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The possibility of viewing the Abrikosov vortices arranged into two-dimensional triangular lattices in type-II
superconductors in external magnetic fields, as photonic crystals for electromagnetic waves, has been investi-
gated theoretically. Due to the Bragg diffraction on a periodic lattice, electromagnetic waves with wavelengths
corresponding to lattice spacings cannot propagate in the Abrikosov lattices with different dielectric constants
inside and outside the vortices. Conditions for obtaining effective properties of the Abrikosov lattices as
photonic crystals by changing of Ginzburg-Landau parameters and applied magnetic fields are clarified.
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I. INTRODUCTION

For many years, the properties of superconductors in the
external magnetic and electromagnetic fields at low tempera-
tureT below critical temperatureTc have attracted significant
attention from both theoretical and experimental viewpoints.
Since the microscopic mechanism of low-temperature super-
conductivity has been understood in terms of the Bardeen-
Cooper-Schrieffer(BCS) theory,1 more recently, the electro-
magnetic properties of novel high-Tc superconductors, such
as copper-oxide high-temperature superconductors(HTSCs)
and MgB2, have been broadly investigated.2,3 In supercon-
ductivity, magnetic properties are crucially important for ap-
plications because they determine the critical current and
critical fields other than electrical properties, such as zero
resistivity.

The classification of type-I and type-II superconductors
depends on the Ginzburg-Landau(GL) parameter. The GL
parameterk=l /j is defined by the ratio of the London pen-
etration depthl relative to the coherence lengthj. The Lon-
don penetration depths indicate the length scales in which
static magnetic fields can penetrate into superconductors,
while the coherence lengths indicate the length scales of
paired electrons inside the superconductors. In type-I super-
conductors withk,1/Î2, the complete diamagnetic Meiss-
ner effect is well known, which means that applied static
magnetic fields cannot penetrate into the superconductors at
a static magnetic fieldB below a critical magnetic fieldBc.
By applying stronger magnetic fieldsB.Bc, superconductiv-
ity is destroyed, and thus it disappears. In type-II supercon-
ductors withk.1/Î2, on the other hand, stronger applied
magnetic fields can penetrate into the superconductors in re-
gions called vortices. States inside and outside the vortices
are normal conducting ones in the vortex cores and super-
conducting ones with circular supercurrents around the
cores, respectively. The vortices with radii ofj appear at
Bc1,B,Bc2, where Bc1 and Bc2 indicate the lower and up-
per critical magnetic fields, respectively, and then they take a
regular arrangement. This regular arrangement of vortices is
called an Abrikosov lattice.4 The Abrikosov lattices are com-

posed of vortices with two-dimensional triangular lattices.
The behavior of superconducting vortices in the external
magnetic and electromagnetic fields at microwave frequen-
cies is a well-studied field.5–7 The interaction of magnetic-
field components of microwave electromagnetic fields with
supercurrents outside the vortices leads to the very strong
absorption of microwaves atT,Tc in superconductors, in
small magnetic fields.6 This phenomenon, known as a low-
field microwave absorption(also called LFMA) signal has
been widely used as one of the most sensitive tests for su-
perconductivity, in the search for new unconventional super-
conductors, such as fullerides,6 high-Tc cuprates,7 and or-
ganic superconductors,8 and this method allows us to study
in detail such features of vortex states as the vortex phase
diagram7 or p-junction, which causes paramagnetic Meiss-
ner effects in superconductors.9,10 It should be noted that
although electromagnetic fields penetrate only into a very
thin layer of the London penetration depth in bulk supercon-
ductors, in realistic powdered or highly porous supercon-
ducting samples, the penetration of electromagnetic waves is
quite sizable, so that their absorption by the vortices, which
oscillate with the frequency of microwave fields and dissi-
pate the microwave fields due to friction caused by the pin-
ning of vortices, is quite a sizable effect. Despite this interest
in microwave interaction with vortices, to our knowledge, no
studies have been performed on the Abrikosov vortex lattice,
i.e, on the periodic arrays of vortices. Because the dielectric
constants inside and outside the vortices are slightly differ-
ent, the Abrikosov lattices can also be viewed as periodic
electromagnetic structures or as photonic crystals.

