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Spin-polarized tunneling current between independently contacted quantum wells
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We study the spin-polarized tunneling current between independently contacted quantum wells under an
in-plane magnetic field. The splitting of energy spectra of two-dimensional electrons due to both spin-orbit and
Pauli interactions is taken into account. The line shape of the resonant peak of the tunneling current is
described for both homogeneous and inhomogeneous broadening mechanisms and the effects of temperature
and finite drop of voltage is investigated. We show that a considerable spin-polarized c¢tireedegree of
polarization about 80%can be achieved in the InAs-based double-well structures.
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I. INTRODUCTION Pauli interactions! More important, the diamagnetic shift of

Tunneling current between independently contacted quarf’€ 2D electron specttd occurs, see Fig.(b). This leads to
tum wells (see Refs. 1 and 2 for revigvand wires(see the appearance ahin-polarized tunneling current _
references in Ref.)3has been investigated during the last N this paper we consider the effect of in-plane magnetic
decade. Due to the restrictions imposed by the energy anigld on the tunneling current between 2D electron layers in
momentum conservation laws, the nonzero current betwee#ouble quantum well systent®QWSs) with spin-orbit split-
two low-dimensional states with simple parabolic dispersiorting of energy spectrum. The aim of the paper is to calculate
laws exists only if the electron scattering is taken into ac-both the absolute value of this current and its spin polariza-
count. The tunneling current in this case essentially depend#n as functions of the magnetic field, energy shift between
on the scattering rate which determines both the height anthe 2D levels, and applied voltage. We also investigate rela-
width of the resonance tunneling peak. In the presence of tive effects of the Zeeman splitting and diamagnetic shift on
magnetic field parallel to two-dimension&D) layers, as the spin-polarized tunneling current. By considering interac-
shown in Fig. 1a), the momentum-conserving tunneling, tion of electrons with short-range and long-range static po-
which does not require scattering, takes pfédeecause of tentials, we study the influence of homogeneous and inho-
the relative diamagnetic shift leading to intersection of en-nmogeneous broadening mechanisms on the tunneling current
ergy spectra of electrons in the wells in the energy-and its spin polarization.
momentum space. The tunneling current in this case is less The paper is organized as follows. In Sec. Il we give the
sensitive to the scattering and reflects essential features bfsic relation and derive the expression for the spin-
the electron energy spectrum. polarized tunneling current. In Sec. Il we present some ana-

A similar momentum-conserving regime of tunneling in lytical results obtained from this expression in the case of
the absence of the magnetic field exists in the systems withomogeneous broadening and show the results of numerical
spin splitting of electron states due to spin-orbit interaction calculations. The conclusions are given in Sec. IV.

The cases of tunneling between spin-split one-dimensional
(1D) electron statésan% 2D electrop:w stgtés‘nas been re- II. BASIC RELATIONS

cently considered theoretically. The tunneling between spin- Taking into account the interwell tunnel coupling de-
split 2D hole states may also occur in this regime, as followsscribed by the spin-independent tunneling matrix elemgnt,
from the consideratidhof hole spectra in tunnel-coupled we use below the one-electron Hamiltonian,

quantum wells. These results are interesting in connection N

with the demonstration of the double electron layer tunneling Ho T 1)
transistof TR

The momentum-conserving tunneling of electrons in the
systems with spin-orbit interaction has been proposed fof he spin-dependent motion ijth QW is described by the
usage in spin polarizefs’1° The spin polarization of elec- Hamiltonians,
trons in such systems is determined by the direction of mo-

mentump, and the electrons which tunnel with a given mo- (a) u_ (b))
mentum are spin-polarized. However, due to the isotropy of ‘é’f

the electron spectrum in the absence of the magnetic field, - 7 7
the total(averaged over the directions jpf tunneling current 4 ’

is not spin polarized. An application of the magnetic field

parallel to the layers dramatically changes the situation, al- FIG. 1. (a) Schematic picture of the independently contacted
lowing one to select the electrons with given momenta. InDQW structure under an in-plane magnetic fi¢lfOY. (b) Dia-
this field, the electron dispersion laws in each quantum wellmagnetic shift of the isoenergetic curves for DQWSs with spin-split
become anisotropic due to mixing between spin-orbit andnergy spectra.
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property can be demonstrated directly, by using the defini-
tions of w;; and taking into account the symmetry of the

