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Lattice thermal conductivity of superlattice structures
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We give a quantitative inelastic phonon Boltzmann equation theory of thermal transport in quantum well
superlattices due to anharmonic three phonon processes. The thermal conductivity is calculated as a function of
the mass ratio of the constituent atoms and of the superlattice period. We show that there is a competition
between the flattening of dispersions that inhibits heat flow and reduced umklapp scattering that enhances it.
Both effects must be included consistently for a quantitative treatment. We apply this theory to realistic models
of Si/Ge based structures.
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The theory of the lattice thermal conductivity in bulk match between constituent layers, which flattens the phonon
semiconductors and insulators was first formulated rigordispersions in the superlattice, also reduces the phase space
ously by Peierls. He developed the earlier idea of Debye. for umklapp scattering. This results in a striking competition
that the anharmonicity of the interatomic forces in solidshetween the decrease in phonon group velocities that acts to
causes scattering between vibrational waves, and he intrgower the thermal conductivity and the reduction in umklapp
duced the idea of “umklapp” processés which the phonon  scattering that acts to raise it. Detailed calculations using full
momentum in scattering processes is changed by a reciprocghtice dynamics show that the interplay between these two
lattice vector. Unlike phonon scattering by defects, impuri-competing effects must be included for a quantitative de-
ties or boundaries, anharmonic umklapp scattering ian — gerinion of the thermal conductivity of superlattices.

trinsic resistive procesthat defines the minimum obtainable We consider a defect free superlattice and treat transport
lattice thermal conductivity in crystalline materials, and usu-along the superlattice axis. The lowest-order anharmonic

ally dominates the behavior of the lattice thermal conductiv- . . :
ity, «, of bulk semiconductors at room temperatéire. scattering process involves three phc?n?)ﬁsanservatlon of
energy and quasi-momentum require:

The « of micro- and nano-structures is of current scien-
tific interest, and its understanding is important for potential wi(Q) £ 0;(q") = wp(q"), q+q’ =q"+K, (1)
applications, such as cooling of microelectronics and
thermoelectricé:> Quantum well superlattices, nanowire ar- whereq,j and w;(q) are the phonon wave vector, branch
rays and carbon nanotubes are examples whose vibrationaldex and energy, and is a reciprocal lattice vector that is
modes can differ markedly from the corresponding bulk mazero for normal processes and non-zero for umklapp pro-
terials. This provides the opportunity to taileroy materials  cesses. The combinatidg, j), is represented by. We take
fabrication techniques. a small temperature gradief®t], to perturb the phonon dis-

Superlattice structure modifies phonon dispersions byribution function: n)\:ng+ni‘ with n)l\:—(ﬁnglaw)\)\If)\’
zone folding and mass mismatch between constituent layerghere w, is the phonon energyxgzno(wx) is the equilib-

which changesc through both(i) changes in the group ve- jym phonon distribution function, and, measures its de-

locities of phonons that carry heat afid) changes in the yjation from equilibrium. The linearized phonon Boltzmann
kinematics of phonon scattering. Previous theoreticabquation is?

work®-8 used simplified models to show that zone-folding .
and mass mismatch resulted in reduced group velocities. ] ony _ + _

These theories used a constant relaxation time approximation keTv- VT 2= 2 [WM’N’(\P“ =)
(CRTA) in which all phonon scattering processes are lumped
into a single relaxation time, The ratiokg / 7 was shown to + }W_

be significantly reduced by changes in the group velocities, 2 NN
and order of magnitude decreases in it were obtained for .
Si/Ge superlattice®’ In general, however, a simple constant Where the three-phonon scattering rates are:

N

(W + Wy - \I’x)} . (2

relaxation time cannot represent the complex effects of su- ol o 1.1\ o
perlattice structure on the anharmonic phonon scattering, and 20 nx(”y + > e 5)(%, +1)
thus we do not have a reliable understanding of thermal me,,— |D, (NN N
transport in these systems. 327 W)@y 1 )
In this paper, we develop for the first time a full inelastic X 8wy £ @y — o) g4’ - q" - K). 3)

phonon Boltzmann equation approach for the lattice thermal
conductivity of superlattices resulting from three-phonon(} is the volume of each superlattice unit cell, and the delta
scattering processes. A central result is that the mass misdanctions ensure energy and momentum conservation. The
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three-phonon scattering matrix element®,(A,\",\")
=d(j,-q,j’; ¥q';j’,q") are given by:
®(j,0,05931,0) =2 X X 2 Popy(Or, €'k K"