On the other hand, photonic crystals with dielectric peri-
odic structures have photonic band gaps(PBGs) in which
electromagnetic waves with certain frequencies cannot
propagate in the photonic crystals due to the Bragg diffrac-
tion, which for the case of the largest possible PBGs should
take place at the same wavelength as the Mie scattering in
the same system.11,12

Moreover, the periodic lattices of metallic photonic crys-
tals composed of normal(non-superconducting) metallic
spheres or wire meshes embedded into dielectric matrices
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have also been widely studied.13–15 It has been found that a
metallicity gap exists at a frequencyv below a certain cutoff
frequencyvcut, which is the analog of a modified effective
plasmon frequency, and this gap at 0,v,vcut does not de-
pend on the periodicity,13,14 contrary to PBGs. Atv.vcut,
electromagnetic waves can propagate in metallic photonic
crystals which have PBGs at proper higher frequency re-
gions, despite the existence of losses. In this study based on
the two-fluid model, we will find both a metallicity gap and
a dielectric PBG in a two-dimensional superconductor with a
periodic array of non-superconducting cylinders(cores of
vortices) surrounded by circular superconducting currents.
Again for simplicity, we will neglect the interaction of elec-
tromagnetic waves with supercurrents of vortices, as men-
tioned with respect to LFMA, since at the high frequencies
considered here for wavelengths comparable to the typical
periodicities of Abrikosov lattices, this interaction becomes
much smaller than that at microwaves.7,16 The existence of
point and linear defects in photonic crystals with PBGs
causes light localization and guiding, respectively.17,18 For
many applications, it is important to achieve the tuning of
properties of photonic crystals under the influence of exter-
nal factors, such as temperature and electric fields. There-
fore, we have proposed various tunable photonic crystals in-
filtrated with functional materials, such as conducting
polymers and liquid crystals, whose optical properties can be
controlled by electric fields and temperature.19,20 The Abri-
kosov lattices can be another interesting case of tunable pho-
tonic crystals because of the well-known lattice spacings of
vortices that are controllable by applied magnetic fields.

Therefore, we will investigate here the condition under
which Abrikosov vortex lattices can be viewed as photonic
crystals, that is, the condition under which the PBGs may
open in the spectrum of electromagnetic waves propagating
along two-dimensional type-II superconductors in an exter-
nal magnetic field normal to their planes. Lattice spacings of
Abrikosov lattices are of approximately 100 nm order. PBGs
in dielectric photonic crystals appear for electromagnetic
waves with wavelengths comparable to lattice spacings. We
investigate the conditions for achieving effective PBG prop-
erties of photonic crystals in the Abrikosov lattices by the
modulation of the GL parameters and applied magnetic
fields. We will use for simplicity the two-fluid model in
which both normal conducting and superconducting elec-
trons exist in superconductors. Although it is known that this
model does not provide a very good approximation, we be-
lieve that it may correctly capture the propagation of electro-
magnetic waves in the periodic lattices of vortices. At zero
temperature, all of the electrons outside vortices are super-
conducting ones, although the electrons inside vortices are
normal conducting ones. The Abrikosov lattices in supercon-
ductors with much larger thickness normal to their planes
than the wavelengths of the electromagnetic waves can be
seen as two-dimensional photonic crystals. In these two-
dimensional photonic crystals, there exist the classifications
of the transversal electric(TE) and transversal magnetic
(TM) modes in which electric fields are parallel and perpen-
dicular to the two-dimensional planes, respectively. In this
paper, we treat only the TM mode for electromagnetic waves
propagating in the two-dimensional planes.

II. THEORY

In order to obtain the photonic band structures of Abriko-
sov lattices in the TM mode, we start with the following
two-dimensional differential equation for the electric field
Ezsx,yd.

