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At the even-denominator filling factorn=P/Q, evenQ, a fermionic Quantum Hall(QH) state is normally
developed in a pure heterojunction GaAs/AlGaAs at the lowest temperatures. The QH state atn=5/2 is an
exception, and it is known to be bosonic. The fermionic state is formed by the composite(c-) fermions, each
with an electron andQ flux quanta(fluxons). The conductivitys;J/E, J= current density,E= applied field,
becomes a universal constantse2/hdQ−1 as the temperature approaches zero while the Hall conductivitysH

;J/EH, EH=Hall field, becomes approximately equal tose2/hdP/Q. The widths in the resistivityr;s−1 are
symmetric with respect to high and low fields. They are temperature dependent. The resistivitysrd curve
smoothly approaches a constant as the field is lowered toward zero.
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I. INTRODUCTION

In 1980 von Klitzinget al.1 reported a discovery of the
integer Quantum Hall Effect(QHE). In 1982 Tsuiet al.2

discovered the fractional QHE. Figure 1 represents the data
reported by Tsui3 for the Hall resistivity rH;EH /J (EH=
Hall field, J= current density) and the resistivityr;E/J (E
= applied field) in heterojunction GaAs/AlGaAs at 60 mK.
The Quantum Hall(QH) states at the Landau Level(LL )
occupation ratio(filling factor) n=P/Q=1,2, . . . ,5 arevis-
ible. Each bosonic QH state with the Hall resistivity plateau
(horizontal stretch) is accompanied by zero resistance(super-
conducting). In 1987 Willett et al.4 discovered the even-
denominator QHE atn=5/2.Their data, Ref. 4, Fig. 2, show
that the resistivity has clear dips at 25, 40, and 100 mK.
Jiang et al.5 observed similar fermionic QHE atn
=1/2,3/2,3/4, . . . ,where each dip converges to a point. In
1999 Panet al.6 found that the 5/2 state in high mobility
sample shows zero resistance with a visible Hall resistivity
plateau at very low electron temperature
s,4 mKd. This 5/2 state is rather similar to the bosonic QH
states at odd-denominator ration=P/Q, oddQ, observed in
the same sample GaAs/AlGaAs. Eisensteinet al.7 found that
the QHE state atn=5/2 collapses rapidly as the magnetic
field is tilted away from the normal to the plane. This is an
anomaly since the states atn=1/2 andn=3/2 were found
not to collapse.5 The tilting reduces the diamagnetic effect,
rendering the effectiveg factor to vanish and making spin-
mixing more important. We shall treat the 5/2 state collapse
in a separate publication. The difference between the fermi-
onic and bosonic QHE was clearly demonstrated in the
surface-acoustic wave(SAW) propagation study by Willettet
al.,8 where the SAW amplitude deviation is negative(posi-
tive) for the fermionic(bosonic) QHE, suggesting different
charge carriers present in the system.

The departure point for all theories for the fractional QHE
is the Laughlin ground-state wave function.9 Laughlin9 and
Haldane10 showed that the qasiparticle(elementary excita-

tion) over the Laughlin ground state atn=P/Q, odd Q, can
have the fractional charge

eb = e/Q for c-bosons. s1d

This surprising prediction was later confirmed by
experiments.11 The system ground-state does not carry a cur-
rent. To interpret the experimental data it is convenient to
introduce composite(c-) particles (bosons, fermions). The
c-boson(fermion), each containing an electron and an odd
(even) number of flux quanta(fluxons), were introduced by
Zhanget al.12 and others(Jain13) for the description of the
fractional QHE(Fermi liquid). Originally the c-particle was
introduced as a composite of one electron attached with a
number of Chern-Simons gauge objects. These objects are
neither bosons nor fermions, and hence the statistics of the
composite is not clear. The basic particle property(countabil-
ity) of the fluxons is known as the flux quantization, see Eq.
(6). We assume that the fluxon is an elementary fermion with

