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Electron-nuclei spin relaxation through phonon-assisted hyperfine interaction in a quantum dot
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We investigate the inelastic spin-flip rate for electrons in a quantum dot due to their contact hyperfine
interaction with lattice nuclei. In contrast to other works, we obtain a spin-phonon coupling term from this
interaction by taking directly into account the motion of nuclei in the vibrating lattice. In the calculation of the
transition rate the interference of first and second orders of perturbation theory turns out to be essential. It leads
to a suppression of relaxation at long phonon wavelengths, when the confining potential moves together with
the nuclei embedded in the lattice. At higher frequendies for a fixed confining potentigl the zero-
temperature rate is proportional to the frequency of the emitted phonon. We address both the transition between
Zeeman sublevels of a single electron ground state as well as the triplet-singlet transition, and we provide
numerical estimates for realistic system parameters. The mechanism turns out to be less efficient than electron-
nuclei spin relaxation involving piezoelectric electron-phonon coupling in a GaAs quantum dot.
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I. INTRODUCTION hyperfine coupling constant. Recently, electron spin relax-

Electron spin dynamics in mesoscopic devices has beefion due to the hyperfine contact interaction has been re-
attracting a lot of attention recently in the context of dddressed with an application to GaAs QB8 The transi-

spintronicd and quantum computatid? A crucial feature of 0N amplitude was calculated in second-order perturbation
this dynamics is the relaxation of the electron’s spin due tgheory, describing the action of the hyperfine contact interac-

the interaction with an environment. Generally speaking, thdion and a spin-independent piezoelectric electron-phonon

coherence of an electronic spin state vanishes during the tinfé?UP!ing.

T,, which limits the possibility of coherent manipulation of melgh;?:iz nga?c?\;i dvé?j t\)N 'I:hglz’gﬁgngggahgfr hSp'grﬁrr?éaé(ggglt
qubits, while relaxation to thermal equilibrium occurs during P y yp

another timeT.. which is usually laraer thaii, 4 interaction and the influence of phonons on the electron in-
L . y larger. 2 . side a QD. In our approach we take into account directly the
_ Several types of spin-dependent interactions can givepqnon"induced motion of nuclei which are coupled to the
rise to _elecglon spin relaxation, e.g., the electron spin-orbikjecron spin through the hyperfine interaction. The electron-
!nteract!oﬁ— and  the electron-nuclei hyperfine ,hon0n interaction appears via the displacement field shift-
interaction*>"*'Their action depends essentially on the di-jng the positions of the nuclei, and therefore is independent
mension of the system. Systems of zero dimension, i.eqf the piezoelectric coupling that applies only to crystals
quantum dotgQDs), are characterized by a discrete electronwithout inversion symmetrysuch as GaAs, but not Si
energy spectrum. In this case energy conservation in th®loreover, this mechanism allows the electron-nucleus spin
spin-flip process usually can be fulfilled only by transferringflip flop with a simultaneous emission of a phonon to appear
the energy to another subsystem, e.g., phonons. The energiready in first-order perturbation theory. Nevertheless, it
transfer includes both the Zeeman energy of the electron spiwill turn out that it is necessary to keep as well the second-
in an external field and possibly the energy of an orbitalorder terms associated with the motion of the electron con-
transition. A discussion of other electron spin relaxationfining potential, since they lead to a crucial cancellation of
mechanisms not mentioned above and relevant to QDs cdirst-order terms at low frequencies of the emitted phonon,
be found in Ref. 10, for example. Electron spin relaxation inthereby suppressing the relaxation rate. The physical reason
a QD due to hyperfine interaction alone, in the absence of ahehind this is the following: Long-wavelength phonons dis-
external magnetic field, was investigated recently in Refs. 2dlace both the lattice nuclei and the electron’s confining po-
and 23. tential in the same way. However, it is only the relative mo-
Many years ago, the phonon-assisted electron spin-flipion of the electron with respect to the nuclei that enables a
transition between Zeeman sublevels due to hyperfine intetransition. Therefore, the influence of long-wavelength
action with an impurity nucleus and lattice nuclei was con-phonons is suppressed. If, on the other hand, the confining
sidered for impurity-bound electrons in silicéhwhere the potential can be considered as fixed or it moves indepen-
authors investigated the nuclear polarization in the Overdently from the lattice nuclei, this suppression does not apply
hauser effect. The process that has been considered in thety more, and the destructive interference between first-
paper is associated with a crystal dilation and a correspondrder and second-order terms is broken.
ing adiabatic change in the electron effective mass and, as a The present article is organized as follows: In Sec. II, we
consequence, in the electron envelope wave function and thietroduce the Hamiltonian of our model, including the effect
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of lattice vibrations on the hyperfine coupling and the con-more efficient than the other terms of the electron-nucleus
fining potential. After that, we derive the electron spin flip hyperfine interactiod.
transition amplitudes due to this perturbation, discussing the The positions of the nuclei deviate slightly from equilib-
partial cancellation of terms and the dominating contributionrjiym due to the lattice vibrationéj :R?+ Q(RJQ)_ The lattice
We calculate the transition rate, E(®6), for the case of gigplacement fieldG(R?) is described via the phonon
Zeeman-split sublevels of the electron ground stgex. IlI), creation-annihilation opJeratc?fs
and perform an analogous derivation for the case of a triplet-
singlet transition(Sec. V). Finally, in Sec. V we look at 0 h ~ ~ RO
numerical estimates for realistic system parameters. G(Ry) =2 2 v (b +boy e, (4)
K\ P Wk \Vph
Il. THE MODEL whereekl)\ is the polariza_tio.n vector of a ph(_)non with wave
_ _ vectork in branch\, wy , is its frequencyV,, is the volume
In our model, we will assume the displacement of the QDof the crystal in which phonon modes are quantized, il
confining potential to be described by the phonon displacethe crystal mass density.
ment field evaluated at the center of the dehich we take As a consequence, the total Hamiltonian acquires the fol-
to be the Ol’lgll). Note that this is analogous to the case of an|owing term which can lead to a nucleus-electron Spin f||p-