. energy spectrum with respect to theomponent of the mo-
Hy=A2 + &5 1o+ Wyp - 0+ Vi, (2 mentum. The evolution of electron density in this case is
determined only by electron transfer between the layers due
to the tunneling, and the spin-polarized tunneling current can
be written asl,,=e(dny,/ dt) =—e(on,/ dt). Using Eq.(5) and

the definition ofp,, we present this current in the following
form:

Hi=-A/2 +Eprpy2 T Wip - 0+ Vi,

where A is the energy shift between the 2D levels, which
gives the level splitting without tunnelingp=p2/2m is the
kinetic energypn=(py,0,0), py=eHZ/c is the characteris-
tic momentum due to the magnetic fiektl OY, o are the
Pauli matrices, an¥, , are the potentials im,| QWSs. The

vectors Wy, =[(p—pu/2) X v ]+wy and w,=[(p+pyu/2) ieT
Xv|]+wy contain the characteristic spin velocities jth Jp= 2<<E (NP, (-7 )]+|I)\)>>, (6)
QW, v;=(0,0)), as well as the Zeeman energwy 2hL
=gugH/2, whereg is the effectiveg factor andug is the
Bohr magneton. where ({:--)) is the averaging over random potentials and
Introducing the spin projection operator on thedirec-  |j\) are the eigenstates of the Hamiltonieln Equation(6)
tion, P =[1+e-o]/2, we write the density matrix of elec- is written in theT? approximation, when all contributions to
trons with spin alonge as an anticommutatop,=(1/2)  Jn containing higher powers of are neglected. Therefore,
x[P 51., where sincep is already proportional td, see Eq(4), we use the
errin basis of single-layer statef)), to express the trace in Eq.
(6) [one may equivalently use the baia)]. For the same
reason, one should neglect the effect of tunnel coupling,on
and p, in the expressiort4) when substituting the latter in
Eqg. (6). Doing it this way and introducing the eigenvalues

g of the probleml:|j|j)\):sjk|j)\), we transform Eq(6) as

pu P
~ o~
PP
is written as a matrix in the basis of the layersindl. The

system of equations for the spinor density matricea and
| layers, defined agje=(1/2)[Pe, pjl., is given by(see Refs.

p:

5 and 12 follows:
ap, i~ iT - 2 AINAY
(?_:e"'Z[Pey[Huapu]L:g(ﬁe_p;): Jh:e_Tz !(uMPh“)\ ) |U)\)
hL NN |(8|)\/_8u}\)+5
Ipie 1o o s T (UNJIN)(IN'|PyJUn)
_+_[Pey[HI1PI]]+=__G’e_pe)i () + h (fo = fuy) . (7)
Jt 2h h i(SU)\ _ 8”\/) +5 IN UN
whereﬁe:(l/Z)[lADe,T)]J,, and the nondiagonal part of the den-
sity matrix is written as The distributions of electrons ij,\) states are supposed to
R R be quasiequilibrium, f;,=(j\|p;|j\)= 0 with different
~_IT R~ _ o~ i A N
p= 7 dt eetui(p, - ppeHivh, (4) chemical potentials in each QW determined by the doping
- level and transverse voltage, so that we further transform Eq.
with 6— +0. Introducing the density of electrons in tiia (7)) INtO
layer with spin in thee direction as;e=Tr pj, we obtain the )
balance equations in the form ieT non
q =27 | de((TrPW{f(GEAL - A5G0
9 Mue 1TrA o -[e X wy] iTTr(~ %)
— 2 Trpyo pl= 2 Tr(pe=pe),
AN Toh T E = (G A = AuGRD), (8)
INe _ ET 010 X Wia —_iIT -of 5 where gR and gA are the retarded and advanced Green’s
ot P rp|(T-[e Wlp] = P r(ﬁe pe)- (5)

