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electron waves scattered on single impurities and/or a barrier is studied theoretically in this paper. It is shown
that these characteristics are nonmonotonic functions of the applied biasV.

DOI: 10.1103/PhysRevB.70.075308 PACS number(s): 73.23.2b, 72.10.Fk, 73.50.Td

I. INTRODUCTION

Single defects have a strong influence on physical prop-
erties of mesoscopic systems. A different kind of defects
arise during manufacturing of mesoscopic conductors and
investigation of its influence on the transport properties has
been of practical significance. On the other hand, study of
the contributions by single defects to kinetic coefficients
makes it possible to obtain the most detailed information on
the electron scattering processes which are very important
for fundamental science. Point contacts and quantum micro-
constrictions(quantum wires) are one of the classes of me-
soscopic systems, which are extensively investigated both
theoretically and experimentally(see Refs. 1 and 2). The
electrical conductanceG of a constriction is proportional to
the numberN of propagating electron modes(the number of
discrete energy levels«n,«F of transverse quantization,«F
is the Fermi energy), where single mode contribution is equal
to G0=2e2/h. Changing the contact diameterd results in a
different number of occupied levels«n and Gsdd exhibits a
step-like change of its value with a step size equal toG0.
This effect is a manifestation of the quantum size effect in
metals, which was predicted by Lifshits and Kosevich.3

However scattering processes on defects could decrease
probability Tn,1 for the transmission of thenth mode and
the conductance at zero temperatureT=0 and an applied
voltage of V→0 should be described by the Landauer-
Buttiker formula.4,5

Shot noise is an important characteristic of the transport
properties of mesoscopic conductors.1,2,6 It originated from
the time-dependent current fluctuations. Kulik and
Omelyanchouk7 noticed that the shot noise in a ballistic con-
tact vanishes in the quasiclassical approximation if there is
no electron scattering. In quantum microconstriction these
fluctuations arise from the quantum-mechanical probability
of electrons to be transmitted through the constriction. AtT
=0, bias at the contactV→0 and for low frequenciesv
→0 the shot noise is described by1

Ss0d = 2eVG0o
n=1

N

Tns1 − Tnd. s1d

In perfect ballistic contacts where the transmission probabil-
ity for every modeTn is one, the shot noise is fully sup-

pressed. However, even for an adiabatic ballistic constric-
tions near the values of its diameter, at which the highest
energy levels«N is close to«F, the probabilityTN is smaller
than one.8 According to Eq.(1) at small bias the shot noise is
a linear function of voltageV.

Conductance of a quantum microconstriction containing
different types of single defects has been investigated
theoretically.9–18The most remarkable effects which manifest
electron scattering process in mesoscopic constrictions with
only a few point-like defects are:(i) quantum interference
directly transmitted through the contact electron waves and
electron waves scattered by the defects and a barrier in the
contact;(ii ) dependence of electron scattering amplitude on a
defect position in the constriction. The first effect causes
nonmonotonic dependence of the point-contact conductance
on the applied bias, which was observed experimentally20,21

and theoretically considered in papers.9,21 Recently, experi-
mental observations of conductance oscillations in quantum
contact have been reported Ref. 22. The second effect is
responsible for the contact size dependence of the Kondo
anomaly.16,19 This dependence is due to nonhomogeneity of
the local density of electron states across the diameter of
microconstriction. In numerical simulations17 the influence
of “dirty” banks on the conductance of a quantum point con-
tact has been considered. Authors had predicted suppression
of the conductance fluctuations near the edges of the steps of
the functionGsdd. This effect has been experimentally ob-
served in Ref. 21 and explained by decreasing of the inter-
ference terms in the conductance under the conditions that
the contact diameterd is closed to the jump ofGsdd.

The most important feature of the ballistic microconstric-
tion is splitting of the Fermi surface by applied voltage.23

Effectively, there are two electronic waves moving in oppo-
site directions with energies difference at each point of the
constriction by exactly the bias energyeV. Because of this
difference in the electron energies«±eV/2, a value of a
wave vectorkzs«±eV/2d along the constriction depends on
eV. As mentioned above, the effect of quantum interference
between directly transmitted and scattered waves is defined
by relative phase shiftDw=2kzDz of the wave functions,
where(Dz is a distance between scatterers) and dependence
on kzs«±eV/2d results in oscillations of transmission prob-
abilities TnsVd as functions ofV. In this paper we consider
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the influence of the interference effect on the conductance
and shot noise in long quantum microconstrictions with a
few defects and the potential barrier.