impurity-bound electron. Any more detailed descriptionflop process combined with the emission of a phonon:
(e.g., allowing for a distortion of the potentjalould require

further specifications concerning the way this potential is \A/HF—ph(ri):_EAjUOAS -fj(G(R?) V,)8(r: —RJQ)_ (5)
applied to the dot, but would not add significantly to the j '
realism of the present model.

In the effective mass approximation the Hamiltonian of,. . i

. ibrium positions.
the.system o_f electrons anq phonons in the QD has the fOf' Likewise, the vibrations of the confining potential are de-
lowing form, if the perturbations due to electron-phonon and__ .
L . i scribed by

hyperfine interactions are excluded:

In the following, we will omit the index O for nuclear equi-

> V() == (@(0) - Vo V(r)) = 0(0)["'0,2 'gﬁ’,} :
J J J

s el
Ho=> {Z—H?+V(ri)+g usS -B] +52 Veelli = Tir)

! i#i’ (6)
+> hwk,x[ﬁl,xﬁk,x"' }} (1) We note that the tota_ll electr_on momentum commut_es with
K\ 2 the electron-electron interaction potential containeén

A . . . Thus, the total perturbation to the Hamiltoniéla,, Eq.
where P;= |thi+eA(ri)/c is the kinematical momentum (1), is given by the three terms described above

operator. This Hamiltonian describes interacting electrons

with effective massn” and effectiveg-factorg’, localized in SH = [SV(r;) + Viue(r) +\A/HF—ph(ri)]- 7)
a static external potentiad(r), in the presence of a magnetic i

field B [with a corresponding vector potentiélr)], and free

phonons. We neglect the Zeeman splitting of nuclear spin

states, given the small value of the nuclear magnetic mo- |iIl. TRANSITIONS BETWEEN ZEEMAN SUBLEVELS
ment.

The hyperfine contact interaction of electrons of §ﬁiat At first, we will consider the transition of a single electron

between the Zeeman-split spin levels of the QD ground state.

