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We study the spin-polarized tunneling current between independently contacted quantum wells under an
in-plane magnetic field. The splitting of energy spectra of two-dimensional electrons due to both spin-orbit and
Pauli interactions is taken into account. The line shape of the resonant peak of the tunneling current is
described for both homogeneous and inhomogeneous broadening mechanisms and the effects of temperature
and finite drop of voltage is investigated. We show that a considerable spin-polarized current(the degree of
polarization about 80%) can be achieved in the InAs-based double-well structures.
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I. INTRODUCTION

Tunneling current between independently contacted quan-
tum wells (see Refs. 1 and 2 for review) and wires(see
references in Ref. 3) has been investigated during the last
decade. Due to the restrictions imposed by the energy and
momentum conservation laws, the nonzero current between
two low-dimensional states with simple parabolic dispersion
laws exists only if the electron scattering is taken into ac-
count. The tunneling current in this case essentially depends
on the scattering rate which determines both the height and
width of the resonance tunneling peak. In the presence of a
magnetic field parallel to two-dimensional(2D) layers, as
shown in Fig. 1(a), the momentum-conserving tunneling,
which does not require scattering, takes place4,5 because of
the relative diamagnetic shift leading to intersection of en-
ergy spectra of electrons in the wells in the energy-
momentum space. The tunneling current in this case is less
sensitive to the scattering and reflects essential features of
the electron energy spectrum.

A similar momentum-conserving regime of tunneling in
the absence of the magnetic field exists in the systems with
spin splitting of electron states due to spin-orbit interaction.
The cases of tunneling between spin-split one-dimensional
(1D) electron states6 and 2D electron states7 has been re-
cently considered theoretically. The tunneling between spin-
split 2D hole states may also occur in this regime, as follows
from the consideration8 of hole spectra in tunnel-coupled
quantum wells. These results are interesting in connection
with the demonstration of the double electron layer tunneling
transistor.9

The momentum-conserving tunneling of electrons in the
systems with spin-orbit interaction has been proposed for
usage in spin polarizers.6,7,10 The spin polarization of elec-
trons in such systems is determined by the direction of mo-
mentump, and the electrons which tunnel with a given mo-
mentum are spin-polarized. However, due to the isotropy of
the electron spectrum in the absence of the magnetic field,
the total(averaged over the directions ofp) tunneling current
is not spin polarized. An application of the magnetic field
parallel to the layers dramatically changes the situation, al-
lowing one to select the electrons with given momenta. In
this field, the electron dispersion laws in each quantum well
become anisotropic due to mixing between spin-orbit and

Pauli interactions.11 More important, the diamagnetic shift of
the 2D electron spectra4,5 occurs, see Fig. 1(b). This leads to
the appearance ofspin-polarized tunneling current.

In this paper we consider the effect of in-plane magnetic
field on the tunneling current between 2D electron layers in
double quantum well systems(DQWs) with spin-orbit split-
ting of energy spectrum. The aim of the paper is to calculate
both the absolute value of this current and its spin polariza-
tion as functions of the magnetic field, energy shift between
the 2D levels, and applied voltage. We also investigate rela-
tive effects of the Zeeman splitting and diamagnetic shift on
the spin-polarized tunneling current. By considering interac-
tion of electrons with short-range and long-range static po-
tentials, we study the influence of homogeneous and inho-
mogeneous broadening mechanisms on the tunneling current
and its spin polarization.

The paper is organized as follows. In Sec. II we give the
basic relation and derive the expression for the spin-
polarized tunneling current. In Sec. III we present some ana-
lytical results obtained from this expression in the case of
homogeneous broadening and show the results of numerical
calculations. The conclusions are given in Sec. IV.

II. BASIC RELATIONS

Taking into account the interwell tunnel coupling de-
scribed by the spin-independent tunneling matrix element,T,
we use below the one-electron Hamiltonian,

UĤu T

T Ĥl

U . s1d

The spin-dependent motion inj th QW is described by the
Hamiltonians,

FIG. 1. (a) Schematic picture of the independently contacted
DQW structure under an in-plane magnetic fieldHiOY. (b) Dia-
magnetic shift of the isoenergetic curves for DQWs with spin-split
energy spectra.
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Ĥl = − D/2 + «p̂+pH/2 + wlp̂ · ŝ + Vlx,

Ĥu = D/2 + «p̂−pH/2 + wup̂ · ŝ + Vux, s2d

where D is the energy shift between the 2D levels, which
gives the level splitting without tunneling,«p=p2/2m is the
kinetic energy,pH=spH ,0 ,0d, pH=eHZ/c is the characteris-
tic momentum due to the magnetic fieldHiOY, ŝ are the
Pauli matrices, andVu,lx are the potentials inu, l QWs. The
vectors wup=fsp−pH /2d3vug+wH and wlp=fsp+pH /2d
3vlg+wH contain the characteristic spin velocities inj th
QW, v j =s0,0,v jd, as well as the Zeeman energy,wH

=gmBH /2, whereg is the effectiveg factor andmB is the
Bohr magneton.

