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We describe a quantum electromechanical system comprising a single quantum dot harmonically bound
between two electrodes and facilitating a tunneling current between them. An example of such a system is a
fullerene molecule between two metal electroffearket al, Nature 407, 57 (2000]. The description is based
on a quantum master equation for the density operator of the electronic and vibrational degrees of freedom and
thus incorporates the dynamics of both diagaalpulation and off diagonalcoherenceterms. We derive
coupled equations of motion for the electron occupation number of the dot and the vibrational degrees of
freedom, including damping of the vibration and thermo-mechanical noise. This dynamical description is
related to observable features of the system including the stationary current as a function of bias voltage.
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I. INTRODUCTION between source and drain can act as a damping reservoir,

A quantum electromechanical syst¢@EMS) is a submi-  €ven in the absence of an other explicit mechanism for me-
cron electromechanical device fabricated through state-of¢hanical damping into a thermal reservoir. This is also pre-
the-art nanofabricatioh Typically, such devices comprise a dicted by the theory we present for a particular bias condi-
mechanical oscillatoga singly or doubly clamped cantileyer tion. As is well known, dissipation can restore semiclassical
with surface wires patterned through shadow mask metdpehavior. Transport induced damping can also achieve this
evaporation. The wires can be used to drive the mechanicagsult.
system by carrying an ac in an external static magnetic field. The model we describ@=ig. 1) consists of a single quan-
Surface wires can also be used as motion transducers througim dot coupled via tunnel junctions to two reservoirs, the
induced electromotive forces as the substrate oscillates in ttgource and the drain. We will assume that the Coulomb
external magnetic field. Alternatively the mechanical resonablockade permits only one quasibound single electron state
tors can form an active part of a single electron transducegn the dot which participates in the tunneling between the
such as one plate of a capacitively coupled single electrogsource and the drain. We will ignore spin, as the source and
transistor® These devices have been proposed as sensitiv@rain are not spin polarized, and there is no external mag-
weak force probes with the potential to achieve single spiretic field. A gate voltage controls the energy of this quasi-
detectior-® However they are of considerable interest inbound state with respect to the Fermi energy in the source.
their own right as nanofabricated mechanical resonators cd-he quantum dot can oscillate around an equilibrium posi-
pable of exhibiting quantum noise features, such as squeetion midway between the source and the drain contacts due
ing and entanglemeft. to weak restoring forces. When an electron tunnels onto the

In order to observe quantum noise in a QEMS device wedot an electrostatic force is exerted on the dot shifting its
must recognize that these devices are open quantum syste@guilibrium position. In essence this is a quantum dot single
and explicitly describe the interactions between the devicelectron transistor. In the experiment of Pagk al.® the
and a number of thermal reservoirs. This is the primary obquantum dot was a single fullerene molecule weakly bound
jective of this paper. There are several factors that determine
whether a system operates in the quantum or classical re-
gime. When the system consists only of an oscillator coupled
to a bath the oscillator quantum of energy should be greater S
than the thermo-mechanical excitation of the systéma;
=KkgT where wy is the resonant frequency of the QEMS os-
cillator andT is the temperature of the thermal mechanical
bath in equilibrium with the oscillator. At a temperature of
10 mK, this implies an oscillator frequency of the order of
GHz or greater. Recently Huareg al. reported the operation Vg
of a GHz mechanical oscillatéiA very different approach to
achieving a high mechanical frequency was the fullerene mo-
lecular system of Parkt al.® and it is this system which we  FiG. 1. Schematic representation of tunneling between a source
take as the prototype for our theoretical description. Previougnd a drain through a quantum dot. The dot is harmonically bound
work on the micromechanical degrees of freedom coupled tand vibrational motion can be excited as electrons tunnel through
mesoscopic conductofst?indicate that transport of carriers the system.
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by van der Walls interactions between the molecule and therders of magnitude larger than the vibrational quantum of
electrodes. The dependence of the conductance on gate voltrergyfiw,. The free Hamiltonian for the oscillator is de-
age was found to exhibit features attributed to transitionscribed in Term(3). The Parket al. experiment gives the
between the quantized vibrational levels of the mechanicalalue #wy=5 meV, corresponding to a THz oscillator. The
oscillations of the molecule. electrostatic energy of electrons in the source and drain res-
Boese and Schoelférhave recently given a theoretical ervoirs is written as Terni4). Term (5) is the coupling be-
description of the conductance features of this system. Aween the oscillator and charge while Tef@ represents the
more detailed analysis using similar techniques was given bgource-island tunnel coupling and the drain-island tunnel
Aji et al!® Our objective is to extend these models to providecoupling. The last term, Eq7), describes the coupling be-
a full master equation description of the irreversible dynam+ween the oscillator and the thermo-mechanical bath respon-
ics, including quantum correlation between the mechanicasible for damping and thermal noise in the mechanical sys-
and electronic degrees of freedom. We wish to go beyond tem in the rotating wave approximatiéh. This is an
rate equation description so as to be able to include cohereatdditional source of damping to that which can arise due to
quantum effects which arise, for example, when the methe transport process its¢fee below. We include it in order
chanical degree of freedom is subject to coherent driving. to bound the motion under certain bias conditions. A possible
physical origin of this source of dissipation will be discussed
after the derivation of the master equation.
Il. THE MODEL We have neglected the position dependence of the tunnel-