The paper is organized as follows. In Sec. II the model of
microconstriction and the basic equations are discussed. In
Sec. III the voltage dependence of conductance and shot
noise is studied. Two cases are considered: single impurity in
the constriction with a barrier and two impurities in the con-
striction without the barrier. The expressions for Green’s
function for these cases are given. Also the results of numeri-
cal calculations are presented in this section. We finally sum-
marize our results in Sec. IV.

II. MODEL OF MICROCONSTRICTION AND
FORMULATION OF THE PROBLEM

We consider the quantum microconstriction in the form of
a long channel with smooth boundaries and a diameter 2R
comparable with the Fermi wavelengthlF (Fig. 1). A length
of the channelL is much larger thanR. We assume that the
channel is smoothly(over Fermi length scale) connected to
bulk metal banks to which the voltageeV!«F is applied. At
the center of the constriction a potential barrierfUszd
=Udszdg is situated in the vicinity of which there are a few
point-like defects at positionsr i. The Hamiltonian of the sys-
tem can be written as

Ĥ =
p̂2

2m* + Udszd + go
i

dsr − r id, s2d

wherep̂ is a momentum operator,m* is an effective mass of
an electron andg is a constant of electron–impurity interac-
tion (g.0, a repulsive impurity). In a ballistic channel with-
out the barrier and defectssU=g=0d the wave functions and
energies of the eigenstates inside the channel can be sepa-
rated to transversal and longitudinal parts with respect to the
constriction axisz:

Casr d =
1
ÎL

c'bsRdeikzz, s3d

«a = «b +
"2kz

2

2m* , s4d

wherea=sb ,kzd is a full set of quantum numbers consisting
of two discrete quantum numbersb=sm,nd, which define the

discrete energies«b of conducting modes, andkz is the wave
vector along thez axis; r =sR ,zd. The transversal part
c'bsRd of the wave function satisfies zero boundary condi-
tions at the surface of the constriction. The functionsCasr d
are orthogonal and normalized.

By definition the noise power spectrum is

Sabsvd =
1

2
E dteivtkDÎastdDÎbs0d + DÎbs0dDÎastdl, s5d

where DÎastd= Îastd− Ia; Îastd is the current operator in the

right sa,b=Rd or left sa,b=Ld lead; Ia=kÎal is the average
current in the leada; bracketsk. . .l denotes the quantum sta-
tistical average of a system in thermal equilibrium. In this
paper we will only consider zero frequency noiseSabs0d.
Note that due to current conservationI ; IL= IR we haveS
;SLL=SRR=−SLR=−SRL.

A general formula for the currentI through a quantum
contact at arbitrary voltage was obtained by Bagwell and
Orlando24 (see also Ref. 25):

I =
2e

h
E d«Ts«,Vd 3 sfL − fRd, s6d

where is the transmission coefficient of electrons through the
constriction

Ts«,Vd = Trft̂†s«,Vdt̂s«,Vdg, s7d

and fL,Rs«d= fFs«±eV/2d is the distribution function of elec-
trons moving in the contact from leftsfLd or right sfRd banks;
fFs«d is the Fermi function,t̂s« ,Vd is a scattering matrix. In
general case the functionTs« ,Vd depends on the applied
voltageV because electron scattering leads to the appearance
of nonuniform electrical field inside the constriction.26 This
field has to be calculated self-consistently from the electro-
neutrality equation. In an almost ballistic microconstriction
containing a few scatterers andd-function potential barrier of
the small amplitudeU the electrical field is small and we
neglect its effect, assuming that the electrical potential drops
off at the ends of the constriction.

In the same approximation the noise spectrumSs0d is
given by1,2

Ss0d =
2e2

h
E d«sTrft̂†s«dt̂s«dt̂†s«dt̂s«dg

3 ffLs1 − fLd + fRs1 − fRdg

+ Trht̂†s«dt̂s«dfÎ − t̂†s«dt̂s«dgj

3 ffLs1 − fRdg + fRs1 − fLdd, s8d

where Î is the unit matrix. The first term in Eq.(8) corre-
sponds to thermal fluctuations(the equilibrium, or Nyquist-
Johnson noise) and vanishes if the temperatureT→0. If the
bias is applied to the constriction the second part of this
equation remains finite atT=0, and describes the shot noise.

