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Monte Carlo method for a quantum measurement process by a single-electron transistor
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We derive the quantum trajectory or stochagtionditiona) master equation for a single superconducting
Cooper-pair boXSCB) charge qubit measured by a single-electron trans{8&iT) detector. This stochastic
master equation describes the random evolution of the measured SCB qubit density matrix which both condi-
tions and is conditioned on a particular realization of the measured electron tunneling events through the SET
junctions. Hence it can be regarded as a Monte Carlo method that allows us to simulate the continuous
guantum measurement process. We show that the master equation for the “partially” reduced densify.matrix
Makhlin et al, Phys. Rev. Lett.85, 4578(2000] can be obtained when a “partial” average is taken on the
stochastic master equation over the fine grained measurement records of the tunneling events in the SET.
Finally, we present some Monte Carlo simulation results for the SCB/SET measurement process. We also
analyze the probability distributioR(m, t) of finding m electrons that have tunneled into the drain of the SET
in time t to demonstrate the connection between the quantum trajectory approach and the “partially” reduced
density matrix approach.
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[. INTRODUCTION us to simulate the continuous quantum measurement process
of a charge qubit by a SET. This quantum trajectory ap-
The single-electron transist¢SET) is a highly charge- proach(or Bayesian formalisinwas introduced recenfly?
sensitive electro-meter and has been suggested as a readtudescribe a charge qubit measured by a low-transparency
device for solid-state charge quBifsor spin qubitd*  point contact detector. Here we present theantum-jump
(through a measurement of a spin-dependent charge transtochastic master equation for the SET detector. Especially,
fer). The problem of a charge qubit subject to a measurememnwe show that the master equation for the “partially” reduced
by a SET has been extensively studied in Refs. 1 and 2. Wdensity matrix (a “partial” course-grain descriptipnpre-
refer to the approach of these papers as the master equatisented in Refs. 1 and 2 can be obtained by taking a “partial”
method of the “partially” reduced density matrix. In this ap- average on the stochastic master equation over the fine
proach, one takes a trace over environme(datectoy mi-  grained measurement records of the tunneling events in the
croscopic degrees of the freedom but keeps track of the nun8ET. Finally, we present some Monte Carlo simulation re-
ber of electronsm(t), that have tunneled through the SET sults for the SCB/SET measurement process. We also ana-
into the drain during time in the “partially” reduced density lyze an important ensemble quantity for an initial qubit state
matrix. If experimentally the number of accumulated elec-readout experimen®(m,t) the probability distributioh? of
trons or current passing through the SET is measured, thinding m electrons that have tunneled into the drain of the
approach can provide us with information about the initialSET in timet. This analysis demonstrates further the connec-
qubit state. But, the system dynamics in this approach is stillion between the quantum trajectory approach presented here
deterministic, i.e., this approach is still in an ensemble and&nd the “partially” reduced density matrix approach in Refs.
time average sense. 1 and 2.
A Monte Carlo methotlwhich allows one to follow each

electron tunneling event has been successfully applied to
simulate transport properties of a SET or more complicated IIl. MODEL HAMILTONIAN
_single electronics circu_its. This m_ethod g_ives physical insight The Hamiltonian of the SCB/SET system is described in
into the processes taking place in the simulated system. BWeats 1 and 2 as
to our knowledge, it has not yet been formally applied to
quantum measurement problems by a SET detector. In this
paper, we provide such an investigation. We derive the
quantum-jumpstochastic master equatigor quantum tra- _
jectory equatiop for a single superconducting Cooper-pair Briefly,
box (SCB) charge qubit{generalization to other charge qubit
case is simplgcontinuously measured by a SET. This sto- Hser= Eser(N = Ng)? )
chastic master equation describes the random evolution of
the measured SCB qubit density matrix which both condi-describes the charging energy of the SET. The charge on the
tions and is conditioned on a particular realization of themiddle island iseN, and the induced chargeN, is deter-
measured electron tunneling events through the SET junanined by the gate voltag¥, and other voltages in the cir-
tions. We can regard it as a Monte Carlo method that allowsuit,