K ¢l ! " afy
&, (@), (a")
MMM '

gl Rergid"Rer

(4)

Here, ®,,4,(0k, €' «’,£"K") is the third order force constant,
R, is a lattice vector in thé&th unit cell, k specifies an atom
in the unit cell whose mass M,, «, 8,y are Cartesian com-
ponents, and the's are phonon eigenvectors. For a given
model for the interatomic potential, the dynamical matrix for

the superlattice can be generated and diagonalized to obtain
the phonon dispersions and modes, which form the scattering

matrix elements and scattering rates in E&.and (4).

The phonon Boltzmann equation is solved with an itera-

tive procedure similar to that for bulk semiconductdisle
define: ¥, =2 F,,dT/dx,; putting it into Eq.(2) and rear-
ranging we obtain:

1
F)\a = Fga + Q_ 2 {W;)\')\”(F)\”a - F)\/Dz)

)\)\I)\H
1
+ EW)‘)\’}\”(F}\”O( + F)\ra) , (5)
where Q== AW+ S WG, ) and Fo,

=hwyng(Ng+1)v, ./ (TQ,). For mode(j,q) and the other two
phonon brancheg, andj”, there is a six-dimensional space
of q’ and q” that can form a scattering event. Momentum
and energy conservation in Ed.) give four constraint equa-

tions that leave a two-dimensional surface in the superlattic

Brillouin zone of allowedy’. For each(j,q,j’,j"), we select
dy andgy and determine thg, that satisfies the conservation
equations. The resulting sft,q;j’,q’;j”,q"} is used in the
summation to evaluat®,. To initiate the iterative procedure,
the second term on the right-hand si{&HS) of Eq. (5) is set
to zero. ThusF?  is the zeroth order solution of the Boltz-
mann equation. Plugging this into the RHS of [E8). yields
the first-order squtionF)l\’a. The sequence is taken to con-
verge when for large enough FI**~F . We typically find
that ~50 iterations is sufficient.

The heat current in theth direction from a temperature
gradient alongg, Ja:EBK“ﬁaT/axﬁ defines the phonon ther-
mal conductivity tensor:

o 1

> f daCj(@vju(avjgl@)Tigla),  (6)
J

where C;(q) =[(hw;(q))?/ ks T?Ing;(a)(ng; (@) +1) is the con-
tribution per moddj,q) to the specific heat per unit volume,
andrjg(q) =TF;a(q)/ (hwj(q)via(a)).

We wish to delineate in general the effects of superlatticed.59 W/cm K
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FIG. 1. Room temperature thermal conductivityX N super-
lattices along the superlattice axis, scaled by the calculated values
for the bulk templategsee the text as a function of mass ratio of
the constituents. The thin vertical line is for SiGe superlattices.

ing superlattice thermal conductivities to those for a fictitious
bulk material, called a “template,” with a uniform malsk
given by the geometric mean of the two masses in the super-
lattice.

We take the template to have a diamond crystal structure,
with atomic massM;. We form anN X N superlattice made
by increasing the mass of atoms [\ monolayers perpen-
dicular to the[001] direction toM;> M, and decreasing the
mass of atoms in the subsequéhmonolayers tavl, <M;.

The 2N monolayer period is repeated to generate the super-
lattice structure. The ratiM,/M, is thus increased, but we
retain the geometric mean of the masses to be that of the
femplate materialiM;M,=M,.

We obtain the interatomic force constants from a Keating
modeli® which describes both bond stretching and bond
bending forces in semiconductors. The second and third or-
der contributions to the interatomic potential are param-
etrized by the five constanta,andg, v, 4, ande, chosen to
fit to the second and third order elastic constafits.

