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We have studied the relevance of spin-orbit coupling to the splitting of the cyclotron resonance of electron
space-charge layers in GaAs recently observed by Mangeret al. [Phys. Rev. B63, 121203R(2001)]. We show
that the spin-orbit interaction couples density and spin-density excitations in the long-wavelength limit and is
able to explain all the features observed in the experiment.
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The influence of impurity and band-structure effects on
the cyclotron resonance(CR) is an important topic that has
been investigated in many experiments on space-charge
layers.1–7 These effects break the translational invariance of
the system and as a consequence invalidate the Kohn
theorem8 according to which in the CR experiments a single
line at the cyclotron energyvc=eB/mc should be observed.
Indeed, in a recent CR investigation of high-mobility elec-
tron space-charge layers in GaAs,9 a line splitting of the CR
resonance due to band-structure influences was clearly ob-
served. The main features of the experiment are the follow-
ing: a well-resolved splitting of CR for filling factorsn=3
and 5(n=2p,2Ns, ,=Î" /eB) which increases with the elec-
tron carrier densityNs; a similar behavior, but less pro-
nounced, forn=7; a gain in strength of the line with lower
transition frequency with ncreasingNs; and finally no signifi-
cant splitting for the even filling factors.

In this Rapid Communication we argue that the Dressel-
haus spin-orbit interaction,10 which is responsible for the
spin splitting of the conduction band in bulk GaAs, is also
the main cause of the observed CR splitting. Moreover, as-
suming the presence of an additional small, but not negli-
gible, nonlocal electron-electron interaction, it can explain
all the features observed in the experiment.

The study of spin-orbit(SO) effects in semiconductor
nanostructures has been the object of many experimental and
theoretical investigations in the last few years.11–23 It links
the spin and the charge dynamics, hence opening the possi-
bility of spin control by means of electric fields.24,25Here we
show that the SO interaction strongly affects the optical
properties of electron space-charge layers in GaAs by induc-
ing a strong coupling between charge-density and spin-
density excitations in the long-wavelength limit. We show
that the energy splitting of the CR is a clear and quantitative
signature of the Dresselhaus SO coupling in these systems.
The other possible spin-orbit interaction, known as the
Rashba term,26,27 which is due to the asymmetry of the con-
finement potential, has been found to be negligible in all the
cases we have studied for the electron space-charge layer in
GaAs of Ref. 9. This does not mean that the Rashba SO
interaction is always negligible. For other structures or
widths of the layer the intensities of the two SO interactions
can be comparable and both affect the CR energy splitting. In
general any kind of SO interaction affects the CR energy
splitting since it violates the Kohn theorem due to its spin
and momentum dependences.

The operator describing the SO Dresselhaus contribution
for the standard(001) plane of GaAs is given by

HD =
l

"
o
i=1

N

fPxsx − Pysygi , s1d

where thes’s are the Pauli matrices andP=−i"= +se/cdA
represents the canonical momentum given in terms of the
vector potentialA in the Landau gauge. We ignore terms
cubic in the momentum for simplicity. The Dresselhaus pa-
rameterl is given byl<gksPz/"d2l whereg is a material
specific constant that for GaAs is28 g=27.5 eV Å3 and
ksPz/"d2l can be related to the layer vertical widthz0

17 by
ksPz/"d2l.sp /z0d2, assuming that the electrons in thez di-
rection are confined in the ground state of a square well of
width z0. This rough estimate should be taken with some care
since it does not introduce any density dependence inl. This
is in disagreement with some experimental evidence;29–33

therefore it must be taken as just giving an order of magni-
tude of the effect we are going to investigate, whose strength
turns out to be proportional tol2m/"2.0.25 cm−1 for a
layer width of 100 Å. For larger widths the Dresselhaus SO
intensity decreases and the Rashba term may become impor-
tant.