Introducing the spin projection operator on thee direc-

tion, P̂e=f1+e·ŝg /2, we write the density matrix of elec-
trons with spin alonge as an anticommutatorr̂e=s1/2d
3fP̂e, r̂g+, where

r̂ = Ur̂u r̃

r̃+ r̂l
U

is written as a matrix in the basis of the layersu and l. The
system of equations for the spinor density matrices inu and

l layers, defined asr̂ je=s1/2dfP̂e, r̂ jg+, is given by(see Refs.
5 and 12):

] r̂ue

] t
+

i

2"
fP̂e,fĤu,r̂ugg+ =

iT

"
sr̃e − r̃e

+d,

] r̂le

] t
+

i

2"
fP̂e,fĤl,r̂lgg+ = −

iT

"
sr̃e − r̃e

+d, s3d

wherer̃e=s1/2dfP̂e, r̃g+, and the nondiagonal part of the den-
sity matrix is written as

r̃ =
iT

"
E

−`

0

dt edteiĤut/"sr̂u − r̂lde−iĤ lt/", s4d

with d→ +0. Introducing the density of electrons in thej th
layer with spin in thee direction asnje=Tr r̂ je, we obtain the
balance equations in the form

] nue

] t
−

1

"
Trr̂uŝ · fe3 wup̂g =

iT

"
Trsr̃e − r̃e

+d,

] nle

] t
−

1

"
Trr̂lŝ · fe3 wlp̂g = −

iT

"
Trsr̃e − r̃e

+d. s5d

The right-hand sides of these equations describe the inter-
layer tunneling, while the second terms on the left-hand

sides, originating from the commutatorsfĤj , r̂ jg, describe
free precession of the spins due to both spin-orbit and Pauli
interactions. Since the longitudinal currents in strongly
doped quantum wells are negligible, these last contributions
exist only in the presence of a magnetic field. Once the spin
quantization axis is chosen alongH, as e=h;H /H (or
e=−h), the spin precession in the layers is absent, and the
second terms on the left-hand sides of Eq.(5) are zeros. This

property can be demonstrated directly, by using the defini-
tions of w j p̂ and taking into account the symmetry of the
energy spectrum with respect to they component of the mo-
mentum. The evolution of electron density in this case is
determined only by electron transfer between the layers due
to the tunneling, and the spin-polarized tunneling current can
be written asJh=es]nuh /]td=−es]nlh /]td. Using Eq.(5) and
the definition ofr̃e, we present this current in the following
form:

Jh =
ieT

2"L2KKo
l

sllufP̂h,sr̃ − r̃+dg+ulldLL , s6d

where kk¯ll is the averaging over random potentials and

u jld are the eigenstates of the HamiltonianĤj. Equation(6)
is written in theT2 approximation, when all contributions to
Jh containing higher powers ofT are neglected. Therefore,
sincer̃ is already proportional toT, see Eq.(4), we use the
basis of single-layer states,ulld, to express the trace in Eq.
(6) [one may equivalently use the basisuuld]. For the same
reason, one should neglect the effect of tunnel coupling onr̂u
and r̂l in the expression(4) when substituting the latter in
Eq. (6). Doing it this way and introducing the eigenvalues

« jl of the problemĤju jld=« jlu jld, we transform Eq.(6) as
follows:

Jh =
eT2

"L2KKo
ll8

F suluP̂hull8dsll8uuld
is«ll8 − «uld + d

+
sulull8dsll8uP̂huuld

is«ul − «ll8d + d
Gsf ll8 − fuldLL . s7d

The distributions of electrons ins j ,ld states are supposed to
be quasiequilibrium, f jl=s jlur̂ ju jld= f« jl

s jd , with different
chemical potentials in each QW determined by the doping
level and transverse voltage, so that we further transform Eq.
(7) into

Jh =
ieT2

"L2 E d«kkTrP̂hhf«
sldsĜu«

R Âl« − Âl«Ĝu«
A d

− f«
sudsĜl«

RÂu« − Âu«Ĝl«
A djll, s8d

where Ĝ j«
R and Ĝ j«

A are the retarded and advanced Green’s

function in the operator form, andÂ j«=sĜ j«
A − Ĝ j«

R d /2pi is the
spectral density operator. The operator Green’s functions,

which satisfy the equations«−Ĥj ± iddĜ j«
R,A=1̂, can be viewed

as matrices in both configuration and spin space and the trace
Tr in Eq. (8) is taken over all coordinate and spin variables.