FIG. 1. A model of quantum constriction in the form of long
channel adiabatically connected to bulk metallic reservoirs. Trajec-
tories (1–4) of electrons, which are scattered by defects and a bar-
rier are shown schematically.
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Calculation of the transport properties of the quantum
constriction can now be done by determination of the scat-
tering matrix t̂s«d. Elements of scattering matrixtbb8 can be
expressed by means of the advanced Green’s function
G+sr ,r 8 ;«d of the system:27

tbb8s«d = −
i"2kb8

m* Gbb8
+ sz,z8;«d, z→ − `,z8 → + `,

s9d

where

kbs«d =
1

"
Î2m*s« − «bd s10d

is an absolute value of electron wave vector corresponding to
the quantum energy level«b; Gbb8sz,z8 ;«d are components
of the expansion of Green’s function on the full set of wave
functions corresponding to the transverse motion of electrons

G+sr ,r 8,«d = o
bb8

c'bsRdc'b8
* sR8dGbb8

+ sz,z8,«d. s11d

The matrix elementstbb8s«d describe the transmission prob-
abilities for carriers incident in channelb in the left leadL
and transmitted into channelb8 in the right leadR. The
Green’s function satisfies the Dyson’s equation:

Gsr ,r 8,«d = Gbsr ,r 8,«d + go
i

Gbsr ,r i,«dGsr i,r 8,«d,

s12d

whereGbsr ,r 8 ;«d is the Green’ function of ballistic micro-
constriction with the barrier in the absence of defects. It can
be found from the equation

Gbsr ,r 8;«d = G0sr ,r 8;«d + UE dR9G0sr ;R88,z88 = 0;«d

3GbsR88,z88 = 0;r 8;«d, s13d

where

G0
+sr ,r 8;«d = o

b

m*

i"2kb

c'bsRdc'b
* sR8deikbuz8−zu s14d

is the Green’s function in the absence of impurities and the
barrier. Substituting the expansions(11) and (14) into Eq.
(13) and taking into account the orthogonality of functions
c'bsRd for the coefficientsGbb

+ sz,z8 ;«ddbb8 of Gb
+sr ,r 8 ;«d

in the expansion Eq.(11) we obtain the algebraic equation

Gbb
+ sz,z8;«d =

m*

i"2kb

feikbuz8−zu + UeikbuzuGbb
+ s0,z8;«dg.

s15d

Taking this equation atz=0 we findGbb
+ s0,z8 ;«d and finally

Gbb
+ sz,z8 ;«d is given by

Gbbb8
+ sz,z8;«d =

m*

i"2kb

seikbuz8−zu + rbeikbsuz8u+uzudd, s16d

where

rb = −
im*U

"2kb + im*U
= coswbeiwb, s17d

is the amplitude of reflected wave,

wbs«d = arcsinF 1
Î1 + sm*U/"2kbd2G . s18d

The amplitudetb of the transmitted wave can be evaluated
throughrb from the continuity of electron wave function at
z=0:

tb = rb + 1 =
"2kb

"2kb + im*U
= i sin wbeiwb. s19d

The same functionsrb andtb can be found from the solution
of the one-dimensional Schrödinger equation of a system
with d-function barrierUdszd.28

Equation(12) can be solved exactly for any finite number
of defects. For that Eq.(12) should be written at all pointsr i
of the defect positions and the functionsGsr i,r 8 ;«d are found
from the system ofi algebraic equations.

By using the matrix elements Eq.(9) the conductanceG
=dI /dV of the microconstriction as well as the shot noise
Ss0d can be calculated.

III. VOLTAGE DEPENDENCE OF CONDUCTANCE AND
SHOT NOISE

In order to illustrate the effect of quantum interference of
scattered electron waves on the conductance and the shot
noise we present the results for two cases:(i) single impurity
in the constriction with a barrier;(ii ) two impurities in the
constriction without the barrier. For the first case the Green’s
function takes the form:

Gsr ,r 8;«d = Gbsr ,r 8;«d +
gGbsr ,r 1;«dGbsr 1,r 8;«d

1 − gGbsr 1,r 1;«d
,

s20d

wherer 1 is the position of the impurity, a Green’s function
Gbsr ,r 8 ;«d is defined by Eqs.(11) and (16). In the case of
only two impurities present inside the ballistic microconstric-
tion, solution of Eq.(12) is

Gsr ,r 8;«d = G0sr ,r 8;«d +
1

1 − G1sr 1;«dG1sr 2;«dG0
2sr 1,r 2;«d

3 o
i,k=1,2;iÞk

hG1sr i ;«dG0sr ,r i ;«dfG0sr i,r 8;«d

+G1sr k;«dG0sr i,r k;«dG0sr k,r 8;«dgj, s21d

where

G1sr i ;«d =
g

1 − gG0sr i,r i ;«d
, s22d

andG0sr ,r 8 ,«d is the Green’s function of the ballistic micro-
constriction Eq.(14). Using Eqs.(20) and (21) it is easy to
find the transmission probabilitiestbb8 (9).

