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We describe a quantum electromechanical system comprising a single quantum dot harmonically bound
between two electrodes and facilitating a tunneling current between them. An example of such a system is a
fullerene molecule between two metal electrodes[Parket al., Nature 407, 57 (2000)]. The description is based
on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and
thus incorporates the dynamics of both diagonal(population) and off diagonal(coherence) terms. We derive
coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of
freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is
related to observable features of the system including the stationary current as a function of bias voltage.
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I. INTRODUCTION

A quantum electromechanical system(QEMS) is a submi-
cron electromechanical device fabricated through state-of-
the-art nanofabrication.1 Typically, such devices comprise a
mechanical oscillator(a singly or doubly clamped cantilever)
with surface wires patterned through shadow mask metal
evaporation. The wires can be used to drive the mechanical
system by carrying an ac in an external static magnetic field.
Surface wires can also be used as motion transducers through
induced electromotive forces as the substrate oscillates in the
external magnetic field. Alternatively the mechanical resona-
tors can form an active part of a single electron transducer,
such as one plate of a capacitively coupled single electron
transistor.2,3 These devices have been proposed as sensitive
weak force probes with the potential to achieve single spin
detection.4,5 However they are of considerable interest in
their own right as nanofabricated mechanical resonators ca-
pable of exhibiting quantum noise features, such as squeez-
ing and entanglement.6

In order to observe quantum noise in a QEMS device we
must recognize that these devices are open quantum systems
and explicitly describe the interactions between the device
and a number of thermal reservoirs. This is the primary ob-
jective of this paper. There are several factors that determine
whether a system operates in the quantum or classical re-
gime. When the system consists only of an oscillator coupled
to a bath the oscillator quantum of energy should be greater
than the thermo-mechanical excitation of the system;"v0
ùkBT wherev0 is the resonant frequency of the QEMS os-
cillator andT is the temperature of the thermal mechanical
bath in equilibrium with the oscillator. At a temperature of
10 mK, this implies an oscillator frequency of the order of
GHz or greater. Recently Huanget al. reported the operation
of a GHz mechanical oscillator.7 A very different approach to
achieving a high mechanical frequency was the fullerene mo-
lecular system of Parket al.,8 and it is this system which we
take as the prototype for our theoretical description. Previous
work on the micromechanical degrees of freedom coupled to
mesoscopic conductors,9–12 indicate that transport of carriers

between source and drain can act as a damping reservoir,
even in the absence of an other explicit mechanism for me-
chanical damping into a thermal reservoir. This is also pre-
dicted by the theory we present for a particular bias condi-
tion. As is well known, dissipation can restore semiclassical
behavior. Transport induced damping can also achieve this
result.

The model we describe(Fig. 1) consists of a single quan-
tum dot coupled via tunnel junctions to two reservoirs, the
source and the drain. We will assume that the Coulomb
blockade permits only one quasibound single electron state
on the dot which participates in the tunneling between the
source and the drain. We will ignore spin, as the source and
drain are not spin polarized, and there is no external mag-
netic field. A gate voltage controls the energy of this quasi-
bound state with respect to the Fermi energy in the source.
The quantum dot can oscillate around an equilibrium posi-
tion midway between the source and the drain contacts due
to weak restoring forces. When an electron tunnels onto the
dot an electrostatic force is exerted on the dot shifting its
equilibrium position. In essence this is a quantum dot single
electron transistor. In the experiment of Parket al.,8 the
quantum dot was a single fullerene molecule weakly bound

FIG. 1. Schematic representation of tunneling between a source
and a drain through a quantum dot. The dot is harmonically bound
and vibrational motion can be excited as electrons tunnel through
the system.
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by van der Walls interactions between the molecule and the
electrodes. The dependence of the conductance on gate volt-
age was found to exhibit features attributed to transitions
between the quantized vibrational levels of the mechanical
oscillations of the molecule.

Boese and Schoeller13 have recently given a theoretical
description of the conductance features of this system. A
more detailed analysis using similar techniques was given by
Aji et al.15 Our objective is to extend these models to provide
a full master equation description of the irreversible dynam-
ics, including quantum correlation between the mechanical
and electronic degrees of freedom. We wish to go beyond a
rate equation description so as to be able to include coherent
quantum effects which arise, for example, when the me-
chanical degree of freedom is subject to coherent driving.