Below we assume that the potentialsVjx contain both
short-range contribution and large scale, classically smooth
contribution. Carrying out the averaging over the short-range
contributions in Eq.(8), we imply that these contributions for
different wells are statistically independent. Therefore, we
obtain
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Jh =
ieT2

"L2 E d«o
p

trshP̂hkf«
sldfĜu«

R sp,xdÂl«sp,xd

− Âl«sp,xdĜu«
A sp,xdg − f«

sudfĜl«
Rsp,xdÂu«sp,xd

− Âu«sp,xdĜl«
A sp,xdglj, s9d

where Ĝj«
R,Asp ,xd and Âj«sp ,xd=Im Ĝj«

R sp ,xd /p are the
Green’s functions and spectral density functions in the
Wigner representation. These functions are 232 matrices
and the remaining trace trs is taken over spin variable only.
The averaging over the large-scale part of the random poten-
tial remains in Eq.(9), and it is denoted byk¯l. The re-
tarded Green’s function satisfies the matrix Dyson equation

f« − ĥjp − Ujx − Ŝ j
RgĜj«

R sp,xd = 1̂, s10d

where ĥup=D /2+«p−pH/2+wup ·ŝ and ĥlp=−D /2+«p+pH/2

+wlp ·ŝ are the free-electron Hamiltonians in the momentum
representation,Ujx is the large-scale part of random poten-

tial, and 1̂ is the unit matrix in the spinor basis. The self-

energy function arising from the short-range scattering,Ŝ j
R,

does not depend on«, p, andx for the case of scattering by
zero-radius centers. Below we neglect the renormalization of

ĥjp due to real part ofŜ and expressŜ j
R through the energies

of homogeneous broadening,Ŝ j
R.−ig j1̂. This approxima-

tion is valid in the case of weak spin splitting, under condi-
tion uv jup̄!«̄, where p̄ and «̄ are characteristic momentum
and energy.

The expression(9) for the tunneling current can be con-
siderably simplified if we take into account that, according to

Eq. (10), ĜR
j«sp ,xd does not contain the contributions propor-

tional to the Pauli matrixŝz, becauseĥjp does not contain
such contributions. Therefore, the commutators of the
Green’s functions are proportional toŝz and their trace with

P̂h is zero. Using this property, one can carry out the permu-
tations of the Green’s functions under the trace in Eq.(9) so
that the latter is rewritten as

Jh =
2peT2

"
E d«sf«

sld − f«
sudd E dp

s2p"d2

3 ktrshP̂hÂu«sp,xdÂl«sp,xdjl. s11d

Finally, we assume that the large-scale potentialsUux andUlx
are statistically independent. Thus, the tunneling current(11)
can be written through the completely averaged spectral

functionsÂj«spd=kÂj«sp ,xdl given by12

Âj«spd =E
−`

0 dt

2p"
eg j t/"−sG j t/2"d2eisĥjp−«dt/" + H.c., s12d

where the inhomogeneous broadening inj th QW is deter-
mined in the quasiclassical approximation by the variance of
the potential,G j =ÎkUjx

2 l.
Substituting the expressions(10) into Eq. (11) and taking

the spin trace trs. . ., we finally obtainJh in the form

Jh =
2peT2

"
E d«sf«

sld − f«
sudd E dp

s2p"d2HAl«
s+dspdAu«

s+dspd

+
swlp ·wupd

wlpwup
Al«

s−dspdAu«
s−dspd −

sh ·wupd
wup

Al«
s+dspdAu«

s−dspd

−
sh ·wlpd

wlp
Al«

s−dspdAu«
s+dspdJ , s13d

wherewjp= uw jpu and the scalar functionsAj«
s±d are introduced

according to

Aj«
s±d =E

−`

0 dt

2p"
eg j t/"−sG j t/2"d2

3Fcos
s« jp− − «dt

"
± cos

s« jp+ − «dt
"

G . s14d

In this equation we have used the dispersion laws for spin-
split states,« jp±=« jp±wjp, where«lp=«p+pH/2−D /2 and«up

=«p−pH/2+D /2.

