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We study the ground-state properties of the Os2d model for a system of spin-1 rotors on a simple square
lattice. We assume that the rotors interact via nearest-neighbor forces, the coupling characterized by a strength
parameterl. This many-boson model can be physically realized, for example, through a two-dimensional
configuration of Josephson junction arrays or superfluid4He in confined geometries. The formal and numerical
analysis of the model concentrates on a study of the strong correlations induced by the interactions. The
theoretical investigation is performed within a semianalyticab initio approach employing the theory of corre-
lated basis functions, on the variational level. In the past the formalism has been successfully applied for
quantitative analyses of spatial correlations in quantum fluids. In the present work it is formally adapted for
treating the Os2d model. We express the ground-state energy by an appropriate functional in terms of the
reduced on-site density profile and of the site-site distribution function. Employing the familiar minimum
principle for the ground-state energy we construct two associated Euler-Lagrange equations which determine
the optimal correlated ground-state of Hartree-Jastrow type. We present solutions of these equations and
numerical results on various ground-state properties as functions of the coupling strengthl. We discuss in
detail the behavior of the density profile and of the site-site distribution function. We also report data on the
order parameter for the symmetry-broken ordered phase and on the critical strengthlc for the transition to the
disordered phase.
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I. INTRODUCTION

The Os2d lattice model1 is of theoretical interest in quan-
tum statistical physics2 and as a suitable model to study
phase transitions in a number of interesting materials exhib-
iting order-disorder phenomena.3 For instance, it may be in-
terpreted as a model for an array of interacting quantum
rotors.4 Its Hamiltonian consists of two noncommuting
terms: a potential energy representing the coupling between
two-component spin vectors of unit length and a kinetic en-
ergy term that takes account of the rotational degrees of free-
dom of the rotors. As a second example, we may adopt the
Os2d model to describe the physics of Josephson junction
arrays (JJAs)5,6 or granular superconductors7,8 which are
composed of superconducting islands or grains coupled by
Josephson junctions. Such nets can be manufactured9 with
different geometries where the junction parameters can be
varied experimentally, at least to some extent. Another physi-
cal realization of the model is liquid4He in restricted geom-
etries such as porous glasses,10 where the potential energy
may represent a discretized form of the gradient energy term
in the Ginzburg-Landau free energy of superfluid4He favor-
ing a state in which all parts of the superfluid have the same
condensate phase, while the kinetic energy term arises from
the time variation of the order parameter, i.e., from the phase
coherence.

At nonzero temperatures the behavior of the Os2d model
is governed by the interplay between thermal and quantum
fluctuations.11 At very low temperatures the model still dis-

plays a rich behavior due to the competition between the
kinetic energy portion and the potential energy contribution,
where quantum fluctuations of the rotor angle play the most
important role.12 For such a behavior the quanticity of the
system is measured by a coupling parameterl, whose value
depends on the relative weight of kinetic and potential en-
ergy parameters. Of particular interest are therefore the prop-
erties of the correlated ground state of the model which de-
pend strongly on the strength of the coupling factor that
determines the magnitude of the quantum fluctuations. De-
pending on the valuel the rotors may more or less align and
may form an ordered phase with spin-wave-like excitations.
In contrast, the rotor orientations may be disordered in an-
other coupling regime where the ground states are eigen-
states of zero total angular momentum and the excitations are
quasiparticles. The order parameter characterizing the quan-
tum phase may be formally interpreted as a spontaneous
magnetization(or nonzero angular momentum). If the model
describes a system of JJAs the physical interpretation is: we
have an ordered superconducting phase or a disordered insu-
lating phase with a superconductor/insulator phase
transition13 at a critical value of the coupling parameter. In
this case the order parameter should be better called a con-
densate fraction. Most of the theoretical studies on the Os2d
model have used perturbation theory, mean-field theory,5,14

or the harmonic approximation.12,15 Mean-field
calculations16–19 have given strong evidence that the system
in two spatial dimensions does not become ordered forl
ù4.0 and forlù6.0 in three spatial dimensions. However,
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these methods ignore or do not take sufficient account of the
strong site-site correlations and can therefore only provide
qualitative descriptions. Some studies explored the correla-
tion effects by using perturbation expansions in powers of
the coupling strengthl,20 employed renormalization-group
theory,2 approximate numerical simulations,21,22or quantum-
spherical approximations.23 The latter method gives a value
lc.2.43 for the critical coupling. Thus, the correlations
lower significantly the critical coupling strengthlc.4 de-
rived in mean-field approximation.5,13 Perturbation theory
truncated at third order predicts instead a value20 lc.2.52.
To achieve an accurate enumeration of the critical data or,
more generally, a quantitatively reliable study of the existing
strong correlation effects as functions of the coupling
strength one should therefore refine these approaches or re-
sort to other more powerful treatments.