FIG. 1. Observed QHE in GaAs/AlGaAs heterojunction at
60 mK, after Tsui(Ref. 3). The Hall resistivityrH and the resistance
r are shown as a function of the magnetic fieldB in tesla.
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zero mass and zero charge, which is supported by the fact
that the fluxon, the quantum of the magnetic fieldB, cannot
disappear at a sink unlike the bosonic photon, the quantum of
the electric fieldE.14 Fujita and Morabito15 showed that the
center-of-mass(CM) of the composite moves following the
Ehrenfest-Oppenheimer-Bethe’s(EOB) rule: the composite
is fermionic(bosonic) if it contains an odd(even) number of
elementary fermions. Hence the quantum statistics of the
c-particle is justified. Halperin, Lee and Read reviewed the
state of the matter atn=1/2 in 1993.16 In particular they
showed that the SAW amplitude sign atn=1/2 can be ex-
plained with the assumed existence of the c-fermions. They
arrived at an expression for the resistivityr proportional to
the impurity densitynimp based on a c-fermionic model. Ana-
lyzing the data reported by Tsui,3 Hajdu et al.17 predicted
that the conductivitys in the integer QHE region is quan-
tized: s,e2/h at the even-denominator filling factor, see
Fig. 2.

Laughlin pointed out a remarkable similarity between the
QHE and the high-temperature superconductivity(HTSC),
both occurring in two-dimensional(2D) systems.18 The ma-
jor superconducting properties observed in the HTSC are(a)
zero resistance,(b) a sharp phase change at the critical tem-
peratureTc, (c) the energy gap belowTc, (d) the flux quan-
tization, (e) Meissner effect, and(f) Josephson effects. The
Josephson effects can be observed in the double-layer QHE
systems.19 All others have been observed in single layer
GaAs/AlGaAs.(The Hall resistivity plateau and the Meiss-
ner effect are directly connected, see Sec. IV.) Following
Bardeen, Cooper, and Schrieffer(BCS),20 we regard the pho-
non exchange attraction as the causes of both effects. Start-
ing with a reasonable Hamiltonian, we calculate everything
using the standard statistical mechanical methods. Fujitaet
al. developed an electron-fluxon model,14 in which the elec-
tron and fluxons are bound by the phonon excahnge attrac-
tion.

Classically speaking, if the magnetic field is applied
slowly, the electron can continuously change from the
straight line motion at zero field to the circulating motion at
a finite B. Quantum mechanically, the change from the mo-
mentum state to the Landau state requires a perturbation. We
choose the phonon exchange between the electron and the
fluxon for the perturbation. For example the c-fermion with

two fluxons can be bound as follows: If theB-field is applied
adiabatically the energy of the electron does not change but
the cyclotron motion always acts so as to reduce the mag-
netic fields. Hence the total energy of the c-fermion is less
than the electron energy and the unperturbed field energy. In
other words the c-fermion is stable against the break-up.

In the present work we shall show that a fermionic QH
state is developed atn=P/Q, evenQ, in which the conduc-
tivity s;r−1 approaches a universal constantse2/hdQ−1 as
T→0 and the Hall conductivitysH=rH

−1 becomes approxi-
mately equal tose2/hdsP/Qd, thus confirming the prediction
by Hajduet al. We also show that the resistivity widths are
symmetric with respect to high and low fields. The resistivity
curve smoothly approaches a constant as the field is reduced
to zero.

II. THE HAMILTONIAN

Let us take a dilute system of electrons moving in the
plane. Applying a magnetic fieldB perpendicular to the
plane, each electron will be in the Landau state with the
energy given by E=sNL+1/2d"v0, v0;eB/m* , NL

=0,1,2, . . . . Inthis state the electron can be viewed as cir-
culating around the guiding center. The radius of circulation
l ;s" /eBd1/2 for the Landau ground state is about 81 Å at a
typical field 10 T(tesla). We now apply a weak electric field
E in thex-direction. With the scatterers(impurities, phonons)
present in the system the guiding centers can jump from
place to place preferentially and generate a current in the
x-direction.

GaAs forms a zinc blende lattice. We assume that the
interface is in the plane(001). The Ga3+ ions form a square

lattice with the sides directed inf110g andf11̄0g. The “elec-
tron” (wave packet) will then move isotropically with an
effective massm1. The As3− ions also form a square lattice at
a different height in[001]. The “holes,” each having a posi-
tive charge, will move similarly with an effective massm2.
The electron and the phonon share the same 2Dk-space and
the same Brillouin zone, and hence they have close affinity.
The 2D electronk-vector couples with the 2D phonon
k-vector, see below. A longitudinal ionic-lattice wave(pho-

non) moving in f110g or in f11̄0g can generate a charge
density (current) variations, establishing an interaction be-
tween the phonon and the electron(fluxon). We note that the
2D current generates a magnetic moment in thez-direction,
which interact with the magnetic flux while the 2D charge
density generates a varying electric potential, which affects
the electron motion. If one phonon exchange is considered
between the electron and the fluxon, a second-order pertur-
bation calculation establishes an effective electron-fluxon
interaction14