]2Ezsx,yd
] x2 +

]2Ezsx,yd
] y2 +

v2

c2 eef fsx,y;vdEzsx,yd = 0,

s1ad

where

eef fsx,y;vd = eH1 −
vps

2 sx,yd
v2 −

vpn
2 sx,yd

vfv + igsx,ydgJ . s1bd

The effective dielectric constanteef fsx,y;vd is obtained
from the phenomenological viewpoint of the two-fluid
model.21 vpssx,yd andvpnsx,yd indicate the plasma frequen-
cies of superconducting and normal conducting electrons, re-
spectively, andgsx,yd indicates the damping term in the nor-
mal conducting states.e indicates the dielectric constant of
superconductors.vpssx,yd andvpnsx,yd are

vpssx,yd =Înssx,yde2

me0e
=

c

lsx,ydÎe
s2ad

vpnsx,yd =Înnsx,yde2

me0e
, s2bd

wherenssx,yd andnnsx,yd indicate the superconducting and
normal conducting electron densities, respectively, and
lsx,yd indicates the London penetration depth. A sum of
nssx,yd andnnsx,yd is constant, that is,nssx,yd+nnsx,yd=n.
At zero temperature, in this simple model, the electron den-
sities inside and outside vortices arenssx,yd=0, nnsx,yd=n
and nssx,yd=n, nnsx,yd=0, respectively, and therefore,
vpnsx,yd and vpssx,yd inside and outside the vortices, re-
spectively, are the same, whilevpssx,yd andvpnsx,yd inside
and outside the vortices, respectively, are zero. Atv
@gsx,yd, eef fsx,y;vd is the same inside and outside the vor-
tices because one can neglectgsx,yd for such high frequen-
cies. In other words, there are no differences, for electromag-
netic waves at high frequencies are not affected by the
difference between normal and superconducting states in
metals, which is clearly physically correct for frequencies
that are larger than the two-dimensional superconducting
gaps. The effective difference ineef fsx,y;vd inside and out-
side the vortices, which is necessary for creating the dielec-
tric index contrast in dielectric photonic crystals, can thus
appear only at low frequencies. With respect to applications,
moreover, photonic crystals without absorption are desirable,
that is, the imaginary parts ofeef fsx,y;vd should be small,
and one should choose a superconductor with sufficiently
low losses. Althoughg is still not zero in realistic metals, we
can assume that in a certain frequency range, i.e.,v
!gsx,yd, the third term in Eq.(1b) can be neglected, since
vpn/g=vp0/g!1 is assumed inside the vortices atv.vp0.
We will show below that such parameters can be found in
realistic superconducting metals, and then, the dielectric con-
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trast appears between superconducting and normal conduct-
ing states.

eef fsx,y;vd = 5 e sinside vorticesd

eS1 −
vp0

2

v2 D soutside vorticesd,
s3ad

where

vp0 =Î ne2

me0e
=

c

lÎe
. s3bd

The effective dielectric constant outside the vortices is the
simple Drude model, while that inside vortices is constant
because of frequencies being sufficiently low. We carry out
the estimation ofe=10 inside vortices, and the frequencies
nearvp0, e.g.,v.vp0, must be considered for the effective
difference of eef fsx,y;vd inside and outside the vortices.
Thus, atv=2vp0, the dielectric contrast is quite sizable, i.e.,
De=e−eSC=10−7.5=2.5, whereeSC indicates the dielectric
constant in the superconducting states.

eef fsx+Rx,y+Ry;vd=eef fsx,y;vd is periodic with respect
to the lattice vectorRx,y generated by the primitive transla-
tion, and it may be expanded in a Fourier series onGx,y, the
reciprocal lattice vector

eef fsx,y;vd = o
Gx,Gy

eef fsGx,Gy;vdexphisGxx + Gyydj. s4d

Using Bloch’s theorem, we may expand the electric field as

Ezsx,yd = o
Gx,Gy

EzsGx,Gydexpfihskx + Gxdx + sky + Gydyjg,

s5d

where kx,y is the wave vector indicating the directions of
electromagnetic waves. By inserting Eqs.(4) and(5) into Eq.
(1a), we obtain the matrix eigenvalue problem with respect
to the frequencies.22 Therefore, the photonic band structures
of Abrikosov lattices can be obtained by solving the frequen-
cies at certain wave vectors.

