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We give a quantitative inelastic phonon Boltzmann equation theory of thermal transport in quantum well
superlattices due to anharmonic three phonon processes. The thermal conductivity is calculated as a function of
the mass ratio of the constituent atoms and of the superlattice period. We show that there is a competition
between the flattening of dispersions that inhibits heat flow and reduced umklapp scattering that enhances it.
Both effects must be included consistently for a quantitative treatment. We apply this theory to realistic models
of Si/Ge based structures.
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The theory of the lattice thermal conductivity in bulk
semiconductors and insulators was first formulated rigor-
ously by Peierls.1 He developed the earlier idea of Debye.2

that the anharmonicity of the interatomic forces in solids
causes scattering between vibrational waves, and he intro-
duced the idea of “umklapp” processes1 in which the phonon
momentum in scattering processes is changed by a reciprocal
lattice vector. Unlike phonon scattering by defects, impuri-
ties or boundaries, anharmonic umklapp scattering is anin-
trinsic resistive processthat defines the minimum obtainable
lattice thermal conductivity in crystalline materials, and usu-
ally dominates the behavior of the lattice thermal conductiv-
ity, k, of bulk semiconductors at room temperature.3

The k of micro- and nano-structures is of current scien-
tific interest, and its understanding is important for potential
applications, such as cooling of microelectronics and
thermoelectrics.4,5 Quantum well superlattices, nanowire ar-
rays and carbon nanotubes are examples whose vibrational
modes can differ markedly from the corresponding bulk ma-
terials. This provides the opportunity to tailork by materials
fabrication techniques.

Superlattice structure modifies phonon dispersions by
zone folding and mass mismatch between constituent layers,
which changesk through both(i) changes in the group ve-
locities of phonons that carry heat and(ii ) changes in the
kinematics of phonon scattering. Previous theoretical
work6–8 used simplified models to show that zone-folding
and mass mismatch resulted in reduced group velocities.
These theories used a constant relaxation time approximation
(CRTA) in which all phonon scattering processes are lumped
into a single relaxation time,t. The ratiokSL/t was shown to
be significantly reduced by changes in the group velocities,
and order of magnitude decreases in it were obtained for
Si/Ge superlattices.6,7 In general, however, a simple constant
relaxation time cannot represent the complex effects of su-
perlattice structure on the anharmonic phonon scattering, and
thus we do not have a reliable understanding of thermal
transport in these systems.

In this paper, we develop for the first time a full inelastic
phonon Boltzmann equation approach for the lattice thermal
conductivity of superlattices resulting from three-phonon
scattering processes. A central result is that the mass mis-

match between constituent layers, which flattens the phonon
dispersions in the superlattice, also reduces the phase space
for umklapp scattering. This results in a striking competition
between the decrease in phonon group velocities that acts to
lower the thermal conductivity and the reduction in umklapp
scattering that acts to raise it. Detailed calculations using full
lattice dynamics show that the interplay between these two
competing effects must be included for a quantitative de-
scription of the thermal conductivity of superlattices.

We consider a defect free superlattice and treat transport
along the superlattice axis. The lowest-order anharmonic
scattering process involves three phonons.3 Conservation of
energy and quasi-momentum require:

v jsqd ± v j8sq8d = v j9sq9d, q ± q8 = q9 + K , s1d

where q , j and v jsqd are the phonon wave vector, branch
index and energy, andK is a reciprocal lattice vector that is
zero for normal processes and non-zero for umklapp pro-
cesses. The combinationsq , jd, is represented byl. We take
a small temperature gradient,¹T, to perturb the phonon dis-
tribution function: nl=nl

0+nl
1 with nl

1=−s]nl
0 /]vldCl,

where"vl is the phonon energy,nl
0;n0svld is the equilib-

rium phonon distribution function, andCl measures its de-
viation from equilibrium. The linearized phonon Boltzmann
equation is:3

kBTv · ¹ T
]nl

0

]T
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l8l9
FWll8l9
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+
1

2
Wll8l9

− sCl9 + Cl8 − CldG , s2d

where the three-phonon scattering rates are:

Wll8l9
± =
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32p2
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0Snl8
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2
±
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2
Dsnl9

