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We study the ground-state properties of the2Omodel for a system of spin-1 rotors on a simple square
lattice. We assume that the rotors interact via nearest-neighbor forces, the coupling characterized by a strength
parameter\. This many-boson model can be physically realized, for example, through a two-dimensional
configuration of Josephson junction arrays or superfltid in confined geometries. The formal and numerical
analysis of the model concentrates on a study of the strong correlations induced by the interactions. The
theoretical investigation is performed within a semianalgticinitio approach employing the theory of corre-
lated basis functions, on the variational level. In the past the formalism has been successfully applied for
guantitative analyses of spatial correlations in quantum fluids. In the present work it is formally adapted for
treating the @2) model. We express the ground-state energy by an appropriate functional in terms of the
reduced on-site density profile and of the site-site distribution function. Employing the familiar minimum
principle for the ground-state energy we construct two associated Euler-Lagrange equations which determine
the optimal correlated ground-state of Hartree-Jastrow type. We present solutions of these equations and
numerical results on various ground-state properties as functions of the coupling skeMgéhdiscuss in
detail the behavior of the density profile and of the site-site distribution function. We also report data on the
order parameter for the symmetry-broken ordered phase and on the critical sigfgtithe transition to the
disordered phase.
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[. INTRODUCTION plays a rich behavior due to the competition between the
kinetic energy portion and the potential energy contribution,
The Q(2) lattice model is of theoretical interest in quan- where quantum fluctuations of the rotor angle play the most
tum statistical physi¢sand as a suitable model to study important rolet2 For such a behavior the quanticity of the
phase transitions in a number of interesting materials exhibsystem is measured by a coupling paramatevhose value
iting order-disorder phenomerdaor instance, it may be in- depends on the relative weight of kinetic and potential en-
terpreted as a model for an array of interacting quantungrgy parameters. Of particular interest are therefore the prop-
rotors? Its Hamiltonian consists of two noncommuting erties of the correlated ground state of the model which de-
terms: a potential energy representing the coupling betweepend strongly on the strength of the coupling factor that
two-component spin vectors of unit length and a kinetic en-determines the magnitude of the quantum fluctuations. De-
ergy term that takes account of the rotational degrees of fregpending on the valug the rotors may more or less align and
dom of the rotors. As a second example, we may adopt themay form an ordered phase with spin-wave-like excitations.
O(2) model to describe the physics of Josephson junctionn contrast, the rotor orientations may be disordered in an-
arrays (JJAS>® or granular superconductd® which are  other coupling regime where the ground states are eigen-
composed of superconducting islands or grains coupled bgtates of zero total angular momentum and the excitations are
Josephson junctions. Such nets can be manufatwigd  quasiparticles. The order parameter characterizing the quan-
different geometries where the junction parameters can bim phase may be formally interpreted as a spontaneous
varied experimentally, at least to some extent. Another physimagnetizatior{or nonzero angular momentynif the model
cal realization of the model is liquitHe in restricted geom- describes a system of JJAs the physical interpretation is: we
etries such as porous glassesyhere the potential energy have an ordered superconducting phase or a disordered insu-
may represent a discretized form of the gradient energy terrfating phase with a superconductor/insulator phase
in the Ginzburg-Landau free energy of superfifiite favor-  transitior}® at a critical value of the coupling parameter. In
ing a state in which all parts of the superfluid have the saméhis case the order parameter should be better called a con-
condensate phase, while the kinetic energy term arises fromlensate fraction. Most of the theoretical studies on tk2) O
the time variation of the order parameter, i.e., from the phasenodel have used perturbation theory, mean-field thedty,
coherence. or the harmonic  approximatioi:®® Mean-field
At nonzero temperatures the behavior of th€Omodel  calculation$®-2° have given strong evidence that the system
is governed by the interplay between thermal and quantunin two spatial dimensions does not become ordered\for
fluctuationst! At very low temperatures the model still dis- =4.0 and for\ =6.0 in three spatial dimensions. However,
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these methods ignore or do not take sufficient account of theffects(Sec. IV). In Sec. V we report and discuss the results
strong site-site correlations and can therefore only providef our microscopic calculations on the optimal correlated
qualitative descriptions. Some studies explored the correlaground-state properties, in particular, on the one-body and
tion effects by using perturbation expansions in powers otwo-body densities, the energy, and the order parameter. The
the coupling strength,*® employed renormalization-group final section summarizes the results and concludes with an
theory? approximate numerical simulatiod$??or quantum-  outlook on further applications, extensions, and improve-

spherical approximatior#. The latter method gives a value ments(Sec. V). The Appendix collects some information on
A=2.43 for the critical coupling. Thus, the correlations {ne numerical procedure.

lower significantly the critical coupling strengit.=4 de-
rived in mean-field approximationt® Perturbation theory
truncated at third order predicts instead a v#lug=2.52.
To achieve an accurate enumeration of the critical data or, The quantum ) model defined on d-dimensional spa-
more generally, a quantitatively reliable study of the existingtial |attice is a special cas@=2) of the general chiral (1)

strong correlation effects as fqnctions of the coupling|attice model® Its dynamic behavior is stored in the
strength one should therefore refine these approaches or rgzmiltoniari®

sort to other more powerful treatments.