Vef ; uVqVq8u
"vq

seuk+qus − eksd2 − "2vq
2 , s2d

where Vq sVq8d is the electron(fluxon)-phonon interaction
strength; the Landau quantum numberNL is omitted; the
bold k denotes the 2D guiding center momentum and the
italic k the magnitude. Briefly the electron emits a phonon of

FIG. 2. The conductivitys and Hall conductivitysH as func-
tions of the filling factorn=P/Q at 0 K Q=2.
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momentum −q and undergoes a transition in the momentum
from k to k +q, and subsequently the phonon is absorbed by
the fluxon which undergoes a transition fromk8 to k8−q. In
the second process the fluxon emits a phonon of momentum
q, which is absorbed by the electron which undergoes a tran-
sition from k to k +q. These two elementary processes con-
tribute to the interactionVef. The interaction is attractive
when the electron states before and after the exchange have
the same energy as in the degenerate LL so thatVef=
−uVqVq8us"vqd−1. BCS assumed that in spite of the Coulomb
interaction among electrons, there exists a sharp Fermi sur-
face for the normal state of a conductor, as described by the
Fermi liquid model of Landau. The phonon exchange can
generate bound singlet pairs of electrons near the Fermi sur-
face within a distance(energy) equal to Planck’s constant"
times the Debye frequencyvD. In our case we assume that
the phonon exchange generates a bound c-particle out of the
electron and fluxons.

Following BCS,20 we start with a HamiltonianH with the
phonon variables eliminated:

H = o
k

o
s
o

j

ek
s jdnks

s jd − v0o
q

8o
k

8o
k8

8o
s

fBk8qs
s1d† Bkqs

s1d

+ Bk8qs
s1d† Bkqs

s2d† + Bk8qs
s2d Bkqs

s1d + Bk8qs
s2d Bkqs

s2d†g , s3d

where nks
s jd is the number operator for the “electron”(1)

[“hole” (2), fluxon (3)] at momentumk and spins with the
energy eks

s jd. We represent the “electron”(“hole”) number
nks

s jd by cks
s jd†cks

s jd, where c sc†d are annihilation
(creation) operators satisfying the Fermi anticommutation
rules: hcks

sid ,ck8s
s jd†j;cks

sidck8s8
s jd† +ck8s8

s jd†
cks

sid=dk,k8ds,s8di,j, hcks
sid ,ck8,s8

s jd j
=0. We represent the fluxon numbernks

s3d by aks
† aks, with

asa†d, satisfying the anticommutation rules.Bkq s
s1d †

;ck+q/2 s
s1d† a−k+q/2−s

† , Bkq s
s2d ;ck+q/2s

s2d a−k+q/2−s. The prime on the

summation means the restriction: 0,eks
s jd,"vD, vD=Debye

frequency. If the fluxons are replaced by the conduction elec-
trons(“electrons,” “holes”) our HamiltonianH is reduced to
the original BCS Hamiltonian, Eq.(24) of Ref. 20. The
“electron” and “hole” are generated, depending on the en-
ergy contour curvature sign.21 For example only “electrons”
(“holes”), are generated for a circular Fermi surface with the
negative(positive) curvature whose inside(outside) is filled
with electrons. Since the phonon has no charge, the phonon
exchange cannot change the net charge. The pairing interac-
tion terms in Eq. (3) conserve the charge. The term
−v0Bk8qs

s1d†
Bkqs

s1d , wherev0;Vef/A, A= sample area, is the pair-
ing strength, generates a transition in the “electron” states.
Similary, the exchange of a phonon generates a transition in
the “hole” states, represented by −v0Bk8qs

s2d
Bkqs

s2d†. The phonon
exchange can also pair-create and pair-annihilate “electron”
(“hole”)-fluxon composites, represented by −v0Bk8qs

s1d†
Bkqs

s2d†,

−v0Bk8qs
s2d

Bkqs
s1d . At 0 K the system can have equal numbers of

−s+dc-bosons, “electron”(“hole”) composites, generated by
−v0Bk8qs

s1d†
Bkqs

s2d†.

