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We derive the quantum trajectory or stochastic(conditional) master equation for a single superconducting
Cooper-pair box(SCB) charge qubit measured by a single-electron transistor(SET) detector. This stochastic
master equation describes the random evolution of the measured SCB qubit density matrix which both condi-
tions and is conditioned on a particular realization of the measured electron tunneling events through the SET
junctions. Hence it can be regarded as a Monte Carlo method that allows us to simulate the continuous
quantum measurement process. We show that the master equation for the “partially” reduced density matrix[Y.
Makhlin et al., Phys. Rev. Lett.85, 4578 (2000)] can be obtained when a “partial” average is taken on the
stochastic master equation over the fine grained measurement records of the tunneling events in the SET.
Finally, we present some Monte Carlo simulation results for the SCB/SET measurement process. We also
analyze the probability distributionPsm,td of finding m electrons that have tunneled into the drain of the SET
in time t to demonstrate the connection between the quantum trajectory approach and the “partially” reduced
density matrix approach.

DOI: 10.1103/PhysRevB.70.075305 PACS number(s): 73.23.Hk, 03.65.Ta

I. INTRODUCTION

The single-electron transistor(SET) is a highly charge-
sensitive electro-meter and has been suggested as a readout
device for solid-state charge qubits1,2 or spin qubits3,4

(through a measurement of a spin-dependent charge trans-
fer). The problem of a charge qubit subject to a measurement
by a SET has been extensively studied in Refs. 1 and 2. We
refer to the approach of these papers as the master equation
method of the “partially” reduced density matrix. In this ap-
proach, one takes a trace over environmental(detector) mi-
croscopic degrees of the freedom but keeps track of the num-
ber of electrons,mstd, that have tunneled through the SET
into the drain during timet in the “partially” reduced density
matrix. If experimentally the number of accumulated elec-
trons or current passing through the SET is measured, this
approach can provide us with information about the initial
qubit state. But, the system dynamics in this approach is still
deterministic, i.e., this approach is still in an ensemble and
time average sense.

A Monte Carlo method5 which allows one to follow each
electron tunneling event has been successfully applied to
simulate transport properties of a SET or more complicated
single electronics circuits. This method gives physical insight
into the processes taking place in the simulated system. But
to our knowledge, it has not yet been formally applied to
quantum measurement problems by a SET detector. In this
paper, we provide such an investigation. We derive the
quantum-jumpstochastic master equation(or quantum tra-
jectory equation) for a single superconducting Cooper-pair
box (SCB) charge qubit(generalization to other charge qubit
case is simple) continuously measured by a SET. This sto-
chastic master equation describes the random evolution of
the measured SCB qubit density matrix which both condi-
tions and is conditioned on a particular realization of the
measured electron tunneling events through the SET junc-
tions. We can regard it as a Monte Carlo method that allows

us to simulate the continuous quantum measurement process
of a charge qubit by a SET. This quantum trajectory ap-
proach(or Bayesian formalism) was introduced recently6–8

to describe a charge qubit measured by a low-transparency
point contact detector. Here we present thequantum-jump
stochastic master equation for the SET detector. Especially,
we show that the master equation for the “partially” reduced
density matrix (a “partial” course-grain description) pre-
sented in Refs. 1 and 2 can be obtained by taking a “partial”
average on the stochastic master equation over the fine
grained measurement records of the tunneling events in the
SET. Finally, we present some Monte Carlo simulation re-
sults for the SCB/SET measurement process. We also ana-
lyze an important ensemble quantity for an initial qubit state
readout experiment,Psm,td the probability distribution1,2 of
finding m electrons that have tunneled into the drain of the
SET in timet. This analysis demonstrates further the connec-
tion between the quantum trajectory approach presented here
and the “partially” reduced density matrix approach in Refs.
1 and 2.