Il. MODEL DESCRIPTION

In the present work we study the correlation effects within Nog2 N
the framework of the correlated basis functig®BF) H=-\> —+ 52 Ajj cosgi - ¢;), (1)
theory?425 This powerfulab initio approach has been suc- i J¢ i

cessfully employed in many quantitative studies of Strongl}.’wherei and | refer to lattice sites. The sum extends oxer

correlated many-body syste_ms, notably homogeneous andi ttice points characterized by the set of phase ar(glesra-
homogeneous quantum fluids, but also lattice gauge mode grs) {@} With —7= ¢, < 7. Correlations between the phases

and spin latticed®-28 : . e
After a brief qualitative description of the(@) model in on the I{;\ttlce are induced by the two-bo(h}_te-sne poten-
tial vo(Nn; ¢, ¢)) =A(n)cod ¢ — ¢;) whereA(n)=A;; measures

mean-field approximation our investigation within the CBF . .
. : : the strength of the correlations and depends on the relative
theory begins with the construction of a correlated ground'distancm—r (1. For simplicity, we assume a simple square
. . . . —_ I_ ] y
state energy functional with respect to a set of trial many lattice and a short-ranged interaction, setti@)=4, A(n)

body states of Hartree-Jastrow type. In this context, we note . .
that{he CBF theory may be viewila% as a generalization of th:__l for .the four nearest nelghbor.A(n):O otherwse. The
familiar energy density-functional theory where the energydifferential operator i7/d¢;(7=1) is the canonical conju-
functional depends on the density profile. In the CBF theony@at€ Operator to the phase varialie It may be interpreted

the functional depends not only on the density but also on th@S theé number operator of excited quanta, the glumber of
site-site distribution functionmore generally, on the ele- COOPer pairs in JJAs, of the free field operater Hig;. The
ments of the reduced two-body density matriXherefore, ~Parameter(0=A<c) is the coupling parameter that can be
the CBF approach could be adequately characterized as&Perimentally variedto some extentin the case of granu-
pair-density functional theory. To find the best trial wave !&r superconductors. For these materials the strength param-
function of Hartree-Jastrow type we apply the familiar mini- eter is determined by the ratlo=4U/J with the charging
mum principle for the CBF ground-state energy functional.€n€rgyU and the Josephson couplidg o

The optimization procedure generates two Euler-Lagrange |f the strengthh is small, the system exhibits a second-
equations. They can be interpreted as a renormalized Hartréder quantum phase transition at sufficiently low tempera-
equation for the one-bodgon-site density profile and as a tures, at a critical coupling.. separating the ordered phase
renormalized Schrédinger equation for the two-basige- from the disordered phase..Th.e transition occurs because of
site) correlation function. To connect the latter quantity with Heisenberg’s uncertainty principle expressed by the commu-
the correlated trial ground-state wave function we perform 4ation relation—i a/dg;, ¢;]=-i4;. For small values ok the
hypernetted-chaitHNC) analysis that leads to a coupled set Kinetic energy term is small compared to the coupling poten-
of HNC equations. Ignoring the so-called elementary comdiial that ten_ds to make the individual phagsgscoherent on a
ponentstHNC/0 approximationyields a closed set of HNC Macroscopic scale. In contrast, for large values dfie op-
equations that provides an explicit expression for the relatiogrator +4/d¢; has well defined eigenvalues and the phgse
between the trial state and the corresponding reducel§ completely uncertain. This leads to sufficiently large quan-
density-matrix elements. Within this realization of the CBFtum phase fluctuations which destroy the long-range order of
theory numerical calculations are performed on the optimafhe system. While the disordered ground states conserve the
on-site density and the optimal site-site distribution functionSymmetries of the Hamiltoniafl), the Q2) rotational sym-

of the O(2) model. We then analyze in detail the solutions of metry (and the chiral symmetyyis broken under the trans-
the Euler-Lagrange equations and calculate and discuss tfi@mations{¢;— m~¢i} in the ordered phase. The symmetry
results on the optimal ground-state energy, the optimal ordefiolation may be measured by the order parameter
parameter, and the critical coupling strength. _

In Sec. Il we introduce the main features of the adopted My = (W|cos ¢y W)W Y) 2
O(2) model. We summarize briefly some mean-field resultsdefined as an expectation value with respect to the ground
in Sec. Ill, which are necessary to start the application of thestate of the systerfor by a thermal average at nonzero tem-
CBF theory for a quantitative investigation of correlation peraturel
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IIl. MEAN-FIELD THEORY

In order to get a qualitative view of the model properties
and to prepare the ground for starting the CBF theory we
employ mean-field theory in this section. This simple ap-
proach ignores, of course, correlation effects from the outset.