At zero temperature the nonlinear conductanceGsVd and
the noise powerSs0,eVd are given by following expressions:
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GsVd = o
bb8

FUtbb8S«F +
eV

2
DU2

+ Utbb8S«F −
eV

2
DU2G ,

s23d

Ss0,eVd = o
bb8b88b888

E
«F−eV/2

«F+eV/2

d«htbb8
* s«dtb8b88s«d

3fdb88b888db888b−tb88b888
* s«dtb888bs«dgj. s24d

In order to explain analytical results we present the ex-
pansion of the transmission coefficient(7) on the constant of
electron–impurity interactiong up to linear ing term for the
constriction with one impurity at pointr 1=sR1,z1d and the
barrier

Ts«d = o
b

utbu2H1−
2m*g

"2kb

urbuuc'bsR1du2

3coss2kbz1 + wbdJ, « . «b, s25d

wheretb, rb, and phasewb are defined by Eq.(17), (18), and
(19). This formula is valid for 2m*g/"2kb!1, i.e., far from
the end of the step of conductance, wherekb→0. The oscil-
latory term in Eq.(25) originates from the interference be-
tween directly transmitted wave(trajectory 1 in Fig. 1) and
the wave, which is once reflected by the barrier and after one
reflection from the impurity passes through the contact(tra-
jectory 2 in Fig. 1). The amplitude of the oscillations de-
pends on the local density of electron statesnbsR1,«d
=m* uc'bsR1du2/ f"2kbs«dg in the point, in which the impurity
is located. At certain pointsnbsR ,«d can be equal to zero and
a defect located near such a point contributes very little to
the oscillatory addition ofbth mode to theTs«d. In particu-
lar, impurities at the surfaceR=Rs do not influence oscilla-
tions of Ts«d, becausec'bsRsd=0. As a result of the reflec-
tion from the barrier the oscillations have the additional
phasewb. Its dependence on the energy« leads to nonperi-
odicity of oscillations of functionTs«d. Equation(25) could
be used to calculate the dependence of oscillation amplitudes
on the contact diameter. If the diameter is increased and ap-
proaches the end of the conductance step, the energy of the
transverse quantum mode«b is decreased[see, for example,
Eq. (28) for cylindrical geometry]. The wave numberkb (10)
is increased and according to Eq.(17) the modulus of the
reflection probabilityurbu is decreased. In the opposite situa-
tion (the radius is decreased) the decreasing ofkb leads to
decrease of the transmission probabilityutbu Eq. (19). In both
cases amplitude of the oscillations ofTs«d is decreased.

Similar expansion ofTs«d for the constriction with two
defects at pointsr 1=sR1,z1d andr 2=sR2,z2d without barrier
is

Ts«d = o
bb8
Hdbb8 − 2Sm*g

"2 D2 1

kbkb8
o
i=1,2

FuAbb8
sii d u2

+Re o
iÞ j=1,2

Abb8
sii d Abb8

s j j d expfskb + kb8dszj − zid + wb

+ wb8gGJ , « . «b,«b8; s26d

where

Abb8
sii d = c'bsRidc'b8

* sRid. s27d

A last term in square brackets describes the interference ef-
fect between trajectory 3 in Fig. 1 and trajectory 4, which
corresponds to two scattering by different impurities. It de-
pends nonmonotonically on the energy«. Energy depen-
dence of the transmission coefficientTs«d manifests itself in
nonmonotonic dependence of conductance and shot noise on
the applied biaseV.

The general expression for componentstbb8s«d (9) calcu-
lated using Green’s functions[Eqs.(20) and(21)] takes into
account a multiple electron scattering by impurities and bar-
rier. It is valid for any values of parameters. We will illustrate
such a situation presenting plots for the voltage dependencies
of conductance and shot noise for some values of the param-
eters, which could be related to experiments.