In the present work we study the correlation effects within
the framework of the correlated basis function(CBF)
theory.24,25 This powerfulab initio approach has been suc-
cessfully employed in many quantitative studies of strongly
correlated many-body systems, notably homogeneous and in-
homogeneous quantum fluids, but also lattice gauge models
and spin lattices.26–28

After a brief qualitative description of the Os2d model in
mean-field approximation our investigation within the CBF
theory begins with the construction of a correlated ground-
state energy functional with respect to a set of trial many-
body states of Hartree-Jastrow type. In this context, we note
that the CBF theory may be viewed as a generalization of the
familiar energy density-functional theory where the energy
functional depends on the density profile. In the CBF theory
the functional depends not only on the density but also on the
site-site distribution function(more generally, on the ele-
ments of the reduced two-body density matrix). Therefore,
the CBF approach could be adequately characterized as a
pair-density functional theory. To find the best trial wave
function of Hartree-Jastrow type we apply the familiar mini-
mum principle for the CBF ground-state energy functional.
The optimization procedure generates two Euler-Lagrange
equations. They can be interpreted as a renormalized Hartree
equation for the one-body(on-site) density profile and as a
renormalized Schrödinger equation for the two-body(site-
site) correlation function. To connect the latter quantity with
the correlated trial ground-state wave function we perform a
hypernetted-chain(HNC) analysis that leads to a coupled set
of HNC equations. Ignoring the so-called elementary com-
ponents(HNC/0 approximation) yields a closed set of HNC
equations that provides an explicit expression for the relation
between the trial state and the corresponding reduced
density-matrix elements. Within this realization of the CBF
theory numerical calculations are performed on the optimal
on-site density and the optimal site-site distribution function
of the Os2d model. We then analyze in detail the solutions of
the Euler-Lagrange equations and calculate and discuss the
results on the optimal ground-state energy, the optimal order
parameter, and the critical coupling strength.

In Sec. II we introduce the main features of the adopted
Os2d model. We summarize briefly some mean-field results
in Sec. III, which are necessary to start the application of the
CBF theory for a quantitative investigation of correlation

effects(Sec. IV). In Sec. V we report and discuss the results
of our microscopic calculations on the optimal correlated
ground-state properties, in particular, on the one-body and
two-body densities, the energy, and the order parameter. The
final section summarizes the results and concludes with an
outlook on further applications, extensions, and improve-
ments(Sec. VI). The Appendix collects some information on
the numerical procedure.

II. MODEL DESCRIPTION

The quantum Os2d model defined on ad-dimensional spa-
tial lattice is a special casesn=2d of the general chiral Osnd
lattice model.29 Its dynamic behavior is stored in the
Hamiltonian16

H = − lo
i

N
] 2

] wi
2 +

1

2o
i,j

N

Di j cosswi − w jd, s1d

where i and j refer to lattice sites. The sum extends overN
lattice points characterized by the set of phase angles(opera-
tors) hwij with −pøwi øp. Correlations between the phases
on the lattice are induced by the two-body(site-site) poten-
tial v0sn ;wi ,w jd=Dsndcosswi −w jd whereDsnd=Di j measures
the strength of the correlations and depends on the relative
distancen=r i −r j. For simplicity, we assume a simple square
lattice and a short-ranged interaction, settingDs0d=4, Dsnd
=−1 for the four nearest neighbors,Dsnd=0 otherwise. The
differential operator −i ] /]w js"=1d is the canonical conju-
gate operator to the phase variablew j. It may be interpreted
as the number operator of excited quanta, the number of
Cooper pairs in JJAs, of the free field operator −] 2/]w j

2. The
parameterls0ølø`d is the coupling parameter that can be
experimentally varied(to some extent) in the case of granu-
lar superconductors. For these materials the strength param-
eter is determined by the ratiol=4U /J with the charging
energyU and the Josephson couplingJ.

If the strengthl is small, the system exhibits a second-
order quantum phase transition at sufficiently low tempera-
tures, at a critical couplinglc separating the ordered phase
from the disordered phase. The transition occurs because of
Heisenberg’s uncertainty principle expressed by the commu-
tation relationf−i ] /]wi ,w jg=−idi j . For small values ofl the
kinetic energy term is small compared to the coupling poten-
tial that tends to make the individual phasesw j coherent on a
macroscopic scale. In contrast, for large values ofl the op-
erator −i ] /]wi has well defined eigenvalues and the phasew j
is completely uncertain. This leads to sufficiently large quan-
tum phase fluctuations which destroy the long-range order of
the system. While the disordered ground states conserve the
symmetries of the Hamiltonian(1), the Os2d rotational sym-
metry (and the chiral symmetry) is broken under the trans-
formationshwi →p−wij in the ordered phase. The symmetry
violation may be measured by the order parameter

Mx = kCucosw1uCl/kCuCl s2d

defined as an expectation value with respect to the ground
state of the system(or by a thermal average at nonzero tem-
peratures).
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III. MEAN-FIELD THEORY