The many-body states of the Hamiltoniéh) are approxi-
mated by a product of unit normalized single-parti¢ba-
site) states of the form

N
WP, @2 - soN) = H U(gi). (3

The mean-field Hamiltonian is obtained by replacing the
coupling term between two lattice sites in the original Hamil-
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FIG. 1. Numerical results on the optimal order param#tgin)
for the ordered phase, in mean-field approximatids\ <\ .=4).

tonian by an averaged interaction involving only single-sitepashed lines show the results of perturbation theory in lowest order,

operators. We thus approximate
N N

1
52 Ajjcodei = ) — 2d(cos¢) 2 codg),  (4)
] i

whered is the dimension of the systed=2 in the present
study). The Hamiltonian(1) is therewith replaced by a sum
of single-site hamiltonians, with eigenfunctiorig(¢). They
can be determined from the Hartree equation

(92
)\(9_@2 + 2d M, cos ¢;

)%(‘Pi) = enn(@)).

(5

Given the solutiong,(¢;) and their eigenvalues, to Eq.(5)
the order parameteM,(\,T) and the energy per site
E(N,T)/N at temperature T can be calculated self-
consistently from the relations

HiMF‘//n(ﬁoi) == (

2 e_Ben< {/fn|COS (P| )

M, = (CoS ) = ———— , (6)
2 e_Ben
> e Pend | Hiel i)
EIN=(Hi,p) = —— : (7)
E e_Ben

with B=1/kgT. At zero temperature only the ground-state
eigenfunction contributes to the sums in E¢®.and (7). In
this case the ground-state energy per site is given by

2
EIN=~Nl7 glio + LMD, (@
where M, =(i|cos ¢|¢). Straightforward minimization of
this functional yields the optimal solutiofiy(¢)=constant
for the disordered phase witil,=0 and constant enerdy
=2N. The optimal wave functioy(¢) of the ordered phase
is a solution of the Hartree equation

Egs.(10) and(11) for A—0 and\ — \_, respectively.
(92

- ()\0—%2 + 2dM,. cos ¢;
Equation(9) is essentially a differential equation of the fa-
miliar Mathieu type that can be easily solved by a standard
iteration procedure. Figures 1 and 2 display numerical re-
sults, respectively, on the order parameter and the minimum
ground-state energy as functions of the coupling stremngth
in mean-field approximation.

At \=0 the system is exactly described by mean-field
theory because phase correlations are absent and the ordering
is perfect. Function/y(¢) is proportional to a delta function
S(¢), the order parameteévl, is unity, and the ground-state
energyE is zero. For increasing valuasthe ordering decays
gradually and disappears completely at @ineean-field criti-
cal valuex.=4. The energy per lattice site increases monoto-
nously in the ordered phase until the coupling strength
=4 is attained. The results merge smoothly with the constant
energy valueE=2N of the disordered phase. In the limt
— 0 low-order perturbation theory yields the correct results

M,=1-2\2\, E/N=\2x. (10)

They are well reproduced by the numerical mean-field re-
sults for sufficiently small parameter valugs For N — \.

)l/fo(ﬁpi) =&t @i) - 9

FIG. 2. Ground-state energy per lattice 88N as function of
coupling parametex, results in mean-field approximation. Dashed
lines indicate results of perturbation theory, EgE)) and (11) in
lowest order forx — 0 and\ — \_, respectively.
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=4 the solutions of Eq(9) in the ordered regime yield the g(n;e;,¢,) that may strongly deviate from unity. We may
analytic behavior calculate the expectation value of the ground-state energy
5 N ) with respect to the selected g&8) and express the result as
My=V7(Ac=N), EIN=2-7A;-M° (11 3 functional in terms of quantitie&d5) and (16). It may be

In the asymptotic regima — o of the disordered phase the €ast into the forr#

rotor-rotor (site-sitg interactions may be ignored and the 1 (™ 52
problem can be exactly solved. Elementary perturbation exE/N=2 -\— de1Vp(e) —Vp(ey)
pansion in powers ok™! gives for the energy per site 21 ) o 9 ¢1
1 23 [T | detentooneninene
E/N=2 N . (12) 2= omt) | P10@20(P1) plP2)QN; @1, @2
The results already indicate that correlation effects are most Xv*(N; @1, @), (17)

important in the transition region=A\.. For analyzing the
properties of these correlations and their influence on th
second-order phase transition we may employ modern quan- )N

tum many-body theories or stochastic procedures. v (N5 @1, 02) =vo(N; @1, ¢2) + Z[D(l) +D(2)Ju(n; @1, ¢,).

ienvolving the Feenberg effective potentfat!

