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Charge localization seems unlikely to occur in two vertically coupled symmetric quantum dots even if a
small bias voltage breaks the exact isospin-symmetry of the system. However, we find a strong localization of
charges in one of the dots at certain vertically applied magnetic fields. The charge localization is directly
connected to ground state transitions between eigenstates differing only in parity. The transitions are driven by
magnetic-field-dependent Coulomb correlations between the electrons and give rise to strong isospin blockade
signatures in transport through the double-dot system.
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Quantum dot structures are excellent systems to investi-
gate few and many particle physics1 due to the high experi-
mental control over the system parameters. In this context
double quantum dots are particularly interesting in two dif-
ferent ways: as an implementation of quantum bits(qubit)2

and as a model system for molecular binding under con-
trolled conditions.3–5

In this paper we describe a correlation effect in a verti-
cally coupled double quantum dot(DQD) in a perpendicular
magnetic field, which strongly changes the molecular bind-
ing and at the same time defines a two-level system that can
be manipulated in a controlled way and could serve as a
qubit. This effect is manifest in the energy spectrum and the
transport properties of the DQD. Sweeping the magnetic
field we find ground state(GS) crossings in a perfectly sym-
metric DQD which occur between states with same spin and
angular momentum. In contrast to the well known crossings
between states that differ in angular momentum and/or spin6

and that affect the lateral motion and occur in single dots
already, the crossing discussed here involves a transition in
the parity of the GS that characterizes the vertical degree of
freedom. Therefore, by slightly breaking the symmetry be-
tween the two dots, e.g., by applying an infinitesimally small
voltage, the crossing turns into an anticrossing, which for an
odd number of electrons results in charge localization. Due
to the charge localization of the GS, transport through the
DQD is strongly suppressed at the anticrossing. In analogy to
the well known spin blockade7 this strong suppression can be
seen as an isospin blockade at the anticrossing with the iso-
spin describing the vertical degree of motion.

We describe the DQD within the layer model,6,8 which is
applicable if the external potentials separate in a strong ver-
tical and a considerably weaker lateral component. We as-
sume the in-plane confinement for the electrons to be para-
bolic and circular symmetric. Additionally a magnetic fieldB
can be applied in the vertical direction. The in-plane motion
of the electrons is then described in the effective mass ap-
proximation by the Fock-Darwin-Hamiltonian9 ĤFD and the
Zeeman termĤZ,

ĤFD + ĤZ =
1

2m* spW + eAW d2 +
m*v0

2

2
r2 + g* mB

"
BŜz, s1d

wherev0 is the strength of the parabolic confinement,m* is
the effective mass,mB the Bohr magneton, andg* the effec-

tive Landé factor.10 The eigenstates of the in-plane motion
are the Fock-Darwin statesun,ml with the principal quantum
numbernPN and the angular momentum quantum number
(z component) mPZ. The Hamiltonian(1) conserves the an-

gular momentumL̂z as well as thez component of the spinŜz

and the square of the spinŜ2, described bym, sz, and s,
respectively.

The vertical motion is reduced to tunneling between twod
sheets, labeled by the quantum numberaP h+,−j. a=± cor-
responds to the upper dots+d or lower dots−d, respectively.
In analogy with the real electron spin one can define a spin

operator algebra, where thez component of the isospinÎ z is
given bya.8

The interdot tunnelingĤTu± l= tu7 l which transfers elec-
trons between the two dots can be expressed by isospin op-
erators:

ĤT = tsÎ+ + Î−d = 2t Îx s2d

with the real hopping parametert,0.6 Î± are the raising and

lowering operators for thez component of the isospin, andÎ x

is its x component. The eigenstates ofÎ x and thus ofĤT are
the symmetric and antisymmetric linear combinations of the
isospin eigenstatesu± l. Due to tunneling the electrons are

delocalized and the eigenstates of the HamiltonianĤFD

+ĤT+ĤZ are no longer eigenstates ofIz. However, in the
case of symmetric dots the two layers are identical, so that

the isospin-parityP̂ is conserved. In the case of more than

one electron inside the DQD, the Coulomb interactionV̂c
between the electrons has to be included such that the few-
electron Hamiltonian reads

