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We investigate the inelastic spin-flip rate for electrons in a quantum dot due to their contact hyperfine
interaction with lattice nuclei. In contrast to other works, we obtain a spin-phonon coupling term from this
interaction by taking directly into account the motion of nuclei in the vibrating lattice. In the calculation of the
transition rate the interference of first and second orders of perturbation theory turns out to be essential. It leads
to a suppression of relaxation at long phonon wavelengths, when the confining potential moves together with
the nuclei embedded in the lattice. At higher frequencies(or for a fixed confining potential), the zero-
temperature rate is proportional to the frequency of the emitted phonon. We address both the transition between
Zeeman sublevels of a single electron ground state as well as the triplet-singlet transition, and we provide
numerical estimates for realistic system parameters. The mechanism turns out to be less efficient than electron-
nuclei spin relaxation involving piezoelectric electron-phonon coupling in a GaAs quantum dot.
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I. INTRODUCTION

Electron spin dynamics in mesoscopic devices has been
attracting a lot of attention recently in the context of
spintronics1 and quantum computation.2,3A crucial feature of
this dynamics is the relaxation of the electron’s spin due to
the interaction with an environment. Generally speaking, the
coherence of an electronic spin state vanishes during the time
T2, which limits the possibility of coherent manipulation of
qubits, while relaxation to thermal equilibrium occurs during
another timeT1, which is usually larger thanT2.

4

Several types of spin-dependent interactions can give
rise to electron spin relaxation, e.g., the electron spin-orbit
interaction5–14 and the electron-nuclei hyperfine
interaction.4,15–21Their action depends essentially on the di-
mension of the system. Systems of zero dimension, i.e.,
quantum dots(QDs), are characterized by a discrete electron
energy spectrum. In this case energy conservation in the
spin-flip process usually can be fulfilled only by transferring
the energy to another subsystem, e.g., phonons. The energy
transfer includes both the Zeeman energy of the electron spin
in an external field and possibly the energy of an orbital
transition. A discussion of other electron spin relaxation
mechanisms not mentioned above and relevant to QDs can
be found in Ref. 10, for example. Electron spin relaxation in
a QD due to hyperfine interaction alone, in the absence of an
external magnetic field, was investigated recently in Refs. 22
and 23.

Many years ago, the phonon-assisted electron spin-flip
transition between Zeeman sublevels due to hyperfine inter-
action with an impurity nucleus and lattice nuclei was con-
sidered for impurity-bound electrons in silicon,16 where the
authors investigated the nuclear polarization in the Over-
hauser effect. The process that has been considered in that
paper is associated with a crystal dilation and a correspond-
ing adiabatic change in the electron effective mass and, as a
consequence, in the electron envelope wave function and the

hyperfine coupling constant. Recently, electron spin relax-
ation due to the hyperfine contact interaction has been re-
addressed with an application to GaAs QDs.18,19 The transi-
tion amplitude was calculated in second-order perturbation
theory, describing the action of the hyperfine contact interac-
tion and a spin-independent piezoelectric electron-phonon
coupling.

In this paper we will analyze another spin relaxation
mechanism provided by the combination of hyperfine contact
interaction and the influence of phonons on the electron in-
side a QD. In our approach we take into account directly the
phonon-induced motion of nuclei which are coupled to the
electron spin through the hyperfine interaction. The electron-
phonon interaction appears via the displacement field shift-
ing the positions of the nuclei, and therefore is independent
of the piezoelectric coupling that applies only to crystals
without inversion symmetry(such as GaAs, but not Si).
Moreover, this mechanism allows the electron-nucleus spin
flip flop with a simultaneous emission of a phonon to appear
already in first-order perturbation theory. Nevertheless, it
will turn out that it is necessary to keep as well the second-
order terms associated with the motion of the electron con-
fining potential, since they lead to a crucial cancellation of
first-order terms at low frequencies of the emitted phonon,
thereby suppressing the relaxation rate. The physical reason
behind this is the following: Long-wavelength phonons dis-
place both the lattice nuclei and the electron’s confining po-
tential in the same way. However, it is only the relative mo-
tion of the electron with respect to the nuclei that enables a
transition. Therefore, the influence of long-wavelength
phonons is suppressed. If, on the other hand, the confining
potential can be considered as fixed or it moves indepen-
dently from the lattice nuclei, this suppression does not apply
any more, and the destructive interference between first-
order and second-order terms is broken.