(18

] ) The second term in Eq18) is induced by the pseudopoten-
To analyze the phase correlations in the ground state qfa| u(n;¢,,¢,) and involves the generating differential op-
the O(2) model as functions of the strengthwe employ the eratorD(¢;) = D(i) with
CBF theory on the variational level. A reasonable form for

the correlated ground state is provided by the Hartree- 1 9

. J
Jastrow ansat?3! D(i) =- Ma—%p(goi)a—%. (19

IV. BEYOND MEAN-FIELD: CORRELATIONS

N The functional(8) is recovered by specializing to the mean-

1
[W)=A ex ZE u(nis; @i, ¢y) (W), (13 field approximation, i.e., replacing the distribution function
7 g(n; 1,95 by unity and the Feenberg effective potential
where A is a normalization factor chosen such tijgdt| V) v*(n;eq,90,) by the phase-phase interaction potential
equals unity andW¥,) is a symmetric product oN unit- vo(N; @1, ¢2).

normalized single-site states. The functia(m; ¢;, ¢;) is the An explicit relation between the pseudopotential
phase-dependent pseudopotential defined on the latticé sites(n; ¢1,¢,) and the site-site distribution function
andj. It must fulfill the subcondition g(n; @1, ¢,) allows the calculation of the Feenberg effective
" potentialv*(n; ¢4, ¢,). This relation is provided by a set of
iJ deop(@)u(n; @g,@,) = 0. (14)  coupled HNC equation¥. For the 2) model these equa-
2m) tions are given by/3!

At this stage we introduce two physical quantities which X' (N5 01,92) = (1 = &, o{exdu(n; ¢1,¢2) + N'(n; @1, ¢,)
provide us with the relevant information on the phase corre- Lo

lations on the lattice. These are the on-site density and the +E(N o, 0)] - U=-N'(njo1,02),  (20)
site-site reduced density matrix elements. For th€)O

model with a translationally invariant lattice ground-state . v L7 .
|\II> they are defined by N (na(Pll(PZ) - % ZWf_W d¢3p(€03)x (n m!(pl!(P3)
1 g g X[X'(M; @3, 0) + N'(M; 3, , 21
pley) = (277—)'\'"1f_w f_w de, - den W@, @0, oN), [X'(M; @3, ¢2) (M; @3, 07)] (21)
(15) 9N @1, 02) = (1 =6, 0[1 +X' (N1, 02) + N' (NS 01, 07) |
(22)

1 i ™ ; AN (- .
o(0)p(9)9(N: 01, 0p) = (277)'\“2] f s+ dey The primed quantitieX'(n; ¢1, ¢,) andN’(n; ¢y, ¢,) read

5 X' (N5 @1,¢2) = X(N; @1, ¢2) = X(N; 1) = X(N5 ) + X(N),
XV (@1, 92, oN)- (16) (23)
In mean-field approximation the probabiliti€s5) and (16)
specialize, of course, tp(<pl):¢//§(cpl) and the uncorrelated N’(N; @1, @) = N(N; @1, @) — N(N;@p) = N(N; @,) + N(N),
productp(¢q)p(e,), respectively. The correlations contribute (24)
implicitly to quantity (15) and explicitly to the conditional
probability (16) via the site-site distribution function where
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1 (™ equation that incorporates phase correlations on the lattice
X(n;eq) = er deap(@)X(N; @1, 9), (25 into the mean-field descriptiofb). The correlations are em-
o bodied in the direct component(¢) and the exchange po-
tentialvg(¢). They read

1 a
N(n; )=—f deop(@)N(N; @1, ¢7), (26) 1 ("
“ 2m) o e e Ud(%):EZ_f deop(@2)a(N; @1, 02)vo(N; @1, @)
n#0 £TMJ -7
1 T T (33)
X(n) = 5 J f de1deap(@1)p(@) X(N; @1, @),
(277) -7 J -7 and
(27) 1 (™
vel@r) =N —J deop(@a)uc(n; e, @)
1 T T n+04TJ -1
N(n)=wf J de1deap(@1)p(@2)N(N; @1, ¢2). New 1 (7
mesm —Zzz_f desp(ez)N'(M; @1, ¢3)
(28) m £TJ 7
XD(3)X'(M; @3, ¢1). (34)

The functions X(n; ¢1,¢2), N(N;@1,@,), and E(n; ¢4, ¢o)
are, respectively, the non-nodalirect, nodal, and elemen- The Lagrange parametgrensures the unit-normalization of
tary components of the total set of diagrams that graphicallfunction \/p(¢). We note that the renormalized Hartree equa-
represents the distribution functia@in; ¢, ¢,). In the fol-  tion may be discarded for parameter valies \., since the
lowing we ignore the elementary components appearing ijensity profile is constant in the disordered phase. Equation
the HNC equations thereby adopting the so-called HNC/Q32) determines the site-site distribution functig ; ¢;, ¢,)
approximation E(n; ¢1, ¢,)=0]. and is often calledin the theory of quantum fluidsa renor-