II. MODEL HAMILTONIAN

The Hamiltonian of the SCB/SET system is described in
Refs. 1 and 2 as

H = HSET+ HL + HR + HI + HT + Hqb + Hint. s1d

Briefly,

HSET= ESETsN − Ngd2 s2d

describes the charging energy of the SET. The charge on the
middle island iseN, and the induced chargeeNg is deter-
mined by the gate voltageVg and other voltages in the cir-
cuit,
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where r =L ,R,I, describes microscopic degrees of freedom
of noninteracting electrons in the two leads(left and right)
and the middle island of the SET, respectively. To make the
charge transfer explicit, two “macroscopic” operators,e±if

and e±ic are included in the tunneling Hamiltonian1,2 in the
SET,
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kk8s

Tkk8s
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L†ck8s
I e−if + o

k8k9s
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R ck9s

R†ck8s
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s4d

The effective Hamiltonian of the decoupled qubit, written in
the charge eigen basis of the numbern of extra Cooper pair
on the island of SCB, is

Hqb = 1
2sEchŝz − EJŝxd, s5d

wheren̂=s1−ŝzd /2 with eigenvaluesn=0 or 1. The capaci-
tive Coulomb coupling between the charge on the SET island
and that on the SCB qubit is represented by

Hint = 2EintNn̂. s6d

We will consider the case that the leading tunneling pro-
cess in the SET are sequential transitions between two adja-
cent charge statesN andN+1 (say,N=0 andN+1=1 states
to represent the extra charge on the SET island). This would
be the case if the applied transport voltage across the SET is
not too high and the temperature is low(for simplicity, we
consider the zero temperature case). Since, effectively, only
two adjacent charge statesN=0 andN+1=1 areconsidered,
the charge transfer operatorse±if, in this case, satisfy
e−ifuNl=0=eifuN+1l ,eifuNl= uN+1l, and e−ifuN+1l= uNl.
The other set of charge transfer operators satisfye±icuml
= um±1l, where m represents the number of electrons that
have tunneled into the right lead(drain) of the SET.

III. MEASUREMENT RECORDS AND CONDITIONAL
DENSITY MATRIX

To be able to describe the measured qubit in a pure state
continuously, one needs to have the maximum knowledge
about the change of its state. When the qubit interacts with
(is measured by) the SET, this information is lost to the SET.
For example, each time when an electron tunnels onto or off
the SET island, it will cause a change(e.g., a phase shift) of
the qubit state. One can recover this information lost, pro-
vided that a detailed measurement record from the SET is
available. The transport of electrons through the SET occurs
via real states of the central island, fromN→N+1→N. The
information of detecting themth electron just tunneling into
the drain only tells us that the island state now is in theuNl
state. Thus knowing the “partially” reduced density matrix
rNsm,td at every time1,2 does not provide us with the full
information.

One can imagine that in the transport process, electrons
may spend different times in the intermediateuN+1l state,
causing different phase shifts to the qubit. If the record of the

times when electrons tunneling onto and off the island is not
available from the measurement results of the SET, our
knowledge about the precise qubit state decreases. When this
happens, averaging the random dwelling times of electrons
on the island over a period of time or over an ensemble of
systems will then lead to the decoherence of the qubit.
Hence, one needs to have a measurement record which
records whether or not an electron tunnels onto or off the
central island of the SET at each time intervaldt. This time
interval dt should be much smaller than the typical qubit
system evolution or response time so that no information is
lost as far as the qubit system evolution is concerned. In this
sense, effectively the qubit is continuously monitored or
measured.

For this purpose, we introducedNLcstd anddNRcstd to rep-
resent, in thequantum-jumpcase,7 the number(either zero or
one) of tunneling events seen in infinitesimal timedt through
the left and right junctions of the SET, respectively. Through-
out the paper, the subscript or superscriptc indicates that the
quantity to which it is attached is conditioned on previous
measurement results. If no tunneling electron is detected, the
result isnull, i.e., dNLcstd=0 anddNRcstd=0. If there isde-
tectionof a tunneling electron in timedt, thendNLcstd=1 or
dNRcstd=1. We can think ofdNRcstd as the increment in the
number of electronsNRcstd=odNRcstd passing through the
right junction of the SET into the drain in the infinitesimal
time dt. It is the variableNRstd=mstd, the accumulated elec-
tron number transmitted through the SET in the drain, which
is used in Refs. 1 and 2. Since the nature of detection results
is classical and that of electrons tunneling through the SET is
stochastic,dNLc/Rcstd should represent a classical random
process. The measurement record in each single run of ex-
periment is the set of timeshtL

sidj and htR
sidj when electrons

tunnel onto or off the SET island, respectively[i.e., ones of
dNLcstd and dNRcstd over the entire detection time see, e.g.,
Figs. 1(i) and 1(j)].