Ĥ = ĤFD + ĤT + ĤZ + V̂c

= o
i=1

Ne

sĤFD
sid + ĤT

sid + ĤZ
sidd +

e2

4pee0
o
i, j

V̂c
si,jd. s3d

Since Coulomb interaction is invariant under spatial and spin

rotations, total angular momentumL̂z and total spinŜ2,Ŝz
are still conserved and are described by the quantum num-
bers M and S,Sz, respectively. For a symmetric DQD also
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the total isospin parityP̂=2Ne·Î x
s1d

^ ¯ ^ Î x
sNed, which flips

the isospins of all electrons(i.e., it moves all electron orbitals
from the upper dot to the lower dot and vice versa), is con-
served, described by the quantum numberPP h+1,−1j. Due
to the Coulomb interaction the electrons are correlated. In a
vertical double quantum dot the Coulomb interaction can be
divided into two parts:V̂c

si,jd=V̂intra
si,jd +V̂inter

si,jd . The intradot Cou-
lomb interactionV̂intra

si,jd =1/r ij describes the interaction be-
tween electrons localized in the same dot, whereas theinter-
dot Coulomb interactionV̂inter

si,jd =1/sr ij
2 +d2d1/2 describes the

interaction between electrons localized in different dots.
Here r ij = urWi −rW ju is the lateral separation of two electronsi
and j andd is the vertical separation between the dots. The
Coulomb operator commutes with thez component of the

total isospinÎz but does not commute withÎx and accord-

ingly ĤT. The commutator between the Coulomb interaction
and tunneling depends on the difference betweenintradot
and interdot Coulomb interaction8 and vanishes only in the
limit d→0.

Increasing the vertical magnetic field effectively leads to a
stronger lateral confinement of the electrons and hence to an
increase of the Coulomb energy. Additionally intradot inter-
action increases faster with increasing magnetic field than the
interdot interaction, which is limited to 1/d.6 This different
scaling causes magnetic-field-dependent correlations in the
eigenstates. We show that this can lead to a GS crossing to
fixed M ,S,Sz for symmetric DQDs and charge polarization
in slightly asymmetric dots.

To take correlations into account we compute the eigen-
states and the corresponding eigenenergies by numerically
diagonalizing the many-body Hamiltonian(3), i.e., we ex-
pand the eigenstates in a finite basis of Slater determinants.11

In the following we discuss calculations of the eigenspec-
trum in a three-electron DQD for a particular set of external
parameters, where a slight asymmetry causes charge local-
ization in a small magnetic field window whereas the GS is
nearly unpolarized for different magnetic fields. However,
we want to point out that this effect is general and that it
exists for different parameters and subsets of quantum num-
bers as well as for different electron numbers in the DQD.

Calculating the magnetic-field dependence of the energy
spectrum for three electrons inside a symmetric DQD to an-
gular momentumM =−5 and spinS=Sz=3/2, we find a
crossing between the two energetically lowest states as illus-
trated in Fig. 1. Since the crossing states only differ in parity,
the accidental crossing converts into an anticrossing if the
parity conservation is broken by a slight asymmetry between
the dots leading to two strongly charge-polarized states. For
specific parameters the parity crossing and hence the charge
polarization found for this subspace of quantum numbers
becomes visible in the GS as illustrated in Fig. 2. The asym-
metry between the dots can be either intrinsic or caused by a
small bias voltage, as it is applied in transport experiments.12

We model the asymmetry between the dots by adding the

termV̂z=Vz·Îz to the Hamiltonian(3), whereVz is the energy
difference between upper and lower dot for a single electron.
While the GS is nearly unpolarized for general magnetic
field strengths, Fig. 2 shows a strongly polarized GS at the

magnetic field where the anticrossing occurs. The minimal
value of kIzl=−0.5 corresponds to two electron charges in
the lower dot and one in the upper. Thus we find the aston-
ishing effect that electrons become localized in one of the
dots by simply changing the vertical magnetic field. It is
important to note that the strength of the asymmetry(i.e.,Vz)
only determines the width of the localization dip in Fig. 2 but
even for arbitrarily small asymmetries the GS is strongly

polarized at the anticrossing withkIzl=−0.5. SincefL̂z,V̂zg
=fŜ2,V̂zg=fŜz,V̂zg=0,V̂z couples only states with same total
angular momentum and total spin. Therefore a similar effect
does not occur in the well known GS crossing between states
that differ in M and/orS6.