II. THE MODEL

We will assume that the center of mass of the dot is bound
in a harmonic potential with resonant frequencyv0. This
vibrational degree of freedom is then described by a dis-
placement operatorx̂ which can be written in terms of anni-
hilation and creation operatorsa, a† as

x̂ =Î "

2mv0
sa + a†d. s1d

The electronic single quasibound state on the dot is described
by Fermi annihilation and creation operatorsc, c† which sat-
isfy the anticommutation relationcc†+c†c=1.

The Hamiltonian of the system can then be written as

H = "vIsVgdc†c + Ucn̂
2 s2d

+ "v0a
†a s3d

+ "o
k

vSkak
†ak + "o

k

vDkbk
†bk s4d

− xsa† + adn̂ s5d

+ o
k

TSksakc
† + cak

†d + o
k

TDksbkc
† + cbk

†d s6d

+ o
p

"vpdp
†dp + gpsa†dp + adp

†d, s7d

wheren̂=c†c is the excess electron number operator on the
dot.

The first term of the Hamiltonian describes the free en-
ergy for the island. A particular gate voltageVg, with a cor-
responding"vI =15 meV, for the island is chosen for calcu-
lation. Uc is the Coulomb charge energy which is the energy
that is required to add an electron when there is already one
electron occupying the island. We will assume this energy is
large enough so that no more than one electron occupies the
island at any time. This is a Coulomb blockade effect. The
charging energy of the fullerene molecule transistor has been
observed by Parket al. to be larger than 270 meV which is 2

orders of magnitude larger than the vibrational quantum of
energy"v0. The free Hamiltonian for the oscillator is de-
scribed in Term(3). The Parket al. experiment gives the
value "v0=5 meV, corresponding to a THz oscillator. The
electrostatic energy of electrons in the source and drain res-
ervoirs is written as Term(4). Term (5) is the coupling be-
tween the oscillator and charge while Term(6) represents the
source-island tunnel coupling and the drain-island tunnel
coupling. The last term, Eq.(7), describes the coupling be-
tween the oscillator and the thermo-mechanical bath respon-
sible for damping and thermal noise in the mechanical sys-
tem in the rotating wave approximation.16 This is an
additional source of damping to that which can arise due to
the transport process itself(see below). We include it in order
to bound the motion under certain bias conditions. A possible
physical origin of this source of dissipation will be discussed
after the derivation of the master equation.

We have neglected the position dependence of the tunnel-
ing rate onto and off the island. This is equivalent to assum-
ing that the distanced between the electrodes and the equi-
librium position of the uncharged quantum dot, is much
larger than the rms position fluctuations in the ground state
of the oscillator. There are important situations where this
approximation cannot be made, for example in the so called
“charge shuttle” systems.17

A primary difficulty in analyzing the quantum dynamics
of this open system is the presence of different time scales
associated with the oscillator, the tunneling events and the
coupling between the oscillator and electronic degrees of de-
gree due to the electrostatic potential, Term(4). The standard
approach would be to move to an interaction picture for the
oscillator and the electronic degrees of freedom. However
this would make the electrostatic coupling energy time de-
pendent, and rapidly oscillating. Were we to approximate this
with the secular terms stemming from a Dyson expansion of
the Hamiltonian, the resulting effective coupling between the
oscillator and the electron occupation of the dot simply shifts
the free energy of the dot and no excitation of the mechanical
motion can occur.

To avoid this problem we eliminate the coupling term of
the oscillator and charge by doing a canonical transformation
with unitary representationU=es where

s= − lsa† − adn̂ s8d

with

l =
x

"v0
. s9d

This unitary transformation gives a conditional displacement
of the oscillator conditional on the electronic occupation the
dot. One might call this adisplacementpicture.