For numerical calculations we used a model of cylindrical
channel where in formulas(3) and (4):

c'bsr,wd =
1

ÎpRJm+1sgmnd
JmSgmn

r

R
Deimw, s28d

«mn=
"2gmn

2

2m*R2 , s29d

where we used the cylindrical coordinatesr =sr ,w ,zd ;gmn is
n th zero of Bessel functionJm. Also, dimensionless param-
eters are introduced

g̃ =
m*g

pR2"2kF
, Ũ =

m*U

"2kF
, s30d

wherekF is the Fermi wave vector. We have performed the

calculations forg̃=1 and Ũ=0.5 For such values of these
parameters the amplitude of conductance oscillations is close
to a value which was observed in Ref. 22. For the radius
2pR=2.9lF (one mode channel) the first energy level
«0,1,«F is comparatively far from the Fermi energy and for
2pR=3.45lF this level is closed to«F. For a larger value of
radiuss2pR=5lFd there are two open quantum modes with
energies«0,1, «±1,1,«F. In order to illustrate different rea-
sons for the appearance of conductance oscillations, in Figs.
2 and 3 we show the dependencies of the conductance on the
applied voltage for the channel without the barriersU=0d
containing two impurities and for the channel with the bar-
rier and a single impurity. By comparison of the different
curves in Figs. 2 and 3 we observe that the amplitude of
conductance oscillations is decreased for radius values2pR
=3.45lFd corresponding to the end of a first step in conduc-
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tance. In Figs. 4 and 5 the voltage dependencies of noise
power are plotted. We notice that, as seen in Fig. 4, for one
mode channel the shot noise is a strongly nonmonotonic
function of V. Similar to behavior observed for the conduc-
tance, the amplitude of the oscillations of the shot noise is
decreased near the end of the first steps2pR=3.45lFd. For
the two mode channel theSsVd is almost a linear function
that can be explained by the effect of a superposition of
oscillations with different periods. In the contact with the
barrier the main part of the shot noiseS0sVd originates from
electron reflection from the barrier potentialfSsVd
=S0sVd , if g=0dg, if and is the monotonic function ofV. A
small nonlinearity of this function arises from the energy
dependence of the transmission probability. The interference
of electron waves in the presence of a defect leads to non-
monotonic additions, which we show in Fig. 5.

IV. CONCLUSION

We have studied theoretically the voltage dependence of
the conductanceG and the shot noise powerS in a quantum
microconstriction in the form of a long channel(quantum
wire). The effect of quantum interference of electron waves
scattered by single defects and the potential barrier inside the
constriction, is taken into account. In the framework of our
model we have obtained an analytical solution for the prob-
lem and found dependencies ofG and S on such important
parameters as a constriction diameter, a constant of electron–
impurity interaction, an amplitude of the barrier potential and
positions of impurities. In general, these dependencies are
complex and are defined by the expression of transmission
probability tbb8 (9) by means of Green’s functions[Eqs.(20)
and(21)]. For a small constantg of electron–impurity inter-
action and far from the step in conductance the part of the

FIG. 2. Dependencies of the conductance on the applied voltage
for a channel containing two impurities for different values of ra-
dius; impurity positions are 2pr1=0.3lF and 2pr2=0.4lF, 2psz1

−z2d=35lF, w1=w2.

FIG. 3. Dependencies of the conductance on the applied voltage
for a channel containing a single impurity and a barrier for different
values of radius; the impurity position is 2pr1=0.3lF, 2pz1

=35lF.

FIG. 4. Voltage dependencies of noise power on the applied
voltage for a channel containing two impurities for different values
of radius; impurity positions are 2pr1=0.3lF and 2pr2=0.4lF,
2psz1−z2d=35lF, w1=w2.

FIG. 5. Voltage dependencies of the nonmontonic part of noise
power on the applied voltage for the channel containing a single
impurity and a barrier for different values of radius; the impurity
position is 2pr1=0.3lF, 2pz1=35lF.
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total transmission coefficientTs«d (25), which is due to the
interference effect, is proportional tog and to the amplitude
of the reflected from the barrier waverb [see, Eq.(17)]. As a
result, at smallg andU the interference part of conductance
and shot noise is proportional togU or g2 (for U=0) for any
number of defects.

We have shown that conductance and noise are oscillatory
functions on the applied biasV and have come to the con-
clusion that the experimentally observed suppression of con-
ductance oscillations21 could be explained by energy depen-
dence of the transmission probability of electrons through
the constriction. In the framework of our model this suppres-
sion of conductance oscillations can be explained in the fol-
lowing way: The oscillatory part of conductance is decreased
with the decreasing of amplituderb of reflected from the

barrier wave. The reflection probabilityrb from the barrier
has the minimal value, if the energy of quantum mode«b is
close to Fermi level«b&«F. It is demonstrated that in one
mode constriction containing only impurities the shot noise
power is a strongly nonlinear function ofV. In a contact with
the barrier the almost linear dependenceSsVd has a small
oscillatory addition.
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