At first, one may expect that at the end of each
time interval dt, there are four possible measurement
outcomes, dNLcstdf1−dNRcstdg , dNRcstdf1−dNLcstdg , f1
−dNLcstdgf1−dNRcstdg, anddNLcstddNRcstd. It is important to
realize that a null result(e.g.,dNLc=dNRc=0) in a time in-
terval dt is still a measurement result or outcome. Let us
consider the case in the sequential tunneling dominated re-
gime that the probability of electrons tunneling onto and off
the SET island within the same infinitesimal time intervaldt
is rather small. In fact, the respective probability ofdNLcstd
or dNRcstd equal to unity is proportional todt [see Eqs.(27)
and(28)]. Thus the product ofdNLcstddNRcstd=1 occurs with
probability proportional todt2. Since we shall keep only
terms to orderdt in the master equations, we can neglect the
case thatdNLcstd anddNRcstd both equal one within the same
infinitesimal time interval. The possible measurement out-
comes then becomedNLcstd , dNRcstd, and f1−dNLcstd
−dNRcstdg. The first two terms, in this case, represent that an
electron tunneling event through, respectively, the left and
right junctions of SET is measured at the end of the time
interval [t ,t+dt). While the last termf1−dNLcstd−dNRcstdg
represents that no tunneling event is observed in[t ,t+dt).
Thus the conditioned density matrixWcst+dtd to orderdt at
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the end of the time interval[t ,t+dt) can be written as

Wcst + dtd = dNLcstd
WL1cst + dtd

TrfWL1cst + dtdg

+ dNRcstd
WR1cst + dtd

TrfWR1cst + dtdg
+ f1 − dNLcstd

− dNRcstdg
W0cst + dtd

TrfW0cst + dtdg
, s7d

whereWL1cst+dtd, WR1cst+dtd, andW0cst+dtd are the unnor-
malized density matrices, given that an electron tunneling
event through left or right junction of the SET island, or no
tunneling event is measured at the end of the time interval
[t ,t+dt). Equation(7) simply states that whendNLc=1 and
dNRc=0, the normalized conditioned density matrix is
WL1cst+dtd /TrfWL1cst+dtdg, and so on. Self-consistently, the
ensemble averagesEfdNLcstdg andEfdNRcstdg of the classical
stochastic processesdNLcstd and dNRcstd should equal, re-
spectively, the probabilities(quantum average) of electrons
tunneling through the left and right junctions of the SET
island in time dt, i.e., EfdNLcstdg=TrfWL1cst+dtdg and
EfdNRcstdg=TrfWR1cst+dtdg.

Formally, we can write the currents through the junctions
as

ILcstd = efdNLcstd/dtg, s8d

IRcstd = efdNRcstd/dtg. s9d

The question now is to find expressions forWL1cst
+dtd ,WR1cst+dtd, andW0cst+dtd in the model. To do this, we
derive the unconditional master equation and then use it to
find WL1cst+dtd ,WR1cst+dtd, andW0cst+dtd.

IV. STOCHASTIC MASTER EQUATION

Following the same assumptions and approximations in
Refs. 1 and 2 and similar derivations in Refs. 7 and 9, we
first derive the master equation of “partially” reduced density
matrix. By tracing out the microscopic degrees of freedom of
the left and right leads and the island of the SET, but keeping
the electron transfer operators explicitly1,2 (so that we can
keep track of effects of electron tunneling events on the sys-
tem density matrix), we obtain the Born-Markov master
equation for the “partially” reduced density matrix operator
Wstd of the SCB/SET system(consisting of the qubit, and
the island and drain of the SET) as