We will assume that the center of mass of the dot is boundd rate onto and off the island. This is equivalent to assum-
in a harmonic potential with resonant frequeney. This N9 that the distancd between the electrodes and the equi-

vibrational degree of freedom is then described by a disliPrium position of the uncharged quantum dot, is much
placement operatdt which can be written in terms of anni- larger than the rms position fluctuations in the ground state
hilation and creation operatoes a' as of the oscillator. There are important situations where this

approximation cannot be made, for example in the so called
. “charge shuttle” system<.
(@a+a). @) A primary difficulty in analyzing the quantum dynamics
of this open system is the presence of different time scales
The electronic single quasibound state on the dot is describegssociated with the oscillator, the tunneling events and the
by Fermi annihilation and creation operatars’ which sat-  coupling between the oscillator and electronic degrees of de-
isfy the anticommutation relatiooc’ +c'c=1. gree due to the electrostatic potential, Té#n The standard
The Hamiltonian of the system can then be written as  approach would be to move to an interaction picture for the
oscillator and the electronic degrees of freedom. However

meo

H= h""(vg)CTCJ' U @ this would make the electrostatic coupling energy time de-
: pendent, and rapidly oscillating. Were we to approximate this

+hopa'a () with the secular terms stemming from a Dyson expansion of
the Hamiltonian, the resulting effective coupling between the

+1, wg@iay + 5, wpbiby (4)  oscillator and the electron occupation of the dot simply shifts

k k the free energy of the dot and no excitation of the mechanical

motion can occur.
- x@" +a)h (5) To avoid this problem we eliminate the coupling term of
the oscillator and charge by doing a canonical transformation

with unitary representatiot =e® where
+ 2 Tolac! +eg) + 2 Tobc +ch)  (6)
k k

s=-\@'-a)n (8)
t T i
+ Ep fwpdid, + gy(a'd, +ad), D ih
wherefi=c'c is the excess electron number operator on the
dot. Nz X (9)
The first term of the Hamiltonian describes the free en- fiwg

ergy for the island. A particular gate voltayg, with a cor-

respondinghw; =15 meV, for the island is chosen for calcu- This unitary transformation gives a conditional displacement
lation. U, is the Coulomb charge energy which is the energyof the oscillator conditional on the electronic occupation the
that is required to add an electron when there is already ondot. One might call this aisplacemenpicture.