DOSitjonSfi with nuclei of spinl; at positionsR; has the The initial state of the system is given by the direct prod-
form uct of electron, nuclear and phonon states
VHF(ri):EVhf(ri_Rj) ) =lie) ®[in) ® lipn- 8
Let n denote the direction of magnetic field. The initial elec-

=> Ajvoéi -fjé(ri - I52]), (2)  tron state|ig)=|y(r))®|n_) is given by the product of the
i spin wave functionn_), which is an eigenfunction of the
where the hyperfine coupling constant is determined as ~ equation(n-S)|n,)=+1/2n,), and the properly normalized

4 ground state coordinate wave function
A = ~HoksH (3)

j I

31 vo wr) = ,i\—/qoo(rx \—1/fd3r|soo(r)|2= 1.9
with 7;=|u;(0)|? being the square of the Bloch amplitude at v
the site of thejth nucleust® ug>0 the Bohr magnetory, HereV is the effective volume of the dot. In GaAs, where the
the nuclear magnetic moment, anglthe size of the unit cell.  electrong factor is negative, the stafe_) corresponds to the
The factor, which is usually of the order of 281(%, de-  maximum of energy. The initial nuclear spin stditg) is a
pending on the material, makes the Fermi contact term muctirect product of states of all individual nuclei. We will av-
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erage over the initial phonon field state in the end, by insertpress the electron kinematic momentum via the commutator
ing mean phonon occupation numbers given by the Bos®=(im'/#)[Ho,r], then sum over intermediate states, and

distribution functionn,,= 1/(ehelkel 1), note thar, Vye(r)]=0.
In the final state Thus we rewrite Eq(12) in a form that displays the rela-
B =fo @ |fu) ® [for (100 tionto the first order amplitude

the electronic spin points into the opposite directit, "1 (2) L ~ .
=[y(r))@|n,). Nuclear,|fy), and phonon|f,y), final states (F[oH[I)= = (For A (Oipn | FenlVeVie(Plien)
are determined by the action of the perturbation potential

Vie-pn Which changes the electron and nuclear spin states S (Fenr [me Mg N Viae()[ien)
while conserving the total spin of the electron-nuclei system @ ~ E® - Em(e)
(flip-flop procesy and creates a phonon with energy corre-

sponding to the energy difference between electron initial .\ <fe,N|\7HF(r)|me,N><n1e,N|r|ie,N>]

and final states. £ _ g© (15
. . . . . ; o
The corresponding transition matrix element is provided
by first order perturbation theory in the potentifle_r) We note again that both amplitudé€kl) and (15) are of
~ (D) the same order in the hyperfine interactidfys, and in the
(floH]i) phonon displacement. This is the reason we have to combine

_ N . v . them and why they can cancel each other partially.
- 2].<fph|u(Ri)|'ph><fe"\‘|v’vhf(r Rlien). (1) The total amplitude of the transition is the sum of the
terms(11) and (15). We will regroup it into two parts. The
It is important that an alternative process is possible fofirst one consists of Eq11) and a contribution of a similar
the transition between the same two states, where the remaiform, the first term of Eq(15)
ing two terms indH (namely 6V andVyg) contribute in sec- . . ) ~ ]
ond order perturbation theory, yielding an amplitude that is Mlzz (Forl0(0) = G(R;))[ipnXfenl Ve Vir(r = Rj)lign)-
of the same order of magnitude as Efjl) !

R R (16)
[<f|év<r>|m><m|vHF<r>|i>

) It contains the difference between the phonon displacement
E” -Ey fields evaluated at the origin and at the nucleus position,
} respectively, which is analogous to taking the divergence of

: (12)