fdWstd/dtg

= − si/"dfHqb + Hint,Wstdg + GLDfeifs1 − n̂dgWstd

+ GL8Dfeifn̂gWstd+ GRDfe−ifeics1 − n̂dgWstd

+ GR8Dfe−ifeicn̂gWstd − sGL + GL8d

3†n̂,fn̂,eifWstde−ifg‡/2− sGR + GR8d

3†n̂,fn̂,e−ifeicWstde−iceifg‡/2, s10d

whereD is defined for arbitrary operatorsB andW as

DfBgW = JfBgW − AfBgW, s11d

JfBgW = BWB†, s12d

AfBgW = sB†BW + WB†Bd/2. s13d

The ratesGL/R andGL/R8 represent the tunneling rates(in the
left or right junction) with and without the presence of the
extra Cooper pair on the island of the SCB(i.e., n=1 or n
=0), respectively. They are determined by the chemical po-
tentialsmL/R of the leads and the induced chargeNg on the
SET’s island,

FIG. 1. Set of typical quantum
trajectories and corresponding de-
tection record for the initial condi-
tions: qubit state in sÎ3u0l
+ u1ld /2 and the SET island
in N=0 state. Other parameters
are Eint=1.5Ech=1500EJ,GL

=s3/4d GR= 3Ech/" ,aL= aR=0.03
and the time is in unit of" /Ech.
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GL = s2paL/"dfmL − s1 − 2NgdESETg, s14d

GR = s2paR/"dfs1 − 2NgdESET− mRg, s15d

GL8 = GL − s4paLEint/"d, s16d

GR8 = GR + s4paREint/"d, s17d

whereaL/R=RQ/ s4p2RL/Rd ,RQ=h/e2 is the resistance quan-
tum, andRL/R represents the resistance of the left or right
junction.

The master equation(10) has a translational symmetry in
m space. So by summing all possible values ofm of the right
reservoir(drain) states completely, a closed form of the mas-
ter equation of Wstd=omkmuWstduml can be obtained. The
resultant equation is equivalent to Eq.(10) but with the re-
placements ofe±ic→1 and Wstd→Wstd. One may expect to
apply the similar sum procedure to the island states. How-
ever, since effectively only two extra adjecent charge states
uNl and uN+1l are considered, a closed form of the master
equation for the qubit density matrix operator alone,rstd
=kNuWstduNl+kN+1uWstduN+1l;rNstd+rN+1std, cannot be
obtained without further approximations, whererN/N+1std is
each a 232 operator in the qubit basis. One approach9 is to
assume extremely asymmetric tunnel junctions for the SET,
i.e., one of the tunneling rates through the junctions is much
larger than the other. In this case one can apply the adiabatic
elimination procedure9 to eliminate the degrees of freedom
of the SET island to obtain the reduced density matrix for the
qubit alone. But this asymmetric assumption is equivalent to
treating the SET as effectively a single junction device, simi-
lar to a point contact detector. Here, however, we take the
joint density matrix of the qubit and extra charge on the SET
island as the system density matrix in Eq.(7). After evaluat-
ing Wcstd [or rN

c std andrN+1
c std] from the conditional master

equation[see Eqs.(21) and (22)], we can then find the con-
ditional qubit density matrix operator alone by writingrcstd
=TrNfWcstdg=rN

c std+rN+1
c std.

Using the definition of the superoperatorD and the fact
that the charge transfer operators are explicitly kept in each
term in Eq. (10), one can then find7 from there [or more
precisely from the master equation forWstd] the unnormal-
ized density matrices, given that an electron tunneling event
through left or right junction of the SET island takes place at
the end of the time interval[t ,t+dt), as

WL1cst + dtd = dthGLJfeifs1 − n̂dgWcstd + GL8Jfeifn̂gWcstd

− sGL + GL8d†n̂,fn̂,eifWcstde−ifg‡/2j, s18d

WR1cst + dtd = dthGRJfe−ifs1 − n̂dgWcstd + GR8Jfe−ifn̂gWcstd

− sGR + GR8d†n̂,fn̂,e−ifWcstdeifg‡/2j. s19d

It is required that the unconditional(ensemble averaged)
density matrix EfWcst+dtdg=Wst+dtd=WL1st+dtd+WR1st
+dtd+W0st+dtd. Hence we findW0cst+dtd, from the master
equation forWstd, as