electron occupying the island. We will assume this energy is This derivation follows the approach of Mah&hThe
large enough so that no more than one electron occupies thmotivation behind this is as follows. The electrostatic inter-
island at any time. This is a Coulomb blockade effect. Theaction, Term(4), displaces the equilibrium position of the
charging energy of the fullerene molecule transistor has beeoscillator so that the average value of the oscillator ampli-
observed by Parkt al. to be larger than 270 meV which is 2 tude in the ground state becomes
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(@)= \. (10) To derive a master equation for the dot, we first transform

) . o . to an interaction picture in the usual way to give the Hamil-
We can shift this back to the origin by a phase-space disggpian

placement
a=e%aeS=a+\n. (11 H, = E TSI(akCTei(“’I‘W‘wsl?te‘)\(aTeint‘ae_iwot)
This unitary transformation gives a conditional displacement + Caize—i(a;'—r]—wsk)te)\(aTeiwot_ae—imot))
of the oscillator, conditional on the electronic occupation of _ it o
the dot. ApplyingU to the Fermi operatoc gives + > Tp(bcle @ 7menntgh @’ -ae™)
T=ce\@-a. (12) + Chie-i(w,—n—ka)tex(a*eiwot-ae-iwot))’ (15)
The Schrodinger equation for the displaced state, o :
=e%peS, then takes the form where n=x/(hwg) =x\.
- _ At this point we might wish to trace out the phonon bath,
dp __ l_[g—_l (13) however we will postpone this for a closer look at the tun-
dt Pk neling Hamiltonian at the individual phonon level. We use

the exponential approximatios‘=1+x+x?/(2!)+---, when

where the transformed Hamiltonian is gt )
. We expect an expan-

. T —iwt
x is small for the termgh(@ e -ae"™®

H= hwgala+ ﬁwl(vg)c‘ch, > thkalak+ > ﬁkabEbk sion to second order iR to give an adequate description of
k k transport, in that at least one step in the current versus bias
2 voltage curve is seen due to phonon mediated tunneling. In
+ (UC+ X—)ﬁ2+ > TSk(ach@<aT‘a> + ca;ze‘MaT‘a)) the experiment of Parkt al, A was less than unity, but not
e k very small. Strong coupling between the electronic and vi-
brational degrees of freedogtarge)) will give multiphonon
tunneling events, and corresponding multiple steps in the
current versus bias voltage curves. The Hamiltonian can then
We will now work exclusively in this displacement picture. be written as

+ > Toubce@ = + chle@-a), (14)
k

HI - 2 Tsl(a.kCTei(wl_ﬂ—wSQt + Ca"l('e—i(wrn—wSk)t) +) E Tsk(akCTaé(w|—77—wSk—wo)t + calaTe'i(“’l"’"“’Sk'“’O)t _ akCTaTei(w|—7]—a)Sk+w0)t

2
— cajae (@ osEeol) 4 % > Tsdaclaad @ mesc290t 1 calaTaler(@-mosc 200t — 2g cTafad (@ oset

- ankTafae—i(a)pn—wsk)t + akCTaTaTei(w|—77—wSk+2wo)t _ CakTaae—i(wﬁn—wSQZwo)t) + E TDk(bkCTei(w|—17—ka)t + Ckae_i(wl_n_ka)t)
+) 2 TDk(_ bkCTaTei(w|—7]—ka+w0)t _ Cblae—i(w|—1;—ka+wO)t + bkCTaé(w|—77—ka—wo)t + Ch‘i'a‘l'e—i(wpn—w[)k—wo)t)

2
+ )\E E TDk(bkCTaaé(w|—n—ka—Zwo)t + CkaaTaTe—i(w|—77—ka—2wo)t _ ZbkCTaTaé(w|—77—ka)t _ 2Cbi<faTae—i(w|—r/—ka)t

+ bkCTaTaTei(w|-77—ka+2w0)t _ Chtaae—i(wrr]—wDWZwo)t). (16)