In the following we study the reported parity crossing in
the GS of a symmetric DQD in more detail. Without tunnel-
ing Iz is conserved and since both dots are identical the GS
will be twofold degenerate withIz= ±0.5. Switching on tun-
neling their degeneracy is lifted and the GS splits in two
nondegenerate parity eigenstatesuP= ±1l because of their
different occupations of symmetric and antisymmetric orbit-
als. In particular Fig. 1 illustrates that for magnetic fields
B,7.8 T the stateuP=−1l is favored by tunneling, i.e., it
has a higher occupation of symmetric orbitals thanuP= +1l.
However, due to magnetic-field-dependent correlations the
occupation of symmetric orbitals decreases foruP=−1l but

FIG. 1. Energy difference of the lowest two eigenstates to

ĤsM =−5 andS=Sz=3/2d as a function of the magnetic fieldB. t
=−0.059 meV,"v0=2.96 meV, and d=19.6 nm. The crossing
takes place atB=7.77 T (dashed vertical line).

FIG. 2. Angular momentumM, total spin S, and expectation
value of thez component of isospinkIzl for three electron GS to

Ĥ+V̂z. V̂z=5.9310−4Îz meV. The peak inkÎzl illustrates the
charge localization that corresponds to the parity crossing(see text).
Other parameters are as in Fig. 1.
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increases foruP= +1l, so that by increasing the magnetic
field finally uP= +1l becomes the GS. Figure 3 shows the
parity as a function of tunneling and external magnetic field
for the subspaceM =−5 and spinS=Sz=3/2. Thecrossing
exists from zero tunneling up tot<0.27 meV, which sug-
gests to treat the tunnelingt as a small perturbation. For
small tunneling(tunneling much smaller than the energy
spacing between degenerate GS and first excited state att
=0) the parity eigenstates are to first-order perturbation
theory given byuP= ±1l<suIz=

1
2
l± uIz=−1

2ld /Î2 and their

energy splitting is 2kIz=
1
2uĤTuIz=−1

2
lsBd. As indicated this

matrix element depends on the magnetic field due to the
magnetic-field-dependent correlations present in the states
uIz= ± 1

2l. To first order the crossing occurs atB=7.85 T
where the matrix element vanishes, and is independent oft in
good agreement with the exact results for small tunneling
(see Fig. 3). For strong tunneling, however, higher-order ef-
fects (coupling to higher states) come into play causing the
crossing to disappear fort.0.27 meV. Breaking the vertical
symmetry of the DQD the two parity eigenstates are coupled
and the parity crossing converts into an anticrossing, thereby
lifting their accidental degeneracy by an amountVz. At the
anticrossing the eigenstates are approximately given byIz

= ± 1
2 and are thus strongly charge polarized. We want to note

that the parity crossing and the related strong charge polar-
ization is not restricted to the total angular momentum and
total spin chosen here but also occurs for other sets of quan-
tum numbers. Furthermore, a symmetric DQD containing
any odd number of electrons has a degenerate GS att=0 and
similar parity crossings occur for higher odd numbers of
electrons in the DQD. The GS of an even number of elec-
trons att=0 hasIz=0 and is nondegenerate, so that the parity
crossings also found for an even number of electrons do not
lead to strong charge localization in the presence of arbi-
trarily small asymmetry.