We start from the quantum-well Hamiltonian in the
effective-mass, dielectric constant approximation:

H = H0 + V, s2d

whereH0 is the one-body part of the Hamiltonian consisting
of the kinetic, Dresselhaus, and Zeeman terms, i.e.,

H0 = o
i=1

N FP+P− + P−P+

4m
+

l

2"
sP+s+ + P−s−d +

1

2
g * mBBszG

i

,

s3d

wherem=m* me (m* =0.067 for GaAs) is the effective elec-
tron mass in units of the bare electron massme, P±

=Px± iPy, and s±=sx± isy. The Zeeman term HZ
=Sig* mBBsz

i depends on the total vertical spinSisz
i , the

Bohr magnetonmB, and the effective gyromagnetic factorg*,
which for bulk GaAs is −0.44. In Eq.(2), V is the usual
Coulomb interaction,
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V = o
i, j

N
e2

eur i − r ju
, s4d

where e is the dielectric constant of the semiconductor(e
=12.4 for GaAs).

By using the unitary transformation20,34

U = expF− il
m

"2o
i=1

N

sxsx − ysydiG , s5d

the Schrödinger equationsH0+Vdunl=Enunl is transformed
into

sH̃0 + Vduñl = Enuñl, s6d

whereuñl=Uunl, H̃0=U−1H0U, and the interactionV and the
energiesEn remain unchanged. At the leading order inl, one

gets forH̃0 in the transformed system(to simplify the expres-
sions, in the following we shall use effective atomic units
"=e2/e=m=1, where the length unit is the effective Bohr
radiusa0

* =a0e /m and the energy unit is the effective Hartree
H* = Hm* / e2; for GaAs one getsa0

* =97.9 Å and H*
.11.9 meV.95.6 cm−1)

H̃0 = o
i=1

N FP+P− + P−P+

4
− i

l2

2
sQ−P+ − Q+P−dsz

+
1

2
g * mBBszG

i
, s7d

whereQ±=x± iy. The advantage of using transformation(5)
lies in the fact that in the transformed system the statesuñl
are eigenstates ofSz and calculations can be performed using
the usual spinorial formalism. The unitary transformation(5)
can be used to evaluate expectation values of physical ob-
servables other than the energy in the laboratory frame. In
particular the quantity of interest, i.e., the dipole strength,
transforms into itself since the operatorU of Eq. (5) com-
mutes with the dipole operatorSi=1

N Qi
+.

The spin-orbit term in Eq.(7) mixes density excitations
induced by the operatorSi=1

N Pi
+ with the spin-density excita-

tions induced bySi=1
N Pi

+sz
i since

FH̃0,o
i=1

N

Pi
+G = vco

i=1

N

Pi
+ + l2o

i=1

N

sPi
+sz

i + ivcQi
+sz

i d, s8d

and violates the Kohn theorem for whichfH ,Si=1
N Pi

+g
=vcSi=1

N Pi
+.

For a correct evaluation of the effects induced by the spin-
orbit interaction on the CR resonance, it is, however, neces-
sary to consider the effects of the electron-electron interac-
tion too. These effects will be treated in the following in the
transformed system where we consider the electron-electron
interaction in the Brueckner-Hartree-Fock(BHF)
approximation.35 The reason to use BHF is that usual theo-
ries such as random-phase approximation(RPA),36

time-dependent-Hartree-Fock,37 and time-dependent local-
density approximations34 do not give any effect on the ener-

gies of the two modes of excitation in the long-wavelength
limit, whereas nonlocal effective theories such as the Landau
theory and BHF do it.

In BHF, the relevant nonlocal term in the energy func-
tional to study the cyclotron resonance is given by34,35

E v0srdsrt − J2ddr −E v1srdJ1
2dr , s9d

wherer andt are the one-body diagonal and kinetic energy
densities, respectively, and the current densitiesJ andJ1 are
given by

J = kCu
1

2o
i=1

N

sPidsr − r id + H.c.duCl

and

J1 = kCu
1

2o
i=1

N

fPidsr − r idsz
i + H.c.guCl,

respectively. By taking in Eq.(9) v0srd=k0/2r and v1srd
=k1/2r, one gets a BHF potential

V = o
i=1

N Fk0
Pi

2

2
− k0J ·Pi − k1J1 ·Pisz

iG . s10d

The first term of this equation, added to the kinetic energy
term of Eq.(7), gives rise to a constant effective mass(com-
ing from the electron-electron interaction) 1/mee

* =s1+k0d. A

self-consistent vibrating dipole-dipole interactiondṼsr ,td, to
be used in time-dependent BHF calculations, is derived from
the last two terms of Eq.(10) by imposing irrotational cur-
rentsdJ=bstdr= f, wheref =x,y, on bothJ andJ1.