In order to get a qualitative view of the model properties
and to prepare the ground for starting the CBF theory we
employ mean-field theory in this section. This simple ap-
proach ignores, of course, correlation effects from the outset.
The many-body states of the Hamiltonian(1) are approxi-
mated by a product of unit normalized single-particle(on-
site) states of the form

Csw1,w2, . . . ,wNd = p
i

N

c swid. s3d

The mean-field Hamiltonian is obtained by replacing the
coupling term between two lattice sites in the original Hamil-
tonian by an averaged interaction involving only single-site
operators. We thus approximate

1

2o
i,j

N

Di j cosswi − w jd → 2dkcoswlo
i

N

cosswid, s4d

whered is the dimension of the system(d=2 in the present
study). The Hamiltonian(1) is therewith replaced by a sum
of single-site hamiltonians, with eigenfunctionscnswd. They
can be determined from the Hartree equation

HMF
i cnswid = − Sl

] 2

] wi
2 + 2dMxcoswiDcnswid = encnswid.

s5d

Given the solutionscnswid and their eigenvaluesen to Eq.(5)
the order parameterMxsl ,Td and the energy per site
Esl ,Td /N at temperature T can be calculated self-
consistently from the relations

Mx = kcoswl =

o
n

`

e−benkcnucoswucnl

o
n

`

e−ben

, s6d

E/N = kHMF
i l =

o
n

`

e−benkcnuHMF
i ucnl

o
n

`

e−ben

, s7d

with b=1/kBT. At zero temperature only the ground-state
eigenfunction contributes to the sums in Eqs.(6) and(7). In
this case the ground-state energy per site is given by

E0/N = − lkc0u
] 2

] w2uc0l + ds1 − Mx
2d, s8d

where Mx=kc0ucoswuc0l. Straightforward minimization of
this functional yields the optimal solutionc0swd=constant
for the disordered phase withMx=0 and constant energyE
=2N. The optimal wave functionc0swd of the ordered phase
is a solution of the Hartree equation

− Sl
] 2

] wi
2 + 2dMxcoswiDc0swid = e0c0swid. s9d

Equation(9) is essentially a differential equation of the fa-
miliar Mathieu type that can be easily solved by a standard
iteration procedure. Figures 1 and 2 display numerical re-
sults, respectively, on the order parameter and the minimum
ground-state energy as functions of the coupling strengthl,
in mean-field approximation.

At l=0 the system is exactly described by mean-field
theory because phase correlations are absent and the ordering
is perfect. Functionc0swd is proportional to a delta function
d swd, the order parameterMx is unity, and the ground-state
energyE is zero. For increasing valuesl the ordering decays
gradually and disappears completely at the(mean-field) criti-
cal valuelc=4. The energy per lattice site increases monoto-
nously in the ordered phase until the coupling strengthlc
=4 is attained. The results merge smoothly with the constant
energy valueE=2N of the disordered phase. In the limitl
→0 low-order perturbation theory yields the correct results

Mx = 1 − 1
8
Î2l, E/N = Î2l. s10d

They are well reproduced by the numerical mean-field re-
sults for sufficiently small parameter valuesl. For l→lc

FIG. 1. Numerical results on the optimal order parameterMxsld
for the ordered phase, in mean-field approximations0ølølc=4d.
Dashed lines show the results of perturbation theory in lowest order,
Eqs.(10) and (11) for l→0 andl→lc

−, respectively.

FIG. 2. Ground-state energy per lattice siteE/N as function of
coupling parameterl, results in mean-field approximation. Dashed
lines indicate results of perturbation theory, Eqs.(10) and (11) in
lowest order forl→0 andl→lc

−, respectively.
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=4 the solutions of Eq.(9) in the ordered regime yield the
analytic behavior

Mx > Î2
7slc − ld, E/N > 2 − 1

7slc − ld2. s11d

In the asymptotic regimel→` of the disordered phase the
rotor-rotor (site-site) interactions may be ignored and the
problem can be exactly solved. Elementary perturbation ex-
pansion in powers ofl−1 gives for the energy per site

E/N > 2 −
1

2l
+ ¯ . s12d

The results already indicate that correlation effects are most
important in the transition regionl.lc. For analyzing the
properties of these correlations and their influence on the
second-order phase transition we may employ modern quan-
tum many-body theories or stochastic procedures.