In a next step we employ the minimum principle for the malized Schrédinger equation for the square rggtwith
ground-state energy to evaluate the optimal elemeéb®  zero-energy eigenvalue. It involves the induced potential
and(16) and therewith the lowest vall&/N. To do this, we
first eliminate the functiomi(n; ¢4, ¢,) from the energy func- W o1, 00) = — é[D(l) +D2)IN'(N: 0y, 0,)
tional (17) with the aid of the HNC/0 equations and consider "~ 2 Y
the one-body density(¢) and the site-site distribution func- N 1 (™
tion as independent variables. We further write the energy -=> —f desp(@s)
functional in the form 2% 27,

1 (7 — 9 —— XX'(n=m; @1, 03)DR)X'(M; @3, ¢2)
EIN=2 A de1Vp(er) ——Vp(e1)
N — d (5] A
1 1 (7 (7 == AD(DN'(n;¢1,¢) ‘EC(n;ﬁDl,ﬁDz) (35
t52 5 f f de1deap(e1)p(@y)
nz0 2m)) ) o with the quantity

X[9(N; 1, 02)v0(N; 01, 02) + Ave(N; @1, 0], (29)

The potentiab (n; ¢4, ¢,) is induced by the correlations and
is given by

1 a
C(n; o102 = o f desp(@) X' (N =m; @1, ¢3)
m €TJ_x

XDR)X'(M; @3, ¢2). (36)
ve(N; @1,02) = VO(N; @1, 92)[D(1) + D(2)]NG(N; @1, p2) For the purpose of numerical calculations it is convenient to
- %g(n;@la(PZ)[D(l) +D(2)IN'(N; @1, ¢). use the HNC/0 scheme for a reformulation of E8R) lead-
ing to the form
(30)
AD(1) +D2) X' (n; ¢1,0,) — AC(N; ¢4,

Finally, independent variation of the pair-density functional (D@ +DERIX (N1, ¢2) (N5 e1,¢2)

(29) with respect toyp(¢) and \g(n; ¢q, ¢, generates two == 2Vp(N5 01, 92), (37)

coupled Euler-Lagrange equations whereinVy,(n; @1, ¢,) is the particle-hole potenti
2

p) .
- xﬂ—@z +04(@) +ve() V() = up(e), (3D Vor(N; @1,02) = X' (N; 01,0,) — %[D(l) +D(2)]X'(N; o1, ¢0).

(38)

_—
[D(1) + D(2)]NG(N; @1, #2) + [vo(N; @1, 02) _
) [~ _ FunctionX'(n; ¢1,¢,) is a derivative of the direct compo-
+Wn; 01, @) NO(N; @1, ¢2) = 0. (32) nent of a generalized distribution functiag(n, ¢;,@,,a)
Equation (31) is a generalizedor renormalizeyl Hartree  with respect to a parameter. This function can be deter-
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mined from a set of generalized HNC equations in which
function u(n;e¢q,¢,) is replaced by the modified
pseudopotentiét-2®

u(n, @1, @2, @) =U(N; @1, @) + av*(N; @1, ¢,). (39

Quantitiesg, X, andN are functions of the parameterand

the corresponding dot quantities can be determined from
generalized HNC equations by taking the derivatives with
respect toa at a«=0. The result provides the corresponding

HNC dot equations. In HNC/O approximation they reduce to

"t -20 -10 00 10 20 =

FIG. 3. The optimal on-site density profile(¢) calculated
g(n; @1, 0) =9(N; @1, @) [v*(N; @1, @0) + N’(n (01,001, within the CBF theory for various values of the coupling parameter
\.
(41)

: . —¢,=0. This means that—in spin interpretation—the orien-
X'(N;@1,¢2) =0 01,02 ~N'(NS@1,05), (42 tation of the rotor axes at neighboring sites are parallel and
pointing in the direction of thex axis. Fore>0 this prob-

. 1 (" . ability is rapidly decreasing.

N'(n; 01,0 = 2 ZJ deap(@z) X' (N = M; @1, ¢3) Figure 5 represents numerical results on the optimal order
m o parameterM,(\) in the ordered phase of the(® model.
X[X'(M; @3, 05) + N'(M; 03,05)] Comparing with the mean-field data displayed in Fig. 1 we

- see a similar dependence of the CBF results for the order
1 ; .
+> _f desp(@2)X' (N —M; @y, @3) parameteiM, on the coupling strength, if we scale down
m 2m)_, this variable to a smaller value. At=0 function p(¢) is
| Sy proportional to a delta functiof(¢) and the order parameter
X[X' (M ps,@2) +N'(Mi @3, 02)]. (43 is unity. As\ increases the order parameldy decreases
gradually due to the quantum phase fluctuations and drops
continuously to zero ah.=2.97, where these fluctuations
V. NUMERICAL RESULTS AND DISCUSSION become strong enough to destroy completely the long-range