W0cst + dtd = Wcstd − dtsi/"dfHqb + Hint,Wcstdg

− dthGLAfeifs1 − n̂dg + GL8Afeifn̂g

+ GRAfe−ifs1 − n̂dg + GR8Afe−ifn̂gjWcstd.

s20d

Substituting Eqs.(18)–(20) into Eq. (7) and replacing
TrfW0cst+dtdg=1−TrfWL1cst+dtdg−TrfWL1cst+dtdg, then
keeping only the terms to orderdt in the resultant equation,7

and finally evaluating this equation inuNl and uN+1l states,
respectively, we obtain the conditional master equation

drN
c st + dtd = − fdNLcstd + dNRcstdgrN

c std + dNRcstd

3fǦRrN+1
c std/PR1cstdg − dthsi/"dfHqb,rN

c stdg

+ ǦLrN
c std− fPL1cstd + PR1cstdgrN

c stdj, s21d

drN+1
c st + dtd = − fdNLcstd + dNRcstdgrN+1

c std + dNLcstd

3fǦLrN
c std/PL1cstdg − dthsi/"dfHqb

+ 2Eintn̂,rN+1
c stdg + ǦRrN+1

c std− fPL1cstd

+ PR1cstdgrN+1
c stdj, s22d

wherePLcstd andPRcstd appearing in Eqs.(21) and (22) are
due to the normalization requirement for the density matrix
after each detection intervaldt as in Eq.(7), and are given by

PL1cstd = GL TrfrN
c stdg + sGL8 − GLdTrfn̂rN

c stdg, s23d

PR1cstd = GR TrfrN+1
c stdg + sGR8 − GRdTrfn̂rN+1

c stdg. s24d

The ratesǦL and ǦR are defined as

ǦLrN
c = GLrN

c + sGL − GL8dhn̂,rN
c j/2, s25d

ǦRrN+1
c = GRrN+1

c + sGR − GR8dhn̂,rN+1
c j/2. s26d

Self-consistently,EfdNLcstdg and EfdNRcstdg should equal
their respective quantum averages, and from Eqs.(18) and
(19) can be written as10

EfdNLcstdg = TrfWL1cst + dtdg = PL1cstddt, s27d

EfdNRcstdg = TrfWR1cst + dtdg = PR1cstddt, s28d

wherePLcstd and PRcstd are defined in Eqs.(23) and (24).
Equations(21)–(28) are the main results of the paper. One
can use them to simulate the conditional(stochastic) qubit
dynamics under continuous quantum measurements by the
SET. We will present some simulation results in Sec. VI.

V. CONNECTION TO “PARTIALLY” REDUCED DENSITY
MATRIX

Next, we show that the master equation of the “partially”
reduced density matrix, e.g., Eq. 2 of Ref. 2, can be
obtained8 by taking a “partial” average on Eqs.(21) and(22).
First, performing a full ensemble average over the observed
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stochastic process on Eqs.(21) and (22) by replacing
EfdNLcstdg andEfdNRcstdg by their expected values Eqs.(27)
and (28), and settingEfrN

c stdg=rNstd, we obtain the master
equation for the reduced density matrixrNstd andrN+1std as

d

dt
S rNstd

rN+1std
D +

i

"
S fHqb,rNstdg

fHqb + 2Eintn̂,rN+1stdg
D

= S− ǦL ǦR

ǦL − ǦR

DS rNstd
rN+1std

D . s29d

Then to keep track of the number of electronsm=NR that
have tunneled into the drain, we need to identify the terms in
Eq. (29), which come from Eqs.(21) and (22) and have
effects corresponding to an electron tunneling through the
right junction of the SET. Only one such term, originating

from dNRcstdfǦRrN+1
c std /PRcstdg in Eq. (21), survives in Eq.