The polarization of the three-electron GS can be detected
in a transport experiment through the DQD.4,5,12,13If a small
transport voltage, VSD, across the DQD is applied14 at con-
stant magnetic field, the conductanceG has a peak structure
as a function of the gate voltage. The height of the conduc-
tance peaksGpeak corresponding to the transitions between
two and three electrons or three and four electrons inside the
DQD are shown as a function of the magnetic field and for

two different constant temperatures in Fig. 4. A comparison
with Fig. 2 shows that the current through the DQD is sup-
pressed at the magnetic field, where the three-electron GS
becomes polarized. We want to point out that since the asym-
metry between the dots is weak only the two lowest three-
electron states are polarized(in opposite direction) whereas
the other states and in particular the two and four electron
GS are unpolarized(in contrast to Ref. 5). In our calculations
we assume that transport is described by sequential tunneling
processes in and out of the many-particle eigenstates of the
isolated DQD.15 This is a good approximation for weak tun-
nel contacts between the reservoirs and the DQD, i.e., the
tunneling strength to the external reservoirs is smaller than
the interdot tunneling and the finite lifetime broadening of
the DQD states is smaller than temperature.16 For the tunnel-
ing events a transition rate can be calculated, which we call
T+sT−d for a transition caused by a tunneling event through
the upper(lower) barrier. In the following we discuss the
transition between two and three electrons in the dot, but the
arguments are equally valid also for the next conductance
peak.

Assuming that an electron in the upper(lower) reservoir
can only tunnel into the upper(lower) dot (in contrast to Ref.
15), the transition rateT+ between a two-particle state and a
three-particle state is proportional to the spectral
weight TNe=3→Ne=2

+ ~on,m,szkNe=2udnm+suNe=3lz2,17 where
dnm+s denotes the annihilation operator for the orbital
unm+sl in the upper dot,11 similarly TNe=3→Ne=2

−

~on,m,szkNe=2udnm−suNe=3lz2. Due to the small transport
voltage only the two transport channels that include the un-
polarized two-electron GS and one of the polarized three-
electron states(GS and first excited state) lie within the
transport window. Higher channels only contribute due to the
finite temperature and can be further suppressed by lowering
the temperature. For both transport channels that include po-

FIG. 3. Dependence of parityP for M =−5 andS=3/2 on mag-
netic field B and tunnelingt. The solid line indicates where the
crossing between the parity eigenstates takes place. Other param-
eters are as in Fig. 1.

FIG. 4. Height of the third and fourth conductance peaks(tran-
sition fromNe=2 to Ne=3 or fromNe=3 to Ne=4) as a function of
B for two temperatures andVsd=12 mV. G=DOSuTu2s2p /"d deter-
mines the coupling to the external reservoirs, where DOS is the
density of states in the reservoirs andT denotes the tunnel matrix
elements to the reservoirs. Other parameters are as in Figs. 1 and 2.
In particular the asymmetry between the lower and upper dotVz

=10−2utu<0.6 meV.
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larized three-electron states one of the transition rates either
for the tunneling in or tunneling out process is isospin
blocked.T−sT+d is suppressed if the three-electron state has
two electrons localized in the upper(lower) dot. For a cur-
rent to flow through the DQD both tunneling processes are
necessary, which is expressed by the effective tunneling rate
proportional tosT−T+d / sT−+T+d.18 Therefore, the current is
strongly reduced due to an isospin blockade of both chan-
nels. Away from the crossing the three-electron states are no
longer polarized so that the transition through both barriers is
possible.

We conclude as follows. Magnetic-field-dependent Cou-
lomb correlations affect the eigenstates’ tunneling energies
differently, depending on their parity leading to additional
magnetic-field-induced level crossings between states with
different parity but same angular momentum and spin in a

perfectly symmetric DQD. In symmetry-broken DQDs with
an odd number of electrons the anticrossing of two eigen-
states with different parity leads to a magnetic-field-
dependent charge polarization. The charge polarization also
takes place in the GS(as presented in this paper forNe=3
electrons) and is detectable in a transport experiment through
the DQD as it leads to an isospin blockade at the magnetic
field where the polarization occurs. The resulting polarized
eigenstatesu 1

2l and u−1
2l can be seen as a qubit that can be

switched by the applied bias voltage. A controlled superpo-
sition of the two states can then be achieved by adjusting the
magnetic field.
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