H=Hsgr+ Ho+ Hr+ H i+ Hr+ Hgp+ Hine. (1)
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Ho=D e CLZCLS, 3) time_s when electrons tunneling onto and off the island is not
ks available from the measurement results of the SET, our
knowledge about the precise qubit state decreases. When this
wherer=L,R,I, describes microscopic degrees of freedomhappens, averaging the random dwelling times of electrons
of noninteracting electrons in the two leadsft and righty  on the island over a period of time or over an ensemble of
and the middle island of the SET, respectively. To make theystems will then lead to the decoherence of the qubit.
charge transfer explicit, two “macroscopic” operatog8?  Hence, one needs to have a measurement record which
ande*” are included in the tunneling Hamiltoniahin the  records whether or not an electron tunnels onto or off the
SET, central island of the SET at each time interdal This time
' o interval dt should be much smaller than the typical qubit
Hr=2 Ttk,sckch,se"¢+ > Tsk,,scETScL,se"‘/’e"” +h.c. system evolution or response time so that no information is
kk's k'K’s lost as far as the qubit system evolution is concerned. In this
(4) sense, effectively the qubit is continuously monitored or
measured.
The effective Hamiltonian of the decoupled qubit, written in  For this purpose, we introdu@, .(t) anddNg(t) to rep-
the charge eigen basis of the numbenf extra Cooper pair resent, in thguantum-jumgase’ the numbexeither zero or

on the island of SCB, is one of tunneling events seen in infinitesimal tidethrough
1 . ~ the left and right junctions of the SET, respectively. Through-
Hgo = 3(Ecno, — E3030, (5 out the paper, the subscript or supersceiptdicates that the

quantity to which it is attached is conditioned on previous
gnheasurement results. If no tunneling electron is detected, the
result isnull, i.e., dN_.(t)=0 anddNg(t)=0. If there isde-
tectionof a tunneling electron in timdt, thendN, .(t)=1 or
Hint = 2E;:ND. (6)  dNgdt)=1. We can think ofdNgJt) as the increment in the

. . . . number of electrondNgJ(t) ==dNgJt) passing through the
We will consider the case that the leading tunneling pro- . rdl) rdl) passing ug

cess in the SET are sequential transitions between two adj%ight junction of the SET into the drain in the infinitesimal
cent charge statés andN+1 (say,N=0 andN+1=1 states me dt. It is the variableNg(t)=m(t), the accumulated elec-

to represent the extra charge on the SET isjafitis would tron number transmitted through the SET in the drain, which

be the case if the applied transport voltage across the SET ig used in Refs. 1 and 2. Since the nature of detection results

not too high and the temperature is lafor simplicity, we IS classical and that of electrons tunneling through the SET is

consider the zero temperature casgince eﬁ‘ectively, only stochastic,dN, rdt) should represent a classical random

two adjacent charge statds=0 andN+1—,1 areconsiofered process. The measurement record in(?ach single run of ex-
! = ) . . . 0 i

the charge transfer operatoeé, in this case, satisfy Pefimentis the set of timeft,"} and {t;} when electrons

e 19N)=0=e|N+1),/|N)=|N+1), and e ¢|N+1)=|N). tunnel onto or off the SET island, respectivglye., ones of

The other set of charge transfer operators satef§|m) dNLC(t) .and dNR.c(t) over the entire detection time see, e.g.,

=|m+1), wherem represents the number of electrons thatFigs: Xi) and 1j)].

have tunneled into the right leddrain) of the SET. _ At first, one may expect that at the end of each
time interval dt, there are four possible measurement

outcomes,  dN_()[1-dNgdt)], dNg([1-dN (1], [1
lll. MEASUREMENT RECORDS AND CONDITIONAL —dNL ()T L~dNkd)], anddN, (t)dNgJ1). It is important to
DENSITY MATRIX realize that a null resulte.g.,dN_.=dNr.=0) in a time in-