This derivation follows the approach of Mahan.18 The
motivation behind this is as follows. The electrostatic inter-
action, Term(4), displaces the equilibrium position of the
oscillator so that the average value of the oscillator ampli-
tude in the ground state becomes
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kal = l. s10d

We can shift this back to the origin by a phase-space dis-
placement

ā ; esae−s = a + ln̂. s11d

This unitary transformation gives a conditional displacement
of the oscillator, conditional on the electronic occupation of
the dot. ApplyingU to the Fermi operatorc gives

c̄ = celsa†−ad. s12d

The Schrödinger equation for the displaced state,r̄
=esre−s, then takes the form

dr̄

dt
= −

i

"
fH̄,r̄g, s13d

where the transformed Hamiltonian is

H̄ = "v0a
†a + "vIsVgdc†c + o

k

"vSkak
†ak + o

k

"vDkbk
†bk

+ SUc +
x2

"v0
Dn̂2 + o

k

TSksakc
†elsa†−ad + cak

†e−lsa†−add

+ o
k

TDksbkc
†elsa†−ad + cbk

†e−lsa†−add. s14d

We will now work exclusively in this displacement picture.

To derive a master equation for the dot, we first transform
to an interaction picture in the usual way to give the Hamil-
tonian

HI = o TSksakc
†eisvI−h−vSkdte−lsa†eiv0t−ae−iv0td

+ cak
†e−isvI−h−vSkdtelsa†eiv0t−ae−iv0tdd

+ o TDksbkc
†eisvI−h−vDkdte−lsa†eiv0t−ae−iv0td

+ cbk
†e−isvI−h−vDkdtelsa†eiv0t−ae−iv0tdd, s15d

whereh=x2/ s"v0d=xl.
At this point we might wish to trace out the phonon bath,

however we will postpone this for a closer look at the tun-
neling Hamiltonian at the individual phonon level. We use
the exponential approximationex=1+x+x2/ s2! d+¯, when

x is small for the termelsa†eiv0t−ae−iv0td. We expect an expan-
sion to second order inl to give an adequate description of
transport, in that at least one step in the current versus bias
voltage curve is seen due to phonon mediated tunneling. In
the experiment of Parket al., l was less than unity, but not
very small. Strong coupling between the electronic and vi-
brational degrees of freedom(largel) will give multiphonon
tunneling events, and corresponding multiple steps in the
current versus bias voltage curves. The Hamiltonian can then
be written as

HI = o TSksakc
†eisvI−h−vSkdt + cak

†e−isvI−h−vSkdtd + l o TSksakc
†aeisvI−h−vSk−v0dt + cak

†a†e−isvI−h−vSk−v0dt − akc
†a†eisvI−h−vSk+v0dt

− cak
†ae−isvI−h−vSk+v0dtd +

l2

2 o TSksakc
†aaeisvI−h−vSk−2v0dt + cak

†a†a†e−isvI−h−vSk−2v0dt − 2akc
†a†aeisvI−h−vSkdt

− 2cak
†a†ae−isvI−h−vSkdt + akc

†a†a†eisvI−h−vSk+2v0dt − cak
†aae−isvI−h−vSk+2v0dtd + o TDksbkc

†eisvI−h−vDkdt + cbk
†e−isvI−h−vDkdtd

+ l o TDks− bkc
†a†eisvI−h−vDk+v0dt − cbk

†ae−isvI−h−vDk+v0dt + bkc
†aeisvI−h−vDk−v0dt + cbk

†a†e−isvI−h−vDk−v0dtd

+
l2

2 o TDksbkc
†aaeisvI−h−vDk−2v0dt + cbk

†a†a†e−isvI−h−vDk−2v0dt − 2bkc
†a†aeisvI−h−vDkdt − 2cbk

†a†ae−isvI−h−vDkdt

+ bkc
†a†a†eisvI−h−vDk+2v0dt − cbk

†aae−isvI−h−vDk+2v0dtd. s16d

The terms of zero order inl describe bare tunneling through
the system and do not cause excitations of the vibrational
degree of freedom. The terms linear inl correspond to the
exchange of one vibrational quantum, or phonon. The terms
quadratic inl correspond to tunneling with the exchange of
two vibrational quanta. Higher order terms could obviously
be included at considerable computational expense. We will
proceed to derive the master equation up to quadratic order
in l.

III. MASTER EQUATION

Our objective here is to find an evolution equation of the
joint density operator for the electronic and vibrational de-
grees of freedom. We will use standard methods based on the
Born and Markov approximation.16 In order to indicate
where these approximations occur, we will sketch some of
the key elements of the derivation in what follows. The Born
approximation assumes that the coupling between the leads
and the local system is weak and thus second order pertur-
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bation theory will suffice to describe this interaction

ṙ =
− 1

"2 E
0

t

dt8 TrfHIstd,fHIst8d,Rgg, s17d

whereR is the joint density matrix for the vibrational and
electronic degrees of freedom of the local system and the
reservoirs.