(29). It is in the upper right corner of the matrix on the
right-hand side of Eq.(29). If m electrons have tunneled
through the right junction of the SET at timet+dt, then the
accumulated number of electrons in the drain at the earlier
time t, due to the contribution of thejump term through the
right junction, should besm−1d. Hence, after writing out the
number dependencem or sm−1d explicitly for the density
matrix in Eq. (29), we obtain11 the master equation for the
“partially” reduced density matrix as

d

dt
S rNsm,td

rN+1sm,td
D +

i

"
S fHqb,rNsm,tdg

fHqb + 2Eintn̂,rN+1sm,tdg D
= S− ǦLrNsm,td + ǦRrN+1sm− 1,td

ǦLrNsm,td − ǦRrN+1sm,td
D . s30d

Making a Fourier transform rN/N+1sk,td
=ome−ikmrN/N+1sm,td on Eq. (30), we find that the resultant
equation is exactly the same as Eq. 2 of Ref. 2. If the sum
over all possible values ofm is taken on the “partially” re-
duced density matrix[i.e., tracing out the detector states
completely,rNstd=omrNsm,td], Eq. (30) then reduces to the
master equation of the reduced density matrix, Eq.(29). This
procedure of reducing Eqs.(21) and(22) to Eq.(30) and then
to Eq. (29), by successively disregarding information that
distinguishes different states of the detector, provides a con-
nection between the approach of Refs. 1 and 2 and the more
detailed stochastic master equation used here. To further
demonstrate this connection, we analyze in the next section
an important ensemble quantity for an initial qubit state read-
out experiment,Psm,td, the probability distribution of find-
ing ms=NRd electrons that have tunneled into the drain in
time t, considered in Ref. 1.

VI. SIMULATION RESULTS AND DISCUSSIONS

Although the “partially” reduced density matrix
approach1,2 can provide the information about the initial qu-
bit state, the system dynamics in this approach is still deter-
ministic; i.e., this approach is still in an ensemble and time
average sense. If a measurement is made on the qubit system

and the results are available, the state or density matrix is
conditioned on the measurement results. If the subsequent
system evolution after the measurement is concerned, the
conditional or quantum trajectory approach should be em-
ployed. In particular, to describe the conditional dynamics of
the qubit system in a single realization of continuous mea-
surements, which reflects the stochastic nature of electrons
tunneling through the SET junctions, we should use the con-
ditional, stochastic master equations(21)–(28).

A set of typical quantum trajectories, generated using Eqs.
(21)–(28), is shown in Figs. 1(a)–1(h) and its corresponding
randomly distributed moments of detections are presented in
Figs. 1(i) and 1(j), wherernn8;knurun8l. Due to Coulomb
blockade, when an electron is on the SET island, Eqs.
(21)–(28) ensure that no electron can tunnel onto the SET
island, i.e., guaranteedNLc=0 for the next time intervaldt.
Note that in this case, we still have two possible measure-
ment outcomes of eitherdNRc=1 or 0 in the next time inter-
val dt. But only after a detection ofdNRc=1 in the next or the
next several time interval(s), could another electron tunnel
onto the SET island again. This is the measurement record
shown in Figs. 1(i) and 1(j). They are in the order of exactly
alternatingdNLC=1 anddNRc=1 time sequence. The condi-
tional evolutions of the qubit alone shown in Figs. 1(e) and
1(f) can be obtained from the sum of the joint state evolu-
tions of Figs. 1(a) and 1(b), or Figs. 1(c) and 1(d), respec-
tively. The probabilities,P0/1,c=Trqbfr0/1,cg=r0/1,c

00 +r0/1,c
11 , of

the SET island state alone in Figs. 1(g) and 1(h) can be
obtained by summing the evolutions in Figs. 1(a) and 1(c) or
Figs. 1(b) and 1(d) respectively. The conditional evolutions
in Figs. 1(a)–1(h) differ considerably from their ensemble
average counterparts.