The terms of zero order iR describe bare tunneling through ll. MASTER EQUATION

the system and do not cause excitations of the vibrational o objective here is to find an evolution equation of the
degree of freedom. The terms linearNncorrespond to the joint density operator for the electronic and vibrational de-
exchange of one vibrational quantum, or phonon. The termgrees of freedom. We will use standard methods based on the
quadratic in\ correspond to tunneling with the exchange of Born and Markov approximatiolf. In order to indicate

two vibrational quanta. Higher order terms could obviouslywhere these approximations occur, we will sketch some of
be included at considerable computational expense. We withe key elements of the derivation in what follows. The Born
proceed to derive the master equation up to quadratic orderpproximation assumes that the coupling between the leads
in \. and the local system is weak and thus second order pertur-
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bation theory will suffice to describe this interaction * _
f dre'e" = 78(e) + iPV(1/e), (19
. -1t 0
=— | dt’ Tr[H,(),[H,{"),R]], 17 . . i
P h? fo [H®.[H®).R1] a7 wherer=t-t’ and the imaginary term is ignored.

Using these methods, we can combine the terms for the
whereR is the joint density matrix for the vibrational and source and drain as the left and right tunneling rateand
electronic degrees of freedom of the local system and theg, respectively,
reservoirs. w

At this point we would like to trace out the electronic f
degrees of freedom for the source and drain. We will assume
that the states qf th_e source and drain remain in local therl-n the same way, we can define
modynamic equilibrium at temperatufe This is part of the

dwg(w)|Ts(w)|28(wg) = . (wp). (20
0

Markov approximation. Its validity requires that any correla- Y= nlfioy = n=p),
tion that develops between the electrons in the leads and the
local system, as a result of the tunneling interaction, is rap- fi =ftho - 7-pn),
idly damped to zero on time scales relevant for the system
dynamics. We need the following moments: Yo= Nlfiw = 7= fiwg = py),
Trlajawp] = fsie Trbibe] = fox, fo = f(fiw, — 77— g — L),
Traalp]=1-fs, Tribblp]=1-foy, ICRECU AR NES
wherefg,=f(Egy is the Fermi function describing the aver- fa = f(hoy — n+fiwo— ),

age occupation nu_mber in the_sourc_e and S|m|l_efr[Ly_ _and similarly for ya1, YroYrs: f1rs fore far replacing g
=f(Epy), for the drain. The Fermi function has an implicit ;i ur and f being the Fermi functions which have a de-
dependence on the temperatdref the electronic system.  pendence on the bias voltagiarough the chemical poten-
The next step is to convert the sum over modes to ajal) and also on the phonon enerdyy,. As the bias voltage
frequency-space integral is increased from zero, the first Fermi function to be signifi-
cantly different from zero i, followed byf;, and therfs, .

flT 2_>f d f T(w)2, 18 This stepwise behavior will be important in understanding
% AT 0 ©9(0)fo()[Ts(w)| (18 the dependence of the stationary current as a function of bias

voltage.
where|Ts?=TgTscandg(w) is the density of states. Evalu-  The master equation in the canonical transformed picture
ating the time integral, we use to the second order ik may be written as

d _ _
d—’i = (L =N (f DcTo+ (1 - ;) D[c]p) + N*(fy (- a'ac’pc + aTaccp - c'pea’a + pec'ala) + (1 - 5 ) (- a'acpe!

+a'ac'cp - cpc'a’a +pa'ac’c))) + y M(f, DlacTp + (1 - f, ) Dla'clp) + ya\(fy Dla'cTp + (1 - f3 ) Dlacp)
+ yro((1 =N (f D To + (1 - f1R)D[cTp) + N*(f1r(- a'acTpe + a'acc’p - cTpcala + peca’a) + (1 - f1r) (- a'acpc
+a'ac'cp - cpca’a +pa'ac’c))) + yro\(frD[ac Tp + (1 - fr)Dla’clp) + yrah(farD[ac! o + (1 - far)Dlac]p)