To be definite, we take the Keating force constant param-
eters for the template material and the superlattices to be the
geometric mean of those for Si and Ge;=\agiage
:8'[: \‘J“BSiIBGe’ etc. with aSi(Ge):O'485(O'381 BSi(Ge)
2006(012), ')’Si(Ge):_3-25(_2-721 §Si(Ge):0-25(0-34)1 and
esice=—0.1-0.48. Here, agjgeg and PBgige are in
10° dyn/cm andysjce, Jsie» Esice are in 132 dyn/cnt.1t
Then we obtain the particular case of an Si/Ge superlattice
by choosingM;=Mg=72.6 andM,=Mg;=28.1. The calcu-
lated thermal conductivity of the bulk template material is
keu=0.97 W/cm K, and we scale all superlattice results to
this value. The calculated room temperature bulk thermal
conductivities along[001] are 1.36 W/cmK for Si and
for Ge, in good agreement with

structure on the thermal conductivity. The superlattice willexperiment213

be represented by varying periodically the atomic masses in Figure 1 shows the room temperature thermal conductiv-
alternating sets dil monolayers. We will compare the result- ity, kg / kg 1. fOr several superlattice periods as a function of

081310-2



RAPID COMMUNICATIONS

LATTICE THERMAL CONDUCTIVITY OF... PHYSICAL REVIEW B 70, 08131QR) (2004

TABLE |. Comparison of full calculations and the constant relaxation time approximation for SiGe
superlattices of the lattice thermal conductivity scaled by bulk template ységetexy, s / kg, and of the
contributions tokg, / kg, from the first six superlattice phonon branches. The increasing number of phonon
branches with increasing period causes a decrease in the contribution per branch.

1x1 2X2 4X 4 8%X8
Branch No. Full CRTA Full CRTA Full CRTA Full CRTA
1 0.120 0.064 0.091 0.044 0.022 0.010 0.006 0.002
2 0.231 0.094 0.108 0.064 0.022 0.012 0.007 0.002
3 0.564 0.144 0.100 0.093 0.039 0.021 0.013 0.003
4 0.621 0.104 0.025 0.029 0.031 0.022 0.013 0.006
5 0.267 0.135 0.012 0.043 0.024 0.033 0.017 0.010
6 0.038 0.066 0.013 0.067 0.023 0.028 0.023 0.016
Total 1.869 0.636 0.352 0.351 0.205 0.267 0.198 0.228

M./M,. For the 22, 4X 4 and 8< 8 caseskg, decreases the thermal conductivity to increase. Figure 2 shows the pho-
with increasingM;/M,. For fixed M;/M,, kg decreases non dispersions for X1 and 2<2 SiGe superlattices
with increasing period, with nearly an order of magnitude(M;/M,=2.58. Note that a large gap between acoustic and
decrease incg/ kgyy for the 8x 8 case. In all cases we find optic modes occurs for theX11 casg(solid lineg but not the

a decrease in the phase space available for umklapp scatt@x 2 case(dashed lines Thus, this behavior is particular to
ing with increasingM;/M, and with increasing period. The the 1X1 case.

decreases ik, for the 2x2, 4x4 and 8<8 cases occur 10 quantify this behavior, we define an umklapp scatter-
because the effect of lower average group velocities alon§d Parameter¢ as the fraction ofj,q:j’,q’) pairs in our

the superlattice axis outweighs the effect of decreased unfearch algorithm that satisfy the conservation conditions for
klapp scattering. Thems,/ kg is qualitatively similar to  Umklapp processe& # 0). £ thus measures the phase space
that obtained from models using the CR¥&. When we for three-phonon umklapp scattering processes. We also de-
implement the CRTA by replacing afj4(q) in Eq.(6) witha  fine £, which gives the fraction ofj,q:j’,q’) pairs that sat-
constant,r, we find ~independent ratiogs, / kg, that are in  isfy the conservation conditions and involve optic phongns.
reasonably good agreement with the present full calculationgnd { are shown in Fig. 3 for X1 and 2<2 superlattices.

for 2x2, 4x4 and 8x8 cases. This is illustrated for the For M;/M,=2, ¢ and { decrease more for theXl1 case
specific case of Si/Ge superlatticédl;/M,=2.58 in the  than for the 2< 2 case. The close correspondence between
last row of Table I. However, this agreement is fortuitousand { shows that most umklapp processes involve at least
because the contributions tes,/ kg, from each phonon ©One optic mode. The absence of the optic phonon scattering
branch can differ considerably as seen in the first six rows ofhannels for the X 1 case causes the increasexf/ kg, in

the table. For the X1 superlattice, the CRTA fails com- q.2(0,0) q =(V23,0)

pletely, as discussed below. This suggests that the good 60 e Sk —
agreement between the full calculations and the CRTA ob-
tained here for superlattices may not occur in other systems.