IV. BEYOND MEAN-FIELD: CORRELATIONS

To analyze the phase correlations in the ground state of
the Os2d model as functions of the strengthl we employ the
CBF theory on the variational level. A reasonable form for
the correlated ground state is provided by the Hartree-
Jastrow ansatz30,31

uCl = L expH1

4o
iÞ j

N

usni j ;wi,w jdJuC0l, s13d

whereL is a normalization factor chosen such thatkC uCl
equals unity anduC0l is a symmetric product ofN unit-
normalized single-site states. The functionusn ;wi ,w jd is the
phase-dependent pseudopotential defined on the lattice sitesi
and j . It must fulfill the subcondition

1

2p
E

−p

p

dw2rsw2dusn;w1,w2d = 0. s14d

At this stage we introduce two physical quantities which
provide us with the relevant information on the phase corre-
lations on the lattice. These are the on-site density and the
site-site reduced density matrix elements. For the Os2d
model with a translationally invariant lattice ground-state
uCl they are defined by

rsw1d =
1

s2pdN−1E
−p

p

¯ E
−p

p

dw2 ¯ dwNC2sw1,w2, ¯ ,wNd,

s15d

rsw1drsw2dgsn;w1,w2d =
1

s2pdN−2E
−p

p

¯ E
−p

p

dw3 ¯ dwN

3C2sw1,w2, ¯ ,wNd. s16d

In mean-field approximation the probabilities(15) and (16)
specialize, of course, torsw1d=c 0

2sw1d and the uncorrelated
productrsw1drsw2d, respectively. The correlations contribute
implicitly to quantity (15) and explicitly to the conditional
probability (16) via the site-site distribution function

gsn ;w1,w2d that may strongly deviate from unity. We may
calculate the expectation value of the ground-state energy
with respect to the selected set(13) and express the result as
a functional in terms of quantities(15) and (16). It may be
cast into the form31

E/N = 2 −l
1

2p
E

−p

p

dw1
Îrsw1d

] 2

] w1
2
Îrsw1d

+
1

2 o
nÞ0

1

s2pd2E
−p

p E
−p

p

dw1dw2rsw1drsw2dgsn;w1,w2d

3v!sn;w1,w2d, s17d

involving the Feenberg effective potential25,31

v!sn;w1,w2d = v0sn;w1,w2d +
l

4
fDs1d + Ds2dgusn;w1,w2d.

s18d

The second term in Eq.(18) is induced by the pseudopoten-
tial usn ;w1,w2d and involves the generating differential op-
eratorDswid;Dsid with

Dsid = −
1

rswid
]

] wi
rswid

]

] wi
. s19d

The functional(8) is recovered by specializing to the mean-
field approximation, i.e., replacing the distribution function
gsn ;w1,w 2d by unity and the Feenberg effective potential
v!sn ;w1,w 2d by the phase-phase interaction potential
v0sn ;w1,w 2d.

An explicit relation between the pseudopotential
usn ;w1,w2d and the site-site distribution function
gsn ;w1,w2d allows the calculation of the Feenberg effective
potentialv!sn ;w1,w2d. This relation is provided by a set of
coupled HNC equations.27 For the Os2d model these equa-
tions are given by27,31

X8sn;w1,w2d = s1 − dn,0dhexpfusn;w1,w2d + N8sn;w1,w2d

+ Esn;w1,w2dg − 1j− N8sn;w1,w2d, s20d

N8sn;w1,w2d = o
m

1

2p
E

−p

p

dw3rsw3dX8sn − m;w1,w3d

3fX8sm;w3,w2d + N8sm;w3,w2dg, s21d

gsn;w1,w2d = s1 − dn,0df1 + X8sn;w1,w2d + N8sn;w1,w2dg.

s22d

The primed quantitiesX8sn ;w1,w2d andN8sn ;w1,w2d read

X8sn;w1,w2d = Xsn;w1,w2d − Xsn;w1d − Xsn;w2d + Xsnd,

s23d

N8sn;w1,w2d = Nsn;w1,w2d − Nsn;w1d − Nsn;w2d + Nsnd,

s24d

where
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Xsn;w1d =
1

2p
E

−p

p

dw2rsw2dXsn;w1,w2d, s25d

Nsn;w1d =
1

2p
E

−p

p

dw2rsw2dNsn;w1,w2d, s26d

Xsnd =
1

s2pd2E
−p

p E
−p

p

dw1dw2rsw1drsw2dXsn;w1,w2d,

s27d

Nsnd =
1

s2pd2E
−p

p E
−p

p

dw1dw2rsw1drsw2dNsn;w1,w2d.

s28d

The functionsXsn ;w1,w2d, Nsn ;w1,w2d, and Esn ;w1,w2d
are, respectively, the non-nodal(direct), nodal, and elemen-
tary components of the total set of diagrams that graphically
represents the distribution functiongsn ;w1,w2d. In the fol-
lowing we ignore the elementary components appearing in
the HNC equations thereby adopting the so-called HNC/0
approximationfEsn ;w1,w2d=0g.