In this conditional or quantum trajectory approach, we are
propagating in parallel the information of the conditioned
(stochastic) state evolution and detection record ofdNLcstd
and dNRcstd in a single run of a continuous measurement
process. One can see that in this approach the instantaneous
system state conditions the measured electron tunneling
events through the SET junctions[see Eqs.(27) and (28)],
while the measured electron tunneling events themselves

FIG. 2. (Color online) Probability distributionPsm,t=2000d.
The initial conditions and parameters are the same as those in
Fig. 1.
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condition the future evolution of the measured system[see
Eqs. (21) and (22)] in a self-consistent manner. Each set of
quantum trajectories(stochastic state evolutions), obtained
from the stochastic master equations(21)–(28), mimics a
single history of the qubit state in a single run of the con-
tinuous measurement experiment. The stochastic element in
the quantum trajectories corresponds exactly to the conse-
quence of the random outcomes of the detection record of
the tunneling events in the SET. The macroscopic ensemble
measurement properties can be calculated by using large en-
sembles of single electron tunneling events(fine grained
measurement records).

If only one measurement value is recorded in each run of
experiments[for example, the number of electronsm that
have tunneled into the right lead(drain) in time t] and en-
semble average properties[for example,Psm,td, the prob-
ability distribution of finding m=sNRd electrons that have
tunneled through the right junction into the drain in timet]
are studied1,2 over many repeated experiments, the quantum
trajectory approach will give the same result as the master
equation approach of the “partially” reduced density matrix.8

However, more physical insight can be gained in the ap-
proach of quantum trajectories. We demonstrate this feature
below.

We consider the case that the SCB/SET system is in the
so-called Zeno regime1,2,7,8 where the mixing time is much
larger than the measurement(localization) time. In this re-
gime, a good quantum readout measurement for an initial
qubit state in the charge-state basis can be performed by
repeatedly measuring the number of electrons,mstd=NRstd,
that have tunneled through the right junction into the drain of
the SET in the same detection time periodt. One can then
use the measurement results to construct the probability dis-
tribution Psm,td. In Ref. 1, the probability distribution
Psm,td=TrqbfrNsm,td+rN+1sm,tdg is obtained from the Fou-
rier analysis of the partially reduced density matrix, Eq.(30).
The result, obtained in this way, is plotted in solid line in Fig.
2. This probability distributionPsm,td splits into two and
their weights correspond closely to the initial qubit diagonal
elements ofr11s0d=0.25 andr00s0d=0.75.

In the quantum trajectory approach,Psm,td can be explic-
itly simulated through constructing the histogram of the

accumulated number of electronsNRc=odNRc up to time t
for many realizations of the detection records(generated to-
gether with their corresponding quantum trajectories), and
then normalizing the distribution to one. The simulation of
the normalized histogram shown in Fig. 2 using 2000 quan-
tum trajectories and their corresponding detection records is
already in good agreement with the plot in solid line. How-
ever, the possible individual realizations of measurement
records and their corresponding quantum trajectories(e.g., in
Fig. 1) do provide insight into, and aid in the interpretation
of the ensemble average properties. This is one of the appeal-
ing features of the quantum trajectory approach.

For a charge qubit measured by a low-transparency point
contact detector, this appealing feature of the quantum tra-
jectories is illustrated in Ref. 8. Another advantage of the
quantum trajectory approach(or Bayesian formalism) is that
it may describe a quantum feedback process. It has been
shown12 that one may utilize the measurement output for the
feedback control and manipulation of a qubit state.

VII. CONCLUSION

To summarize, we have derived the stochastic master
equation for the SCB/SET system, which can be regarded as
a Monte Carlo method that allows us to simulate the continu-
ous quantum measurement process of the SCB qubit by the
SET. We have shown that by taking a “partial” average over
the fine grained measurement records of the tunneling events
in the SET, this stochastic master equation reduces to the
master equation presented in Refs. 1 and 2. We have also
presented numerical simulation for the dynamics of the qubit
in a particular realization of the readout measurement experi-
ment. We have shown that the probability distribution
Psm,td constructed from 2000 quantum trajectories and their
corresponding detection records, is, as expected, in good
agreement with that obtained from the Fourier analysis of the
“partially” reduced density matrix.
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