III. THE FERMIONIC QUANTUM HALL EFFECT

We consider the state atn=P/Q, evenQ, where a number
of c-fermions withQ fluxons are formed. Each c-fermion can
be viewed as an electron circulating aboutQ elementary
fluxes. By applying the relativity principle we can also view
it as an electron attached withQ fluxons. This is natural
since the guiding center coincides with the CM of the
c-particle. The CM of the c-fermion can move uninfluenced
by the applied magnetic field since all flux lines are attached
to the electrons. This justified Jain’s effective magnetic field
B* , see below Eq.(27). Halperin, Lee, and Read16 used a
Chern-Simmons gauge field to show thatB* =0 in the aver-
age. Fluctuations in the gauge field are difficult to treat. We
avoided this problem in our model.

We note that our Hamiltonian in Eq.(3) can generate and
stabilize the c-particles with an arbitrary number of fluxons.
For example a c-fermion with two fluxons is generated by
two sets of the ladder diagram bindings, each between the
electron and the fluxon. The ladder diagram binding arises as
follows. Consider a hydrogen atom. The Hamiltonian con-
tains kinetic energies of the electron and the proton and the
attractive Coulomb interaction. If we regard the Coulomb
interaction as a perturbation and use a perturbation theory,
we can represent the interaction process by an infinite set of
ladder diagrams, each ladder step connecting the electron
and the proton. The energy eigenvalues of this system is not
obtained by using the perturbation theory but they are ob-
tained by directly solving the Schrödinger equation. This ex-
ample indicates that the binding energy(the negative of the
ground-state energy) is calculated by a nonperturbative
method.

Applying kinetic theory to the guiding-center motion of
the c-fermion, we obtain the conductivity

s =
sefd2n

m*

1

v
, s4d

wheren is the fermion density,ef the charge(magnitude),
and v the relaxation rate. For high-purity samples at very
low temperaturess,60 mKd the impurity and phonon scat-
terings are negligible. By energy-time uncertainty principle
the c-fermion can spend a short time at an upper LL and
come back to the ground LL with a different guiding center,
thus causing a guiding center jump. We assume that the re-
laxation rate is the natural linewidth arising from the LL
separation divided by", that is, the cyclotron frequencyv0,

v = v0. s5d

Using Eqs.(4) and (5) and the flux quantization

B = nfsh/ed, nf = flux density, s6d

we obtain

s =
sefd2n

m*sefB/m*d
=

efn

nfsh/ed
=

eef

h

n

nf

. s7d

The fluxon number conservation requires that
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Qn= nf. s8d

The magnetic focusing experiments by Goldmanet al.22 in-
dicate that the charge(magnitude) of the c-fermion with two
fluxons is e. We assume for any c-fermion withQ (even)
fluxons that

ef = e for c-fermions. s9d

We obtain from the last three equations

s = se2/hdQ−1. s10d

In the Hall effect experimental condition we have

EH = vdB, s11d

wherevd is the drift velocity. Using the standard formula for
the current density,

J = ef nvd, s12d

we calculate the Hall resistivity,

rH ;
EH

J
=

vdB

ef nvd
=

B

ef n
. s13d

This formula indicates thatrH is linear in B. First let us
consider the caseQ=2. Normalizing the field relative to the
field B1/2 at n=1/2, we maywrite Bn;BP/2=B1/2/P. Using
this and Eqs.(6), (9), and(13), we obtain

rH,P/2 = s2/Pdsh/e2d. s14d

The theory can simply be extended to the c-fermions, each
with Q fluxons, atn=P/Q, evenQ. The conductivitys is
given by Eq.(10), and the Hall conductivitysH;rH

−1 is

sH = sP/Qdse2/hd. s15d

Our results, Eqs.(10) and (15), are illustrated in Fig. 2,
where we chooseQ=2. This figure is essentially the same as
Fig. 2.1 in the book by Hajduet al.17 Only the factorQ−1 for
formula (10) is determined explicitly in the present work.

So far we neglected the electron spin. The spin effect is
important for the 5/2 problem, which will be discussed sepa-
rately.