In a next step we employ the minimum principle for the
ground-state energy to evaluate the optimal elements(15)
and(16) and therewith the lowest valueE/N. To do this, we
first eliminate the functionusn ;w1,w2d from the energy func-
tional (17) with the aid of the HNC/0 equations and consider
the one-body densityrswd and the site-site distribution func-
tion as independent variables. We further write the energy
functional in the form

E/N = 2 −l
1

2p
E

−p

p

dw1
Îrsw1d

] 2

] w1
2
Îrsw1d

+
1

2 o
nÞ0

1

s2pd2E
−p

p E
−p

p

dw1dw2rsw1drsw2d

3fgsn;w1,w2dv0sn;w1,w2d + lvcsn;w1,w2dg. s29d

The potentialvcsn ;w1,w2d is induced by the correlations and
is given by

vcsn;w1,w2d = Îgsn;w1,w2dfDs1d + Ds2dgÎgsn;w1,w2d

− 1
4gsn;w1,w2dfDs1d + Ds2dgN8sn;w1,w2d.

s30d

Finally, independent variation of the pair-density functional
(29) with respect toÎrswd andÎgsn ;w1,w2d generates two
coupled Euler-Lagrange equations

F− l
] 2

] w2 + vdswd + veswdGÎrswd = mÎrswd, s31d

fDs1d + Ds2dgÎgsn;w1,w2d + fv0sn;w1,w2d

+ wsn;w1,w2dgÎgsn;w1,w2d = 0. s32d

Equation (31) is a generalized(or renormalized) Hartree

equation that incorporates phase correlations on the lattice
into the mean-field description(5). The correlations are em-
bodied in the direct componentvdswd and the exchange po-
tential veswd. They read

vdsw1d = o
nÞ0

1

2p
E

−p

p

dw2rsw2dgsn;w1,w2dv0sn;w1,w2d

s33d

and

vesw1d = lo
nÞ0

1

2p
E

−p

p

dw2rsw2dvcsn;w1,w2d

−
l

4o
m

1

2p
E

−p

p

dw3rsw3dN8sm;w1,w3d

3Ds3dX8sm;w3,w1d. s34d

The Lagrange parameterm ensures the unit-normalization of
functionÎrswd. We note that the renormalized Hartree equa-
tion may be discarded for parameter valuesl.lc, since the
density profile is constant in the disordered phase. Equation
(32) determines the site-site distribution functiongsn ;w1,w2d
and is often called(in the theory of quantum fluids) a renor-
malized Schrödinger equation for the square rootÎg with
zero-energy eigenvalue. It involves the induced potential

wsn;w1,w2d = −
l

2
fDs1d + Ds2dgN8sn;w1,w2d

−
l

2o
m

1

2p
E

−p

p

dw3rsw3d

3X8sn − m;w1,w3dDs3dX8sm;w3,w2d

=− lDs1dN8sn;w1,w2d −
l

2
Csn;w1,w2d s35d

with the quantity

Csn;w1,w2d = o
m

1

2p
E

−p

p

dw3rsw3dX8sn − m;w1,w3d

3Ds3dX8sm;w3,w2d. s36d

For the purpose of numerical calculations it is convenient to
use the HNC/0 scheme for a reformulation of Eq.(32) lead-
ing to the form

lfDs1d + Ds2dgX8sn;w1,w2d − lCsn;w1,w2d

= − 2Vphsn;w1,w2d, s37d

whereinVphsn ;w1,w2d is the particle-hole potential32

Vphsn;w1,w2d = Ẋ8sn;w1,w2d −
l

4
fDs1d + Ds2dgX8sn;w1,w2d.

s38d

FunctionX8˙ sn ;w1,w2d is a derivative of the direct compo-
nent of a generalized distribution functiongsn ,w1,w2,ad
with respect to a parametera. This function can be deter-
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mined from a set of generalized HNC equations in which
function usn ;w1,w2d is replaced by the modified
pseudopotential25,26

usn,w1,w2,ad = usn;w1,w2d + av!sn;w1,w2d. s39d

Quantitiesg, X, andN are functions of the parametera and
the corresponding dot quantities can be determined from
generalized HNC equations by taking the derivatives with
respect toa at a=0. The result provides the corresponding
HNC dot equations. In HNC/0 approximation they reduce to