To be able to describe the measured qubit in a pure staf€rval dt is still a measurement result or outcome. Let us
continuously, one needs to have the maximum kn0W|edggt_)nsider the case in_the sequential tunneling dominated re-
about the change of its state. When the qubit interacts wit§ime that the probability of electrons tunneling onto and off
(is measured bythe SET, this information is lost to the SET. Fhe SET island within the same |nf|p|te3|mal time interdal
For example, each time when an electron tunnels onto or off rather small. In fact, the respective probability i, (t)
the SET island, it will cause a changeg., a phase shjfof ~ 0r dNrdt) equal to unity is proportional tdt [see Eqs(27)
the qubit state. One can recover this information lost, proand(28)]. Thus the product ofiN_.(t)dNg(t)=1 occurs with
vided that a detailed measurement record from the SET igrobability proportional todt?. Since we shall keep only
available. The transport of electrons through the SET occurterms to ordedt in the master equations, we can neglect the
via real states of the central island, frdwa—N+1—N. The case thatN (t) anddNgdt) both equal one within the same
information of detecting thenth electron just tunneling into infinitesimal time interval. The possible measurement out-
the drain only tells us that the island state now is intde ~ comes then becomedN, (1), dNgJt), and [1-dN (1)
state. Thus knowing the “partially” reduced density matrix —dNgJt)]. The first two terms, in this case, represent that an
pn(m,t) at every timé? does not provide us with the full electron tunneling event through, respectively, the left and
information. right junctions of SET is measured at the end of the time

One can imagine that in the transport process, electronisiterval [t,t+dt). While the last tern{1-dN, .(t) ~dNgJ1t)]
may spend different times in the intermedidé+ 1) state, represents that no tunneling event is observedit jtw+dt).
causing different phase shifts to the qubit. If the record of theThus the conditioned density matiif¢,(t+dt) to orderdt at

wheren=(1-05,)/2 with eigenvalues=0 or 1. The capaci-
tive Coulomb coupling between the charge on the SET islan
and that on the SCB qubit is represented by
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the end of the time intervdl,t+dt) can be written as IV. STOCHASTIC MASTER EQUATION
Following the same assumptions and approximations in
_ Wiac(t +dt) Refs. 1 and 2 and similar derivations in Refs. 7 and 9, we
W,(t +dt) = dN_ (1) . . . PN X
Tr{W 1c(t +db)] first derive the master equation of “partially” reduced density
Wise(t + dif matrix. By tracing out the microscopic degrees of freedom of
+dNo (1) —2 7Y 411 —dN (t the left and right leads and the island of the SET, but keeping
rRdt) [ Lc(t) _
Tr{Wry(t +dt)] the electron transfer operators explicitfy(so that we can
Wio(t + dt) keep track of effects of electron tunneling events on the sys-
—dNgd1)] < (7)  tem density matrix we obtain the Born-Markov master

Tr{[Woe(t +dt)] equation for the “partially” reduced density matrix operator

WI(t) of the SCB/SET systeniconsisting of the qubit, and
whereW, . (t+dt), Wry(t+dt), andWo(t+dt) are the unnor-  the island and drain of the SE&s

malized density matrices, given that an electron tunneling

event through left or right junction of the SET island, or no  [dV(t)/dt]
tunneling event is measured at the end of the time interval — _ ibq o
[t,t+dt). Equation(7) simply states that whedN, =1 and =~ (A Hao+ Him, WO+ T DLEL =AY

dNg=0, the normalized conditioned density matrix is + T D[EAW(t)+ TrDle ' %e¥(1 — ) P(t)

W 1c(t+dt) / T W, 1(t+dt)], and so on. Self-consistently, the e )

ensemble averag&$dN, .(t)] andE[dNgJt)] of the classical +IRDe™ e AL - (T + 1)

stochastic processeN ((t) and dNg((t) should equal, re- X[A,[A, €W (t)e ¥]]/2- (Tg+ T

spectively, the probabilitiesquantum averageof electrons o .