function in the operator form, anﬁjg—(g QJRS)IZm is the
The right-hand sides of these equations describe the intespectral density operator. The operator Green’s functions,
Iayer tunnellng, while the second terms on the left- hanthK;h Sa‘“sfy the equa“o(‘g H]i|5)gRA ]_ can be viewed
sides, originating from the commutato[lsiJ pJ] describe  as matrices in both configuration and spin space and the trace
free precession of the spins due to both spin-orbit and Paulir in Eq. (8) is taken over all coordinate and spin variables.
interactions. Since the longitudinal currents in strongly Below we assume that the potentials, contain both
doped quantum wells are negligible, these last contributionshort-range contribution and large scale, classically smooth
exist only in the presence of a magnetic field. Once the spiontribution. Carrying out the averaging over the short-range
guantization axis is chosen alord, as e=h=H/H (or  contributions in Eq(8), we imply that these contributions for
e=-h), the spin precession in the layers is absent, and thdifferent wells are statistically independent. Therefore, we
second terms on the left-hand sides of Ej.are zeros. This obtain
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3= % dsEp trodPr(FULGLL (P 0AL(P.X) 3= z”TeTZ J de(f’ - 1) f (Zd—ﬂi’i)z{Afﬂp)A&?(p)
~ A (PXOG(P0] - FULGR (P 0AL(P.X) (o ap) ) - ”"T%Mg(pmgg(p)
- Aup &P D, ©) (o ?
where éjFi'A(p,x) and Aja(p,x)zlm ész(p,x)/w are the _Tmp_A'E (PIA (p)}, 13

Green’s functions and spectral density functions in th
Wigner representation. These functions arg 2 matrices
and the remaining trace,tis taken over spin variable only.
The averaging over the large-scale part of the random poten- ® 0 gt (T8
tial remains in Eq.(9), and it is denoted by---). The re- A :f 2_37' T
tarded Green'’s function satisfies the matrix Dyson equation -

e\Nhererp:|ij| and the scalar function%f? are introduced
according to

R o R (gjp-— &)t (gjp+ — &)t
where F‘up:A/2+8p—pH/2+Wup'5' and ﬁlp:‘A/2+8p+pH/z In this equation we have used the dispersion laws for spin-

+w, - & are the free-electron Hamiltonians in the momentumSPIit Statesgjp. =&jp £ Wjp, Whereeip=ep.p, ,=A/2 andey,
representationy;, is the large-scale part of random poten- :Sp—pH/2+A/2-

tial, and 1is the unit matrix in the spinor basis. The self-
energy function arising from the short-range scatter¥fg, IIl. RESULTS

does not depend on, p, andx for the case of scattering by ggjow we consider the total tunneling currest, =J;
zero-radius centers. Below we neglect the renormalization oiJ_h and the spin-polarized contributiodd=J,—J_;. In-

h;, due to real part ok and expres§3jR through the energies stead ofAJ, it is convenient to introduce the degree of spin
of homogeneous broadeninﬁf:—iyji. This approxima- polarization,S=AJ/J, . In the linear regime, the tunneling is
tion is valid in the case of weak spin splitting, under condi-characterized by the tunneling conductar@eJ, /V. We
tion |Uj|§<g_, wherep andz are characteristic momentum first assume that the temperature is low enough and replace
and energy. the distribution functionsfg) by the steplike functions
The expressiori9) for the tunneling current can be con- @(eg;—¢), where quasi-Fermi energies are givendgy=eg
siderably simplified if we take into account that, according to+eV/2 and ep,=er—€eV/2, where e is the equilibrium
Eq.(10), GE(p,x) does not contain the contributions propor- Fermi energy. The effect of temperature appears to be not
essential as soon as the temperature is small in comparison to

tional to the Pauli matrixo, becauseﬁ» does not contain : : PR
] ip -
| tributi . Therefore, i tator ot the Fermi energy, see discussion in Sec. IV. Before present