At this point we would like to trace out the electronic
degrees of freedom for the source and drain. We will assume
that the states of the source and drain remain in local ther-
modynamic equilibrium at temperatureT. This is part of the
Markov approximation. Its validity requires that any correla-
tion that develops between the electrons in the leads and the
local system, as a result of the tunneling interaction, is rap-
idly damped to zero on time scales relevant for the system
dynamics. We need the following moments:

Trfak
†akrg = fSk, Trfbk

†bkrg = fDk,

Trfakak
†rg = 1 − fSk, Trfbkbk

†rg = 1 − fDk,

where fSk= fsESkd is the Fermi function describing the aver-
age occupation number in the source and similarlyfDk
= fsEDkd, for the drain. The Fermi function has an implicit
dependence on the temperatureT of the electronic system.

The next step is to convert the sum over modes to a
frequency-space integral

o
k

fSkuTSku2 → E
0

`

dvgsvdfDsvduTSsvdu2, s18d

whereuTSku2=TSk
* TSk andgsvd is the density of states. Evalu-

ating the time integral, we use

E
0

`

dte±iet = pdsed ± iPVs1/ed, s19d

wheret= t− t8 and the imaginary term is ignored.
Using these methods, we can combine the terms for the

source and drain as the left and right tunneling ratesgL and
gR, respectively,

E
0

`

dvgsvduTSsvdu2dsv0d = gLsv0d. s20d

In the same way, we can define

gL1 = gLs"vI − h − mLd,

f1L = fs"vI − h − mLd,

gL2 = gLs"vI − h − "v0 − mLd,

f2L = fs"vI − h − "v0 − mLd,

gL3 = gLs"vI − h + "v0 − mLd,

f3L = fs"vI − h + "vo − mLd,

and similarly for gR1, gR2gR3, f1R, f2R, f3R replacing mL
with mR and f being the Fermi functions which have a de-
pendence on the bias voltage(through the chemical poten-
tial) and also on the phonon energy"v0. As the bias voltage
is increased from zero, the first Fermi function to be signifi-
cantly different from zero isf2L followed by f1L and thenf3L.
This stepwise behavior will be important in understanding
the dependence of the stationary current as a function of bias
voltage.

The master equation in the canonical transformed picture
to the second order inl may be written as

dr̄

dt
= gL1ss1 − l2dsf1LDfc†gr̄ + s1 − f1LdDfcgr̄d + l2sf1Ls− a†ac†r̄c + a†acc†r̄ − c†r̄ca†a + r̄cc†a†ad + s1 − f1Lds− a†acr̄c†

+ a†ac†cr̄ − cr̄c†a†a + r̄a†ac†cddd + gL2l2sf2LDfac†gr̄ + s1 − f2LdDfa†cgr̄d + gL3l2sf3LDfa†c†gr̄ + s1 − f3LdDfacgr̄d

+ gR1ss1 − l2dsf1RDfc†gr̄ + s1 − f1RdDfcgr̄d + l2sf1Rs− a†ac†r̄c + a†acc†r̄ − c†r̄ca†a + r̄cc†a†ad + s1 − f1Rds− a†acr̄c†

+ a†ac†cr̄ − cr̄c†a†a + r̄a†ac†cddd + gR2l2sf2RDfac†gr̄ + s1 − f2RdDfa†cgr̄d + gR3l2sf3RDfa†c†gr̄ + s1 − f3RdDfacgr̄d

+ ksn̄p + 1dDfagr̄ + kn̄pDfa†gr̄ + kl2s2n̄p + 1dDfc†cgr̄, s21d

where the notationD is defined for arbitrary operatorsX and
Y as

DfXgY = J fXgY − AfYg = XYX† − 1
2sX†XY+ YX†Xd,

s22d

and

n̄psv0d =
1

e"v0/kBT − 1
. s23d

We have included in this model an explicit damping process
of the oscillators motion at ratek into a thermal oscillator
bath with mean excitationn̄p andT is the effective tempera-
ture of reservoir responsible for this damping process. A pos-
sible physical origin for this kind of damping could be as
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follows. Thermal fluctuations in the metal contacts of the
source and drain cause fluctuations in position of the center
of the trapping potential confining the molecule, that is to say
small, fluctuating linear forces act on the molecule. For a
harmonic trap, this appears to the oscillator as a thermal
bath. However we expect such a mechanism to be very weak.
This fact, together with the very large frequency of the os-
cillator, justifies our use of the quantum optical master equa-
tion (as opposed to the Brownian motion master equation) to
describe this source of dissipation.16 The thermo-mechanical
and electronic temperatures are not necessarily the same, al-
though we will generally assume this to be the case.