tunneling through the left and right junctions of the SET X[A,[h,e"?eW(t)e e 1]/2, (10

island in time dt, i.e., E[dN_(t)]=TrW_(t+dt)] and

whereD is defined for arbitrary operatos and )V as
E[dNrdt)]=TH Wy(t+dt)]. yop

Formally, we can write the currents through the junctions D[BIW = JB]W - A[B]W, (11)
as
JBIW=BWB", (12
ILc(t) = e[dN (t)/dt], (8)
A[B]W=(B'BW+WB'B)/2. (13
Irdt) = [dNA()/dt]. © The rated’ g andI'[ ; represent the tunneling ratéis the

left or right junction with and without the presence of the
The question now is to find expressions faW . (t  extra Cooper pair on the island of the S@Be., n=1 orn
+dt), Wiyt +dt), andWy(t+dt) in the model. To do this, we =0), respectively. They are determined by the chemical po-
derive the unconditional master equation and then use it teentials u  of the leads and the induced chargg on the
find W 1(t+dt), Wy (t+dt), and Wy (t+dt). SET's island,
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I =Qma/h) pm — (1~ 2Ng) Esetl, (14) Woc(t + dt) = We(t) - dt(i/h)[qu"' Hint, W(D)]
- dt{T A[€9(1 -A)]+ T Al
I'r=2mag/h)[(1 - 2Ng)Eser— url, (15) e _F A I*IL [_ A ]
+TrA[e79(1 - N)] + TRALe T PATTW().
I =T - (4w Eindh), (16) (20)
Substituting Egs.(18)—(20) into Eq. (7) and replacing
IR=Tr+ (4magE/h), A7) TrWu(t+dt)]=1-T{W 1 (t+dt) |- T W, (t+dt)],  then

. . keeping only the terms to ordelt in the resultant equatioh,
where ay g=Ro/ (47°R p) ,Ro=h/€” is the resistance quan- anq finally evaluating this equation |N) and[N+1) states,

tum, andR,  represents the resistance of the left or rightrespectively, we obtain the conditional master equation
junction.

The master equatiofi0) has a translational symmetry in dpg(t + dt) = = [dN_(t) + dNg{t)]px(t) + dNg(t)
m space. So by summing all possible valuesnaff the right .. ) .
reservoir(drain) states completely, a closed form of the mas- X[TroR1 (0 Prac()] = A (i/7)[Hgp pr(t)]
ter equation of Wt)==_(mW(t)|m) can be obtained. The PN c
resultant equation is equivalent to E40) but with the re- LN [Prac® + Praclon(®}, (2D
placements o&"'¥— 1 and Wt) — W(t). One may expect to . .
apply the similar sum procedure to the island states. How-  dPRaa(t+dt) == [dN (1) + dNad(t) JpRs(t) + dNL(1)
ever, since effectively only two extra adjecent charge states v Ry
IN) and|N+1) are considered, a closed form of the master XU LoR(OFPLact)] = dH(i/A) Hap

equation for the qubit density matrix operator alopét) +2E A oS ()] 4+ TaoCo (=[P - (t
= (NJW(H)|N)+(N+ LIW(E) N+ 1) = pp(t) + preg(t), cannot be it N1 (D] + Trog2 (0= [PLac(t)
obtained without further approximations, whesgy.1(t) is + Prac(D]pRa (D}, (22

each a X 2toper<’|:1tor in the (twbi;[ basils._ Onff app]foqaﬁ]htOSE_lwherePLc(t) and PrJt) appearing in Eqs(21) and(22) are
assume extremely asymmetric tunne’ junctions tor the due to the normalization requirement for the density matrix

i.e., one of the tunneling rates through the junctions is muc S . .
larger than the other. In this case one can apply the adiaba:%gter each detection intervelt as in £q.(7), and are given by

elimination proceduf®to eliminate the degrees of freedom PLic) =T Trlps®]+ @ =T)TrApsM], (23

of the SET island to obtain the reduced density matrix for the

qubit alone. But this asymmetric assumption is equivalent to _ c r A

treating the SET as effectively a single junction device, simi- Pric(t) =Tr Tlpnea (01 + (e = Tr) T Rpysa (D] (24)

lar to a point contact detector. Here, however, we take thgp,e rateslv“L ande are defined as

joint density matrix of the qubit and extra charge on the SET

island as the system density matrix in E@). After evaluat- T pS =T p%+ (T - T){f, pSH2 (25)

ing W(t) [or pg(t) and pg,,(t)] from the conditional master LN TLPN LT TN

equation[see Egs(21) and(22)], we can then find the con- - c Cea o

ditional qubit density matrix operator alone by writipé(t) Irofes = Frores + (TR~ TRAN, pa}/2. (26)