(flom[i® =X
. (VD) |m(ml V(i)
B - En

the displacement field. This difference vanisheskag| for
long-wavelength phonons and describes the important can-

where the sum is over all intermediate states which dif'ferceuatlon which is only found if first and second orders of

from the initial and final states, and® refers to electron peﬁﬂ;bzgggntge(’;% are combined properly.
energies only. In writing down the energy denominators we P

have used the fact that the hyperfine perturbation only My = = (forlG(0)[ipr

changes the electronic energies, and that initial and final total . _
energies will be the same. Note that the complete electronic X m w?S (Fenlr [Me )X Men] Vie(Dien)
energy includes the Zeeman energy as well, and the differ- - E®-E®

ence between initial and final electron energies is accounted

m

for by the energy of the emitted phondtm:Ei(e)—Ege). (feyN|\A/HF(r)|meyN><meyN|(r)|ie’N>
According to Eq.(6) we can write + E© _ g6 17
f m
(f|6V(r)|m) = (i/h)(fph|0(0)|iph> contains a sum over intermediate states. For a single electron

making a transition between the Zeeman sublevels of its

(e (e)
X (e _ —
(B° ~ho-En)fenlPimen) (13 ground state, we can sBf”—E¥=¢o— (e, fiw) in the first

and, similarly summand an&\” —E"¥=(go~fiw) - s, in the secondhere,
Nl L go ande, refer to the electron’s orbital ground state and the
(M[SVO)[i) = (1) Forl GO mth excited state Note that in the two sums in Eql7)

% (Eﬁﬁ) - Ege) — ) (Men|Plien).  (14) intermediate states with the same orbital energigsiffer
_ _ _ o ' by the Zeeman energy.

When inserting these expressions into ER), the energy In order to render the following discussion concrete, we
differences cancel against the energy denominators, and th@|| now specify the confining potential explicitly. We con-
resulting sum over intermediate states is complete. This resider a QD which is formed in a two-dimensioriaD) elec-
sults in contributions containing the matrix element of theyon gas by an external symmetric parabolic potential. The
commutatol{ P, Vye(r)]1=(=i%)V,Vy4e(r), see the first line of confining potential inz direction is usually modeled by a
Eq. (15). In the remaining term&roportional tow), we ex-  square well in vertical QDs and by a triangular-shaped po-
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tential in lateral QDs. We neglect the contributions from . 3

higher excited states in thepotential, given their large en- (floH[iyt) = o v Vo, +1
ergetic separation, and restrict our discussion to the ground PPk Vph '
state x¢(2). In the presence of an external magnetic field
perpendicular to the-y plane, the electron wave functions
in the lateral dimension become the Darwin—Fock solutions
(see, e.g., Ref. 35with the effective confining frequency X (Ek,)\'VRj)QDg(Rj)a (21
wo=\Q3+w?/4, where( is the strength of the parabolic . .

potential andw.=€B, /(m'c) the cyclotron frequency in an WhereS{_=(n,|S*n_) [a sum ovew in Eq.(21) is assume}

x> Ai%(e‘k'Ri - DS
j

external magnetic field with the componét perpendicular By means of Fermi’s golden rule we obtain the following
to the layer. The energy spectrum for these states,js expression for the transition rag@cluding a sum over final
=(2n+|\ [+ Dliwg— Mo/ 2. states and a proper average over initial sates
In a harmonic oscillator the coordinate vector induces 5 3 hi(n, +1)
transitions only between nearest orbital levels. Thus, the sum \y, = 27 dk M ™ Sty - fiw)
in Eq. (17) reduces to two terms only corresponding to the h 2m3  2pwy
transition from the ground staté,, to states¢,,, with n AA,
=0 and\=+1 being the radial and the angular momentum x> ,J\|2J F(R;,R;NG;; [ VRJ.QD%(RJ) 'VR]-!(P%(Rj’):L

H

quantum numbers, respectively. For example, in 2D cylindri- I

cal coordinates we rewrite the scalar product of the phonon
N . (22)
polarization vector_and the coordinate vector as
=(e,pe'?+e_p?)[\2 and note thatpympe™®/\2=|¢pg.q, where N=V/uvq is the number of unit cells inside the dot
wherel =\7%/(m’ wy) is the length scale which determines the volume V. In Eq. (22) we have employed the sound wave
spatial extent of the electron wave function in the parabolicdispersion law in the fornw, =Ks i.e., we have neglected the
well in the presence of an external perpendicular magnetidifference in the transverse and longitudinal sound velocities
field. in summation over phonon polarizations. This simplifies our
We now compare the two parts of the total amplitude thaformulas but should not change appreciably our numerical
are given by Eqs(16) and(17). First, we note that the matrix results.