Settingl=0 we recover the standard master equation for
a single quantum dot coupled to leads.14 The superoperator
Dfc†g adds one electron to the dot. Terms containing this
superoperator describe a conditional Poisson event in which
an electron tunnels onto the dot. The electron can enter from
the source, with probability per unit time ofgL1f1Lkcc†l, or it
can enter from the drain, with probability per unit time
gR1f1Rkcc†l. Likewise the termDfcg describes an electron
leaving the dot, again via tunneling into the source(terms
proportional togL1) or the drain(terms proportional togR1).
When lÞ0 there are additional terms describing phonon
mediated tunneling events onto and off the dot. Any term
proportional togLi , i =1,2,3describes an electron tunneling
out of, or into, the source, while any term proportional to
gRi, i =1,2,3describes an electron tunneling out of, or into,
the drain.

The average currents through the left junction(source
lead-dot) and the right junction(dot-drain lead) are related to
each other, and the average occupation of the dot, by

ILstd − IRstd = e
dkc†cl

dt
. s24d

In the steady state, the occupation of the dot is constant and
the average currents through the two junctions are equal. Of
course, the actual fluctuating time dependent currents are al-
most never equal. The external current arises as the external
circuit adjusts the chemical potential of the local Fermi res-
ervoir when electrons tunnel onto or off the dot. It is thus
clear that the current through the left junction must depend
only on the tunneling ratesgLi , i =1,2,3 in theleft barrier.
This makes it easy to identify the average current through the
left (or right) junction by inspection of the equation of mo-
tion for kc†cl: all terms in the right hand side of Eq.(24)
proportional togLi correspond to the average current through
the left junction,ILstd, while all terms on the right hand side
proportional togRi correspond to the negative of the current
through the right junction,−IRstd.

IV. LOCAL SYSTEM DYNAMICS

We can now compute the current through the quantum
dot. The current reflects how the reservoirs of the source and
drain respond to the dynamics of the vibrational and elec-
tronic degrees of freedom. Of course in an experiment the
external current is typically all we have access to. However,
the master equation enables us to calculate the coupled dy-

namics of the vibrational and electronic degrees of freedom.
Understanding this dynamics is crucial to explaining the ob-
served features in the external current. As electrons tunnel on
and off the dot, the oscillator experiences a force due to the
electrostatic potential. While the force is conservative, the
tunnel events are stochastic(in fact a Poisson process) and
thus the excitation of the oscillator is stochastic. Furthermore
the vibrational and electronic degrees of freedom become
correlated through the dynamics. In this section we wish to
investigate these features in some detail.

From the master equation, the rate of change of this av-
erage electron number in the dot may be obtained:

dkc†clCT

dt
= trFc†c

dr̄

dt
G s25d

=fgL1s1 − l2dsf1L − kc†cld + gR1s1 − l2d

3sf1R − kc†cld − 2gL1l2sf1Lka†al

− ka†ac†cld + gL2l2sf2Lka†al − ka†ac†cl

− s1 − f2Ldkc†cld + gL3l2sf3Lk1 + a†al

− f3Lkc†cl − ka†ac†cld − 2gR1l2sf1Rka†al

− ka†ac†cld + gR2l2sf2Rka†al − ka†ac†cl

− s1 − f2Rdkc†cld + gR3l2sf3Rk1 + a†al

− f3Rkc†cl − ka†ac†cldgCT. s26d

While for the vibrational degrees of freedom, we see that

dka†alCT

dt
= trFa†a

dr̄

dt
G s27d

=l2fgL2s− f2Lka†al + ka†ac†cl + s1 − f2Ldkc†cld

+ gL3sf3Lk1 + a†al − f3Lkc†cl − ka†ac†cld

+ gR2s− f2Rka†al + ka†ac†cl + s1 − f2Rdkc†cld

+ gR3sf3Rk1 + a†al − f3Rkc†cl

− ka†ac†cld − kka†algCT + kn̄p, s28d

where subscript canonical transformed(CT) indicates that
the quantity to which it is attached is evaluated in the CT
basis. The average occupational number of electron in the
dot in the original basis is the same as in the CT basis:

kc†cl = trfc†crg = trfc†cr̄g = kc†clCT.