IV. DISCUSSION

Jianget al.5 oberved that the resistivityr at n=1/2 con-
verges to a point below 1 K, see Ref. 5, Fig. 2. It is highly
desirable to experimentally check this property in particular
at n=3/2,7/2 andalso atn=1/4,3/4.Jiang et al.5 found
that the strength(deviation from the background) of the re-
sistivity minimum changes approximately linearly with the
temperature in 2,10 K, where almost all features of the
fractional QHE disappear. ThisT-linear behavior should
arise from the phonon scattering, which we have neglected in
our theory. In fact we see from Eq.(2) that the phonon scat-
tering generates aT-linear relaxation ratesv~Td so that

r ~ T s16d

in agreement with the experiment.

Formula (10) indicates the inverse linearQ-dependence
and theP-independence for the conductivitys. Both behav-
iors appear to be borne in the experimental observation by
Jianget al.,5 Fig. 1. The resistivity minima atn=1/2 and 3/2
are approximately equal, and they are smaller than the mini-
mum atn=3/4. Further detailed experimental confirmation
is required here.

Let us now turn to the Hall resistivityrH. Here the differ-
ence between the fermionic and bosonic QHE becomes
transparent.

The c-bosons, each with one fluxon, will be called the
fundamental(f) c-bosons. Their energieswq

s jd are obtained
from14

wq
s jdCs jdsk,qd = euk+qu

s jd Cs jdsk,qd − s2p"d−2v1E8
d2k8 Cs jd

3sk8,qd, s17d

whereCs jdsk ,qd is the reduced wave function; we neglected
the fluxon energy. The energywq

s jd is negative, which is ob-
tained after an indefinite number of phonon exchanges be-
tween the electron and fluxon, each generated byBk8qs

s jd†
Bkqs

s jd ,
called the ladder-binding process. Thev1 represents the at-
traction strength after the ladder diagram binding. Briefly,
start with the equation of motion forBkqs

s jd†. Multiply this
equation from the right by the energy-state annihilation op-
eratorfq and a density operatorr. Taking a grand ensemble
trace sTrd and defining TrhBkqs

s jd†fqrj as the reduced wave
function Cs jdsk ,qd, we obtain the left-hand side term
wq

s jdCs jdsk ,qd, the spin-index omitted. The left-hand side can
be obtained after evaluating the commutatorfH ,Bkqs

s jd†g and
replacing the bare strengthv0 by the after-the-ladder-diagram
strengthv1. For smallq, we obtain

wq
s jd = w0 + s2/pdvF

s jdq, w0 =
− "vD

expsv1D0d−1 − 1
, s18d

where vF
s jd;s2eF /mjd1/2 is the Fermi velocity, andD0

;DseFd the density of states per spin. Note that the energy
wq

s jd depends linearly on the momentumq.
The system of free fc-bosons undergoes a Bose-Einstein

condensation(BEC) in 2D at the critical temperature14

kBTc = 1.24"vFn0
1/2, s19d

wheren0 is the boson density. Briefly Eq.(19) can be ob-
tained froms2p"d−2ed2pfexpsbccpd−1g−1, bc;skBTcd−1, c
;s2/pdvF. Note that formula(19) is independent of the pair-
ing strength v1 unlike the famous BCS formula:kBTc
=1.13"vD expsv1D0d−1. The interboson distanceR0;n0

−1/2

calculated from this expression is 1.24"vFskBTcd−1. The bo-
son sizer0 calculated from Eq.(18), using the uncertainty
relation sqmaxr0,"d and uw0u,kBTc, is s2/pd"vFskBTcd−1,
which is a few times smaller thanR0. Hence, the bosons do
not overlap in space, and the model of free bosons is justi-
fied. For GaAs/AlGaAs,m* =0.067mc, mc=electron mass.
For the 2D electron density 1011 cm−2, we havevF=1.36
3106 cm s−1. Not all electrons are bound with fluxons since
the simultaneous generations of ± fc-bosons is required. The
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minority carrier (“hole”) density controls the fc-boson den-
sity. Forn0=1010 cm−2, Tc=1.29 K, which is reasonable. The
critical temperatureTc is recognizable by the presence of the
Hall resistivity plateau.