0 + 1d

vlvl8vl9
uF±sl,l8,l9du2

3dsvl ± vl8 − vl9ddsq ± q8 − q9 − K d. s3d

V is the volume of each superlattice unit cell, and the delta
functions ensure energy and momentum conservation. The
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three-phonon scattering matrix elements,F±sl ,l8 ,l9d
=Fs j ,−q , j8 ; 7q8 ; j8 ,q9d are given by:

Fs j ,q, j8;q8; j8,q9d = o
k

o
,8k8

o
,9k9

o
abg

Fabgs0k,,8k8,,9k9d

3eiq8·R,8eiq9·R,9
eak

j sqdebk8
j8 sq8degk9

j9 sq9d

MkMk8Mk9
.

s4d

Here,Fabgs0k ,,8k8 ,,9k9d is the third order force constant,
R, is a lattice vector in the,th unit cell,k specifies an atom
in the unit cell whose mass isMk, a ,b ,g are Cartesian com-
ponents, and thee’s are phonon eigenvectors. For a given
model for the interatomic potential, the dynamical matrix for
the superlattice can be generated and diagonalized to obtain
the phonon dispersions and modes, which form the scattering
matrix elements and scattering rates in Eqs.(3) and (4).

The phonon Boltzmann equation is solved with an itera-
tive procedure similar to that for bulk semiconductors.9 We
define: Cl=oaFla]T/]xa; putting it into Eq. (2) and rear-
ranging we obtain:

Fla = Fla
0 +

1

Ql
o
l8l9

bWll8l9
+ sFl9a − Fl8ad

+
1

2
Wll8l9

− sFl9a + Fl8adc, s5d

where Ql=ol8l9bWll8l9
+ + 1

2Wll8l9
− c and Fla

0

="vln0sn0+1dvla / sTQld. For modes j ,qd and the other two
phonon branches,j8 and j9, there is a six-dimensional space
of q8 and q9 that can form a scattering event. Momentum
and energy conservation in Eq.(1) give four constraint equa-
tions that leave a two-dimensional surface in the superlattice
Brillouin zone of allowedq8. For eachs j ,q , j8 , j9d, we select
qx8 andqy8 and determine theqz8 that satisfies the conservation
equations. The resulting seth j ,q ; j8 ,q8 ; j9 ,q9j is used in the
summation to evaluateQl. To initiate the iterative procedure,
the second term on the right-hand side(RHS) of Eq. (5) is set
to zero. Thus,Fla

0 is the zeroth order solution of the Boltz-
mann equation. Plugging this into the RHS of Eq.(5) yields
the first-order solution,Fl,a

1 . The sequence is taken to con-
verge when for large enoughn, Fla

n+1<Fla
n . We typically find

that ,50 iterations is sufficient.
The heat current in theath direction from a temperature

gradient alongb, Ja=obkab]T/]xb defines the phonon ther-
mal conductivity tensor:

kSL
ab =

1

s2pd3o
j
E dqCjsqdv jasqdv jbsqdt jbsqd, s6d

where Cjsqd=fs"v jsqdd2/kBT2gn0jsqdsn0jsqd+1d is the con-
tribution per modes j ,qd to the specific heat per unit volume,
andt jbsqd=TFjbsqd / s"v jsqdn jbsqdd.

We wish to delineate in general the effects of superlattice
structure on the thermal conductivity. The superlattice will
be represented by varying periodically the atomic masses in
alternating sets ofN monolayers. We will compare the result-

ing superlattice thermal conductivities to those for a fictitious
bulk material, called a “template,” with a uniform massMt
given by the geometric mean of the two masses in the super-
lattice.

We take the template to have a diamond crystal structure,
with atomic mass,Mt. We form anN3N superlattice made
by increasing the mass of atoms inN monolayers perpen-
dicular to the[001] direction toM1.Mt and decreasing the
mass of atoms in the subsequentN monolayers toM2,Mt.
The 2N monolayer period is repeated to generate the super-
lattice structure. The ratioM1/M2 is thus increased, but we
retain the geometric mean of the masses to be that of the
template material:ÎM1M2=Mt.