While for the vibrational degrees of freedom, we have

ka†al = trfa†arg = trfa†ae−se−iv0a†atr̄eiv0a†atesg

= trfeiv0a†atsa† + ln̂dsa + ln̂de−iv0a†atr̄g

= ka†alCT + lksa†eiv0t + ae−iv0tdn̂lCT + l2kn̂2l.

s29d

If the initial displacementkxl is zero, the second time depen-
dent term in the previous expression remains zero. We will
assume this is the case in what follows.

In general we do not get a closed set of equations for the
mean phonon and electron number due to the presence in
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these equations of the higher order momentka†ac†cl. This
reflects the fact that the electron and vibrational degrees of
freedom are correlated(and possibly entangled) through the
dynamics. One might proceed by introducing a semiclassical
factorization approximation by replacingka†ac†cl by the fac-
torized average values, i.e.,ka†ac†cl<ka†alkc†cl, then the
evolution equations(26) and(28) form a closed set of equa-
tions. However there is a special case for which this is not
necessary. If we letgL1=gL2=gL3=gL and gR1=gR2=gR3
=gR, which is the assumption of energy-independent tunnel
couplings, the equations do form a closed set:

dkc†cl
dt

= A1kc†cl + B1ka†alCT + C1,

A1 = − fgLs1 − f2Ll2 + f3Ll2d + gRs1 − f2Rl2 + f3Rl2dg,

B1 = l2s− 2f1LgL + f2LgL + f3LgL − 2f1RgR + f2RgR + f3RgRd,

C1 = s1 − l2dgLf1L + gLf3Ll2 + s1 − l2dgRf1R + gRf3Rl2,

s30d

and

dka†alCT

dt
= A2kc†cl + B2ka†alCT + C2,

A2 = l2sgLs1 − f2L − f3Ld + gRs1 − f2R − f3Rdd,

B2 = l2s− gLf2L + gLf3L − gRf2R + gRf3Rd − k,

C2 = l2sgLf3L + gRf3Rd + kn̄p. s31d

Consideration of Eq.(31) indicates that it is possible for the
oscillator to achieve a steady state even when there is no
explicit thermo-mechanical dampingsk=0d. This requires
bias conditions such thatf3L= f3R=0. It is remarkable that the
process of electrical transport between source and drain
alone can induce damping of the mechanical motion. This
result has been indicated by other authors.9–12

These equations were solved numerically and the results,
for various values ofl and bias voltage, are shown in Fig. 2.
A feature of our approach is that we can directly calculate the
dynamics of the local degrees of freedom, for example the
mean electron occupation of the dot as well as the mean
vibrational occupation number in the oscillator.

From these equations we can reproduce behavior for the
stationary current similar to that observed in the experiment.
We concentrate here on the stationary current through the left
junction (connected to the source). Similar results apply for
the right junction. We assume that the electronic temperature
is 1.5 K, which is the temperature used in the experiment by
Parket al.8

Following the discussion below Eq.(24), we see from Eq.
(30) that the average steady state current through the left
junction is given by

Ist = egLfs− 1 + f2Ll2 − f3Ll2dkc†clst + s− 2f1Ll2 + f2Ll2

+ f3Ll2dka†alCT,st+ s1 − l2df1L + f3Ll2g, s32d

which is of course equal to the average steady state current
through the right junction. The steady state currentIst can
then be found by finding the steady state solution for each of
the phonon number and electron number

kc†clst =
B1C2 − B2C1

A1B2 − A2B1
, s33d

ka†alCT,st=
− A2

B2
SB1C2 − B2C1

A1B2 − A2B1
D −

C2

B2
. s34d

In Fig. 2, we assume that the bias voltage is applied sym-
metrically, i.e,mL=−mR=eVbias/2. In this case, all the Fermi
factorsf1R, f2R, and f3R effectively equal zero in the positive
bias regime, the regime of Fig. 2. From Eqs.(24) and (30),
we see that Eq.(32) also equals the steady state current
through the right junction as:Ist=egRkc†clst. In the casegR

=gL, the steady statekc†clst shown in Figs. 2(a) and 2(d) at
long times should thus equal, respectively,Ist/ segLd shown in
Figs. 2(c) and 2(f) at long times. This is indeed the case,
although the transient behaviors in these plots differ consid-
erably. We note that the plot shown in Figs. 2(c) and 2(f) is
the current through the left junction, normalized bysegLd.
The values off1L, f2L, and f3L depend on the strength of the
applied bias voltage and are important in understanding the
stepwise behavior of the stationary current as a function of
the bias voltage. We will now concentrate exclusively on the
positive bias regime.