e|ement<fe,N|Vr\7hf(r—Rj)|ie,N> in the expression foM; is . For clarity, in Eq.(22) we have compmed some gxponen-
proportional t0|VRj¢(2)(Rj)|r where the gradient in the di- tial factors from Eq(21) into the following expression:
rection can be estimated asl/z, with z, the transverse , k-R. k-Ru

dimension of the dot. Gradients in the lateral directions are F(Rj,R;") :%'k(RJ_RJ/)/ZSin—ZlSiﬂ (23

smaller by a factor,/l<1. Up to a common prefactor, we
can use the following estimates for the expressions of EqaNe have also separated all spin-related factors into the cor-
(16) and(17): relation function(cf. Refs. 18 and 19

My = min[kl, 1] _ min[wl/s, 1], (18 Gy =AS?+ASE-<iN||AfY|Aﬁ|iN>aw (24)
Zy Z

where the subscriptav, indicates averaging over initial
m w3l W2 nuclear spin state@n our case over a thermal distribution
M| = T on—0d?)  wgon—od2)l’ (19 At temperatures much higher thanl0™7 K, which is the
o~ @ ol wo ~ @/ order of magnitude of the nuclear spin-spin interaction, the
wheres is the mean sound velocity. Thus, the rdtib,/ M| nuclear spins are not correlated, i.6;;,=G §j;,. We sup-
can be estimated by an expression whose form depends quose that there are no other sources of average nuclear po-

the emitted phonon wavelength larization either. This means, in turn, that the interference
(2/1) (@l (g — 0J2))s/(gl), if KI<1, f/(;rrrl?sshm Eq.(22), stemming from different nucleij#j’,

M,IM,| = .
MM {(zoll)wzl(wé—wowc/Z), if kI>1. With the help of the usual commutation rules for spin
(200  components and the equality_|Sn_)=-1/2n, we obtain

Taking into account thaty/l <1 and the Zeeman splitting, for each nuclear spin the formula

fio=|g ugB|, is less than the orbital energy splitting, P EPUEA -

w<(wo—w./2), for reasonable values of magnetic fields we s, 1P= ZUZ— (I-m)2+ (1 -n)], (25

will neglect M, in what follows. We will provide an estima-

tion for the upper limit on the strength of the magnetic fieldwhich results in a correlation functio6=1/6l(I+1), pro-

allowing for the above approximation when we will discussvided the average nuclear spin is zero.

the numerical values of our system parameters. Taking all of this into account, the following expression
Now we rewrite the total transition amplitude in the fol- describes our main result for the rate of the electron spin

lowing, more explicit form(retaining only the main contri- relaxation between Zeeman sublevels of the ground state,

bution): due to the hyperfine-phonon mechanism considered here
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1 A2n +1 sin(kIR'|) Again, the transition amplitude is given by Eq46) and
—= _G;h s3w|(| + 1){1 - k—,:|[VR,(pg(R’)]2, (17) where we have to introduce sums over electron coordi-
T N p Rl nates: €.9.V, Vi(r —Rj) = 2V, Vi(ri-R;), etc.

(26) In the present case, the energy of the emitted phobhen,

where A’=3,A” with summation over all nuclei in the unit is equal to the single particle energy splittingw, - wc/2).

cell. The overbar in Eq(26) indicates an average over the N the expression foM,, Eq. (17), the contribution from the
positionsR’ of all nuclei in the dot. If the electron envelope SPin-singlet intermediate state dominates, due to the small
wave function changes little on the scale of distance betweefienominatol® given by the exchange splittingsr. However,

the nuclei, then this is just a spatial average over an electrolthoughdsr is smaller tham.w, it still has the same order
localization volume. In deriving Eq26), we have used the ©f magnitude’® and the ratio|M,/M;|~ (zo/1)(wo/ 3s7) is

identity still much less than unitghere we havél>1). Therefore we
_ can once more negledd.,.
f A0y, sirk(k - &) = 27{1 _ S'”Z(;k;fb] 27) We obtain for the triplet-singlet transition rate