III. RESULTS

Below we consider the total tunneling current,J'=Jh
+J−h, and the spin-polarized contribution,DJ=Jh−J−h. In-
stead ofDJ, it is convenient to introduce the degree of spin
polarization,S=DJ/J'. In the linear regime, the tunneling is
characterized by the tunneling conductanceG=J' /V. We
first assume that the temperature is low enough and replace
the distribution functionsf«

s jd by the steplike functions
us«Fj −«d, where quasi-Fermi energies are given by«Fl =«F

+eV/2 and «Fu=«F−eV/2, where «F is the equilibrium
Fermi energy. The effect of temperature appears to be not
essential as soon as the temperature is small in comparison to
the Fermi energy, see discussion in Sec. IV. Before present-
ing the results of numerical calculations of the total current
and degree of spin polarization, we give some analytical re-
sults related to the case of homogeneous broadening, when
Eqs.(13) and(14) lead to the tunneling conductance and spin
polarization in the form

S G

DG
D =

e2T2

4p"3 E dpSFspd
Cspd

D, S=
DG

G
. s15d

In these equations

Fspd = sdgl+dgu+ + dgl−dgu−dF1 +
wlp ·wup

wlpwup
G

+ sdgl+dgu− + dgl−dgu+dF1 −
wlp ·wup

wlpwup
G s16d

and

Cspd = sdgl+dgu+ − dgl−dgu−dh ·Fwlp

wlp
+

wup

wup
G

+ sdgl+dgu− − dgl−dgu+dh ·Fwlp

wlp
−

wup

wup
G , s17d

where the shortcutsdg j± stand for the Lorentz functions
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p−1g j / fg j
2+s«−« jp±d2g and «=«F. In the following, the

broadening is assumed to be symmetric,gl =gu=g.
The integrals over 2D momenta in Eq.(15) can be calcu-

lated analytically under the assumptions j = l ,ud,

2muv ju ! pF, s18d

where pF=Î2m«F is the characteristic Fermi momentum.
The condition(18) means that the spin velocities are small in
comparison with the Fermi velocity. It is valid for any doped
quantum wells with spin-orbit splitting of the energy spec-
trum. For the sake of simplicity, we neglect the Zeeman split-
ting term wH. The calculation leads to the following results
valid for arbitrary magnetic fields:

G =
e2T2m

2p"3 o
sl,su=±1

S1 − slsu

pF
2 − pH

2 /2

ÎpF
4 − smDd2D

3 Im
1

ÎEslsu

2 − pH
2 spF

2 − pH
2 /4d/m2

s19d

and

DG =
e2T2m2

2p"3pH
o

sl,su=±1

3H sl

ÎpF
2 + mD

Im
Eslsu

− pH
2 /2m

ÎEslsu

2 − pH
2 spF

2 − pH
2 /4d/m2

−
su

ÎpF
2 − mD

Im
Eslsu

+ pH
2 /2m

ÎEslsu

2 − pH
2 spF

2 − pH
2 /4d/m2J .

s20d

The complex energyEslsu
is introduced according to

Eslsu
= sslvl + suvudpF + D − 2ig. s21d

The calculation of the square root from the complex expres-
sion in Eqs.(19) and(20) must be done under condition that
ImÎ. . . is negative. For example, in the absence of the mag-
netic field spH=0d this rule means that the square root is
equal toEslsu

, and we recover the result of Ref. 7 for the
tunneling conductance. The spin polarization in these condi-
tions is zero.

To demonstrate the effect of magnetic field, we consider a
symmetric structure, whenD=0 and spin velocities are equal
in absolute value and have different signs,vl =−vu=v. The
different signs of the spin velocities in the two layers is
physically understandable because the directions of the po-
tential gradients in thel andu wells of the double-well struc-
ture are opposite to each other. The caseD=0 at uvlu= uvuu
corresponds to matched 2D electron densities in the wells,
nl =nu=n=spF /"d2/2p. In these conditions, the tunneling
current in the absence of the scattering is zero atH=0, be-
cause the states with the same direction of spin are out of
resonance. With the increase of the magnetic field, whenpH
reaches 2muvu, see Fig. 2, the tunneling conductance has a
peak corresponding to the resonance of the states with the
same direction of spin. The spin polarization in these condi-
tions has a maximum. The tunneling atpH.2muvu is de-

scribed by a simple expression derived from Eqs.(19)–(21)
under the assumptionsg→0 andpH!pF,

G =
2e2T2m

p"3pF
ÎspH/md2 − s2vd2

, S=
2mv
pH

. s22d

The conductance diverges atpH.2muvu as spH−2muvud−1/2.
The spin polarization reaches 100% in the peak and slowly
decreases with the increase ofH. As pH becomes smaller
than 2muvu, the tunneling conductance rapidly decreases with
the decrease of the magnetic field. To evaluate the conduc-
tance and the spin polarization in this weak-field region one
should assume a finite broadening,gÞ0.