When the bias voltage is small, the current is zero. As the
bias voltage increases the first Fermi factor in the left lead to
become nonzero isf2L, with the other Fermi factors very
small or zero. In the case wheref2L=1, f1L=0, and f3L=0,
the steady state current is

Ist
s1d = egLfl2ka†alCT,st− s1 − l2dkc†clstg. s35d

For low temperatures this is very small. Only if the phonon
temperature is large, so that the stationary mean phonon
number is significant, does this first current step become ap-
parent(see Fig. 4). As the bias voltage is increased bothf2L
and f1L become nonzero. In the case where they are both
unity, the steady state current is

Ist
s2d = egLfs1 − l2dkcc†lst − l2ka†alCT,stg. s36d

The first term here is the same form as the bare tunneling
case except that the effective tunneling rate is reduced by
s1−l2d. This is not too surprising. If the island is moving, on
average it reduces the effective tunneling rate across the two
barriers. Thus the first current step will be reduced below the
value of the bare(no phonon) rate. At the region where bias
voltage is large, all the Fermi factors are unity and

Ist
s3d = egLkcc†lst, s37d

which is the expected result for the bare tunneling case.
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To explicitly evaluate the stationary current we need to
solve for the stationary mean electronic and phonon occupa-
tion numbers. We have done this numerically and the results
are shown in the figures below. However the large bias case
can be easily solved:

kc†clst =
gL

gL + gR
, s38d

ka†alst = Sl2 +
l2s− gL + gRd

k
DS gL

gL + gR
D +

gLl2 + kn̄p

k
,

s39d

Ist = e
gLgR

gL + gR
. s40d

This is the result for tunneling through a single quasibound
state between two barriers.14

The steady state current for larger values ofl shows two
steps. As one can see from Fig. 2(a), the current vanishes
until the first Coulomb blockade energy is overcome. The
first step in the stationary current is thus due to bare tunnel-
ing though the dot. The second step represents single phonon
mediated tunneling through the dot. These results are consis-
tent with the semiclassical theory of Boese and Schoeller13

given that our expansion to second order inl can only ac-
count for single phonon events. The height of the step de-
pends onl, which is the ratio of the coupling strength be-

FIG. 2. Average number of electron, phonon, and current through the dot against bias voltage with"v0=5 meV, "vI −h=15 meV,
kBT=0.13 meV, and"gL="gR=2 meV for l=0.3: (a), (b), (c) without damping and(d), (e), (f) with damping k=0.3gL. We assume
mL=−mR=eVbias/2.
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tween the electron and the vibrational levelx, and the
oscillator energy"v0.

Looking at Fig. 2, the average electron number ap-
proaches a steady state(e.g., a steady state value of 0.5 at
large bias since we have set the value ofgL to be equal togR)
while the average phonon number, without external damping,
behaves differently in various regions[Fig. 2(b)]. The aver-
age phonon number slowly reaches a steady state value
within the first step, while at the second step, the mean pho-
non number grows linearly with time[Fig. 2(b)]. The steady
state at the first step is the previously noted effect of trans-
port induced damping. These results are as expected since
from Eq. (21), the term consisting ofgL2l2f2LDfac†gr cor-
responds to a jump of one electron onto the island with the
simultaneous annihilation of a phonon, while
gL3l2f3LDfa†c†gr corresponds to the jump of an electron
onto the island along with the simultaneous creation of a
phonon. The dynamics can be understood by relating the
behavior of these terms to the rate of average phonon num-
ber change in Eq.(31). At the first step, when bothf1L and
f2L are both one, whilef3L is zero, the coefficientB2 has
negative value, and therefore the mean phonon number could
reach a steady state under this transport induced damping. In
this regime, we find that

kc†clst = s1 − l2d/2, s41d

ka†alst < 1/2, s42d

where we have setgL=gR and used Eq.(29) in obtaining Eq.
(42). The corresponding effective temperature can be found
using

