7y one can approximate-of/JE) by 8(E-u), to ob- 9.85 -
tain 0.25 0.3 0.35 0.4 0.45 0.5
_ sinh2771) o8 ) °
T2z O.tCOSI'(Zﬂ'V) +cog2mulhQ)’ FIG. 1. The SdH conductivityEq. (28)] X=o,/B)/0; and the

. ) . . . chemical potentia¥=u(B) as a function of the magnetic fielth
This regime is more appropriate to the experiments of Refarpitrary unitg. The x(B) has a shape of the direct sawtoge.
12. The magnetization oscillations in a layered 2D electronsy) with x~E; in the rhg.

gas can be described by the sum

) IV. CHEMICAL POTENTIAL OSCILLATIONS
. a1,
expl— zwyp)sm( ﬁgp>_ (29) AND THE PEAK-SPLITTING EFFECT

P
P

M=Mo
=1 . Ly
? The chemical potential in all the above results enters as a

Neglecting small corrections of the order ®fpu<1, we  parameter. In real systemgB) is an oscillating function of
can establish a relation between the SdH conductivity of EqB, depending on the dimensionality, the shape of the FS and

(28) and the magnetization other parameters. The inverse sawtooth dHVA oscillations
. observed in thgg” sal? implies a fixed value of(B) in this

Ty 29 M salt. Theoretical considerations of the chemical-potential os-
:t ~AB %M_O' (830 (illations in 2D conductof®-2%show that the shape ¢f(B)

varies from the direct to the inverse sawtooth depending on
whereA=efi/ mmcu. SinceAB=#/mu<1 one may con- the different types of reservoirs for the electron states due to
clude that the relative amplitude of the SdH oscillationsimpurities, 1D sheets of the FS, etc. The equationd) in
:6'}2/0} is much less than the relative magnetization amplitudehe 2D case is well known. Its oscillating pai{# ) is pro-
M/M,. Equation(30), known for 3D metals, was established portional to theM/M,, and is given by the sum in E¢9),
experimentally in thep” salf? and proved above for the which can be completed to yield
quasi 2D case.

In ET salts it is believed that 1D sheets of the FS play the Sin(27ru/h )

role of the electron reservoir, which stabilizes the chemical- m=Erx T arctar( o COS{ZW,u/hQ)>' (31)
potential oscillationg3-?°In Ref. 16, a semiphenomenologi-
cal equation for IM(E) was used that has a nearly The sign(—) here stands for the direct sawtooth drd) for
E-independent solution for some strengths of the model resthe inverse sawtooth. The amplitude of these oscillations is
ervoir. The authors gave a thorough numerical analysis of thef the order of thefQ which is small compared with the
SdH conductivity in the 2D regime for coherent electronFermi energyE;. Combining Eqs(28) and (31),we studied
hopping across the layers in theapproximation(7 (E)=T').  numerically how the shape of the chemical-potential oscilla-
The mapproximation means that EQR3) is invalid andr  tions influences the peaks of the SdH conductivity. The re-
=I"in Egs.(21) and(22). In the strong 2D regime, this sim- sults are shown in Figs. 1 and 2. We consider three cé9es:
ply leads to the redefinition of the; and v in the above the fixed value of the chemical potentiéi;) the direct saw-
equations:oy=or/m(1+y7/QI') whereor=0, with 7p=I",  tooth shape ofu(B) (Fig. 1); and (iii) the inverse sawtooth
v=1/QT. shape ofu(B) (Fig. 2). Although the relative amplitudes of
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20 factor,N,Ap), defined by Eq(15) was introduced. This fac-
17.5 tor, contrary to the,, enters only to the SdH conductivity
15 Eq. (14).
12 .5 In the coherent case the DOS is given by B).and both
w10 factors can be easily calculated,=Jo(27tp/%Q) and
75 N,Ap)=a’t )/ 27hply(27pt/ Q). Here J,(x) is a Bessel
5 function. Substituting these factors into Eq&4)—<17), we
. recover the results in Refs. 15 and 16. In the strong 2D
' J L regime the conductivity across the layers is proportional to
0.25 0.3 0.35 0.4 0.45 0.5 the aT:cr(J(vﬁ)ro. In the coherent case the average of the
(@) B velocity squaredv?)=[dege)v3(e) is easy to calculate. In
10 .15 ~ the strong 2D regime it equals ¢o§>=1/2(at/ﬁ)2. The same
101 \ result holds also for the incoherent case if the matrix ele-
: \ \ \ A ments in Eq(13) independent of the enerdy,=t. In gen-
10.05 \ \ \ \ eral, under the conditions of irregular layer-stacking, some
> 10 states in the DO$(e) can be localized. If all the states are
9 95 \ \ \ \ localized ther(v?)=0. Correspondinglyg,=0 and there is
5 9 \ \ no conductivity across the layers. On the other hand, if
’ N \ (v3#0 the quantityo,— % when 7,— . Physically this is
9.85 because the intralayer scattering is the only channel of scat-
0.25 0.3 0.35 0.4 0.45 0.5 Jo oD
(b) B tering in our model and switching it off makes the system an