The optimized correlated ground-state wave function ancfrgir forcing the system into the disordered phase for values
.

the corresponding ground-state energy can be explicitly de-
termined by solving the set of coupled Eg20)—28), (31),

. : . cantly lower than those of mean-field theory displayed in
(32), and(40)—(43). The numerical procedure of the iteration _. . . :
scheme is outlined in the Appendix. The solutions of theF'g' 2 due to the negative correlation energy. This energy

component vanishes, of course a0 and in the asymptotic

EuIer-Lag.range equations.permit,. of course, thg enumgratiolﬂnit A — o, The absolute value of the correlation energy is
of the optimal gross quantities of interest associated vylth th?argest in the transition region amounting to about 10% of
ground state. Here we report on some of our numerical re-

sults for the functions and quantities related to the optimized

The results on the ground-state enefBig. 6) are signifi-

correlated ground state of the system as a function of the ® g
interaction strength. Figure 3 shows the numerical results 30 ¢
on the optimal on-site densip(¢) as a function of the phase S|
¢ for various values of the coupling parameterThe prob- S F
ability density is sharply peaked at=0 for small coupling g 20 :
parameters0<\ <\.) and agrees with the mean-field result e 15
since the correlations vanish ks~ 0. In this limit the phases E 10f
(or rotor angleson the lattice are alike and independent of :
the lattice sites. With increasing strengththe probability St
distribution p(¢) broadens and equals unity @nd abovg 0k

-2n -6 -4 -2 0 2 4 62n

the critical pointA,=2.97, where the phases are randomly 0=0—0,220

distributed and equally probable.
Figure 4 depicts numerical results on the optimal site-site  FiG. 4. The optimal site-site probability densiB(n: ¢y, ¢»)

probability function P(n; 1, ) =p(e1)p(¢2)d(N; @1, @), =p(e1)p(@)a(n; @1, ®,) for nearest neighbors as a function of rela-

for nearest neighbors at various values of the streRgth\,  tive anglee=¢p;— @, (With @;+¢,=0, i.e., p=2¢;) in the ordered

as function of the relative phase=¢;—¢,=2¢; with ¢; phase, calculated within the CBF theory for various values of the

+¢,=0. The function has a maximum far=0 wherep,;= coupling parametex.
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06 .
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01 [ A=2.97 _ _
00 Loveniin Leviiiiies Leviaiiies P ] 0 bt vy 1

0.0 1.0 2.0 3.0 4.0 0 1 2 3 4 5 62n
by 0=, 0,=2¢,
FIG. 5. CBF results for the order parametdy of the O2) FIG. 7. Numerical results on the optimal site-site distribution

model on a simple square lattice. The parameter is nonzero in thRinction g(n; ¢y, ¢,) in CBF approximation, for nearest neighbors
ordered phase of the system, i.e., in the domafnG=\,=2.97. In|=1 in the disordered phas@ >\.=2.97, as function of¢

The dashed line and the long-dashed line show, respectively, thee, - ¢,. In the disordered phase region this function depends only
results of mean-field theory and of low-order perturbation theory. on the relative phase.

the energy result in mean-field approximation. In the disor- (V|cod ¢; — ¢))|P)
dered phase\ >\, the CBF results on the energy are rela- g(n) = (VW)
tively close to the perturbation results based on the first-order
expression11). 1 v
Figures 7 and 8 display CBF results on the site-site dis- =80+ _ZJ f de;deop(er)
tribution functiong(n; ¢y, ¢,) for nearest neighbors. In the To@mt) ),

disordered regime of stat€kig. 7) the correlations depend
only on the relative phase=¢;— ¢,. The function is plotted

at three different values of the coupling parameter. Qualita- =50+ G| (44)
tively, the dependence is essentially sinusoidal and becomes ~no n#0

stronger with decreasing coupling parameter. The correlaFor large distance§n|— =) and in the weak-coupling limit
tions are attractive for equal phase valigs0) and repul-  (\ o) this function vanishes. It is long-ranged in the
sive for a relative phase ship=. Since the disordered strong-coupling limit (A —0) approaching the asymptotic

states possess the full symmetry of the Hamiltonian, the dispajue M2, It is therefore convenient to decompose this func-
tribution function has the symmetrg(n; ¢)=9g(n;27~¢).  ton (for n+0) into

This symmetry is broken in the ordered ph#sa. 8). As a 5
consequence, the phase correlations are strongespfor G(n) =M+ Gy(n). (45)

=~¢,= but are absent fop, =-¢,=0. FunctionG(n) is the short-ranged component of the corre-
To analyze in more detail the spatial dependence of th?ation function, with the propert@.()— 0. Figure 9 shows

correllationsg we may define a phase-averaged distributio[‘he CBF results for this function at different valuesioés a
function by? function of distancen|. It vanishes in the limitss.—0 and

X p(@2)9(N; @1, 02)COL 1 — @)