Teff =
"v0

kB lnf1 + s1/ka†alstdg
. s43d

When all the Fermi factors for the left lead are unity, the rate
of growth for the mean phonon number now depends on a
constantC2 in Eq. (31) and therefore the mean phonon num-
ber will grow linearly with time. However, the current will
be still steady[Fig. 2(f)]. This indicates that the steady state
current and mean electron number in the dot[given by Eqs.
(40) and(38), respectively] do not depend on the mean pho-
non number. This is supported by the fact that the coefficient
B1 in Eq. (30) vanishes in this regime. When damping is
included, the phonon number reaches a steady value of 0.35
[see Fig. 2(e) and also Eq.(39)].

In Fig. 3 we plot the steady state current versus bias volt-
age for different values ofl. At the region of the first phonon
excitation level (when bias voltage is between 30 and
40 meV), the steady state current drops by a factor propor-
tional to quadratic order ofl. Compared to the current at
large bias voltage, the size of the drop is

DIst =
gLl2s2gLl2 + ks2n̄p + 1dd

4gLl2 − 2ksl2 − 2d
. s44d

We thus see that the effect of the oscillatory motion of the
island is twofold. First, the vibrational motion leads to an
effective reduction in the tunneling rate by an amountl2 to
lowest order inl. Second, there is a second step at higher

bias voltage due to phonon mediated tunneling. This is de-
termined by the dependence of the Fermi factors on the vi-
brational quantum of energy. One might have expected an-
other step at a smaller bias voltage. However this step is very
small unless there is a significant thermally excited mean
phonon number present in the steady state. If we increase the
phonon temperature such that the energy is larger than the
energy quantum of the oscillator"v0, (for this example we
chooseT=2"v0/kB<116 K) this step can be seen(Fig. 4).
Thus we see three steps as expected, corresponding to the
three bias voltages when the three Fermi factors switch from
zero.

In order to explore the steady state correlation between
phonon number and electron number on the dot, we can find
the steady state directly by solving the master equation from
Eq. (21). In Fig. 5 we plot the correlation function
ka†ac†cl−ka†alkc†cl as a function ofl and the bias voltage.
The correlation is seen to be small except when a transition

FIG. 3. Steady state current for different values ofl with damp-
ing k=0.3gL; the electronic and phonon temperatures are both
1.5 K.

FIG. 4. Steady state current for different values ofl and damp-
ing k=0.3gL: the electronic temperature is 1.5 K, and the phonon
temperature is 116 K, which is chosen to be 2"v0/kB in order to
make manifest the step at a smaller bias voltage.
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occurs between two conductance states. This is not surpris-
ing, as at this point one expects fluctuations in the charge on
the dot, and consequently the fluctuations of phonon number,
to be large. This interpretation implies that damping of the
oscillator should suppress the correlation, as the response of
the oscillator to fluctuations in the dot occupation are sup-
pressed. This is seen in Fig. 6.

V. CONCLUSIONS

We have given a quantum description of a QEMS com-
prising a single quantum dot harmonically bound between
two electrodes based on a quantum master equation for the
density operator of the electronic and vibrational degrees of
freedom. The description thus incorporates the dynamics of
both diagonal (population) and off-diagonal (coherence)
terms. We found a special set of parameters for which the
equations of motion for the mean phonon number and the
electron number form a closed set. From this we have been
able to reproduce the central qualitative features of the cur-
rent versus bias voltage curve obtained experimentally by

Parket al.8 and also of the semiclassical phenomenological
theory by Boese and Schoeller.13 We also calculate the cor-
relation function between phonon and electron number in the
steady state and find that it is only significant at the steps of
the steady state conductance. The results reported in this pa-
per do not probe the full power of the master equation ap-
proach as the model does not couple the diagonal and off-
diagonal elements of the density matrix. This can arise when
the vibrational motion of the dot is subject to a conservative
driving force, in addition to the stochastic driving that arises
when electrons tunnel on and off the dot in a static electric
field. The full quantum treatment will enable us to include
coherent effects which are likely to arise when a spin doped
quantum dot is used in a static or rf external magnetic field.
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