=T We(H)]=pR(D) + R (. Self-consistently,E[dN, «(t)] and E[dNgJt)] should equal
Using the definition of the superoperatbr and the fact their respective guantum averages, and from EH8) and

that the charge transfer operators are explicitly kept in eac(n.9) can be written &

term in Eg.(10), one can then fifdfrom there[or more

precisely from the master equation féf(t)] the unnormal- E[dNLc(D)] = T WLt + dt)] = Prac(tdt, (27)
ized density matrices, given that an electron tunneling event
through left or right junction of the SET island takes place at E[dNgd1)] = Tr[Wry(t + dbt)] = Pry(t)dt, (28)

the end of the time intervdt,t+dt), as ) ,
where P, .(t) and Pgdt) are defined in Eqs23) and (24).

W, 1o(t+db) = dt{T" T 4(1 - A) JWL(t) +I) JePAIWL(t) Equations(21)—«28) are the main results of the paper. One
ea a = can use them to simulate the conditiorisiochastig qubit
- (P +TDIA[AEW()e™?1)/2},  (18)  dynamics under continuous quantum measurements by the

SET. We will present some simulation results in Sec. VI.
Wig(t + dt) = dt{Tr JLe7 (1 = ) IW(t) + TpJle PRIW(D)
Nra A o i V. CONNECTION TO “PARTIALLY” REDUCED DENSITY
- (Pr+T'RIN,[N,e" "W (t)e?]]/2}. (19 MATRIX
It is required that the unconditiongknsemble averaggd Next, we show that the master equation of the “partially”
density matrix E[W(t+dt)]=W(t+dt)=W,;(t+dt)+Wg(t  reduced density matrix, e.g., Eq. 2 of Ref. 2, can be

+dt) +W(t+dt). Hence we findW(t+dt), from the master obtained by taking a “partial” average on Eq1) and(22).
equation for'W(t), as First, performing a full ensemble average over the observed
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stochastic process on Eq$21) and (22) by replacing 14><1o‘3
E[dN,.(t)] andE[dNg((t)] by their expected values Eq27)
and (28), and settingE[py(t)]=pn(t), we obtain the master 12}
equation for the reduced density matfix(t) and py.1(t) as
__1or
9( pa(D )+ i ( [Happn(0)] ) s, |
dt\ py+a(t) h [qu+2EintﬁaPN+1(t)] I ‘
i £ |
_F F t ~—
:<VL l?)(pN()) (29) Q.44_ | ‘ !
I, -TIg pn+a(t)

Then to keep track of the number of electransNy that

have tunneled into the drain, we need to identify the terms in o ; ‘ A
Eq. (29), which come from Egs(21) and (22) and have 2800 3000 3200 p; 3400 3600 3800
effects corresponding to an electron tunneling through the

right junction of the SET. Only one such term, originating o o .
v . . . The initial conditions and parameters are the same as those in

from dNgdD[T'rox.1(1)/ PrdD)] in Eqg. (21), survives in Eq. Fig. 1.

(29). It is in the upper right corner of the matrix on the

right-hand 3|gle O.f Eq(29). It m electron_s have wnneled and the results are available, the state or density matrix is
through the right junction of the SET at time dt, then the . qitioned on the measurement results. If the subsequent
accumulated number of electrons in the drain at the ea”'eéystem evolution after the measurement is concerned, the
time t, due to the contribution of theimp term through the 5 gitional or quantum trajectory approach should be em-
right junction, should bém-1). Hence, after writing outthe  y1oveq. |n particular, to describe the conditional dynamics of
number dependence or (m-1) explicitly for the density  the qubit system in a single realization of continuous mea-
matrix in Eq.(29), we obtaii* the master equation for the syrements, which reflects the stochastic nature of electrons

FIG. 2. (Color onling Probability distributionP(m,t=2000.