In type-II superconductors, vortices with radii ofj appear
at Bc1,B,Bc2. Since Abrikosov lattices are triangular lat-
tices, BÎ3asBd2/2=F0 is satisfied, whereasBd and F0

=h/2e indicate the lattice spacing of triangular lattices and
the fluxon, respectively. Therefore, the lattice spacing de-
pending on the magnetic fields is

asBd =Î2F0

Î3B
. s6d

The upper critical magnetic field and the coherence length
satisfyBc22pj2=F0, and the upper critical magnetic field is
represented asBc2=Î2kBc, where Bcs.Bc1d is the critical
magnetic field. At strong magnetic fields, vortices constitute
the Abrikosov lattices, and therefore, we investigate the
properties of photonic crystals in the Abrikosov lattices at
Bc,B,Bc2. Ratios of radii relative to lattice spacings and
normalized plasma frequencies are important for the calcu-
lating of the photonic band structures. They are represented
as

j

asBd
=ÎÎ3

4p
·

B

Bc2
=Î Î3

4Î2p
·

B

kBc
s7d

and

vp0asBd
2pc

=
1

k
Î 1

eÎ3p
·

Bc2

B
=Î Î2

eÎ3p
·

Bc

kB
. s8d

That is, the ratios of radii relative to the lattice spacings and
the normalized plasma frequencies depend onk andB.

III. NUMERICAL CALCULATION AND DISCUSSION

Figure 1 shows a schematic diagram of Abrikosov lattices
in type-II superconductors. A circle indicates the vortex with
the radius ofj, and a(B) indicates the lattice spacing. The
region embedded by dotted lines is the unit cell of triangular
lattices. Arrows indicate the directions of the electromagnetic
waves.G, M, and K indicate high rotationally symmetric
points in the first Brillouin zone in the wave vectors.

Figure 2 shows a photonic band structure atk=1 andB
=Bc. Vertical and horizontal axes indicate the frequencies

FIG. 1. Schematic diagram of Abrikosov lattices in type-II su-
perconductors. A circle indicates the vortex with the radius ofj, and
a(B) indicates the lattice spacing. The region embedded by dotted
lines is the unit cell of triangular lattices. Arrows indicate directions
of electromagnetic waves. TheG, M, and K indicate high rotation-
ally symmetric points in the first Brillouin zone in wave vectors.

FIG. 2. Photonic band structure atk=1 andB=Bc. Vertical and
horizontal axes indicate frequencies and directions of electromag-
netic waves, respectively. Shaded regions indicate the regions in
which electromagnetic waves cannot propagate in photonic crystals
in any direction. An arrow indicates a pseudo-PBG at the M point.
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and directions of electromagnetic waves, respectively.
Shaded regions indicate the regions in which electromagnetic
waves cannot propagate in the photonic crystals in any di-
rection. An arrow indicates a pseudo PBG at the M point. As
shown in this figure, cutoff frequencies exist due to plasma
frequencies, and an omnidirectional PBG exists between the
first and second photonic bands.

Omnidirectional PBGs are important properties of photo-
nic crystals. However, pseudo-PBGs in certain directions are
also valid as reflectors. Therefore, we focus our attention on
the omnidirectional PBG between the first and second pho-
tonic bands and the pseudo-PBG at the M point. The pseudo
PBG at the M point is valid for electromagnetic waves in the
G−M direction in Fig. 1.