Further, we consider the case when one quantum well, say
u, is symmetric so thatvu=0, while the other one is not
symmetric, vl =vÞ0. The spin-orbit splitting of electron
states in theu layer is absent and, for this reason, the spin
relaxation there is considerably suppressed. In this case, the
spin-polarized electrons injected to theu layer from thel
layer can keep their polarization for a long time, determined
only by spin-dependent scattering processes, which is
important13 for spintronics applications. We again neglect
Zeeman splitting and assumeD=0, which, under the as-
sumed condition(18), corresponds to matched electron den-
sities in the wells. Under these conditions, and under as-
sumptions g→0 and pH!pF, the conductance and spin
polarization atpH.muvu are given by the following expres-
sions:

G =
2e2T2m

p"3pF
ÎspH/md2 − v2

, S=
mv
pH

, s23d

which are very similar to those given by Eq.(22). The reso-
nance peak of the conductance appears atpH=muvu, the spin
polarization reaches there 100% and decreases with the in-
crease ofH.

It is important to mention that the neglect of Zeeman
splitting in comparison to the spin-orbit splitting is well jus-
tified in the InAssInGaAsd quantum wells at small enough
magnetic fields. Indeed, there is a strong inequality,

wH ! pHpF/m, s24d

which is field independent, since bothwH andpH are propor-
tional to H. Estimating the effective massm as 0.04 of the

FIG. 2. Fermi surfaces for symmetric DQWs under condition of
the maximum spin polarization of the tunneling current. The arrows
show spin orientation atpy=0 for each branch of the energy
spectrum.
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free electron massm0, and considering typical electron den-
sities,n.1012 cm−2, and typical interwell separation in the
DQWs with independent contacts,Z=25 nm, one can find
that the condition(24) is well satisfied despite of the large
value of theg factor in InAs quantum wells,14 g.−13. On
the other hand, as shown above, the resonance peak of the
conductance and spin polarization atD=0 exists aroundpH
.muvl,uu. According to Eq.(24), in this region of magnetic
fields the spin-orbit spitting of the energy spectrum near the
Fermi level, estimated asuvl,uupF, appears to be much greater
than the Zeeman splittingwH, and the latter should be ne-
glected. At higher magnetic fields, a noticeable contribution
of Zeeman splitting appears, but it does not modify the tun-
neling current and spin polarization considerably, as demon-
strated below by numerical calculations.

The inverse-square-root divergencies of the tunneling
conductance in Eqs.(22) and (23) are smeared in the pres-
ence of finite broadening. The broadening also decreases the
degree of spin polarization. To investigate these effects, and
to estimate the degree of spin polarization expected in real-
istic conditions, we plot below the dependence of the tunnel-
ing conductance and spin polarization given by Eqs.
(19)–(21) on the magnetic field. The field is described by a
dimensionless parameterpH /pF. The other relevant dimen-
sionless parameters are the ratios of the spin velocities to the
Fermi velocity,r j =2mv j /pF, and the ratios of the level sepa-
ration and broadening energies to the Fermi energy,D /«F
and g /«F, respectively. In Fig. 3 we plotG, in units of G0
=e2T2m/p"3«F, and S at D=0 for several values ofg /«F
using r l =−ru=0.1 andr l =0.1, ru=0. At n=1012 cm−2 and
m=0.04m0 the value ur l,uu=0.1 corresponds touvl,uu=3.6
3106 cm/s, which is larger than the typical value 1.5
3106 cm/s obtained in experiments15 on single InGaAs
quantum wells, but smaller than the maximal value 4.85
3106 cm/s reported recently.16 Therefore, we considerr l
andru used in the calculations as reasonable. The given val-
ues of broadening energies are also reasonable. For example,
g /«F=0.02 for n=1012 cm−2 and m=0.04m0, when «F
.60 meV, corresponds tog=1.2 meV (or " /t=2g
=2.4 meV, wheret is the scattering time of electrons).

The resonance tunneling peak in Fig. 3(a) corresponds to
the maximum of the spin polarization in Fig. 3(b). According
to the simple consideration given above, the peak occurs at
pH /pF. r l for r l =−ru=0.1 and atpH /pF. r l /2 for r l =0.1
and ru=0. In the regions of higher field, the behavior ofG

andS is close to that described by Eqs.(22) and(23). In the
case of negligible broadening, the spin polarization reaches
unity in a kinklike fashion. The broadening of the resonance
tunneling peak is accompanied with the decrease of the
maximum spin polarization, which, nevertheless, remains
rather highs60–80%d for the physically reasonable values of
broadening considered here. For obvious reasons, the inver-
sion of the magnetic field(negativepH) would lead to a
symmetric transformation ofG and to an antisymmetric
transformation ofS.