The supercurrent is generated by the c-bosons condensed
monochromatically at the momentum directed along the
sample length. The supercurrent density(magnitude) J, cal-
culated by the rule:(chargeeb) 3 (c-boson densityn0) 3
(drift velocity vd), is

J ; ebn0vd = ebn0s2/pduvF
s1d − vF

s2du. s20d

Using Eqs.(6), (11), and(20) we obtain

rH ;
EH

J
=

vd

ebn0vd
nfSh

e
D = S h

ebe
Dnf

n0
. s21d

First let us consider the integer QHE atn=P. Since the LL
degeneracy(the number of states per LL) eABs2p"d−1 is less
by the factorP−1, we must consider the lowestP LL’s. The
BEC occurs at each LL. Hence we have

n0 = ne/P, s22d

wherene the electron density(constant). The fluxon density
nf per LL is connected with the boson densityn0 by

nf = n0/P. s23d

Second consider the fractional QH state atn=P/Q, odd Q.
This state is formed similarly from the lowestP LL’s occu-
pied by the c-fermions, each withQ−1 fluxons. Equations
(22) and (23) hold in this case. Using Eqs.(1) and (23) we
obtain from Eq.(21),

rH =
Q

P
S h

e2D , s24d

as observed in the experiments. In Eq.(20), the drift velocity
vd is given by the unaveraged velocity difference and hence
the exact cancellation of thevd occurs in the calculation of
rH in Eqs.(21), giving rise to an extreme accuracys10−8d for
the plateau value.

In the presence of the supercondensate the noncondensed
c-boson has an energy gapeg. Hence the noncondensed
c-boson density has the activation energy type exponential
temperature dependence:

expf− eg/skBTdg, s25d

which is quite different from the phonon-generated tempera-
ture dependence. In the prevalent theories23 the energy gap
for the fractional QHE is identified as the sum of the creation
energies of a quasielectron and a quasihole. With this view it
is difficult to explain why the activation-energy type tem-
perature dependence shows up in the steady-state quantum
transport. Some authors argue that the energy gapeg for the
integer QHE is due to the LL separation="v0. But the sepa-
ration "v0 is much greater than the observedeg. Besides
from the view that the gapeg equals the LL separation one
cannot obtain the activation-type energy dependence.

In contrast the c-fermion with massm* moves in all di-
rections in the plane. The drift velocityvd is the quantity
averaged over the angles. Hence the cancellation ofvd from

numerator /denominator in Eq.(13) is not exact. After the
cancellation the Hall resistivityrH is B-linear and it has the
value approximately equal tosQ/Pdsh/e2d at n=P/Q.

In the present work we calculated the transport coeffi-
cients ss ,sHd in the traditional way, identifying the carrier
charge and density. We note that the current density formula
sJ=e*nvdd and the Hall effect conditionsEH=vdBd are exact
if a single-component current is considered; the drift velocity
vd is a macroscopic quantity. We stress that the Hall resistiv-
ity rH;EH /J needs measurements of the two quantities
sEH ,Jd. In the prevalent theories23 the Hall resistivityrH is
calculated directly through the lowest(L) LL projection or
by other methods. This is not a complete solution. If such
methods are used to obtain results describing the system state
at 0 K, it is difficult to treat the system below and aboveTc
in a unified manner. At what temperature does the LLL pro-
jection fail? This question is difficult to answer. We must
separately calculateEH andJ and take the ratioEH /J. In our
theory of the bosonic QHE14 theQ represents the number of
fluxons in the c-boson present and theP the number of the
lowest LL’s occupied by the parental c-fermions, each with
Q−1 fluxons. In summary the fermionic(bosonic) QHE
arises from the c-fermions(bosons) generated atn=P/Q,
even(odd) Q, see below.

Figure 1 indicates that(a) each of the resistivity maxima
at n; P/Q=3/2,5/2, . . . issymmetric with respect to high
and low fields,(b) the widths do not change much withP
and(c) the strength(width) of the (bosonic) integer QH state
at n=P decrease with the integerP, and (d) the resistivity
curve approaches smoothly to a constant as the field is re-
duced to zero. These features are explained as follows.

Let us consider the condition near 0 K. Only the energy
matters. First, take the case atn=3/2, where there are
c-fermions with two fluxons. The system energyE3/2 is given
by

E3/2 = E0 + CskBTd2, C = constant, s26d

whereE0 is the c-fermion system-ground-state energy; a high
Fermi degeneracy is assumed. Following Jain,13 we intro-
duce the effective magnetic field

B* ; B − B3/2, B3/2 = field at n = 3/2. s27d

If the field is reduced fromB3/2, the system tends to keep the
same numberN of the c-fermions by sucking in flux lines,
since the bound c-fermion has a negative energy. Thus, the
magnetic field becomes inhomogeneous, which generates an
extra magnetic energy so that