27 [ dB A, +1)

T_<T [ 21
i) 2m)° 2pawy

We note that the relaxation rate for an individunaiclear WT=
spin is obtained by dividing Eq26) by the number of nuclei

Shwy, —hw)

in the volumeV of the dot. AA; ST
X > = F(R;,R;)Gj,
IV. TRIPLET-SINGLET TRANSITION i’ N
We proceed in the same way in order to calculate the 1
transition rate for two electrons that initially reside in the X E{VRJ[‘PO(Rj)(Pl(Rj)] Ve, [eo(R))1(Ry)]}
lowest-lying triplet state and decay towards the ground-state
singlet. We suppose that the Zeeman splittipgpduced by (33

external and/or nuclear magnetic fieldsn be neglected as \ypere the correlation function is

compared to the orbital energy spacing that defines the tran-

sition energy for this process. o o GﬁT= (TIS! - S3ISH(SISF - STl - |,-B/|iN>av
The wave function corresponding to the initial spin-triplet

electron state is

|igr> = (ry,rp) ©|Tr), (28)

where the coordinate wave function is assumed to be givef9@n, the nuclear spin state is averaged over completely

by a Slater determinart.e., neglecting correlatiops unpolarized thermal distribution. _
Finally, the relaxation rate in this case is

* . "a ~n0. 1
= v il -|jﬁ||N>aV5”,:§|(| +1)8;. (34

W(r ) = Po(r)ea(ry) _fo(rz)%(rl)_ (29) 1 M+l

Vy2 = e
3T N 6mhips®

wl(1+1)

Here ¢4(r) is the wave function of the first excited single
electron orbital state normalized according to E9). For sin(k|R'|)
concreteness, we choose it to correspond to the quantum 1- KR'|
numbersn=0 and\=1 (in an external magnetic field the

energy of this state is less thap_;), and we note that there

is no term in the total Hamiltonian which directly couples V. NUMERICAL ESTIMATES AND DISCUSSION
states withh=+1. We write for the spin partas in Ref. 18

]{VR/[%(R')%(R')]}Z- (35

_ _ In order to estimate the rates in both of the cases that have
__ W7y ety been considered above, we take into account realistic dimen-
1) [ L +D+ /> 1= +1,0, sions of typical quantum dots. Usually the lateral length
(30) of the dot is much larger than its transverse dimension,
I>z,, and we wuse the following approximation:
, determine the initial superposi- {Vr/[¢o(R)e1(R)12=[Vr ¢j(R")]2=1/(z5/2)*  (which

where the coefficients,
tion of degenerate stategs, m) with different zcomponents we suppose holds for the average over nuclear posifsins

m==1,0 of thetotal spinS=1 of two electrons. For QDs with a disk shape, in the typical linkizy<1, we
For the final spin-singlet state we have can obtain a simple analytical expression for the average
) = ¢S (ryr2)) @[S, (31) e =—1 _skRD | at-cosk]
where|Si) denotes the singlet spin stat®=0), and the co- (kt) = KR’| a (k)2 » (36)
ordinate wave function is given by the expression
g y P which can be well approximated by nfik¢)?/12,1. We
Si _ @o(r)eo(r) remark that this factor, which is present in the case of the
Plryry) =——"—"=. (32 . > L -
\% co-moving confining potential, is absent when the confining
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potential position is fixed. This is the only difference in the
results for the relaxation rates in these two cases, and it be-
comes important only in the limit of small phonon frequen-

cies, kf <1. Temperature
We can write the relaxation rate between Zeeman sublev- — —4K
els and triplet and singlet electron states using the same ap- — 4K
proximate expressio(the difference lies in the energy scale o1k
)
— 0.1 K