Green’s functions are proportional &g and their trace with ing the results of.numeri_cal _calculatiqns of the total qurrent
- ) . and degree of spin polarization, we give some analytical re-
P is zero. Using this property, one can carry out the permusyits related to the case of homogeneous broadening, when
tations of the Green'’s functions under the trace in @§so Egs.(13) and(14) lead to the tunneling conductance and spin

that the latter is rewritten as polarization in the form
2meT? f dp G e°T? d(p) AG
Jn= de(fl) - ¥ J ( ): fd S=—. 15
h A 8( & e ) (2'7Tﬁ)2 AG 471%3 p \I}(p) ’ G ( )
Xt AP AP )AL (P, X} (1)  In these equations
Finally, we assume that the large-scale potentiflsandU,, BD) = (Sta b + 518 1+ng Wyp
are statistically independent. Thus, the tunneling curigbt (P) = (8y1+ e+ Oy- ) WipWyp
can be written through the completely averaged spectral Wo W
functionsA;,(p)=(A;,(p,x)) given by2 + (O Sype + 5;4—5;4&){1 —VLPW—UE} (16)
IpYVup

A ° dt (L t/26)2 o (B =) and
Ajs(p) = 5 e Mo+ He., (12

- W, W
\P(p) = (5y|+5'yu+ - 5?'—6W—)h . |:—IE + _u9:|

where the inhomogeneous broadeningjtin QW is deter- Wip Wyp

mined in the quasiclassical approximation by the variance of

the potential I'j=\(U5). + (040, = Op-Op)h - v w | (17)
Substituting the expressioiis0) into Eq.(11) and taking p up

the spin trace (..., we finally obtainJ, in the form where the shortcutss,;, stand for the Lorentz functions
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7yl +(e~2jps)?] and e=eg. In the following, the
broadening is assumed to be symmetsic y,= .

The integrals over 2D momenta in Ed.5) can be calcu-
lated analytically under the assumptigiel,u),

\

2o, < pr. 18)

&

where pﬁdﬁsp is the characteristic Fermi momentum.
The condition(18) means that the spin velocities are small in
comparison with the Fermi velocity. It is valid for any doped |
quantum wells with spin-orbit splitting of the energy spec- »,72 p,/2

trum. For the sake of simplicity, we neglect the Zeeman split-

ting termwy. The calculation leads to the following results  FIG. 2. Fermi surfaces for symmetric DQWs under condition of

valid for arbitrary magnetic fields: the maximum spin polarization of the tunneling current. The arrows
) s 2 show spin orientation ap,=0 for each branch of the energy
G= e€T’m D (1_00 PE — Pi/2 ) spectrum.
- 1%u
277'ﬁ3 ay,07%1 \" pé - (mA)Z

scribed by a simple expression derived from Hd®)—<21)

X Im—= = 12 7 (19 under the assumptiong— 0 andpy <pg,
\/Ea'|0'u - pH(pF - pH/4)/ 2e2T2m 2my
and =3 > > S= . (22)
ThPEN (PH/M)* = (2v) PH
AG= T’ s The conductance diverges gt =2m|v| as (py—2mlv|)~2
27Tﬁ3pH<r|,au=il The spin polarization reaches 100% in the peak and slowly
) decreases with the increase ldf As py becomes smaller
o Im Ea,(ru = PR/2m than 2nlv|, the tunneling conductance rapidly decreases with
/02 + mA E2 - p2(p2 — p2/4)/mP the decrease of the magnetic field. To evaluate the conduc-
VPE v i, PR(PE = P/4) tance and the spin polarization in this weak-field region one
o E + pa/Zm should assume a finite broadening# 0.
- —1Im il Further, we consider the case when one quantum well, sa
[~2 2 22 2 2| ) ! . . a . ! y
VPE —mA \/Eolau_pH(pF_pHM')/m u, is symmetric so thav,=0, while the other one is not