ġs0;w1,w2d ; 0, s40d

ġsn;w1,w2d = gsn;w1,w2dfv!sn;w1,w2d + Ṅ8sn;w1,w2dg,

s41d

X8˙ sn;w1,w2d = ġsn;w1,w2d − N8˙ sn;w1,w2d, s42d

N8˙ sn;w1,w2d = o
m

1

2p
E

−p

p

dw3rsw3dẊ8sn − m;w1,w3d

3fX8sm;w3,w2d + N8sm;w3,w2dg

+ o
m

1

2p
E

−p

p

dw3rsw3dX8sn − m;w1,w3d

3fẊ8sm;w3,w2d + Ṅ8sm;w3,w2dg. s43d

V. NUMERICAL RESULTS AND DISCUSSION

The optimized correlated ground-state wave function and
the corresponding ground-state energy can be explicitly de-
termined by solving the set of coupled Eqs.(20)–(28), (31),
(32), and(40)–(43). The numerical procedure of the iteration
scheme is outlined in the Appendix. The solutions of the
Euler-Lagrange equations permit, of course, the enumeration
of the optimal gross quantities of interest associated with the
ground state. Here we report on some of our numerical re-
sults for the functions and quantities related to the optimized
correlated ground state of the system as a function of the
interaction strengthl. Figure 3 shows the numerical results
on the optimal on-site densityrswd as a function of the phase
w for various values of the coupling parameterl. The prob-
ability density is sharply peaked atw=0 for small coupling
parameterss0øl!lcd and agrees with the mean-field result
since the correlations vanish asl→0. In this limit the phases
(or rotor angles) on the lattice are alike and independent of
the lattice sites. With increasing strengthl the probability
distribution rswd broadens and equals unity at(and above)
the critical pointlc.2.97, where the phases are randomly
distributed and equally probable.

Figure 4 depicts numerical results on the optimal site-site
probability function Psn ;w1,w2d=rsw1drsw2dgsn ;w1,w2d,
for nearest neighbors at various values of the strengthl,lc
as function of the relative phasew=w1−w2=2w1 with w1
+w2=0. The function has a maximum forw=0 wherew1=

−w2=0. This means that—in spin interpretation—the orien-
tation of the rotor axes at neighboring sites are parallel and
pointing in the direction of thex axis. Forw.0 this prob-
ability is rapidly decreasing.

Figure 5 represents numerical results on the optimal order
parameterMxsld in the ordered phase of the Os2d model.
Comparing with the mean-field data displayed in Fig. 1 we
see a similar dependence of the CBF results for the order
parameterMx on the coupling strengthl, if we scale down
this variable to a smaller value. Atl=0 function rswd is
proportional to a delta functiondswd and the order parameter
Mx is unity. Asl increases the order parameterMx decreases
gradually due to the quantum phase fluctuations and drops
continuously to zero atlc=2.97, where these fluctuations
become strong enough to destroy completely the long-range
order forcing the system into the disordered phase for values
l.lc.

The results on the ground-state energy(Fig. 6) are signifi-
cantly lower than those of mean-field theory displayed in
Fig. 2 due to the negative correlation energy. This energy
component vanishes, of course, atl=0 and in the asymptotic
limit l→`. The absolute value of the correlation energy is
largest in the transition region amounting to about 10% of

FIG. 3. The optimal on-site density profilerswd calculated
within the CBF theory for various values of the coupling parameter
l.

FIG. 4. The optimal site-site probability densityPsn ;w1,w2d
=rsw1drsw2dgsn ;w1,w2d for nearest neighbors as a function of rela-
tive anglew=w1−w2 (with w1+w2=0, i.e.,w=2w1) in the ordered
phase, calculated within the CBF theory for various values of the
coupling parameterl.
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the energy result in mean-field approximation. In the disor-
dered phase,l.lc, the CBF results on the energy are rela-
tively close to the perturbation results based on the first-order
expression(11).

Figures 7 and 8 display CBF results on the site-site dis-
tribution functiongsn ;w1,w2d for nearest neighbors. In the
disordered regime of states(Fig. 7) the correlations depend
only on the relative phasew=w1−w2. The function is plotted
at three different values of the coupling parameter. Qualita-
tively, the dependence is essentially sinusoidal and becomes
stronger with decreasing coupling parameter. The correla-
tions are attractive for equal phase valuessw=0d and repul-
sive for a relative phase shiftw=p. Since the disordered
states possess the full symmetry of the Hamiltonian, the dis-
tribution function has the symmetrygsn ;wd=gsn ;2p−wd.
This symmetry is broken in the ordered phase(Fig. 8). As a
consequence, the phase correlations are strongest forw1
=−w2=p but are absent forw1=−w2=0.

To analyze in more detail the spatial dependence of the
correlations we may define a phase-averaged distribution
function by33

gsnd =
kCucosswi − w jduCl

kCuCl

=dn,0 +
1

s2pd2E
−p

p E
−p

p

dw1dw2rsw1d

3rsw2dgsn;w1,w2dcossw1 − w2d

=dn,0 + uGsndunÞ0. s44d

For large distancessunu→`d and in the weak-coupling limit
sl→`d this function vanishes. It is long-ranged in the
strong-coupling limit sl→0d approaching the asymptotic
valueMx

2. It is therefore convenient to decompose this func-
tion (for nÞ0) into

Gsnd = Mx
2 + Gssnd. s45d

FunctionGssnd is the short-ranged component of the corre-
lation function, with the propertyGss`d→0. Figure 9 shows
the CBF results for this function at different values ofl as a
function of distanceunu. It vanishes in the limitsl→0 and

FIG. 5. CBF results for the order parameterMx of the Os2d
model on a simple square lattice. The parameter is nonzero in the
ordered phase of the system, i.e., in the domain 0ølølc.2.97.
The dashed line and the long-dashed line show, respectively, the
results of mean-field theory and of low-order perturbation theory.