ideal conductor. All the previous theori€3>16display the
FIG. 2. The same as in Fig. 1 bui(B) has a shape of the same behavior in the limity— .

inverse sawtooth. Localization and incoherence effectively change the hop-

ping between the layers. Quantitatively these effects are de-
the chemical potential oscillations are small, their shapesermined by the(v?)=[deg(s)v3(e) which is difficult to cal-
have a strong impact on the shape of the SdH peaks. Thaulate in general. Qualitatively, the effect can be estimated as
peaks are split in cas@i). Therefore the shape of the SdH foliows. In the strong 2D regime the inequalityr<7/ 7,
peaks and the type of the functiq{B) are correlated. Al jmplies that a large number of in-plane scattering takes place
figures are drawn for the same values of the parameters, bgkfore the interlayer hopping. This, as was shown in Ref. 30,
have different peak widths. We conclude, therefore, that thg,akes the hopping time effectively larger by the facor
shape of the function(B) also influ_ences the peak Width. =fi/tr,>1 and the quantitfv?)=1/2(at/#)? by the factor
The narrowest peaks are for the dllrect sawtqm(B). (Fig. 2 smaller than in the coherent case.
1), and broadest peaks are for the inverse sawtdeth 2), In conclusion, we have shown that in the strong 2D re-
compared to theunshown case of a fixeds(B). The reason gime the quasiclassical Boltzmann contributionotg does

for the peak-splitting is as follows. The peaks occunif not oscillate and SdH effect is entirely due to the quantum-

=7:Q(n+1/2). This condition in terms of the variablg . L .

_ _ : transport mechanism. The,(B) minima display thermally

=tanmx, wherex=n+1/2-E;/%(}, yields near each peak the tivated behavi nd.o B2dM/dB i t with

equation[(e’+1)(1+y?)-2+2]y=0. For the direct sawtooth aCtVated benaviorana,,> Lt N agreement with ex-
periments on thg”. We predict a strong impact of the small

+), this equation has only one real rogi=0 and two . ! e .
(+) d Y ol chemical-potential oscillations on the shape of peaks in

imaginary rootsy, ;= +i. For the inverse sawtooth, there are , - A
three real rootsyylzo v, 5= £[(3-€")/(e’+1)]*2 This re- 0,4B). A detailed description and generalization to the mag-

sults in three peaks: one at the LL, and two symmetric satDetic breakdown will be published elsewhere.
ellites, as in Fig. 2. The peak-splitting effect is less pro-
nounced for largerv. For €">3 only one root,y,;=0,

survives, but this is irrelevant to the present casel. One ACKNOWLEDGMENTS
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APPENDIX A
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Y