We obtain the interatomic force constants from a Keating
model,10 which describes both bond stretching and bond
bending forces in semiconductors. The second and third or-
der contributions to the interatomic potential are param-
etrized by the five constants,a andb, g, d, and«, chosen to
fit to the second and third order elastic constants.10

To be definite, we take the Keating force constant param-
eters for the template material and the superlattices to be the
geometric mean of those for Si and Ge:at=ÎaSiaGe,
bt=ÎbSibGe, etc. with aSisGed=0.485s0.38d, bSisGed
=0.06s0.12d, gSisGed=−3.25s−2.72d, dSisGed=0.25s0.34d, and
«SisGed=−0.7s−0.48d. Here, aSisGed and bSisGed are in
105 dyn/cm andgSisGed, dSisGed, «SisGed are in 1012 dyn/cm2.11

Then we obtain the particular case of an Si/Ge superlattice
by choosingM1=MGe=72.6 andM2=MSi=28.1. The calcu-
lated thermal conductivity of the bulk template material is
kBulk=0.97 W/cm K, and we scale all superlattice results to
this value. The calculated room temperature bulk thermal
conductivities along[001] are 1.36 W/cm K for Si and
0.59 W/cm K for Ge, in good agreement with
experiment.12,13

Figure 1 shows the room temperature thermal conductiv-
ity, kSL/kBulk, for several superlattice periods as a function of

FIG. 1. Room temperature thermal conductivity ofN3N super-
lattices along the superlattice axis, scaled by the calculated values
for the bulk template(see the text), as a function of mass ratio of
the constituents. The thin vertical line is for SiGe superlattices.
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M1/M2. For the 232, 434 and 838 cases,kSL decreases
with increasingM1/M2. For fixed M1/M2, kSL decreases
with increasing period, with nearly an order of magnitude
decrease inkSL/kBulk for the 838 case. In all cases we find
a decrease in the phase space available for umklapp scatter-
ing with increasingM1/M2 and with increasing period. The
decreases inkSL for the 232, 434 and 838 cases occur
because the effect of lower average group velocities along
the superlattice axis outweighs the effect of decreased um-
klapp scattering. ThenkSL/kBulk is qualitatively similar to
that obtained from models using the CRTA.6–8 When we
implement the CRTA by replacing allt jbsqd in Eq. (6) with a
constant,t, we findt-independent ratioskSL/kBulk that are in
reasonably good agreement with the present full calculations
for 232, 434 and 838 cases. This is illustrated for the
specific case of Si/Ge superlatticessM1/M2=2.58d in the
last row of Table I. However, this agreement is fortuitous
because the contributions tokSL/kBulk from each phonon
branch can differ considerably as seen in the first six rows of
the table. For the 131 superlattice, the CRTA fails com-
pletely, as discussed below. This suggests that the good
agreement between the full calculations and the CRTA ob-
tained here for superlattices may not occur in other systems.

For fixed M1/M2 we find that the reduction inkSL/kBulk
decreases with increasing superlattice period suggestive of
the formation of a minimum. Such a behavior has been ob-
served experimentally14 and attributed to a change from
wave-like to particle-like behavior of the phonons with in-
creasing period.8 The numerical complexity of our approach
inhibits explicit calculations for larger period superlattices
where a minimum would appear.

An interesting feature in Fig. 1 is the increase inkSL for
large M1/M2 for the 131 superlattice. There is a simple
physical picture to understand this. The majority of the heat
is carried by the dispersive acoustic modes; the higher optic
modes have low average group velocities and so carry little
heat. With increasingM1/M2 a large gap forms between
acoustic and optic modes. This reduces the scattering of
the heat-carrying acoustic phonons by optic phonons. This
reduced scattering overshadows the effect onkSL from
the decrease in average phonon group velocity and causes

the thermal conductivity to increase. Figure 2 shows the pho-
non dispersions for 131 and 232 SiGe superlattices
sM1/M2=2.58d. Note that a large gap between acoustic and
optic modes occurs for the 131 case(solid lines) but not the
232 case(dashed lines). Thus, this behavior is particular to
the 131 case.