2.0 PLoidal LUAMLAL AR | BALAANA |AMAMLALAL
[ /’g’—"‘/;—
1.8 I ]
1.6 B
14 [ —— CBF Theory ]
12 7/ T MF Theory h
z t ———- Pert. Theory
S10r
0.8 1 .
0.6 B
=2.97
04 1 A=29 B
02 + ]
0.0 Lo Lo Lnedinunn [ [ L [T ]
00 1.0 20 30 40 50 6.0 70 80

A

O=0,—0,=29,

FIG. 6. CBF results on the ground-state energy per site for the
O(2) model on a simple square lattice, as function of the coupling FIG. 8. Numerical results on the optimal site-site distribution
parameter\. Displayed are also results of perturbation theory infunctiong(n;¢q,¢,) in CBF approximation, for nearest neighbors
lowest order(long-dashed lineand of mean-field theorydashed |n|=1 as a function ofe=¢;—¢,=2¢;, in the ordered phaséd
line). SN<A\=2.97).
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Ordered Phase VI. SUMMARY AND OUTLOOK

0.15

CBF theory has been adapted and employed for a detailed
analysis of the @) model on a simple square lattice. Our
main interest has been focused on a study of correlation ef-
fects in the ground state and their dependence on the strength
of the coupling parameter that governs the ordering phenom-
ena at zero temperature. We have explicitly constructed a
pair-density functional for the ground-state energy in terms
of the on-site density profile and the site-site distribution
function that characterizes the existing correlations in the
model system. Utilizing the minimum principle for the en-
ergy we derived, respectively, a renormalized Hartree equa-
tion for the optimal profile and a renormalized Schrdédinger
equation for the optimal site-site correlation function at zero
eigenvalue. We designed an appropriate numerical procedure
to solve these equations in conjunction with a set of HNC
equations that permits to relate the pseudopotential and the
Feenberg effective potential to the profile and the site-site
distribution function(in HNC/0 approximation On this
variational level of the CBF theory the correlatdbody
ground state of the @) lattice Hamiltonian is approximately
represented by a Hartree-Jastrow wave function of optimal
form. We note that the CBF theory provides a systematic
scheme for improving the present approximation, at least in

FIG. 9. The(short-rangeflaveraged distribution functioG4(n) prlnC|pIe_. Such |mprov_ements_ hgve b_een s_uccessfu_lly_per-
as a function of relative distande|, for various values of the cou- formed in de_ta|led stud_|es of liquid helium W't,h qugnt!tat|ye
pling strengthi. results of high numerical accuracy on spatial distribution
functions, static and dynamic structure functions, a.0. CBF
studies of lattice models on this more sophisticated level are
feasible but are more complex and time consuming than in
the case of liquid helium. Within the present realization of
&BF theory we have calculated and discussed the optimal
density profile, site-site distribution function, the ground-
state energy, and the order parameter. Results are displayed
Gyn) = ﬂ)e—xm\_ (46) in detail for_ the ordered_phas(small cpupling parametgr

In| and in the disordered regingiarge coupling parameterThe
continuous phase transition occurs at a critical strength

_1 - .
The parametei may bg interpreted as a correlation =2.97. The correlations correct therefore the mean-field re-
length. It approaches infinity if the system comes close to the

L : - . . sult by about 25%. They also lower the energy result of
critical point. We may calculate this correlation length via mean-field theorv by about 10%. Afar from the transition
the relation Ifjn|G4(n)]=In Gy—«|n| (Fig. 10). y 0¥ )

region the correlations become less effective and disappear
in the strong-coupling limit as well as in the weak-coupling

0.10

Gy(n)

0.05

0.00
0.

0.15

0.10

G,(n)

0.05

0.00

A—o as we see from Fig. 9, where it increases\as-
creases. It decreases above the critical strengtffhe de-
pendence on the distance can be well matched by an exp
nential form of Yukawa type

6.0 S rTTTTTTT e ] regime. Approaching the critical region the correlations be-
40 « 320 E come long ranged. At present the analysis is not yet suffi-
20 F " 3=4.0 7 ciently developed to allow the extraction and evaluation of

00 & 4 3=5.0 ] critical exponents at the transition point. Before attempting
; ] this rather ambitious task one should first turn to a number of
interesting applications and some further developments.
The CBF formalism may be directly employed for semi-
analytic studies of the ground-state properties of th@)O
model defined on three- or higher-dimensional lattices, for
lattices with differing spatial symmetries, and more complex
interactions that allow for frustration. With only marginal
changes the CBF formalism can be implemented to analyze
FIG. 10. The logarithm Iin|Gg(n)] as a function of relative ~ground-state correlations in related lattice models, for ex-
distance|n| for different values of the strength parameterThe ample, correlations in chiral @) models, which are of in-
inverse correlation length is determined by the slope of the terest in lattice meson-field theot$One could further em-
curves. ploy the CBF theory to investigate excited states of tli2)O