The present article is organized as follows: In Sec. II, we
introduce the Hamiltonian of our model, including the effect
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of lattice vibrations on the hyperfine coupling and the con-
fining potential. After that, we derive the electron spin flip
transition amplitudes due to this perturbation, discussing the
partial cancellation of terms and the dominating contribution.
We calculate the transition rate, Eq.(26), for the case of
Zeeman-split sublevels of the electron ground state(Sec. III),
and perform an analogous derivation for the case of a triplet-
singlet transition(Sec. IV). Finally, in Sec. V we look at
numerical estimates for realistic system parameters.

II. THE MODEL

In our model, we will assume the displacement of the QD
confining potential to be described by the phonon displace-
ment field evaluated at the center of the dot(which we take
to be the origin). Note that this is analogous to the case of an
impurity-bound electron. Any more detailed description
(e.g., allowing for a distortion of the potential) would require
further specifications concerning the way this potential is
applied to the dot, but would not add significantly to the
realism of the present model.

In the effective mass approximation the Hamiltonian of
the system of electrons and phonons in the QD has the fol-
lowing form, if the perturbations due to electron-phonon and
hyperfine interactions are excluded:

Ĥ0 = o
i
F P̂2

i

2m* + Vsr id + g*mBŜi ·BG +
1

2o
iÞi8

Ve−esr i − r i8d

+ o
k,l

"vk,lFb̂k,l
† b̂k,l +

1

2
G , s1d

where P̂i =−i"¹r i
+eAsr id /c is the kinematical momentum

operator. This Hamiltonian describes interacting electrons
with effective massm* and effectiveg-factorg* , localized in
a static external potentialVsr d, in the presence of a magnetic
field B [with a corresponding vector potentialAsr d], and free
phonons. We neglect the Zeeman splitting of nuclear spin
states, given the small value of the nuclear magnetic mo-
ment.

The hyperfine contact interaction of electrons of spinŜi at

positions r i with nuclei of spin Î j at positionsR j has the
form4

V̂HFsr id = o
j

V̂hfsr i − R jd

=o
j

Ajv0Ŝi · Î jdsr i − R̂ jd, s2d

where the hyperfine coupling constant is determined as

Aj =
4m0

3I

mBmI

v0
h j , s3d

with h j = uujs0du2 being the square of the Bloch amplitude at
the site of thej th nucleus,15 mB.0 the Bohr magneton,mI
the nuclear magnetic moment, andv0 the size of the unit cell.
The factorh, which is usually of the order of 102–103, de-
pending on the material, makes the Fermi contact term much

more efficient than the other terms of the electron-nucleus
hyperfine interaction.4

The positions of the nuclei deviate slightly from equilib-

rium, due to the lattice vibrations:R̂ j =R j
0+ ûsR j

0d. The lattice
displacement fieldûsR j

0d is described via the phonon
creation-annihilation operators24

ûsR j
0d = o

k,l

Î "

2rvk,lVph
sb̂k,l + b̂−k,l

† dek,leik·Rj
0
, s4d

whereek,l is the polarization vector of a phonon with wave
vectork in branchl, vk,l is its frequency,Vph is the volume
of the crystal in which phonon modes are quantized, andr is
the crystal mass density.

As a consequence, the total Hamiltonian acquires the fol-
lowing term which can lead to a nucleus-electron spin flip-
flop process combined with the emission of a phonon:

V̂HF−phsr id = − o
j

Ajv0Ŝi · Î jsûsR j
0d ·¹r i

ddsr i − R j
0d. s5d

In the following, we will omit the index 0 for nuclear equi-
librium positions.

Likewise, the vibrations of the confining potential are de-
scribed by

o
j

dV̂sr jd = − o
j

sûs0d ·¹r j
dVsr jd = ûs0dFH0,o

j

i

"
P̂jG .

s6d

We note that the total electron momentum commutes with
the electron-electron interaction potential contained inH0.