1 2A%w(n,+1)
T, 3N #hpsZ
The linear dependence of the relaxation rate on the pho-
non frequencyfor phonon wavelengths smaller than the size 75 B(T)
of the QD, i.e., for sufficiently strong magnetic fields in the
case of Zeeman sublevels relaxajidets our mechanism FIG. 1. (Color onling The single electron spin relaxation rate in
apart from those considered earftet? where a cubic pho- a GaAs QD vs magnetic fielthccording to Eq(38)], derived for
non frequency dependence is expected for low temperature#ie hyperfine-phonon mechanism discussed in the present article.
keT<%w (and a quadratic one in the opposite limin ad- The solid line corresponds to the case when the confining potential
dition, our result does not depend either on the proximity ofvibrates together wit_h _the Iattice_, while the dashed line refers to the
the nearest level, in contrast to the spin relaxation rates caf2se of a fixed confining potential.
culated in Refs. 18 and 19.
The result for the electron-nuclei flip-flop transition rate
obtained in Ref. 16 is larger than our result, E8j7), by a
factor ~(yzy/€)? (providedkf < 1), which is of the order of

(I +D)f(ke). (37)

ation rate is linear in the emitted phonon frequency and as a
consequence it is linear in the strength of the magnetic field
(see Fig. 1 which is plotted for the limkz;<1 correspond-

_ : . . ing to B<10 T). For the fixed or “independent” confining
10 (y=50) for typical QD sizes cited below, but can berpotential we would havé(k¢) =1 and the dependence of the

smaller for large QDs. We should be cautious, however, | rate on the emitted phonon frequency would be linear even
directly applying the reasoning of Ref. 16 to the triplet- for small magnetic fields, i.e., whekf <1 [apart from the

singlet transition, when the emitted phonon energy corre—em erature-dependent faclar, +1)
sponds to the electron binding energy and hence the condﬁ— P -aependent tactar, ] .
As to the order of magnitude, the mechanism that has

tion of adiabatic electron motion in a vibrating latticesed . . , )
9 s been considered in this paper gives a rate of the order of

in that work will not be fulfilled. e
In GaAsk)aII nuclei have spih=3/2, andA2=1.2x 107 1075 s for a temperature of about 1 K and a magnetic field

me\2 (Ref. 22. The mass density ip=5.32x 10° kg/n?, of about 1 T. It therefore appears to be much less efficient

and we approximate the mean sound velocity by the velocit han the piezoelectric g:oupling rlnechanism considered in
of transverse sound waves;s=3x 10° m/s26 The typi- ef. 19, where the rate is about 1-$or comparable values

cal transverse dimension of a quantum datjis 10 nm and of temperatgre, 4 K and magqeth field, 0.5 T. '
its lateral size isl=100 nm. The dot contains aboi{ For the triplet-singlet transition in a lateral dot we find a

~ 10 unit cells (eight nuclei in each Hence, we can write '€ ©of the order of 1§ s for temperatures up to
for the relaxation rate the approximate expression ~1K (hw~100peV), and in a vertical QD we have T{
~10“ s for temperatures up te-10 K andzw~ 1 meV
1 1% 10716 ® (KI) 39) (we note that in both caséd’>1). The latter result should
T, ho : be compared with I, ~2x 10 s* calculated in Ref. 18.
1- ex;(— ﬁ) Let us now turn to spin relaxation in silicon. Taking into
B account the natural abundance %8i nuclei with nonzero
For the transition between Zeeman energy sublevels thepin n,-1,,=4.68%, their magnetic momeni,=—0.56 uy,
phonon energy is equal to the Zeeman splittifgjugB|,  the lattice constana=5.43 A and the electronic density at
which corresponds to 0.025 meVTin GaAs whereg' = the position of the nucleusy=186' we find the effective
-0.44. At the same time the cyclotron enerdyy., is as hyperfine coupling constant to b&=5 ueV. This is far
much as 1.76 meV T due to the small effective mass in smaller than in GaAs, due to the smallerand smaller per-
GaAs,m =0.06M.. The single particle energy spacing in a centage of nuclei with spin. Inserting the mass density of Si,
lateral QD is 100-30@eV,2>2” and in a vertical QD the p=2.3x10°kg/m® and the transverse sound velociy
confining energy of an approximate 2D harmonic potential is=5.4x 10° m/s, we obtain a prefactor of the order of 1D
~4 meV?>2"The condition|M,/M; | <1 is satisfied when a in Eq. (38). This corresponds to a very small relaxation rate
perpendicular magnetic fieBl<4 T, forfiw,=0.1 meV, and 1/T;~101°s! between Zeeman sublevels in a magnetic
B<24 T, forhwy=1 meV, is applied. For in-plane magnetic field of B=1 T, for temperatures up to 1 =2 in Si). Note
fields the corresponding limits a&<10 T andB<100 T, that the spin-orbit related electron spin relaxation time in
respectively. The conditiok¢ ~ 1 corresponds to an in-plane lateral Si QDs* for Si:P bound electrons and for QDs in
magnetic field of~2 T and a perpendicular magnetic field of SiGe heterostructuréshas been predicted recently to be on
~5 T. Thus, for magnetic fields larger than these the relaxthe order of several minutes for the same values of magnetic
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field and temperature. In the latter case, however, the relax- VI. CONCLUSIONS