The field dependence ofG andS at large level separation
uDu=0.8«F is illustrated in Fig. 4, where we assumed
r l =−ru=0.1 and used the same values of broadening energy
g as in Fig. 3. The characteristic feature of this dependence is
the appearance of two peaks, corresponding topH /pF
.uDu /2«F± r l. In the region between the peaks the sign of the
spin polarization is changed(from −1 to 1 in the case of
negligible broadening). The first peak ofS occurs in a kin-
klike fashion, similar as in Fig. 3, while the second one is
more narrow and more sensitive to the broadening. In Fig. 4,
the results derived from Eqs.(19)–(21) are compared with
the results of exact numerical calculation using Eqs.
(15)–(17). These calculations take into account Zeeman split-
ting estimated for the parametersn=1012 cm−2, Z=25 nm,
m=0.04m0, andg=−13. One may notice that the difference
becomes noticeable atpH /pF.0.3 (it is not visible for the
region of fields used in Fig. 3). Nevertheless, this difference
remains small and the qualitative behavior given by Eqs.
(19)–(21) is not modified by the Pauli interaction effect.

In Fig. 5 we plot the results of numerical calculation of
the tunneling conductance for the case of symmetric inhomo-
geneous broadeningGl =Gu=G as well as for the realistic
case when both broadening mechanisms are presented. The
difference in the resonance tunneling peak shape for two
broadening mechanisms reflects the different behavior of
Lorentz and Gauss functions. A large degree of spin polar-
ization is possible even for strong inhomogeneous broaden-
ing G=0.1«F. The homogeneous broadening suppresses the
spin polarization more considerably than the inhomogeneous
one.

So far we considered the linear regime of tunneling. Let
us discuss the case of a finite voltageV applied between the
2D layers. To calculate the tunneling current,J', and its
spin-polarized part,DJ, one may use expressions forG and

FIG. 3. Tunneling conductance(a) and spin polarization of the
tunneling current(b) as functions of the magnetic field atD=0 and
g /«F=10−4 (1), 0.02 (2), and 0.04(3). Solid lines, r l =−ru=0.1;
dashed lines,r l =0.1 andru=0.

FIG. 4. Tunneling conductance(a) and spin polarization of the
tunneling current(b) as functions of the magnetic field atuDu
=0.8«F andg /«F=10−4 (1), 0.02(2), and 0.04(3). The dashed lines
show the result of numerical calculation atg /«F=0.02 taking into
account Zeeman splitting.
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DG as functions of energy« [for example, formally replacing
pF in Eqs. (19)–(23) by Î2m«] and integrate these expres-
sions over« in the intervalf«F−eV/2 ,«F+eV/2g. It is im-
portant that the application of a finite voltage changes the
energy separationD. It also causes a redistribution of elec-
tron density over the layers and a renormalization of the spin
velocities. These effects are considered in Ref. 7 for the sim-
plest case of initially symmetric DQWs, withD=0 andvu
=−vl at V=0. Below we use the results of Ref. 7 written as

D = −
eV

1 + aB/2Z
,

vl = vS1 −
aB

aB + 2Z

eV

2«F
D ,

vu = − vS1 +
aB

aB + 2Z

eV

2«F
D , s25d

whereaB="2e /me2 is the Bohr radius, which characterizes
the screening effects in 2D layers.

The magnetic-field dependence of the nonlinear tunneling
conductanceJ' /V calculated in the way described above is
plotted in Fig. 6 for several values of the dimensionless bias
eV/«F. When using Eq.(25), we set 2mv /pF=0.1, Z
=25 nm, and estimated the Bohr radius form=0.04m0 and
«=12. The modifications of the tunneling current and its spin
polarization are caused mostly by the dependence ofD on V.
The effects of finite voltage drop and renormalization of the

spin velocities are far less essential. The first effect is not
important because the energy dependence ofG andDG does
not have any peculiarities near the Fermi energy[this is seen
in the most obvious way from the simple expressions(22)
and(23)], while the second one can be neglected because the
main contribution toG andDG of Eqs.(19) and(20) comes
from the terms containing the quantityvl −vu, which is not
renormalized by the applied bias, see Eq.(25).