Thus, the total perturbation to the HamiltonianĤ0, Eq.
(1), is given by the three terms described above

dĤ = o
i

fdV̂sr id + V̂HFsr id + V̂HF−phsr idg. s7d

III. TRANSITIONS BETWEEN ZEEMAN SUBLEVELS

At first, we will consider the transition of a single electron
between the Zeeman-split spin levels of the QD ground state.

The initial state of the system is given by the direct prod-
uct of electron, nuclear and phonon states

uil = uiel ^ uiNl ^ uiphl. s8d

Let n denote the direction of magnetic field. The initial elec-
tron stateuiel= ucsr dl ^ un−l is given by the product of the
spin wave functionun−l, which is an eigenfunction of the

equationsn ·Ŝdun±l= ±1/2un±l, and the properly normalized
ground state coordinate wave function

csr d =
1

ÎV
w0sr d,

1

V
E d3r uw0sr du2 = 1. s9d

HereV is the effective volume of the dot. In GaAs, where the
electrong factor is negative, the stateun−l corresponds to the
maximum of energy. The initial nuclear spin stateuiNl is a
direct product of states of all individual nuclei. We will av-

V. A. ABALMASSOV AND F. MARQUARDT PHYSICAL REVIEW B 70, 075313(2004)

075313-2



erage over the initial phonon field state in the end, by insert-
ing mean phonon occupation numbers given by the Bose
distribution functionnv=1/se"v/skBTd−1d.

In the final state

ufl = ufel ^ ufNl ^ ufphl s10d

the electronic spin points into the opposite direction,ufle
= ucsr dl ^ un+l. Nuclear, ufNl, and phonon,ufphl, final states
are determined by the action of the perturbation potential

V̂HF−ph which changes the electron and nuclear spin states
while conserving the total spin of the electron-nuclei system
(flip-flop process) and creates a phonon with energy corre-
sponding to the energy difference between electron initial
and final states.

The corresponding transition matrix element is provided

by first order perturbation theory in the potentialV̂HF−phsr d

kf udĤuils1d

=− o
j

kfphuûsR jduiphlkfe,Nu¹rV̂hfsr − R jduie,Nl. s11d

It is important that an alternative process is possible for
the transition between the same two states, where the remain-

ing two terms indĤ (namelydV̂ andV̂HF) contribute in sec-
ond order perturbation theory, yielding an amplitude that is
of the same order of magnitude as Eq.(11)

kf udĤuils2d = o
m

8F kf udV̂sr dumlkmuV̂HFsr duil
Ei

sed − Em
sed

+
kf uV̂HFsr dumlkmudV̂sr duil

Ef
sed − Em

sed G , s12d

where the sum is over all intermediate states which differ
from the initial and final states, andEsed refers to electron
energies only. In writing down the energy denominators we
have used the fact that the hyperfine perturbation only
changes the electronic energies, and that initial and final total
energies will be the same. Note that the complete electronic
energy includes the Zeeman energy as well, and the differ-
ence between initial and final electron energies is accounted
for by the energy of the emitted phonon,"v=Ei

sed−Ef
sed.

According to Eq.(6) we can write

kf udV̂sr duml = si/"dkfphuûs0duiphl

3 sEi
sed − "v − Em

seddkfe,NuPume,Nl s13d

and, similarly

kmudV̂sr duil = si/"dkfphuûs0duiphl

3 sEm
sed − Ef

sed − "vdkme,NuPuie,Nl. s14d

When inserting these expressions into Eq.(12), the energy
differences cancel against the energy denominators, and the
resulting sum over intermediate states is complete. This re-
sults in contributions containing the matrix element of the

commutatorfP,V̂HFsr dg=s−i"d¹rV̂HFsr d, see the first line of
Eq. (15). In the remaining terms(proportional tov), we ex-

press the electron kinematic momentum via the commutator
P=sim* /"dfH0,r g, then sum over intermediate states, and

note thatfr ,V̂HFsr dg=0.
Thus we rewrite Eq.(12) in a form that displays the rela-

tion to the first order amplitude

kf udĤuils2d = kfphuûs0duiphlHkfe,Nu¹rV̂HFsr duie,Nl

− m*v2o
m

8F kfe,Nur ume,Nlkme,NuV̂HFsr duie,Nl
Ei

sed − Emsed

+
kfe,NuV̂HFsr dume,Nlkme,Nur uie,Nl

Ef
sed − Em

sed GJ . s15d

We note again that both amplitudes(11) and (15) are of

the same order in the hyperfine interaction,V̂HF, and in the
phonon displacement. This is the reason we have to combine
them and why they can cancel each other partially.