ation rate may be strongly decreased, below the values found | h idered ii hanism f
for our mechanism, by application of uniaxial compressive, '" Summary, we have considered a Speciiic mechanism for

strainl3 inelastic electron spin relaxation in a QD induced by the

In general, electron spin relaxation induced by emctronglectrpn-n_uclei hyperfine interaction in c_ombination with lat-
nuclei hyperfine interaction in a quantum dot is not as effi-fice vibrations. We have found that _the mterfer_ence bet_ween
cient as relaxation due to spin-orbit interaction for typicalfirst and second orders of perturbation theory is essential for
values of system parametérd#18In many experiments, the @ correct description of the suppression of relaxation at small
hyperfine related rate would be masked by the spin-orbitransition frequencies. The relaxation rate has been calcu-
mechanism(however, see Ref. 19 for a case where the hyJated both for the transition between Zeeman sublevels of the
perfine mechanism may dominat&he present experimental orbital ground state and for the triplet-singlet transition. We
data for the triplet-singlet transition rate in a GaAs verticalhave obtained estimates based on these general results and
QD is T;=200 us at temperatures up to 0.5 K and triplet- realistic system parameters. The estimates demonstrate that
singlet energy splitting:s ~ 0.6 meV2° For the relaxation the relaxation rate due to this particular mechanism is very
time between Zeeman sublevels in a lateral GaAs QD only @mall: For the spin relaxation between Zeeman sublevels it is
lower bound is availableT; =50 us for an in-plane mag- much less than the rate calculated earlier in second-order
netic fieldB=7.5 T atT=20 mK* Both of these measure- perturbation theory with an emission of a phonon through
ment results were obtained by means of transient curretfiezoelectric electron-phonon coupling in a GaAs 8@and
spectroscopy’ _ _ _ it is less thar(or at most comparable witlthe relaxation rate

On the other hand, hyperfine coupling mechanigsueh 4,6 o the change in the localized electron effective mass
as the one considered in this paperay be particularly rel- 00 by the lattice dilation in silicolf. For the triplet-
evant as far as effects like dynamic nuclear polarization ar%inglet transition, the rate in GaAs QDs is still smaller by an

concerned, where the electron-nuclei hyperfine interactio : . 4
plays a crucial rolé:!>®Recently, a hyperfine nuclear spin %Irg;rrigfnr?eacghr;#g;than the corresponding rate of the piezo
£ .

relaxation time on the order of 10 min was measured in
single GaAs QD, at a bath temperature of 40 mK and a mag-
netic field up to 0.5 B! However, this experiment dealt with

a nonequilibrium transport situation, with a resulting spin-
flip mechanism whose rate turns out to be orders of magni- We would like to thank B. L. Altshuler, D. V. Averin,
tude larger than the one discussed in the present a(sele  C. Bruder, E. V. Sukhorukov, and A. V. Chaplik for useful
Ref. 20. discussions.
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