+ k(n, + 1)D[aJp + kn,D[a'Tp + kA4(2n, + 1)D[c'c]p, (22)
[
where the notatiof is defined for arbitrary operatodand _ 1
Y as np(wO) = eh“’O/kBT -1 (23)
DIX]Y = JIX]Y = A[Y] = XY X = 2(X'XY + YXX), We have included in this model an explicit damping process

of the oscillators motion at rate into a thermal oscillator
bath with mean excitatioﬁp andT is the effective tempera-
ture of reservoir responsible for this damping process. A pos-
and sible physical origin for this kind of damping could be as

(22
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follows. Thermal fluctuations in the metal contacts of thenamics of the vibrational and electronic degrees of freedom.
source and drain cause fluctuations in position of the centddnderstanding this dynamics is crucial to explaining the ob-
of the trapping potential confining the molecule, that is to sayserved features in the external current. As electrons tunnel on
small, fluctuating linear forces act on the molecule. For aand off the dot, the oscillator experiences a force due to the
harmonic trap, this appears to the oscillator as a thermatlectrostatic potential. While the force is conservative, the
bath. However we expect such a mechanism to be very weakunnel events are stochastio fact a Poisson procesand
This fact, together with the very large frequency of the os-thus the excitation of the oscillator is stochastic. Furthermore
cillator, justifies our use of the quantum optical master equathe vibrational and electronic degrees of freedom become
tion (as opposed to the Brownian motion master equation correlated through the dynamics. In this section we wish to
describe this source of dissipati&hThe thermo-mechanical investigate these features in some detail.

and electronic temperatures are not necessarily the same, al- From the master equation, the rate of change of this av-

though we will generally assume this to be the case. erage electron number in the dot may be obtained:
SettingA =0 we recover the standard master equation for , ; —

a single quantum dot coupled to leddsThe superoperator dccler = tr[cTc%} (25)

D[c'] adds one electron to the dot. Terms containing this dt dt

superoperator describe a conditional Poisson event in which

an electron tunnels onto the dot. The electron can enter from =[ya(1 =N)(fy = (cTe) + yra(1 = N?)

the source, with probabili.ty per unit time ?ﬁ1f1L<CCT>, or it. X (f1r - (cTe)) - 2y Ay (@Ta)

can enter from the drain, with probability per unit time ot ) N -

yrif1r(cch). Likewise the termD[c] describes an electron —(a'ac’c)) + v\ (fa(a'a) - (a'ac’c)

leaving the dot, again via tunneling into the soutterms - (1 -fy)(c'c) + ya\*(fz (1 +a'a)

proportional toy, ;) or the drain(terms proportional toygy).

—f (etey — (atactay) — 2 t
When A #0 there are additional terms describing phonon fa(c'c) - (@'ac’c)) - 2yp\(fir(a’a)

mediated tunneling events onto and off the dot. Any term —(a'ac'c)) + yro\2(fx(a'a) — (aac'c)
proportional toy,;, i=1,2,3describes an electron tunneling + ) +
out of, or into, the source, while any term proportional to ~ (1 -far){c'e) + yrah(fer(l +a'a)
Yri» 1=1,2,3describes an electron tunneling out of, or into, - far(c’c) — (a'ac’e))]cr. (26)
the drain. ) ) )
The average currents through the left junctiGsource While for the vibrational degrees of freedom, we see that
lead-doj and the right junctioridot-drain leaglare related to d(@a'aycr : dp
each other, and the average occupation of the dot, by Tat =t aa (27)
d(c'c)
WO~ lrO=e= 5 24 =N y2(- fafa'a) + (@'ac'c) + (1 - f)(c'c)
Tay — fa) — (atact