(20) symmetric, v;=v #0. The spin-orbit splitting of electron
states in theu layer is absent and, for this reason, the spin
The complex energ¥, , is introduced according to relaxation there is considerably suppressed. In this case, the
spin-polarized electrons injected to thelayer from thel
layer can keep their polarization for a long time, determined

The calculation of the square root from the complex expresOy by _spin-dependent scattering processes, which is
sion in Egs(19) and(20) must be done under condition that important® for spintronics applications. We again neglect

—_—

Im\.. is negative. For example, in the absence of the magé€eman splitting and assume=0, which, under the as-
netic field (py=0) this rule means that the square root is sumed conditior{18), corresponds to matched electron den-

equal toE and we recover the result of Ref. 7 for the sities in the wells. Under these conditions, and under as-
0'|0'u1 .

tunneling conductance. The spin polarization in these condi2Umptions y—0 and py<pe, the conductance and spin

polarization atp,>m|v| are given by the following expres-

E(r|(ru = (0'|l)| + quu) Pr +A-2i V- (21)

tions is zero. A

To demonstrate the effect of magnetic field, we consider g'ons:
symmetric structure, wheA=0 and spin velocities are equal _ 26°T?m _ o 23)
in absolute value and have different signss—v,=v. The ﬂ'ﬁgpp\«"(DH/m)z—vz’ Py

different signs of the spin velocities in the two layers is

physically understandable because the directions of the pavhich are very similar to those given by EQ2). The reso-
tential gradients in theandu wells of the double-well struc- nance peak of the conductance appearg;amv|, the spin

ture are opposite to each other. The case0 at|v||=|v| polarization reaches there 100% and decreases with the in-
corresponds to matched 2D electron densities in the wellgsrease oH.

n=n,=n=(pg/#)%/2m. In these conditions, the tunneling It is important to mention that the neglect of Zeeman
current in the absence of the scattering is zerblaD, be-  splitting in comparison to the spin-orbit splitting is well jus-
cause the states with the same direction of spin are out dffied in the InAgInGaAs quantum wells at small enough
resonance. With the increase of the magnetic field, when magnetic fields. Indeed, there is a strong inequality,

reaches |v|, see Fig. 2, the tunneling conductance has a
peak corresponding to the resonance of the states with the
same direction of spin. The spin polarization in these condiwhich is field independent, since botly andp,, are propor-
tions has a maximum. The tunneling g>2m|v| is de- tional to H. Estimating the effective masa as 0.04 of the

Wy < pupe/m, (24
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FIG. 3. Tunneling conductana@) and spin polarization of the FIG. 4. Tunneling conductang@) and spin polarization of the
tunneling currentb) as functions of the magnetic field A=0 and  tunneling current(b) as functions of the magnetic field &
7/8F=1¢4 (1), 0.02(2), and 0.04(3). Solid lines,r;=-r,=0.1;  =0.8 andy/sg=10"* (1), 0.02(2), and 0.043). The dashed lines
dashed linest;=0.1 andr,=0. show the result of numerical calculation gtez=0.02 taking into

S ] account Zeeman splitting.
free electron massy, and considering typical electron den-