For fixed M,/M, we find that the reduction irg / kgy
decreases with increasing superlattice period suggestive of
the formation of a minimum. Such a behavior has been ob-
served experimentall§ and attributed to a change from
wave-like to particle-like behavior of the phonons with in-
creasing period.The numerical complexity of our approach
inhibits explicit calculations for larger period superlattices
where a minimum would appear.

An interesting feature in Fig. 1 is the increasex for ;
large M,/M, for the 1X1 superlattice. There is a simple 10 F>= .
physical picture to understand this. The majority of the heat
is carried by the dispersive acoustic modes; the higher optic ) SN N N T
modes have low average group velocities and so carry little -1 0.5 0 0.5 1
heat. With increasingM;/M, a large gap forms between qZ/(:rc/a)
acoustic and optic modes. This reduces the scattering of
the heat-carrying acoustic phonons by optic phonons. This FIG. 2. Phonon dispersions along the growth direction of
reduced scattering overshadows the effect n from 1x 1 (solid lineg and 2x 2 (dashed linesSiGe superlattices for
the decrease in average phonon group velocity and causeso in-plane wave vectors.
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ductivity of 1X 1 superlattices we obtained with increasing
mass ratio has been corroborated by the measurements on
InSb, GaAs, InAs, GaSb, GaP, InP, and AfSi=igure 6 of
Ref. 15 summarizes their results. Previous work on these
systems, using a simple theoretical model, explained the ini-
tial drop-off in thermal conductivity with increasind /M,
as being due to an increase in umklapp scatteffrigow-
ever, our results show that the umklapp scattering does not
increase; rather the initial drop ik, arises because the av-
erage phonon group velocity decreases while the umklapp
scattering stays roughly constant.

We have given a rigorous treatment of anharmonic pho-
non scattering in superlattices. We find that the flattening of

Eand ¢

01 R Y- dispersions in superlattices that decreases phonon velocities
' M M ' also reduces the phase space for umklapp scattering. These
12 competing effects can lead to increases as well as to de-

creases ok. A unified treatment is required in order to have
a quantitative measure of theof superlattices. Our results
guggest that tailoring of the thermal conductivity in nano-
structures may be possible by manipulation of phonon-
phonon scattering through changes in their dispersion.

The extension of our theory to include other scattering
Fig. 1. The CRTA fails completely for this case, predicting amechanisms such as boundary and impurity scattering is
decrease inkg / kgy IN poor agreement with the full calcu- straightforward and has been given for bulk
lation (see Table)l semiconductor. It should be noted that interface defects

The qualitative features obtained here for the L super-  that occur in superlattices on the monolayer scale using cur-
lattice have in effect already been observed. This:]lsys- rent growth meth0d$e_g_, MBB, can produce Signiﬁcant
tem is crystallographically equivalent to bulk zinc blende scattering of phonon¥.In this case, the unusual behavior of

crystals for which experimental results are'a\./ailalBFéh'esc_e K<, We obtain for the I 1 superlattice could be masked.
systems are well characterized and have limited extrinsic de-

fects. Their thermal conductivity is controlled by intrinsic ~ We would like to thank G.D. Mahan and N. Mingo for
phonon scattering. The unusual behavior of the thermal corstimulating and useful discussions regarding this work.

FIG. 3. Umklapp and optic phonon scattering parametérs,
(solid lineg and¢ (dashed lines as described in text, forx 1 and
2 X 2 superlattices for increasing mass ratio of the constituents. Th
thin vertical line gives results for SiGe superlatticésand ¢ are
scaled by values for the bulk template material.
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