The total amplitude of the transition is the sum of the
terms(11) and (15). We will regroup it into two parts. The
first one consists of Eq.(11) and a contribution of a similar
form, the first term of Eq.(15)

M1 = o
j

kfphuûs0d − ûsR jduiphlkfe,Nu¹rV̂hfsr − R jduie,Nl.

s16d

It contains the difference between the phonon displacement
fields evaluated at the origin and at the nucleus position,
respectively, which is analogous to taking the divergence of
the displacement field. This difference vanishes asukR ju for
long-wavelength phonons and describes the important can-
cellation which is only found if first and second orders of
perturbation theory are combined properly.

The second part

M2 = − kfphuûs0duiphl

3 m*v2o
m

8F kfe,Nur ume,Nlkme,NuV̂HFsr duie,Nl
Ei

sed − Em
sed

+
kfe,NuV̂HFsr dume,Nlkme,Nusr duie,Nl

Ef
sed − Em

sed G s17d

contains a sum over intermediate states. For a single electron
making a transition between the Zeeman sublevels of its
ground state, we can setEi

sed−Em
sed=«0−s«m−"vd in the first

summand andEf
sed−Em

sed=s«0−"vd−«m in the second(here,
«0 and«m refer to the electron’s orbital ground state and the
mth excited state). Note that in the two sums in Eq.(17)
intermediate states with the same orbital energies«m differ
by the Zeeman energy.

In order to render the following discussion concrete, we
will now specify the confining potential explicitly. We con-
sider a QD which is formed in a two-dimensionals2Dd elec-
tron gas by an external symmetric parabolic potential. The
confining potential inz direction is usually modeled by a
square well in vertical QDs and by a triangular-shaped po-
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tential in lateral QDs. We neglect the contributions from
higher excited states in thez potential, given their large en-
ergetic separation, and restrict our discussion to the ground
state x0szd. In the presence of an external magnetic field
perpendicular to thex−y plane, the electron wave functions
in the lateral dimension become the Darwin–Fock solutions
(see, e.g., Ref. 25), with the effective confining frequency
v0=ÎV0

2+vc
2/4, whereV0 is the strength of the parabolic

potential andvc=eB' / sm*cd the cyclotron frequency in an
external magnetic field with the componentB' perpendicular
to the layer. The energy spectrum for these states is«nl

=s2n+ ulu+1d"v0−l"vc/2.
In a harmonic oscillator the coordinate vector induces

transitions only between nearest orbital levels. Thus, the sum
in Eq. (17) reduces to two terms only corresponding to the
transition from the ground statef00 to statesfnl, with n
=0 andl= ±1 being the radial and the angular momentum
quantum numbers, respectively. For example, in 2D cylindri-
cal coordinates we rewrite the scalar product of the phonon
polarization vector and the coordinate vector ase r
=se+re−iw+e−reiwd /Î2 and note thatf00re±iw /Î2=lf0±1,
wherel =Î" / sm*v0d is the length scale which determines the
spatial extent of the electron wave function in the parabolic
well in the presence of an external perpendicular magnetic
field.

We now compare the two parts of the total amplitude that
are given by Eqs.(16) and(17). First, we note that the matrix

elementkfe,Nu¹rV̂hfsr −R jduie,Nl in the expression forM1 is
proportional tou¹R j

f0
2sR jdu, where the gradient in thez di-

rection can be estimated as,1/z0, with z0 the transverse
dimension of the dot. Gradients in the lateral directions are
smaller by a factorz0/ l !1. Up to a common prefactor, we
can use the following estimates for the expressions of Eqs.
(16) and (17):

uM1u ~
minfkl,1g

z0
.

minfvl/s,1g
z0

, s18d

uM2u ~
m*v2l

"sv0 − vc/2d
.

v2

v0sv0 − vc/2dl
, s19d

wheres is the mean sound velocity. Thus, the ratiouM2/M1u
can be estimated by an expression whose form depends on
the emitted phonon wavelength

uM2/M1u . Hsz0/ld„v/sv0 − vc/2d…s/sv0ld, if kl ! 1,

sz0/ldv2/sv0
2 − v0vc/2d, if kl @ 1.

s20d

Taking into account thatz0/ l !1 and the Zeeman splitting,
"v= ug*mBBu, is less than the orbital energy splitting,
v, sv0−vc/2d, for reasonable values of magnetic fields we
will neglect M2 in what follows. We will provide an estima-
tion for the upper limit on the strength of the magnetic field
allowing for the above approximation when we will discuss
the numerical values of our system parameters.