sities,n=10'?2 cm 2, and typical interwell separation in the andSis close to that described by Eq22) and(23). In the
DQWs with independent contactZ=25 nm, one can find case of negligible broadening, the spin polarization reaches
that the condition24) is well satisfied despite of the large unity in a kinklike fashion. The broadening of the resonance
value of theg factor in InAs quantum well$} g=-13. On  tunneling peak is accompanied with the decrease of the
the other hand, as shown above, the resonance peak of theaximum spin polarization, which, nevertheless, remains
conductance and spin polarizationt0 exists aroundg rather high(60—80% for the physically reasonable values of
=mv;,|. According to Eq.(24), in this region of magnetic broadening considered here. For obvious reasons, the inver-
fields the spin-orbit spitting of the energy spectrum near thesion of the magnetic fieldnegative py) would lead to a
Fermi level, estimated ds, ,|pg, appears to be much greater symmetric transformation ofs and to an antisymmetric
than the Zeeman splittingy,, and the latter should be ne- transformation ofS.
glected. At higher magnetic fields, a noticeable contribution The field dependence @ andS at large level separation
of Zeeman splitting appears, but it does not modify the tun{A|=0.8¢ is illustrated in Fig. 4, where we assumed
neling current and spin polarization considerably, as demonr=-r,=0.1 and used the same values of broadening energy
strated below by numerical calculations. v as in Fig. 3. The characteristic feature of this dependence is
The inverse-square-root divergencies of the tunnelinghe appearance of two peaks, corresponding pigpge
conductance in Eqg22) and(23) are smeared in the pres- =|A|/2sgxr,. In the region between the peaks the sign of the
ence of finite broadening. The broadening also decreases tlspin polarization is changedrom -1 to 1 in the case of
degree of spin polarization. To investigate these effects, andegligible broadening The first peak ofS occurs in a kin-
to estimate the degree of spin polarization expected in reaklike fashion, similar as in Fig. 3, while the second one is
istic conditions, we plot below the dependence of the tunnelmore narrow and more sensitive to the broadening. In Fig. 4,
ing conductance and spin polarization given by Eqsthe results derived from Eq$19)<21) are compared with
(199<21) on the magnetic field. The field is described by athe results of exact numerical calculation using Egs.
dimensionless parametey/pg. The other relevant dimen- (15—17). These calculations take into account Zeeman split-
sionless parameters are the ratios of the spin velocities to thing estimated for the parametens-10' cmi?, Z=25 nm,
Fermi velocity,r;=2mu;/pg, and the ratios of the level sepa- m=0.04n;, andg=-13. One may notice that the difference
ration and broadening energies to the Fermi enefgy;: becomes noticeable @,/pg>0.3 (it is not visible for the
and y/eg, respectively. In Fig. 3 we ploB, in units of Gy region of fields used in Fig.)3Nevertheless, this difference
=e?T°m/ wh3eg, and S at A=0 for several values ofy/er  remains small and the qualitative behavior given by Egs.
using r,=-r,=0.1 andr;=0.1, r,=0. At n=102cm? and (1921 is not modified by the Pauli interaction effect.
m=0.04n, the value|r, |=0.1 corresponds tdu, |=3.6 In Fig. 5 we plot the results of numerical calculation of
X 10° cm/s, which is larger than the typical value 1.5 the tunneling conductance for the case of symmetric inhomo-
X 1P cm/s obtained in experimedAtson single InGaAs geneous broadenin,=T',=T" as well as for the realistic
guantum wells, but smaller than the maximal value 4.85case when both broadening mechanisms are presented. The
X 1P cm/s reported recenthy. Therefore, we consider, difference in the resonance tunneling peak shape for two
andr, used in the calculations as reasonable. The given vabroadening mechanisms reflects the different behavior of
ues of broadening energies are also reasonable. For exampl@mrentz and Gauss functions. A large degree of spin polar-
yle=0.02 for n=10"% cm™ and m=0.04n,, when & ization is possible even for strong inhomogeneous broaden-
=60 meV, corresponds toy=1.2meV (or A/7=2y ing I'=0.1e. The homogeneous broadening suppresses the

=2.4 meV, wherer is the scattering time of electrons spin polarization more considerably than the inhomogeneous
The resonance tunneling peak in Figa3corresponds to one.
the maximum of the spin polarization in Figis3. According So far we considered the linear regime of tunneling. Let

to the simple consideration given above, the peak occurs ats discuss the case of a finite voltagapplied between the
Pu/pe=r, for r,=-r,=0.1 and atpy/pg=r,/2 for r;=0.1 2D layers. To calculate the tunneling curredt,, and its
andr,=0. In the regions of higher field, the behavior @ spin-polarized partAJ, one may use expressions fGrand
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FIG. 5. Tunneling conductana@) and spin polarization of the
tunneling current(b) as functions of the magnetic field at=0. tion of the tunneling currentb) as functions of the applied voltage
Solid lines, inhomogeneous broadening with0.04 ¢ (1) andI’ for the case of homogeneous broadening with0.02 g at
=0.1¢&f (2). Dashed lines show the case of mixed broadening withp,/pe=0,0.05,0.1, and 0.&curves 1-4, respectively
v=0.02¢¢ andI'=0.04 &f.