To quantify this behavior, we define an umklapp scatter-
ing parameter,j as the fraction ofs j ,q ; j8 ,q8d pairs in our
search algorithm that satisfy the conservation conditions for
umklapp processessK Þ0d. j thus measures the phase space
for three-phonon umklapp scattering processes. We also de-
fine z, which gives the fraction ofs j ,q ; j8 ,q8d pairs that sat-
isfy the conservation conditions and involve optic phonons.j
and z are shown in Fig. 3 for 131 and 232 superlattices.
For M1/M2ù2, j and z decrease more for the 131 case
than for the 232 case. The close correspondence betweenj
and z shows that most umklapp processes involve at least
one optic mode. The absence of the optic phonon scattering
channels for the 131 case causes the increase inkSL/kBulk in

TABLE I. Comparison of full calculations and the constant relaxation time approximation for SiGe
superlattices of the lattice thermal conductivity scaled by bulk template value(see text), kSL/kBulk, and of the
contributions tokSL/kBulk from the first six superlattice phonon branches. The increasing number of phonon
branches with increasing period causes a decrease in the contribution per branch.

Branch No.

131 232 434 838

Full CRTA Full CRTA Full CRTA Full CRTA

1 0.120 0.064 0.091 0.044 0.022 0.010 0.006 0.002

2 0.231 0.094 0.108 0.064 0.022 0.012 0.007 0.002

3 0.564 0.144 0.100 0.093 0.039 0.021 0.013 0.003

4 0.621 0.104 0.025 0.029 0.031 0.022 0.013 0.006

5 0.267 0.135 0.012 0.043 0.024 0.033 0.017 0.010

6 0.038 0.066 0.013 0.067 0.023 0.028 0.023 0.016

Total 1.869 0.636 0.352 0.351 0.205 0.267 0.198 0.228

FIG. 2. Phonon dispersions along the growth direction of
131 (solid lines) and 232 (dashed lines) SiGe superlattices for
two in-plane wave vectors.
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Fig. 1. The CRTA fails completely for this case, predicting a
decrease inkSL/kBulk in poor agreement with the full calcu-
lation (see Table I).

The qualitative features obtained here for the 131 super-
lattice have in effect already been observed. This 131 sys-
tem is crystallographically equivalent to bulk zinc blende
crystals for which experimental results are available.15 These
systems are well characterized and have limited extrinsic de-
fects. Their thermal conductivity is controlled by intrinsic
phonon scattering. The unusual behavior of the thermal con-

ductivity of 131 superlattices we obtained with increasing
mass ratio has been corroborated by the measurements on
InSb, GaAs, InAs, GaSb, GaP, InP, and AlSb.15 Figure 6 of
Ref. 15 summarizes their results. Previous work on these
systems, using a simple theoretical model, explained the ini-
tial drop-off in thermal conductivity with increasingM1/M2

as being due to an increase in umklapp scattering.16 How-
ever, our results show that the umklapp scattering does not
increase; rather the initial drop inkSL arises because the av-
erage phonon group velocity decreases while the umklapp
scattering stays roughly constant.

We have given a rigorous treatment of anharmonic pho-
non scattering in superlattices. We find that the flattening of
dispersions in superlattices that decreases phonon velocities
also reduces the phase space for umklapp scattering. These
competing effects can lead to increases as well as to de-
creases ofk. A unified treatment is required in order to have
a quantitative measure of thek of superlattices. Our results
suggest that tailoring of the thermal conductivity in nano-
structures may be possible by manipulation of phonon-
phonon scattering through changes in their dispersion.

The extension of our theory to include other scattering
mechanisms such as boundary and impurity scattering is
straightforward and has been given for bulk
semiconductors.9 It should be noted that interface defects
that occur in superlattices on the monolayer scale using cur-
rent growth methods(e.g., MBE), can produce significant
scattering of phonons.17 In this case, the unusual behavior of
kSL we obtain for the 131 superlattice could be masked.
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FIG. 3. Umklapp and optic phonon scattering parameters,j
(solid lines) andz (dashed lines), as described in text, for 131 and
232 superlattices for increasing mass ratio of the constituents. The
thin vertical line gives results for SiGe superlattices.j and z are
scaled by values for the bulk template material.
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