Now we rewrite the total transition amplitude in the fol-
lowing, more explicit form(retaining only the main contri-
bution):

kf udĤuilstotald =Î "

2rvk,lVph

Învk,l
+ 1

3 o
j

Aj
v0

V
seik·R j − 1dŜ+−

a kfNuÎ j
auiNl

3 sek,l ·¹R j
dw0

2sR jd, s21d

whereŜ+−
a =kn+uŜaun−l [a sum overa in Eq. (21) is assumed].

By means of Fermi’s golden rule we obtain the following
expression for the transition rate(including a sum over final
states and a proper average over initial states):

Ẇ=
2p

"
E d3k

s2pd3

"snvk
+ 1d

2rvk
ds"vk − "vd

3 o
j ,j8

AjAj8

N2 FsR j,R j8dGjj 8f ¹R j
w0

2sR jd ·¹R j8
w0

2sR j8dg,

s22d

where N=V/v0 is the number of unit cells inside the dot
volume V. In Eq. (22) we have employed the sound wave
dispersion law in the formvk =ks, i.e., we have neglected the
difference in the transverse and longitudinal sound velocities
in summation over phonon polarizations. This simplifies our
formulas but should not change appreciably our numerical
results.

For clarity, in Eq.(22) we have combined some exponen-
tial factors from Eq.(21) into the following expression:

FsR j,R j8d = 4eiksR j–R j8
d/2sin

k ·R j

2
sin

k ·R j8

2
. s23d

We have also separated all spin-related factors into the cor-
relation function(cf. Refs. 18 and 19)

Gjj 8 = Ŝ−+
a Ŝ+−

b kiNuÎ j
aÎ j8

b uiNlav, s24d

where the subscript,av, indicates averaging over initial
nuclear spin states(in our case over a thermal distribution).

At temperatures much higher than,10−7 K, which is the
order of magnitude of the nuclear spin-spin interaction, the
nuclear spins are not correlated, i.e.,Gjj 8=G d j j 8. We sup-
pose that there are no other sources of average nuclear po-
larization either. This means, in turn, that the interference
terms in Eq.(22), stemming from different nuclei,j Þ j8,
vanish.

With the help of the usual commutation rules for spin

components and the equalitykn−uŜun−l=−1/2n, we obtain
for each nuclear spin the formula

Ŝ−+
a Ŝ+−

b Îa Îb =
1

4
fÎ 2 − sÎ ·nd2 + sÎ ·ndg, s25d

which results in a correlation functionG=1/6IsI +1d, pro-
vided the average nuclear spin is zero.

Taking all of this into account, the following expression
describes our main result for the rate of the electron spin
relaxation between Zeeman sublevels of the ground state,
due to the hyperfine-phonon mechanism considered here
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1

T1
=

A2

N

nv + 1

6p"rs3vIsI + 1dF1 −
sinskuR8ud

kuR8u
Gf¹R8w0

2sR8dg2,

s26d

whereA2=o jAj
2 with summation over all nuclei in the unit

cell. The overbar in Eq.(26) indicates an average over the
positionsR8 of all nuclei in the dot. If the electron envelope
wave function changes little on the scale of distance between
the nuclei, then this is just a spatial average over an electron
localization volume. In deriving Eq.(26), we have used the
identity

E dVk sin2sk · jd = 2pF1 −
sins2kujud

2kuju G . s27d

We note that the relaxation rate for an individualnuclear
spin is obtained by dividing Eq.(26) by the number of nuclei
in the volumeV of the dot.