FIG. 7. Nonlinear tunneling conductan¢® and spin polariza-

spin velocities are far less essential. The first effect is not
AG as functions of energy [for example, formally replacing  important because the energy dependendd ahdAG does
pr in Egs. (19<23) by v2me] and integrate these expres- not have any peculiarities near the Fermi endtbis is seen
sions overe in the interval[eg—eV/2,ec+eV/2]. It is im-  in the most obvious way from the simple expressi¢g)
portant that the application of a finite voltage changes thend(23)], while the second one can be neglected because the
energy separatioi. It also causes a redistribution of elec- main contribution taG andAG of Egs.(19) and(20) comes
tron density over the layers and a renormalization of the spifrom the terms containing the quantity—v,, which is not
velocities. These effects are considered in Ref. 7 for the simrenormalized by the applied bias, see EZp).
plest case of initially symmetric DQWs, with=0 anduv, The dependence of the nonlinear tunneling conductance
=-p, at V=0. Below we use the results of Ref. 7 written as on the applied bias for several values of the dimensionless
magnetic fieldp,/pg is shown in Fig. 7. Again, due to the

=- e—V’ dependence ofA on V, the nonohmic behavior is pro-
1+ag/2Z nounced. The spin polarization changes its sign with the in-
crease o, but its absolute value can be fairly large even at
) =v<1 - e_V) high applied biagV~ e.
ag+2Z2s¢)’
ag eV IV. CONCLUDING REMARKS
ou= _v<1 * ag+ 2z£)’ (25 We have investigated the effect of an in-plane magnetic

0 . . . . field on the tunneling current between independently con-
whereag=f’¢/me is the Bohr radius, which characterizes yacraq quantum wells with spin splitting of the energy spec-
the screening gffe_cts in 2D layers. . ._trum. The main result of our studies is that a considerable
The magnetic-field dependence of the nonI!near tunnel!ngpin polarization of electrons in a 2D layer can be achieved
conduc’;anc_eJL/V calculated in the way descnbe_d above 'S by means of tunneling injection of electrons into this layer
plotted in Fig. 6 for several values of the dimensionless b'a?rom the adjacent 2D layer in the presence of a weak mag-

fwsF' When usjng Eq.(25), we set Pw/pe=0.1, Z netic field applied along the layers. The scale of this field,
=25 nm, and estimated the Bohr radius for0.04m, and . responding to the maximum spin polarization, is esti-

e£=12. The modifications of the tunneling current and its Spinmated from the relatiop,,=(eH/c)Z~ mjv|, whereZ is the
_?_ﬁlar'?fat'?n afrefz_ C.?use?t mos(tjly by thg dependelnar:_mrﬁ V'f th interlayer distance and is the spin velocity determining the
€ efiects ot Tinite voitage drop and renormaiization espin splitting of the energy spectrum. Using the typical val-

ues|v|<4x10° cm/s andZ>200 nm, one can find that the
required magnetic fields for INAGnGaAg-based structures
are smaller than 0.5 T. For the DQWs of small size, such
fields, in principle, can be created by ferromagnetic films
deposited on the surface of the sample.