In the steady state, the occupation of the dot is constant and + ya(fa (1 +a'a) - fz {c'c) - (a'ac'c))
the average currents through the two junctions are equal. Of + yro(— for(a’a) + (a'ac’c) + (1 - f,r)(c'c))
course, the actual fluctuating time dependent currents are al- + fau(1 +ala) - Fa(cTe)
most never equal. The external current arises as the external Yralfar(1 +a'a) = far(cic
circuit adjusts the chemical potential of the local Fermi res- - (a'ac'c)) - (@'a)Jcr + kn,, (28)

ervoir when electrons tunnel onto or off the dot. It is thus . . oo
clear that the current through the left junction must depend?here subscript canonical transformedT) indicates that

only on the tunneling rates,;, i=1,2,3 in theleft barrier. the _quantity to which it is at_tached is evaluated in the_ CT
This makes it easy to identify the average current through th82Sis. The average occupational number of electron in the
left (or right) junction by inspection of the equation of mo- dot in the original basis is the same as in the CT basis:

tion for (c'c): all terms in the right hand side of E¢R4) (c'e) =trfc'cp] = trfc’ep] = (cTC)er-

proportional toy; correspond to the average current through
the left junction,| (), while all terms on the right hand side
proportional t_OyRi.corr(.aspond to the negative of the current (afa) = tr[aTap] - tr[aTae‘se““’oaTa%“"oafa‘es]
through the right junction,tx(t).

While for the vibrational degrees of freedom, we have

. + R s +
=trfe“0® 3@’ + Afi)(a+ NA)e @02 3]
IV. LOCAL SYSTEM DYNAMICS = (a'a)cr + N((@'e 0 + ae o)) r + NA(TP).

We can now compute the current through the quantum (29)
dot. The current reflects how the reservoirs of the source and the initial displacemen{x) is zero, the second time depen-
drain respond to the dynamics of the vibrational and elecdent term in the previous expression remains zero. We will
tronic degrees of freedom. Of course in an experiment thassume this is the case in what follows.
external current is typically all we have access to. However, In general we do not get a closed set of equations for the
the master equation enables us to calculate the coupled dyrean phonon and electron number due to the presence in
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these equations of the higher order moméitc’c). This I = ey [(= 1 +fy A2 = f3 A2)(CTC)g + (= 2 A2+ Fp A2
reflects the fact that the electron and vibrational degrees of 2t 2 2

freedom are correlate@nd possibly entangledhrough the *fa A @er st (1-A9fy + 3 A7, (32)
dynamics. One might proceed by '”tr,OdLT‘C”'T‘g a semiclassicalhich s of course equal to the average steady state current
factorization approximation by replacifg'ac’c) by the fac-  through the right junction. The steady state curreptan
torized average values, i.ga'ac’c)=(a'a)(c'c), then the  then be found by finding the steady state solution for each of
evolution equation$26) and(28) form a closed set of equa- the phonon number and electron number

tions. However there is a special case for which this is not

necessary. If we lety 1=y ,=v3=% and yri=Yre=Yr3 B.C, - B,Cy

fay —
=7r Which is the assumption of energy-independent tunnel cos= AB, - AB;’ (33)
couplings, the equations do form a closed set:
dcley . . by LT Az( B.C, - Bzcl> C,
= a'a = -—. 34
dt Al<C C> + Bl<a a>CT + Cl, < >CT,St B2 A]_Bz _ A281 B2 ( )

In Fig. 2, we assume that the bias voltage is applied sym-
A==y (1 =y N2+ 3 A2) + yr(1 — forA2+ f3rAD)], metrically, i.e,u, =—ur=€Wiad 2. In this case, all the Fermi
factorsf,g, for, andfsg effectively equal zero in the positive
bias regime, the regime of Fig. 2. From E@24) and (30),
we see that Eq(32) also equals the steady state current
through the right junction adgy=eyr(cc)s. In the caseyg
Ci= (1 =My fu + nfah+ (1 =N yrfir+ yrfar\?, =, the steady stat&'c)s; shown in Figs. 2a) and 2d) at
(30 long times should thus equal, respectivély,(ey,) shown in
Figs. 2c) and 2f) at long times. This is indeed the case,

By =N2(=2fy v+ fory + fam = 2Faryr* ForvR * f3rMR),

and although the transient behaviors in these plots differ consid-
" erably. We note that the plot shown in Figgcpand 2f) is
d<a_a>CT = Ay(cc) + Byaa)er + Cy, the current through the left junction, normalized @&y, ).
dt The values off;, 5, andf; depend on the strength of the
applied bias voltage and are important in understanding the
Ay = N2y (L= Fo = Fa) + Yr(L = For— faR), stepwise behavior of the stationary current as a function of

the bias voltage. We will now concentrate exclusively on the
positive bias regime.