FIG. 6. CBF results on the ground-state energy per site for the
Os2d model on a simple square lattice, as function of the coupling
parameterl. Displayed are also results of perturbation theory in
lowest order(long-dashed line) and of mean-field theory(dashed
line).

FIG. 7. Numerical results on the optimal site-site distribution
function gsn ;w1,w2d in CBF approximation, for nearest neighbors
unu=1 in the disordered phasesl.lc.2.97d, as function ofw
=w1−w2. In the disordered phase region this function depends only
on the relative phasew.

FIG. 8. Numerical results on the optimal site-site distribution
function gsn ;w1,w2d in CBF approximation, for nearest neighbors
unu=1 as a function ofw=w1−w2=2w1, in the ordered phases0
øl,lc.2.97d.
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l→` as we see from Fig. 9, where it increases asl in-
creases. It decreases above the critical strengthlc. The de-
pendence on the distance can be well matched by an expo-
nential form of Yukawa type

Gssnd .
G0

unu
e−kunu. s46d

The parameterk−1 may be interpreted as a correlation
length. It approaches infinity if the system comes close to the
critical point. We may calculate this correlation length via
the relation lnfunuGssndg=ln G0−kunu (Fig. 10).

VI. SUMMARY AND OUTLOOK

CBF theory has been adapted and employed for a detailed
analysis of the Os2d model on a simple square lattice. Our
main interest has been focused on a study of correlation ef-
fects in the ground state and their dependence on the strength
of the coupling parameter that governs the ordering phenom-
ena at zero temperature. We have explicitly constructed a
pair-density functional for the ground-state energy in terms
of the on-site density profile and the site-site distribution
function that characterizes the existing correlations in the
model system. Utilizing the minimum principle for the en-
ergy we derived, respectively, a renormalized Hartree equa-
tion for the optimal profile and a renormalized Schrödinger
equation for the optimal site-site correlation function at zero
eigenvalue. We designed an appropriate numerical procedure
to solve these equations in conjunction with a set of HNC
equations that permits to relate the pseudopotential and the
Feenberg effective potential to the profile and the site-site
distribution function (in HNC/0 approximation). On this
variational level of the CBF theory the correlatedN-body
ground state of the Os2d lattice Hamiltonian is approximately
represented by a Hartree-Jastrow wave function of optimal
form. We note that the CBF theory provides a systematic
scheme for improving the present approximation, at least in
principle. Such improvements have been successfully per-
formed in detailed studies of liquid helium with quantitative
results of high numerical accuracy on spatial distribution
functions, static and dynamic structure functions, a.o. CBF
studies of lattice models on this more sophisticated level are
feasible but are more complex and time consuming than in
the case of liquid helium. Within the present realization of
CBF theory we have calculated and discussed the optimal
density profile, site-site distribution function, the ground-
state energy, and the order parameter. Results are displayed
in detail for the ordered phase(small coupling parameter)
and in the disordered regime(large coupling parameter). The
continuous phase transition occurs at a critical strengthlc
.2.97. The correlations correct therefore the mean-field re-
sult by about 25%. They also lower the energy result of
mean-field theory by about 10%. Afar from the transition
region the correlations become less effective and disappear
in the strong-coupling limit as well as in the weak-coupling
regime. Approaching the critical region the correlations be-
come long ranged. At present the analysis is not yet suffi-
ciently developed to allow the extraction and evaluation of
critical exponents at the transition point. Before attempting
this rather ambitious task one should first turn to a number of
interesting applications and some further developments.

The CBF formalism may be directly employed for semi-
analytic studies of the ground-state properties of the Os2d
model defined on three- or higher-dimensional lattices, for
lattices with differing spatial symmetries, and more complex
interactions that allow for frustration. With only marginal
changes the CBF formalism can be implemented to analyze
ground-state correlations in related lattice models, for ex-
ample, correlations in chiral Os4d models, which are of in-
terest in lattice meson-field theory.29 One could further em-
ploy the CBF theory to investigate excited states of the Os2d

FIG. 9. The(short-ranged) averaged distribution functionGssnd
as a function of relative distanceunu, for various values of the cou-
pling strengthl.

FIG. 10. The logarithm lnfun uGssndg as a function of relative
distanceunu for different values of the strength parameterl. The
inverse correlation lengthk is determined by the slope of the
curves.
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model or other lattice models at zero or finite
temperatures34,35 in close formal analogy to CBF studies of
quantum fluids36 and of spin lattices.37 Attempts in this di-
rection are reported in Ref. 38.