By investigating the effects of homogeneous and inhomo-
geneous broadening of energy spectrum, we have found that
although both these effects suppress the spin polarization, a
fairly large degree of polarizatiof®0—80% can be achieved
for realistic values of the broadening energies, including the

FIG. 6. Nonlinear tunneling conductant® and spin polariza- case when both broadening mechanisms are present. We
tion of the tunneling currentb) as functions of the magnetic field have shown that the inhomogeneous broadening does not
for the case of homogeneous broadening with0.02 ¢ at  suppress the spin polarization considerably. In addition, the
eV/e=0,0.15,0.3, and 0.4&urves 1-4, respectively resonance peak of spin polarization for this mechanism ap-
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pears to be wider than in the case of homogeneous broadetiie spin relaxation timer, is known. Therefore, if the quan-
ing, which may offer certain advantages for applications. Thaum wells are separated by thin enough tunneling basier
conclusion about the weaker role of inhomogeneous broadhat T2 is large, a considerable fraction of spin-polarized
ening is encouraging since it is this broadening that is imporelectrons in the 2D layers can appear as a result of the highly
tant in InGaAs structures because of considerable large-scadpin-polarized tunneling current studied in this paper. For
interface roughness. example, using the spin relaxation timg=10 ps in InAs

Let us discuss the effect of electron temperaflyen the 2D layers!® the Fermi energyr=30 meV (corresponding
tunneling conductance. To take it into account, one shouldo a typical electron densitg=5x 10 cm™?), and the tun-
considerG and AG as functions of energy, as described inneling matrix element T=0.2 meV (attainable in
Sec. lll, and integrate them over the energy with the weighinAs/GaAISb/InAs double quantum well structures with
factor {df./de). Because of smooth energy dependence ofunnel barriers of about 7 nm thigkwe obtain the relative
G and AG discussed above, the relative corrections due tapin polarizatiomg/n=0.2. This value increases Tf and 7
finite temperature appear to be of the ord&/eg)2. Thus, are bigger andh is smaller. A consideration of the effect of
both the tunneling conductance and spin polarization are natuch spin polarization in the framework of tfié approxi-
sensitive to the temperature unless the latter is comparable toation for the tunneling current and quasiequilibrium distri-
the Fermi energy. The conditiofiT/sf)?><1 is easy to bution functions in the layers is possible under conditions
achieve even af,=77 K in the InAs-based structures, where that 75 is much greater than the momentum and energy re-
the 2D electron densities are high and the Fermi energy typikaxation times in the layers. For possible applications of in-
cally exceeds 50 meV. However, with the increase of temdependently contacted double quantum wells in spintronics,
perature, an additional broadening mechanism due to scatteas spin filters, it is desirable to avoid the spin relaxation by
ing of electrons by phonons becomes important, and this caereating the structures where the tunnel coupling between the
lead to additional suppression of the spin polarization. layers occurs in a narrow lateral Stl’lp whose width is smaller

The main difficulty for application of the tunneling injec- than the spin diffusion IengthDrS (D is the diffusion coef-
tion of spin-polarized 2D electrons is the small value of theficient), but large in comparison to the ordinary diffusion
tunneling current. One of the ways to overcome it is to applylength VD7 so that the formalism applied in our paper re-
high voltages between the layers. Our calculations show thatains valid. In this case, the spin-polarized electrons come
by a proper choice of the value of in-plane magnetic field,out from the tunnel-coupled region before the spin relaxation
the degree of spin polarization can be made Hig®+—80%  occurs, and one may use the strong spin polarization of the
even when the applied biaV is comparable to the Fermi tunneling current directly.
energies in the layers. When it is so, the flux density of In conclusion, our theoretical analysis demonstrates that
incoming spin-polarized electrons is roughly estimated aghe efficient injection of spin-polarized electrons can be
AJle~Geple~10T°m/#h3 (the approximate numerical achieved in double quantum well InAeGaAs structures,
factor of 10 is taken from our calculations, see Figs.)3By  where splitting of electron spectrum caused by the spin-orbit
equating this quantity to the rate of spin relaxation per uniiinteraction is considerable. We hope that this result will
square of the 2D layens/ 7, one can estimate the quasista- stimulate technological efforts towards creation of indepen-
tionary density of spin-polarized electromsg, provided that dently contacted quantum wells based on these materials.
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