The dependence of the nonlinear tunneling conductance
on the applied bias for several values of the dimensionless
magnetic fieldpH /pF is shown in Fig. 7. Again, due to the
dependence ofD on V, the nonohmic behavior is pro-
nounced. The spin polarization changes its sign with the in-
crease ofV, but its absolute value can be fairly large even at
high applied biaseV,«F.

IV. CONCLUDING REMARKS

We have investigated the effect of an in-plane magnetic
field on the tunneling current between independently con-
tacted quantum wells with spin splitting of the energy spec-
trum. The main result of our studies is that a considerable
spin polarization of electrons in a 2D layer can be achieved
by means of tunneling injection of electrons into this layer
from the adjacent 2D layer in the presence of a weak mag-
netic field applied along the layers. The scale of this field,
corresponding to the maximum spin polarization, is esti-
mated from the relationpH=seH/cdZ,muvu, whereZ is the
interlayer distance andv is the spin velocity determining the
spin splitting of the energy spectrum. Using the typical val-
uesuvu,43106 cm/s andZ.200 nm, one can find that the
required magnetic fields for InAssInGaAsd-based structures
are smaller than 0.5 T. For the DQWs of small size, such
fields, in principle, can be created by ferromagnetic films
deposited on the surface of the sample.17

By investigating the effects of homogeneous and inhomo-
geneous broadening of energy spectrum, we have found that
although both these effects suppress the spin polarization, a
fairly large degree of polarizations60–80%d can be achieved
for realistic values of the broadening energies, including the
case when both broadening mechanisms are present. We
have shown that the inhomogeneous broadening does not
suppress the spin polarization considerably. In addition, the
resonance peak of spin polarization for this mechanism ap-

FIG. 5. Tunneling conductance(a) and spin polarization of the
tunneling current(b) as functions of the magnetic field atD=0.
Solid lines, inhomogeneous broadening withG=0.04«F (1) andG
=0.1 «F (2). Dashed lines show the case of mixed broadening with
g=0.02«F andG=0.04«F.

FIG. 6. Nonlinear tunneling conductance(a) and spin polariza-
tion of the tunneling current(b) as functions of the magnetic field
for the case of homogeneous broadening withg=0.02 «F at
eV/«F=0,0.15,0.3, and 0.45(curves 1–4, respectively).

FIG. 7. Nonlinear tunneling conductance(a) and spin polariza-
tion of the tunneling current(b) as functions of the applied voltage
for the case of homogeneous broadening withg=0.02 «F at
pH /pF=0,0.05,0.1, and 0.2(curves 1–4, respectively).
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pears to be wider than in the case of homogeneous broaden-
ing, which may offer certain advantages for applications. The
conclusion about the weaker role of inhomogeneous broad-
ening is encouraging since it is this broadening that is impor-
tant in InGaAs structures because of considerable large-scale
interface roughness.

Let us discuss the effect of electron temperatureTe on the
tunneling conductance. To take it into account, one should
considerG and DG as functions of energy, as described in
Sec. III, and integrate them over the energy with the weight
factor −s]f« /]«d. Because of smooth energy dependence of
G and DG discussed above, the relative corrections due to
finite temperature appear to be of the ordersTe/«Fd2. Thus,
both the tunneling conductance and spin polarization are not
sensitive to the temperature unless the latter is comparable to
the Fermi energy. The conditionsTe/«Fd2!1 is easy to
achieve even atTe=77 K in the InAs-based structures, where
the 2D electron densities are high and the Fermi energy typi-
cally exceeds 50 meV. However, with the increase of tem-
perature, an additional broadening mechanism due to scatter-
ing of electrons by phonons becomes important, and this can
lead to additional suppression of the spin polarization.

The main difficulty for application of the tunneling injec-
tion of spin-polarized 2D electrons is the small value of the
tunneling current. One of the ways to overcome it is to apply
high voltages between the layers. Our calculations show that,
by a proper choice of the value of in-plane magnetic field,
the degree of spin polarization can be made highs60–80%d
even when the applied biaseV is comparable to the Fermi
energies in the layers. When it is so, the flux density of
incoming spin-polarized electrons is roughly estimated as
DJ/e,G«F /e,10T2m/p"3 (the approximate numerical
factor of 10 is taken from our calculations, see Figs. 3–7). By
equating this quantity to the rate of spin relaxation per unit
square of the 2D layer,ns/ts, one can estimate the quasista-
tionary density of spin-polarized electrons,ns, provided that