2.0
4.0
6.0
8.0
10.0

In[Inl G,(n)]
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model or other lattice models at zero or finite two-body integrodifferential Eq37). Multiplication of this
temperature$-3in close formal analogy to CBF studies of equation byy/p(¢,)p(¢,) leads to the more convenient form
quantum fluid€® and of spin latticed’ Attempts in this di-
rection are reported in Ref. 38. <,

Of particular interest would be a CBF analysis of topo- MHo(1) + Ho(2)IX'(n; 01, ¢2)
logical excitations generated by théZ) Hamiltonian in two - Y .
spatial dimensions. Such a study may be performed in anal- = NC: 1,92 = 2Vpn(N o1, 02). (A1)
ogy to the CBF treatment of a single vortex and of a vortex-The operatoH,(i) in Eq. (A1) is defined by
antivortex pair in two-dimensional liquid heliuf:*° One
assumes that a vortex is a mobijlar trapped quasiparticle

with a mass self-consistently determined within the CBF Ho(i) = - J — (o, o 1

theory. The corresponding correlated wave function is repre- Vp(@) 9@ 9 ¢i\p(g))

sented as a product of a many-body trial function of Jastrow

type such as expressi¢h3) (or, more generally, of Jastrow- az 1 az\,m

Feenberg typeand a quantized complex phase fadtir Eq. =— =—2'

(5) of Ref. 40. On the same level of approximation the CBF def plg) d

state of a vortex-antivortex pair involves two complex phase 2

factors corresponding to the two centers of circulatioh = —&—QDZ + X}—(qoi), (A2)
1

Eq. (16) of Ref. 40. Based on these Ansaetze Refs. 39 and
40 _report numerical re_sults on the a;souated ex0|tat|on_e Vhere F(¢) is obtained from Eq(31):

ergies, the vortex-antivortex interaction, and the chemica

potential required to create a vortex-antivortex pair in a two-

dimensional helium fluid. The present analysis of ground- F(@) =v4(@) +vel@) = p. (A3)
state properties of the (2 model could be extended to a

formal and numerical study of topological excitations in lat- The tilde quantityf(n; ¢y, ¢,) is defined as

tice systems by a suitable adaptation of the formalism of _

Refs. 39 and 40. This adaptation can be done without major f(N; @1, @2) = Vple)ple) (N @1, o). (A4)
difficulties. However, numerical calculations will be more ~

extensive for the lattice @) model than for the homoge- Explicitly, quantity C(n; ¢;,@,) is given by

neous helium phase, since in the former case one has to deal

with angular-dependent one-body densi{i&Ss). ~ 1 (" <,
JHaraep Y densites) Clnigre) =2 ZL deaX' (N =M1,
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1 1 (7 <,

+ _E . desX' (N —m; @1, ¢3)
Ny 27)

APPENDIX: NUMERICAL PROCEDURE

X Flea)X'(M; @3, ¢05). (A5)
Numerical evaluation of the relevant solutions of the _ _

Euler-Lagrange Eqg31) and (32) at given parametex is Next, we solve the HNC/O dot equations and determine the
essentially done by appropriate iteration procedures. We bdunctionX'(n; ¢;,¢,) and the funCtloerh(n @1, ¢) via Eq.
gin with a suitably chosen input for th@s yet unknown (38). The two-body Eq.(37) is solved using a finite-
pseudopotential. In this initial step we adopt a simple formdifference relaxation meth8tiand by iteration. We replace
u(n; @1, ¢,)=vA(n). The parametey is determined by mini- the derivative by a finite-difference defined on mx n lat-
mizing the energy functional within the adopted HNC/O ap-tice in ¢ space withn=31 and construct the sparse matrix.
proximation. We then determine the corresponding one-bodffter converting the two-dimensional matrix into a one-
density profile by solving the renormalized Hartree R{), dimensional array and splitting the sparse matrix into two
employing a Newton-Raphson algorithm. Next, the HNC/0components—a rest matrix and an invertible one—we iterate
equations are solved by matrix inversion and iteration. Theénd achieve rapid convergence. In each step of the adopted
optimal parameter form for the pseudopotential is then usedleration we determine new functionX'(n; ¢y, ¢,) and
as an input to solve the full set of coupled equations simulN'(n;¢q,¢,) and therewith a new correlation function
taneously. For this purpose it is advisable to reformulate th&""(n; ¢4, ¢,) for n# 0 via the construct
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u™™n; o1, @) = IN[g™MN; 01, @) = NN @1, 00). (AB) at other values of the strength parametewre discretise the
parameter interval by stege\ =0.01. With the optimal solu-
Finally we determine the optimal on-site density profile, thetions derived for\ as input quantities we employ the same
optimal site-site correlation function, and other physicalnumerical technique to calculate the optimal functions and
guantities of interest. To perform the analogous calculationsther data at strength parameler A\.
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