- . fle-e)=7—77— (A9)
Substituting Eq(12) into Eq. (6), we have (s -& ) vy
ea of hd
T22= 4 A 9(e)g(e e, ( (9_E)M(E’8'8,)dEd8d8,’ with y=(2/Q7). In the quantum limit)7> 1 the parameter
(A1) y< 1_ is small and one can approximdatge—¢’) by the &
function
where
fle—¢')=mhQde-¢). (A10)
M(Es,&’) :2 Im G, .(E)Im Gy,,./(E). (A2) " This means thaM(E,e,e’) < 8(e—¢') and only a singular
pointe=¢’ contribute into the conductivity,, in the limit of
Using the identity interestQ)7>1. From Eq.(6) in this case we have
- ea of
> JE-e-haQ(n+1/2)] 0= g(e)lt,.| (— —)M(E,s,s)dEds. (A11)
= hA 9E
1 o i27p(E - &) Here the functionM(E,¢,¢) is given by Eq.(A2) for the
=—Re > (- 1)pexp{—], (A3) coinsiding arguments=¢’. For this case, after the calcula-
- hQ p=—c A tion of the integralA5), it can be also written as a sui4)
we obtain with the
_m p(E*— ) ~|plv (1 2mpl}
M(E,s,e) = E ReE (-DPTy(Eee’).  (Ad) Pp(Eee) =3 eXP{ZH 0 —* =20
) ) (A12)
The functionl",(E,&,&') is given by the integral
) Substituting Eq.(A12) into Eq. (A1l) we can discard the
Ip(E.e,8") difference betweelt and E* because the steady part of the
% 12 exp(2mipx/iQ) :?e_E(E)_ gi\:]esquugt(gshift to the rIIZ(;.-)rmi ener@}f. hThc;_osciI-_
= . 2 o2 ations in the are smooth because of the dispersion
L [(E*=e=x?+P[(E*- & —-x)?+ Vz] relation giving the R&(E) as an integral of théoscillating
(A5)  imaginary part In®(E). The amplitude of the oscillations in

Here we denoter=|ImX(E)| and E*=E-ReX(E). The
poles at the complex plane which has the function in the

the ReX(E) are much less thaf() in the limit Q7>1 and
can be neglectetsee also Ref. 15 in this connectjon

integral(A5) are of the first order i # ¢’ and of the second

order fore=¢’.

e#¢&’, we have

I'(E,e,e") = mv eXp{Zﬂ'

Therefore, the calculation of the function
I',(E,e,e’) differs for the cases=¢" ande # ¢'. In the case

(ipE;;p'V)]FV(p,s,s'),

APPENDIX B
Equation(24) for o, in an explicit form reads

3 fd_E(_ﬂ>[1_
Oz2=0; Ju dE

1 + coshh cosA
%(cosh\ +cosA)? |

(AB) (B1)
where we denoted The quantity\(E) satisfies Eq(23) which takes the form
2mipe 2mipe’ N = sinh\ -
1 exp(— hQ ) ex;{— Q) ) %cosh\ + cosA (B2)
F'(p,e,&e') = — + : . —
e—¢g'| e-¢&-iv e—¢g' +iv Using the identity

(A7) 1 i v _ sinh 27y

Therefore, e=¢’ is a singular point for the function ;p:_m (n+a)2+ 12 cosh 2rv— cos 2ra (B3)

I'n(E,e,e’). Substituting Eq(A6) into Eq. (A4) and using

the summation rul€19), we have
f

M(E,e,e’) = 202

(19) and

e ) gu (B o)+ 5% (Ee)].

(A8)
Here the sumS* (E,e)=9\,8E,—¢)] is defined by Eq.

we can rewrite the second term in the brackets in(Ba) as
follows:

1 + cosh\ cosA
(cosh\ + cosA)sinhA

1+ coshk cosA
(cosh\ + cosA)?

N(v,E),

(B4)

where
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* =-1. Equation(B2) can be written in this limit as

N(v,E):12< 1” )2 (B5)
+V2

It has only the one roak = (2\o)¥?< 1. Taking all this into

and v=\/27=(Q7)~. Since we are interested in the limit account we can rewrite E¢B1) in the following form:

A <1 at whichN(»,E) is a set of sharp delta peaks centered dE/ df —
at the Landau level§, we can use the relations cA$E,) 0= Tf ?(— E)D +V\/2N(v,E)].  (B7)
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