38–40The
irrotational nature of currents in collective motion follows
naturally from the assumption that the collective state com-
pletely exhausts the excitation strength as it is the case for
the CR resonance and the spin-density mode in the long-
wavelength limit. By using self-consistency to determine

bstd, one gets fordṼsr ,td

dṼsr ,td = o
i=1

N F−
k0

2NKo
j=1

N

Pj
−LP+ −

k1

2NKo
j=1

N SPj
−sz

j

−
2Sz

N
Pj

−DLSP+sz −
2Sz

N
P+DG

i

+ H.c., s11d

where 2Sz=N↑−N↓ and N↑ sN↓d is the number of spin-up

electrons(down). Note that the time dependence ofdṼsr ,td
is in thek¯l spatial foldings with the densities induced by a
time-dependent external field.

The total HamiltonianH̃=H̃0
* +dṼsr ,td, where H̃0

* in-
cludes the effective mass 1/mee

* =s1+k0d in the kinetic en-
ergy term of Eq.(7), can now be solved analytically within
the RPA by finding the operatorsO+ solution of the equation
of motion:
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fH̃,O+g = vO+. s12d

We have used the methods illustrated in Ref. 34 to compute
the commutators of a one-body operatorF with the Hamil-
tonian as

fH̃,Fg = fH̃0
* ,Fg + dṼsFd, s13d

whereH̃0
* is the static Hamiltonian[Eq. (7) with the effective

mass 1/mee
* =s1+k0d], anddṼsFd is the change(linear in F)

induced in the time-dependent potential by the unitary trans-
formationeiF. For the potential of Eq.(11) one gets

dṼsFd = −
k0

2N
k0uFo

j=1

N

Pj
−,FGu0lo

i=1

N

Pi
+ −

k1

2N
k0uFo

j=1

N

Pj
−sz

j

−
2Sz

N
Pj

−,FGu0lo
i=1

N SPi
+sz

i −
2Sz

N
Pi

+D , s14d

whereu0l is the static BHF ground state and analogously for
the Hermitian conjugate term of Eq.(11). The two terms of
Eq. (13) have a different physical meaning: the commutator

fH̃0
* ,Fg originates from the static, one-body properties of the

Hamiltonian, while the termdṼsFd originates from the renor-
malization of the self-consistent potential. The latter contri-
bution is essential to take into account the RPA correlations.
By using the basic commutation rulesfP−,P+g=2vc and
fQ−,P+g=fQ+,P−g=2i, it can be easily shown that neglecting

in H̃ the spin-orbit term proportional tol2, the solutions to
Eq. (12) are given by

Or
+ =Î 1

2Nvc
o
i=1

N

Pi
+,

Os
+ =Î 1

2Nvcf1 − s2Sz/Nd2goi=1

N SPi
+sz

i −
2Sz

N
Pi

+D , s15d

and

vr = vc, vs = vcs1 + kd, s16d

wherek=k0−k1f1−s2Sz/Nd2g and the subscriptsr ands re-
fer to density and spin-density excitations in the long-
wavelength limit, respectively. The dipole strength is distrib-
uted among the above states as followssQr=Si=1

N Qi
+d:

uk0uQruvrlu2 =
2Ns

vc
, uk0uQruvslu2 = 0, s17d

so that the Kohn’s theorem is fulfilled and according to it the
spin-density mode is not excited by the density operatorQr

and the corresponding matrix element vanishes. It is also
important to note that the above results coincide with those
of the Landau theory for the two-dimensional electron gas in
the long wavelength limit, if one identifies the strengthsk0
andk1 with the combinations of Landau parameters −F1

s / s2
+F1

sd and −F1
a/ s2+F1

sd. This allows us to give an estimate of
the strengthk by using forF1

s and F1
a the available Monte

Carlo calculation of Ref. 41. This calculation shows thatk is

negative, strongly density dependent(it decreases with in-
creasing Ns), and equal to .−2310−2 at Ns=3.32
310−11 cm−2, which is the highest value of the density re-
ported. The CR experiment we are going to analyze covers
the density regime from 2310−11 to 13310−11 cm−2, the
energyvc lies in some range around 100 cm−1, yielding the
estimate −kvc.2 cm−1, and the observed splitting is in the
range.1–4 cm−1. kvc is a key quantity of the model which
scales asm* / e2. Under the same conditions of density and
magnetic field one can then vary this quantity by changing
the material.