IV. TRIPLET-SINGLET TRANSITION

We proceed in the same way in order to calculate the
transition rate for two electrons that initially reside in the
lowest-lying triplet state and decay towards the ground-state
singlet. We suppose that the Zeeman splitting(produced by
external and/or nuclear magnetic fields) can be neglected as
compared to the orbital energy spacing that defines the tran-
sition energy for this process.

The wave function corresponding to the initial spin-triplet
electron state is

uie
Trl = ucTrsr 1,r 2dl ^ uTrl, s28d

where the coordinate wave function is assumed to be given
by a Slater determinant(i.e., neglecting correlations)

cTrsr 1,r 2d =
w0sr 1dw1sr 2d − w0sr 2dw1sr 1d

VÎ2
. s29d

Here w1sr d is the wave function of the first excited single
electron orbital state normalized according to Eq.(9). For
concreteness, we choose it to correspond to the quantum
numbersn=0 and l=1 (in an external magnetic field the
energy of this state is less than«0,−1), and we note that there
is no term in the total Hamiltonian which directly couples
states withl= ±1. We write for the spin part(as in Ref. 18)

uTrl = −
nx − iny

Î2
u1, + 1l +

nx + iny

Î2
u1,− 1l + nzu1,0l,

s30d

where the coefficientsnx,y,z determine the initial superposi-
tion of degenerate statesuS,ml with different z-components
m= ±1,0 of thetotal spinS=1 of two electrons.

For the final spin-singlet state we have

ufe
Sil = ucSisr 1,r 2dl ^ uSil, s31d

where uSil denotes the singlet spin statesS=0d, and the co-
ordinate wave function is given by the expression

cSisr 1,r 2d =
w0sr 1dw0sr 2d

V
. s32d

Again, the transition amplitude is given by Eqs.(16) and
(17) where we have to introduce sums over electron coordi-

nates: e.g.,¹rV̂hfsr −R jd→oi¹r i
V̂hfsr i −R jd, etc.

In the present case, the energy of the emitted phonon,"v,
is equal to the single particle energy splitting,"sv0−vc/2d.
In the expression forM2, Eq. (17), the contribution from the
spin-singlet intermediate state dominates, due to the small
denominator18 given by the exchange splittingdST. However,
althoughdST is smaller than"v0, it still has the same order
of magnitude,18 and the ratiouM2/M1u,sz0/ ldsv0/dSTd is
still much less than unity(here we havekl@1). Therefore we
can once more neglectM2.

We obtain for the triplet-singlet transition rate

ẆST =
2p

"
E d3k

s2pd3

"snvk
+ 1d

2rvk
ds"vk − "vd

3 o
j ,j8

AjAj8

N2 FsR j,R j8dGjj 8
ST

3
1

2
h¹R j

fw0sR jdw1sR jdg ·¹R j8
fw0sR j8dw1sR j8dgj,

s33d

where the correlation function is

Gjj 8
ST = kTuŜ1

a − Ŝ2
auSlkSuŜ1

b − Ŝ2
buTlkiNuÎ j

a · Î j8
b uiNlav

= n*anbkiNuÎ j
a · Î j

buiNlavd j j 8 =
1

3
IsI + 1dd j j 8. s34d

Again, the nuclear spin state is averaged over completely
unpolarized thermal distribution.

Finally, the relaxation rate in this case is

1

T1
ST =

A2

N

nv + 1

6p"rs3vIsI + 1d

3 F1 −
sinskuR8ud

kuR8u
Gh¹R8fw0sR8dw1sR8dgj2. s35d

V. NUMERICAL ESTIMATES AND DISCUSSION

In order to estimate the rates in both of the cases that have
been considered above, we take into account realistic dimen-
sions of typical quantum dots. Usually the lateral length
of the dot is much larger than its transverse dimension,
l @z0, and we use the following approximation:
h¹R8fw0sR8dw1sR8dgj2.f¹R8w0

2sR8dg2.1/sz0/2d2 (which
we suppose holds for the average over nuclear positionsR8).
For QDs with a disk shape, in the typical limitkz0,1, we
can obtain a simple analytical expression for the average

fsk,d ; F1 −
sinskuR8ud

kuR8u
G . 1 −

2f1 − cossk,dg
sk,d2 , s36d

which can be well approximated by minhsk,d2/12,1j. We
remark that this factor, which is present in the case of the
co-moving confining potential, is absent when the confining
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potential position is fixed. This is the only difference in the
results for the relaxation rates in these two cases, and it be-
comes important only in the limit of small phonon frequen-
cies,k,!1.