Of particular interest would be a CBF analysis of topo-
logical excitations generated by the Os2d Hamiltonian in two
spatial dimensions. Such a study may be performed in anal-
ogy to the CBF treatment of a single vortex and of a vortex-
antivortex pair in two-dimensional liquid helium.39,40 One
assumes that a vortex is a mobile(or trapped) quasiparticle
with a mass self-consistently determined within the CBF
theory. The corresponding correlated wave function is repre-
sented as a product of a many-body trial function of Jastrow
type such as expression(13) (or, more generally, of Jastrow-
Feenberg type) and a quantized complex phase factor[cf. Eq.
(5) of Ref. 40]. On the same level of approximation the CBF
state of a vortex-antivortex pair involves two complex phase
factors corresponding to the two centers of circulation[cf.
Eq. (16) of Ref. 40]. Based on these Ansaetze Refs. 39 and
40 report numerical results on the associated excitation en-
ergies, the vortex-antivortex interaction, and the chemical
potential required to create a vortex-antivortex pair in a two-
dimensional helium fluid. The present analysis of ground-
state properties of the Os2d model could be extended to a
formal and numerical study of topological excitations in lat-
tice systems by a suitable adaptation of the formalism of
Refs. 39 and 40. This adaptation can be done without major
difficulties. However, numerical calculations will be more
extensive for the lattice Os2d model than for the homoge-
neous helium phase, since in the former case one has to deal
with angular-dependent one-body densities(15).
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APPENDIX: NUMERICAL PROCEDURE

Numerical evaluation of the relevant solutions of the
Euler-Lagrange Eqs.(31) and (32) at given parameterl is
essentially done by appropriate iteration procedures. We be-
gin with a suitably chosen input for the(as yet unknown)
pseudopotential. In this initial step we adopt a simple form
usn ;w1,w2d=gDsnd. The parameterg is determined by mini-
mizing the energy functional within the adopted HNC/0 ap-
proximation. We then determine the corresponding one-body
density profile by solving the renormalized Hartree Eq.(31),
employing a Newton-Raphson algorithm. Next, the HNC/0
equations are solved by matrix inversion and iteration. The
optimal parameter form for the pseudopotential is then used
as an input to solve the full set of coupled equations simul-
taneously. For this purpose it is advisable to reformulate the

two-body integrodifferential Eq.(37). Multiplication of this
equation byÎrsw1drsw2d leads to the more convenient form

lfH0s1d + H0s2dgX̃8sn;w1,w2d

= lC̃sn;w1,w2d − 2Ṽphsn;w1,w2d. sA1d

The operatorH0sid in Eq. (A1) is defined by

H0sid = −
1

Îrswid
]

] wi
rswid

]

] wi

1
Îrswid

=−
] 2

] wi
2 +

1
Îrswid

] 2Îrswid
] wi

2

= −
] 2

] wi
2 +

1

l
Fswid, sA2d

whereFswd is obtained from Eq.(31):

Fswd = vdswd + veswd − m. sA3d

The tilde quantityf̃sn ;w1,w2d is defined as

f̃sn;w1,w2d = Îrsw1drsw2dfsn;w1,w2d. sA4d

Explicitly, quantity C̃sn ;w1,w2d is given by

C̃sn;w1,w2d = o
m

1

2p
E

−p

p

dw3X̃8sn − m;w1,w3d

3H0s3dX̃8sm;w3,w2d

=o
m

1

2p
E

−p

p

dw3]w3
X̃8sn − m;w1,w3d

3]w3
X̃8sm;w3,w2d

+
1

l
o
m

1

2p
E

−p

p

dw3X̃8sn − m;w1,w3d

3Fsw3dX̃8sm;w3,w2d. sA5d

Next, we solve the HNC/0 dot equations and determine the

function Ẋ8sn ;w1,w2d and the functionVphsn ;w1,w2d via Eq.
(38). The two-body Eq. (37) is solved using a finite-
difference relaxation method41 and by iteration. We replace
the derivative by a finite-difference defined on ann3n lat-
tice in w space withn=31 and construct the sparse matrix.
After converting the two-dimensional matrix into a one-
dimensional array and splitting the sparse matrix into two
components—a rest matrix and an invertible one—we iterate
and achieve rapid convergence. In each step of the adopted
iteration we determine new functionsX8sn ;w1,w2d and
N8sn ;w1,w2d and therewith a new correlation function
unewsn ;w1,w2d for nÞ0 via the construct
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unewsn;w1,w2d = lnfgnewsn;w1,w2d − N8newsn;w1,w2d. sA6d

Finally we determine the optimal on-site density profile, the
optimal site-site correlation function, and other physical
quantities of interest. To perform the analogous calculations

at other values of the strength parameterl we discretise the
parameter interval by stepsDl=0.01. With the optimal solu-
tions derived forl as input quantities we employ the same
numerical technique to calculate the optimal functions and
other data at strength parameterl+Dl.
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