“partially” reduced density matrix as tunneling through the SET junctions, we should use the con-
. ditional, stochastic master equatiof2)—28).
i} lt - . . .
E( pn(mY) ) + '_< (o pt'(m )] ) A set of typical quantum trajectories, generated using Eqs.
dt\pnsa(M) ) A \[Hgp+ 2Eind, prea(M1)] (21)«(28), is shown in Figs. @a)—1(h) and its corresponding

(30)  Figs. Xi) and 1j), where p™ =(n|p|n"). Due to Coulomb
blockade, when an electron is on the SET island, Egs.
Making a Fourier transform k.0 (21)«(28) ensure that no electron can tunnel onto the SET
< —km i PNIN+1L island, i.e., guarantedN _.=0 for the next time intervatit.
=2 "pansa(M, 1) 0N Eq.(30), we find that the resultant \ote that in this case, we still have two possible measure-
equation is exactly the same as Eq. 2 of R?f' 2. If t”he SUNhent outcomes of eithatNg.=1 or 0 in the next time inter-
over all possible values af is taken on the “partially” re- 5 4t But only after a detection afNg =1 in the next or the
duced density matri{i.e., tracing out the detector states neyi several time interves), could another electron tunnel
completely,on(t) =Zmon(m, )], Eq. (30) then reduces to the ,ng the SET island again. This is the measurement record
master equation of the reduced density matrix, 8). This  ghown in Figs. (i) and %j). They are in the order of exactly
procedure of reducing Eqe21) and(22) to Eq.(30) and then  5jternatingdN, =1 anddNg.=1 time sequence. The condi-
to Eq. (29), by successively disregarding information that tiona| evolutions of the qubit alone shown in Figge)land
distinguishes different states of the detector, provides a cony) can be obtained from the sum of the joint state evolu-
nection between the approach of Refs. 1 and 2 and the mogg,ns of Figs. 1a) and b), or Figs. 1c) and Xd), respec-
detailed stochastic master equation used here. To furthgfely. The probabilities Py = Trod porscl=pX o+ pbh o Of
demonstrate this connection, we analyze in the next sectiof\e SET island state alone in Figs(gl and f(h) can be

an important ensemble quantity for an initial qubit state readgiained by summing the evolutions in Figgaland Xc) or

out experimentP(m, t), the probability distribution of find-  gjgs yh) and 1d) respectively. The conditional evolutions
ing m(=Ng) electrons that have tunneled into the drain inj, Figs. Xa-1(h) differ considerably from their ensemble
time t, considered in Ref. 1. average counterparts.

In this conditional or quantum trajectory approach, we are
propagating in parallel the information of the conditioned
(stochastig state evolution and detection record @i, .(t)

Although the “partially” reduced density matrix and dNg{t) in a single run of a continuous measurement
approach? can provide the information about the initial qu- process. One can see that in this approach the instantaneous
bit state, the system dynamics in this approach is still detersystem state conditions the measured electron tunneling
ministic; i.e., this approach is still in an ensemble and timeevents through the SET junctiolisee Eqs(27) and (28)],
average sense. If a measurement is made on the qubit systevhile the measured electron tunneling events themselves

- <_ prN(mit) + prN+1(m_ 11t)

) randomly distributed moments of detections are presented in
I on(mt) = Trpnsa(m,t)