In Figs. 3(a) and 3(b), we show the GL parameter depen-
dence of PBGs per midgaps, and the midgaps atB=Bc for
omnidirectional PBGs and pseudo-PBGs at the M point, re-
spectively. Black and white points indicate the PBGs per
midgaps and the midgaps, respectively.Dv and vc indicate
the PBG and the midgap, respectively. In type-II supercon-
ductors, the GL parameter isk.1/Î2,0.707. In Fig. 3(a),
Dv /vc decreases linearly with increasingk and becomes
zero at k,1.18, while vcasBcd /2pc decreases monotoni-
cally after becoming maximum with increasingk. In Fig.
3(b), on the other hand,sDv /vcdM and svcasBcd /2pcdM de-
crease monotonically with increasingk. That is, supercon-
ductors with small GL parameters, such as Nb withk=0.78
s0fKgd, are necessary in order to obtain effective PBGs.

As evident in Eqs.(7) and (8), both the ratios of radii
relative to lattice spacings and the normalized plasma fre-
quency decrease with increasingk. The decreases in the
former and the latter mean the increase in superconducting

regions and the decrease in the difference ineef fsx,y;vd in-
side and outside the vortices for frequencies on which we
focus our attention, respectively. This weakens the properties
of photonic crystals and renders the PBGs smaller. There-
fore, typical copper-oxide HTSCs withk,100, typical al-
loys with k,40 and MgB2 with k=36.3 s4fKgd are inad-
equate for obtaining effective PBGs.

In Figs. 4(a) and 4(b), we show the applied magnetic-field
dependence of PBGs per midgaps and the midgaps atk=1
for omnidirectional PBGs and pseudo-PBGs at the M point,
respectively. Black and white points indicate the PBGs per
midgaps and the midgaps, respectively.Dv and vc indicate
the PBG and the midgap, respectively. The critical magnetic
field is Bc=Bc2/Î2k,0.707Bc2. The applied magnetic field
is assumed to be in the range of 0.707,B/Bc2,1. In both
Figs. 4(a) and 4(b), Dv /vc and sDv /vcdM decrease linearly
with increasing B, whilevcasBcd /2pc and svcasBcd /2pcdM

increase linearly with increasing B. Particularly,Dv /vc be-
comes zero atB/Bc2,0.855. That is, small applied magnetic
fields are necessary to obtain effective PBGs.

As evident in Eqs.(6) and (8), lattice spacings and nor-
malized plasma frequencies decrease with increasing B. The
decreases in the former and the latter mean the increase in
the frequencies of interest and the decrease in the difference
in eef fsx,y;vd inside and outside the vortices for the frequen-
cies of interest, respectively. This weakens properties of pho-
tonic crystals and renders the PBGs smaller.

In photonic crystals, reflection peak frequencies in certain
directions correspond to the midgaps of pseudo-PBGs, that
is, it is possible to tune the reflection peak frequencies by
applying magnetic fields. By investigating the reflection peak

FIG. 3. GL parameter dependence of PBGs per midgaps and
midgaps atB=Bc for (a) omnidirectional PBGs and(b) pseudo-
PBGs at the M point. Black and white points indicate PBGs per
midgaps and midgaps, respectively.

FIG. 4. Applied magnetic-field dependence of PBGs per midg-
aps and midgaps atk=1 for (a) omnidirectional PBGs and(b)
pseudo-PBGs at the M point. Black and white points indicate PBGs
per midgaps and midgaps, respectively.
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frequencies, moreover, one can determine the lattice spacings
easily, which indicates that the applied magnetic fields can be
obtained by Eq.(6).

IV. CONCLUSION

We theoretically demonstrated the properties of Abriko-
sov lattices as photonic crystals. When the damping terms
are much larger than the plasma frequencies, the effective
difference in dielectric constants inside and outside the vor-
tices can be obtained for frequencies near the plasma fre-
quencies. Effective properties of Abrikosov lattices as pho-

tonic crystals can be achieved when both the GL parameters
and the applied magnetic fields are small. Moreover, it is
possible to obtain tunable photonic crystals depending on the
applied magnetic fields by using Abrikosov lattices as pho-
tonic crystals.
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