We can write the relaxation rate between Zeeman sublev-
els and triplet and singlet electron states using the same ap-
proximate expression(the difference lies in the energy scale
v)

1

T1
.

2

3

A2

N

vsnv + 1d
p"rs3z0

2 IsI + 1dfsk,d. s37d

The linear dependence of the relaxation rate on the pho-
non frequency(for phonon wavelengths smaller than the size
of the QD, i.e., for sufficiently strong magnetic fields in the
case of Zeeman sublevels relaxation) sets our mechanism
apart from those considered earlier,16,19 where a cubic pho-
non frequency dependence is expected for low temperatures,
kBT!"v (and a quadratic one in the opposite limit). In ad-
dition, our result does not depend either on the proximity of
the nearest level, in contrast to the spin relaxation rates cal-
culated in Refs. 18 and 19.

The result for the electron-nuclei flip-flop transition rate
obtained in Ref. 16 is larger than our result, Eq.(37), by a
factor ,sgz0/,d2 (providedk,!1), which is of the order of
10 sg.50d for typical QD sizes cited below, but can be
smaller for large QDs. We should be cautious, however, in
directly applying the reasoning of Ref. 16 to the triplet-
singlet transition, when the emitted phonon energy corre-
sponds to the electron binding energy and hence the condi-
tion of adiabatic electron motion in a vibrating lattice(used
in that work) will not be fulfilled.

In GaAs all nuclei have spinI =3/2, andA2.1.2310−3

meV2 (Ref. 22). The mass density isr.5.323103 kg/m3,
and we approximate the mean sound velocity by the velocity
of transverse sound waves,s,st.33103 m/s.26 The typi-
cal transverse dimension of a quantum dot isz0.10 nm and
its lateral size isl .100 nm. The dot contains aboutN
,105 unit cells (eight nuclei in each). Hence, we can write
for the relaxation rate the approximate expression

1

T1
. 1 3 10−16 v

1 − expS−
"v

kBT
D fskld. s38d

For the transition between Zeeman energy sublevels the
phonon energy is equal to the Zeeman splitting,ug*mBBu,
which corresponds to 0.025 meV T−1 in GaAs whereg* =
−0.44. At the same time the cyclotron energy,"vc, is as
much as 1.76 meV T−1 due to the small effective mass in
GaAs,m* =0.067me. The single particle energy spacing in a
lateral QD is 100–300meV,25,27 and in a vertical QD the
confining energy of an approximate 2D harmonic potential is
,4 meV.25,27The conditionuM2/M1u !1 is satisfied when a
perpendicular magnetic fieldB!4 T, for "v0=0.1 meV, and
B!24 T, for "v0=1 meV, is applied. For in-plane magnetic
fields the corresponding limits areB!10 T andB!100 T,
respectively. The conditionk,,1 corresponds to an in-plane
magnetic field of,2 T and a perpendicular magnetic field of
,5 T. Thus, for magnetic fields larger than these the relax-

ation rate is linear in the emitted phonon frequency and as a
consequence it is linear in the strength of the magnetic field
(see Fig. 1 which is plotted for the limitkz0,1 correspond-
ing to B,10 T). For the fixed or “independent” confining
potential we would havefsk,d;1 and the dependence of the
rate on the emitted phonon frequency would be linear even
for small magnetic fields, i.e., whenk,!1 [apart from the
temperature-dependent factorsnv+1d].

As to the order of magnitude, the mechanism that has
been considered in this paper gives a rate of the order of
10−5 s−1 for a temperature of about 1 K and a magnetic field
of about 1 T. It therefore appears to be much less efficient
than the piezoelectric coupling mechanism considered in
Ref. 19, where the rate is about 1 s−1 for comparable values
of temperature, 4 K, and magnetic field, 0.5 T.

For the triplet-singlet transition in a lateral dot we find a
rate of the order of 10−5 s−1 for temperatures up to
,1 K s"v,100 meVd, and in a vertical QD we have 1/T1

,10−4 s−1 for temperatures up to,10 K and"v,1 meV
(we note that in both casesk,@1). The latter result should
be compared with 1/T1<2310−2 s−1 calculated in Ref. 18.