B, = N(= yfa + yifa = vrfor * YRfR) = &, When the bias voltage is small, the current is zero. As the
bias voltage increases the first Fermi factor in the left lead to
Co= N2y fa + yifar) + o (31) become nonzero i$, , with the other Fermi factors very

small or zero. In the case whefg =1, f;, =0, andf; =0,
Consideration of Eq(31) indicates that it is possible for the the steady state current is
oscillator to achieve a steady state even when there is no @ ot ot
explicit thermo-mechanical dampingc=0). This requires ls’ = eyA@'a)cr = (1 =N)(ciO)sl. (39

bias conditions such thag =fsz=0. Itis remarkable that the For low temperatures this is very small. Only if the phonon

process of electrical transport between source and dral{}a mperature is large, so that the stationary mean phonon

alone can induce damping of the mechanical motion. This T -
result has been indicated by other auttfol3 number is significant, does this first current step become ap-

. . arent(see Fig. 4. As the bias voltage is increased bdth
These equations were solved numerically and the result
; ) L and f;, become nonzero. In the case where they are both
for various values ok and bias voltage, are shown in Fig. 2.

A feature of our approach is that we can directly calculate the' nity, the steady state current is

dynamics of the local degrees of freedom, for example the 1@ = 2/ et 2/ At

. ’ ey (X -N9){cc))g—AHa'a . 36
mean electron occupation of the dot as well as the mean st = enl( HeChsm M@ der.sd (36
vibrational occupation number in the oscillator. The first term here is the same form as the bare tunneling

From these equations we can reproduce behavior for thease except that the effective tunneling rate is reduced by
stationary current similar to that observed in the experiment(1 —\2). This is not too surprising. If the island is moving, on
We concentrate here on the stationary current through the leffyerage it reduces the effective tunneling rate across the two
junction (connected to the sourpeSimilar results apply for  parriers. Thus the first current step will be reduced below the
the right junction. We assume that the electronic temperaturga|ye of the bar¢no phono rate. At the region where bias

is 1.5 K, Vghlch is the temperature used in the eXperiment bxlonage is |arge, all the Fermi factors are unity and
Parket al.

Following the discussion below E(R4), we see from Eq. 19 = ey (cchs, (37)
(30) that the average steady state current through the left
junction is given by which is the expected result for the bare tunneling case.
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FIG. 2. Average number of electron, phonon, and current through the dot against bias voltagesywth meV, iw,— =15 meV,
ksT=0.13 meV, andiy =%iyg=2 ueV for A=0.3: (a), (b), (c) without damping andd), (e), (f) with damping«=0.3,,. We assume
ML=~HR=€EVpiad 2.

To explicitly evaluate the stationary current we need to
solve for the stationary mean electronic and phonon occupa- st™
tion numbers. We have done this numerically and the results
are shown in the figures below. However the large bias case

e YLYR

) (40)
"t R

can be easily solved:

"L
N+ R

(c'o)g= (39)

kz(—vﬁw))( N >+w\2+'<ﬁp

(a'ayg= (kz +
K "t R

K

(39)

This is the result for tunneling through a single quasibound
state between two barriet$.

The steady state current for larger values\athows two
steps. As one can see from Figiag the current vanishes
until the first Coulomb blockade energy is overcome. The
first step in the stationary current is thus due to bare tunnel-
ing though the dot. The second step represents single phonon
mediated tunneling through the dot. These results are consis-
tent with the semiclassical theory of Boese and Schdéller
given that our expansion to second orderirtan only ac-
count for single phonon events. The height of the step de-
pends on\, which is the ratio of the coupling strength be-
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tween the electron and the vibrational levgl and the
oscillator energyi wy.