E = E0 + CskBTd2 +
A

2m0
sB*d2. s28d

If the field is raised, the system also tries to keep the same
numberN by expelling out flux lines. The inhomogeneous
fields raise the field energy as represented by the third term
in Eq. (28). This explains the high-low field symmetry, be-
havior (a).
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At n=1 there are the fc-boson, each with one fluxon.
Hence there is a phase change somewhere betweenn=3/2
andn=1. The c-boson ground-state energyEcb must enter in
the arguments. We denote the energy difference byDE,

DE ; E − Ecb = CskBTd2 +
A

2m0
sB*d2. s29d

We assume that the c-fermion system is stable if

DE , E1 = constant. s30d

At the centern=3/2, B* =0. There is a critical temperature
Tc defined by

CskBTcd2 = E1. s31d

Below Tc the c-fermions system is stable. The critical field
Bc is

Bc =Î2m0C

A
kB

2sTc
2 − T2d. s32d

This Bc may be regarded as the half-width. Equation(32)
indicates that the widthBc becomes a constant asT→0. We
can simply extend the theory to the casen=P/2. The Fermi
energy of the system remains the same irrespective of the
field. Then Eq.(32) must hold irrespective of the integerP,
explaining behavior(b).

The BEC occurs at each LL, and therefore the c-boson
densityn0 is less for highP, see Eqs.(19) and(22), and the
strength becomes weaker asP increases, explaining behavior
(c). This weakening of the c-boson minima and the con-
stancy of the c-fermion widths make a smooth curve over
large P, explaining behavior(d). The same theory explains
the smooth wide minimum observed atn=1/2. Here the
phonon exchange attraction played an important role. The
bound c-fermion needs an attraction, and cannot be derived
from the repulsive Coulomb interaction, the starting Hamil-
tonian in the prevalent theories.23 Jain’s effective magnetic
field’s can only be justified with the concept of the bound
c-fermion. Jain’s unification theory13 gives the location of
the bosonic QHE states but does not explain the states’
strengths.

The Halperin-Lee-Read theory16 based on the c-fermion
model, each c-fermion composed of an electron and an even
number of Cheren-Simons gauge objects, generates a finite
conductivity linear in the impurity densitynimp, which van-

ishes in the limitnimp→0. Our formula(10) remains finite at
0 K.

Before closing we briefly discuss a connection between
our theory and the Laughlin wave function. The ground-state
wave function for any quantum particle can be represented
by a positive near-constant everywhere except at the sample
boundary. The state in which all c-bosons with(odd) Q flux-
ons occupy the same state is the many-boson ground state at
n=1/Q. If this state is viewed in terms of theN electrons in
the system, the Laughlin wave function for the 1/Q state
emerges,

CQsr 1,r 2, . . . ,r Nd = Pi, jszi − zjdQ exps− o
i

uziu2d,

s33d
z; sx − iyd/lB, lB ; s"/eBd1/2.

This highly correlated electron state can be developed by the
phonon exchange and/or the repulsive Coulomb interaction.
As in the HTSC the phonon exchange is more relevant here
since this can generate an attractive interaction needed to
form the bound c-particle. The ground-state wave function
can carry no current. The wave functions expsipnx/"d, pn

;2p"n/L can carry currents, whereL 5 sample length and
n= ±1, ±2, . . . , and aperiodic boundary condition is as-
sumed. SinceL is macroscopic, the momentumpn is small
and so is the associated energy. If all ± c-bosons occupy a
singlepn, the supercurrent densityJ is given by Eq.(20). At
any otherp’s there will be an energy gapeg and hence the
supercurrent is stable against the applied electric field.

The supercurrent is stable against the applied magnetic
field B due to the Meissner effect as explained below. Let us
consider the condition nearn=1 belowTc. We introduce the
effective magnetic field in the form(27) with B1=field at n
=1. If the field is raised fromB1, the system tries to stay in
the superconducting state by expelling out the extra flux lines
(Meissner effect). The magnetic fields become inhomoge-
neous, which generates an extra field energy given by
sA/2m0dB*2. If the field is reduced fromB1, the system also
tries to maintain in the same superconducting state by suck-
ing in the flux lines. The inhomogeneous fields outside gen-
erates the extra field energy. In either case the superconduct-
ing state is sustained, generating the Hall resistivity plateau
for small effective fieldsB* . For a sufficiently high effective
field, the superconducting state is broken and the resistivity
becomes finite.
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