As we have already anticipated the spin-orbit term inH̃
couples the density mode with the spin-density one and
changes the above scenario. In particular the Kohn’s theorem
is violated and the spin-density mode can be excited by the
dipole operatorQr which is the relevant one in CR experi-
ments. As a consequence the two strengthsuk0uQruvrlu2 and
uk0uQruvslu2 are both different from zero and the CR reso-
nance splits into two lines. In this case the equations of mo-
tion (12) can be solved with the operatorO+=Si=1

N faQ+

+bP++cQ+sz+dP+szgi yielding a homogenous system of
linear equations for the coefficientsa, b, c, andd from which
the energiesvr ,vs are obtained by solving the secular equa-
tion (valid at the orderl2):

sv − vcdfv − vcs1 + kdg = −
4Sz

N
l2kvc. s18d

For each energy solution, the homogenous linear system,
supplemented with the normalization condition
k0ufsO+d†,O+gu0l=1, gives the coefficientsa, b, c, andd.

In the casesl=0 or Sz=0 the two modes are uncoupled
and one recovers the situation of Eqs.(15)–(17). This ex-
plains why in the experiments at even filling factor for which
N↑=N↓ andSz=0 no splitting of the CR line is seen. Whenl,
k, andSz are different from zero, one gets two lines splitted
by the energy

DE =
8Sz

N
l2 − kvc, s19d

getting the dipole strengths

uk0uQruvrlu2 =
2Ns

vc
,

uk0uQruvslu2 =
2Ns

vc
U2l2

kvc
s1 − s2Sz/Nd2dU2

. s20d

The results(19) and (20) are able to explain all the features
observed in the CR experiment if one notices that the esti-
mates for −kvc and 2l2 we have done before give forDE the
right order of magnitude of the observed splitting and more-
over if one supposes that the quantity 2l2/kvc increases with
the density. In this case the line with lower transition fre-
quency will gain in strength with increasingNs in agreement
with the observations. Moreover at fixed density, both
s8Sz/Ndl2 and kvc decrease for increasing filling factors
since 2Sz/N=1/n and alsovc goes as 1/n, explaining why
the splitting is much better experimentally resolved atn=3
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and 5 than forn=7. Finally the strengthuk0uQruvslu2 van-
ishes at 2Sz/N=1, explaining why at filling factorn=1 no
splitting is observed. It is also interesting to compare result
(19) for CR splitting with the one of the nonparabolicity
models for the GaAs conduction band. This single-particle
model predicts a splitting proportional toB2 and dipole
strengths which do not reproduce the experimental results. In
our theory the interaction enters in a natural and crucial way
for reproducing energy splittings and strengths. In particular
the splitting is linear inB.

One should note that the theory we have developed is at
the lower order inl2 and that ifl2 becomes comparable to
kvc, higher-order corrections might be important. However
higher order terms inl mix the CR state not only with the

spin-density state but also with other modes of excitations
(the spin-flip ones) which are not resolved experimentally,
indicating that a first-order calculation might be sufficient at
least to determine the crucial ingredients of the observed
phenomena. These spin-flip modes are expected to lie in the
low-energy region and carry a dipole strength of the order of
some percent of the CR one. In conclusion we have found a
strong indication that spin-orbit coupling is responsible for
the features detected in CR experiments. A detailed experi-
mental analysis of the CR spectrum in terms of Eqs.(19) and
(20) would yield a clean determination of the Dresselhaus
SO intensity and of the almost unknown Landau parameters
enteringk as a function of the density.
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