Let us now turn to spin relaxation in silicon. Taking into
account the natural abundance of29Si nuclei with nonzero
spin nI=1/2=4.68%, their magnetic momentmI =−0.56mN,
the lattice constanta=5.43 Å and the electronic density at
the position of the nucleush.1864 we find the effective
hyperfine coupling constant to beA.5 meV. This is far
smaller than in GaAs, due to the smallerh and smaller per-
centage of nuclei with spin. Inserting the mass density of Si,
r.2.33103 kg/m3 and the transverse sound velocityst
.5.43103 m/s, we obtain a prefactor of the order of 10−21

in Eq. (38). This corresponds to a very small relaxation rate
1/T1,10−10 s−1 between Zeeman sublevels in a magnetic
field of B=1 T, for temperatures up to 1 K(g=2 in Si). Note
that the spin-orbit related electron spin relaxation time in
lateral Si QDs,14 for Si:P bound electrons and for QDs in
SiGe heterostructures13 has been predicted recently to be on
the order of several minutes for the same values of magnetic

FIG. 1. (Color online) The single electron spin relaxation rate in
a GaAs QD vs magnetic field[according to Eq.(38)], derived for
the hyperfine-phonon mechanism discussed in the present article.
The solid line corresponds to the case when the confining potential
vibrates together with the lattice, while the dashed line refers to the
case of a fixed confining potential.
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field and temperature. In the latter case, however, the relax-
ation rate may be strongly decreased, below the values found
for our mechanism, by application of uniaxial compressive
strain.13

In general, electron spin relaxation induced by electron-
nuclei hyperfine interaction in a quantum dot is not as effi-
cient as relaxation due to spin-orbit interaction for typical
values of system parameters.9–14,18In many experiments, the
hyperfine related rate would be masked by the spin-orbit
mechanism(however, see Ref. 19 for a case where the hy-
perfine mechanism may dominate). The present experimental
data for the triplet-singlet transition rate in a GaAs vertical
QD is T1<200 ms at temperatures up to 0.5 K and triplet-
singlet energy splitting«S−T,0.6 meV.29 For the relaxation
time between Zeeman sublevels in a lateral GaAs QD only a
lower bound is available:T1*50 ms for an in-plane mag-
netic field B=7.5 T atT=20 mK.30 Both of these measure-
ment results were obtained by means of transient current
spectroscopy.28

On the other hand, hyperfine coupling mechanisms(such
as the one considered in this paper) may be particularly rel-
evant as far as effects like dynamic nuclear polarization are
concerned, where the electron-nuclei hyperfine interaction
plays a crucial role.4,15,16 Recently, a hyperfine nuclear spin
relaxation time on the order of 10 min was measured in a
single GaAs QD, at a bath temperature of 40 mK and a mag-
netic field up to 0.5 T.31 However, this experiment dealt with
a nonequilibrium transport situation, with a resulting spin-
flip mechanism whose rate turns out to be orders of magni-
tude larger than the one discussed in the present article(see
Ref. 20).

VI. CONCLUSIONS

In summary, we have considered a specific mechanism for
inelastic electron spin relaxation in a QD induced by the
electron-nuclei hyperfine interaction in combination with lat-
tice vibrations. We have found that the interference between
first and second orders of perturbation theory is essential for
a correct description of the suppression of relaxation at small
transition frequencies. The relaxation rate has been calcu-
lated both for the transition between Zeeman sublevels of the
orbital ground state and for the triplet-singlet transition. We
have obtained estimates based on these general results and
realistic system parameters. The estimates demonstrate that
the relaxation rate due to this particular mechanism is very
small: For the spin relaxation between Zeeman sublevels it is
much less than the rate calculated earlier in second-order
perturbation theory with an emission of a phonon through
piezoelectric electron-phonon coupling in a GaAs QD,19 and
it is less than(or at most comparable with) the relaxation rate
due to the change in the localized electron effective mass
induced by the lattice dilation in silicon.16 For the triplet-
singlet transition, the rate in GaAs QDs is still smaller by an
order of magnitude than the corresponding rate of the piezo-
electric mechanism.
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