VI. SIMULATION RESULTS AND DISCUSSIONS
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condition the future evolution of the measured sysfsee accumulated number of electroifg.==dNg. up to timet
Egs.(21) and(22)] in a self-consistent manner. Each set of for many realizations of the detection recoKdenerated to-
quantum trajectoriegstochastic state evolutionsobtained gether with their corresponding quantum trajectoriesd
from the stochastic master equatiof&l)—28), mimics a then normalizing the distribution to one. The simulation of
single history of the qubit state in a single run of the con-the normalized histogram shown in Fig. 2 using 2000 quan-
tinuous measurement experiment. The stochastic element fHM trajectories and their corresponding detection records is
the quantum trajectories corresponds exactly to the consélréady in good agreement with the plot in solid line. How-
quence of the random outcomes of the detection record dive', the possible individual realizations of measurement
the tunneling events in the SET. The macroscopic ensembf€cords and their cprrgshpqndlng quantum tLaJQCtQB@* n
measurement properties can be calculated by using large ehld- do provide insight into, af‘d aid _|n_t e interpretation
sembles of single electron tunneling everine grained _of the ensemble average properties. This is one of the appeal-
ing features of the quantum trajectory approach.
measurement recorgs . .
If only one measurement value is recorded in each run o For a charge qu.It measured by a low-transparency point
: ot le. th b ¢ elect that (t,ontact detector, this appealing feature of the quantum tra-
ﬁxpenmen T[gr. exar:p © h ei nl:”m )er ol elec romsd a jectories is illustrated in Ref. 8. Another advantage of the
ave tunneled into the ng t legdrain) in time t] and en- gquantum trajectory approacbr Bayesian formalismis that
semble average propertigfor example,P(m,t), the prob-  j may describe a quantum feedback process. It has been

ability distribution of findingm=(Ng) electrons that have gnowr2?that one may utilize the measurement output for the

tunneled through the right junction into the drain in tifje  feedback control and manipulation of a qubit state.
are studiet? over many repeated experiments, the quantum

trajectory approach will give the same result as the master
equation approach of the “partially” reduced density métrix. VII. CONCLUSION
However, more physical insight can be gained in the ap-

proach of quantum trajectories. We demonstrate this feature To_summanze, we have derived _the stochastic master
below equation for the SCB/SET system, which can be regarded as

. L Mon rlo method that allow imul h ntinu-
We consider the case that the SCB/SET system is in tha onte Carlo method that allows us to simulate the continu

Bus guantum measurement process of the SCB qubit by the
inme 78 mixi ime is m : .
so-called Zeno reginté:"where the mixing time is much SET. We have shown that by taking a “partial” average over

larger than the measureme(ibcalizatior) time. In this re- e fine grained measurement records of the tunneling events
gime, a good quantum readout measurement for an initig, the SET, this stochastic master equation reduces to the
qubit state in the charge-state basis can be performed byaster equation presented in Refs. 1 and 2. We have also
repeatedly measuring the number of electran)=Ng(t),  presented numerical simulation for the dynamics of the qubit
that have tunneled through the right junction into the drain ofin a particular realization of the readout measurement experi-
the SET in the same detection time periodne can then ment. We have shown that the probability distribution
use the measurement results to construct the probability dis?(m,t) constructed from 2000 quantum trajectories and their
tribution P(m,t). In Ref. 1, the probability distribution corresponding detection records, is, as expected, in good
P(m,t) =Trg pn(m, 1)+ py.1(m, 1)] is obtained from the Fou- agreement with that obtained from the Fourier analysis of the
rier analysis of the partially reduced density matrix, Bf).  “partially” reduced density matrix.
The result, obtained in this way, is plotted in solid line in Fig.
2. This probability distributionP(m,t) splits into two and
their weights correspond closely to the initial qubit diagonal
elements 0f*(0)=0.25 andp®%(0)=0.75. The author would like to thank G. J. Milburn for his sug-

In the quantum trajectory approadP(m,t) can be explic-  gestions and comments on the manuscript. Financial support
ity simulated through constructing the histogram of thefrom Hewlett-Packard is also acknowledged.
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(200D. Ir(t)=eHdN_grdt)]/dt, in Egs.(27) and(28).
0The last term{—(I' +T))[A,[N, €W ()e7¢]]/2}dt, in Eq. (18)  Alternatively, Eq.(30) can be obtained directly by evaluating Eq.
and that{-(T'r+TR)[N,[N, €W (t)€¢]]/2}dt, in Eq. (19) de- (10) in |m)|N), and |m)|N+1) states. Similarly, Eq(29) can be

scribe effects of a random phase shift on the measured qubit obtained directly by evaluating the master equation\i(t) in
state, caused by an electron when it tunnels onto or off the SET |N) and|N+1) states.

island. However, these two terms are traceless in the qubit?R. Ruskov and A. N. Korotkov, Phys. Rev. B6, 041401R)
basis and thus do not contribute to the average current (2002.
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