the spin relaxation time,ts, is known. Therefore, if the quan-
tum wells are separated by thin enough tunneling barrier(so
that T2 is large), a considerable fraction of spin-polarized
electrons in the 2D layers can appear as a result of the highly
spin-polarized tunneling current studied in this paper. For
example, using the spin relaxation timets.10 ps in InAs
2D layers,18 the Fermi energy«F.30 meV (corresponding
to a typical electron densityn=531011 cm−2), and the tun-
neling matrix element T=0.2 meV (attainable in
InAs/GaAlSb/ InAs double quantum well structures with
tunnel barriers of about 7 nm thick), we obtain the relative
spin polarizationns/n.0.2. This value increases ifT andts
are bigger andn is smaller. A consideration of the effect of
such spin polarization in the framework of theT2 approxi-
mation for the tunneling current and quasiequilibrium distri-
bution functions in the layers is possible under conditions
that ts is much greater than the momentum and energy re-
laxation times in the layers. For possible applications of in-
dependently contacted double quantum wells in spintronics,
as spin filters, it is desirable to avoid the spin relaxation by
creating the structures where the tunnel coupling between the
layers occurs in a narrow lateral strip whose width is smaller
than the spin diffusion lengthÎDts (D is the diffusion coef-
ficient), but large in comparison to the ordinary diffusion
length ÎDt so that the formalism applied in our paper re-
mains valid. In this case, the spin-polarized electrons come
out from the tunnel-coupled region before the spin relaxation
occurs, and one may use the strong spin polarization of the
tunneling current directly.

In conclusion, our theoretical analysis demonstrates that
the efficient injection of spin-polarized electrons can be
achieved in double quantum well InAssInGaAsd structures,
where splitting of electron spectrum caused by the spin-orbit
interaction is considerable. We hope that this result will
stimulate technological efforts towards creation of indepen-
dently contacted quantum wells based on these materials.

*Electronic address: ftvasko@yahoo.com
1S. Q. Murphy, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,

Phys. Rev. B52, 14 825(1995); N. Turner, J. T. Nichols, E. H.
Linfield, K. M. Brown, G. A.C. Jones, and D. A. Ritchie,ibid.
54, 10 614(1996).

2J. E. Hasbun, J. Phys. C14, R143(2002).
3O. M. Auslaender, A. Yacoby, R. de Picciotto, K. W. Baldwin, L.

N. Pfeiffer, and K. W. West, Science295, 825(2002); Y. Tserk-
ovnyak, B. I. Halperin, O. M. Auslaender, and A. Yacoby, Phys.
Rev. Lett. 89, 136805(2002).

4J. P. Eisenstein, T. J. Gramila, L. N. Pfeiffer, and K. W. West,
Phys. Rev. B44, 6511(1991).

5L. Zheng and A. H. MacDonald, Phys. Rev. B47, 10 619(1993);
O. E. Raichev and F. T. Vasko, J. Phys. C8, 1041(1996).

6M. Governale, D. Boese, U. Zulicke, and C. Schroll, Phys. Rev. B
65, 140403(2002).

7O. E. Raichev and P. Debray, Phys. Rev. B67, 155304(2003).
8G. Goldoni and A. Fasolino, Phys. Rev. Lett.69, 2567(1992).
9J. A. Simmons, M. A. Blount, J. S. Moon, S. K. Lyo, W. E. Baca,

J. R. Wendt, J. L. Reno, and M. J. Hafich, J. Appl. Phys.84,

5626 (1998).
10T. Koga, J. Nitta, H. Takayanagi, and S. Datta, Phys. Rev. Lett.

88, 126601(2002).
11F. T. Vasko and N. A. Prima, Sov. Phys. Solid State25, 583

(1983).
12F. T. Vasko, O. G. Balev, and N. Studart, Phys. Rev. B62, 12 940

(2000).
13J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett.90,

146801(2003).
14S. Brosig, K. Ensslin, A. G. Jansen, G. Nguyen, B. Brar, M.

Thomas, and H. Kroemer, Phys. Rev. B61, 13 045(2000).
15J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev.

Lett. 78, 1335(1997).
16Y. Sato, S. Gozu, T. Kita, and S. Yamada, Physica E(Amsterdam)

12, 399 (2002).
17T. Vancura, T. Ihn, S. Broderick, K. Ensslin, W. Wegscheider, and

M. Bichler, Phys. Rev. B62, 5074(2000); M. Hara, A. Endo, S.
Katsimoto, and Y. Iye, Physica E(Amsterdam) 12, 224 (2002).

18P. R. Hammar and M. Johnson, Phys. Rev. Lett.88, 066806
(2002).

SPIN-POLARIZED TUNNELING CURRENT BETWEEN… PHYSICAL REVIEW B 70, 075311(2004)

075311-7