Looking at Fig. 2, the average electron number ap-
proaches a steady state.g., a steady state value of 0.5 at
large bias since we have set the valueypfo be equal toyg)
while the average phonon number, without external damping. .=
behaves differently in various regioifsig. 2b)]. The aver- £
age phonon number slowly reaches a steady state valus
within the first step, while at the second step, the mean pho-o
non number grows linearly with timg=ig. 2(b)]. The steady
state at the first step is the previously noted effect of trans-
port induced damping. These results are as expected sinc
from Eq. (21), the term consisting of ,\?f, D[ac']p cor-
responds to a jump of one electron onto the island with the A : %0
simultaneous  annihilation of a phonon, while
N’ fg Dla’ct]p corresponds to the jump of an electron
onto the island along with the simultaneous creation of a FIG. 3. Steady state current for different values\afith damp-
phonon. The dynamics can be understood by relating thiag «=0.3y,; the electronic and phonon temperatures are both
behavior of these terms to the rate of average phonon nuni-5 K.
ber change in Eq31). At the first step, when botf, and
f,. are both one, while, is zero, the coefficienB, has bias voltage due to phonon mediated tunneling. This is de-
negative value, and therefore the mean phonon number coutdrmined by the dependence of the Fermi factors on the vi-
reach a steady state under this transport induced damping. brational quantum of energy. One might have expected an-
this regime, we find that other step at a smaller bias voltage. However this step is very

(c'e)e= (1-2D)/2 (41) small unless there is a_significant thermally exqited mean
st ’ phonon number present in the steady state. If we increase the
" phonon temperature such that the energy is larger than the
(@a)g~1/2, (42)  energy quantum of the oscillatdiw,, (for this example we

where we have set, =y and used Eq29) in obtaining Eq.  Ch00SeT=2fiwo/kg~ 116 K) this step can be sedfig. 4).

(42). The corresponding effective temperature can be found hus we see three steps as expected, corresponding to the
using three bias voltages when the three Fermi factors switch from

zero.
fhwg (43) In order to explore the steady state correlation between
phonon number and electron number on the dot, we can find

Teff = .
1 kg In[1 + (1Ka'a)g)]
) ) the steady state directly by solving the master equation from
When all the Fermi factors for the left lead are unity, the rateEq. (21). In Fig. 5 we plot the correlation function

of growth for the mean phonon number now depends on fa'ac’c)—(aa)(cic) as a function o and the bias voltage.

constgmcz n Eq.(31) and therefore the mean phonon UM~ The correlation is seen to be small except when a transition
ber will grow linearly with time. However, the current will

be still steady[Fig. Zf)]. This indicates that the steady state
current and mean electron number in the gpven by Egs. 0.5
(40) and(38), respectively do not depend on the mean pho-
non number. This is supported by the fact that the coefficient 0.4
B; in Eqg. (30) vanishes in this regime. When damping is
included, the phonon number reaches a steady value of 0.3~ o3
[see Fig. 2e) and also Eq(39)]. E

In Fig. 3 we plot the steady state current versus bias volt-5 (2
age for different values of. At the region of the first phonon
excitation level (when bias voltage is between 30 and o5
40 meV), the steady state current drops by a factor propor-
tional to quadratic order ok. Compared to the current at
large bias voltage, the size of the drop is

Vbias (meV)

_ YN 2y N+ k(2n, + 1)) 80

. 44 A o3 20 40
Ay N* = 2k(\* - 2) (44 ° Vbias (meV)

We thus see that the effect of the oscillatory motion of the FIG. 4. Steady state current for different values\aind damp-
island is twofold. First, the vibrational motion leads to aning «=0.3y,: the electronic temperature is 1.5 K, and the phonon
effective reduction in the tunneling rate by an amonfito  temperature is 116 K, which is chosen to bewd/kg in order to
lowest order in\. Second, there is a second step at highemake manifest the step at a smaller bias voltage.
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FIG. 6. Difference in the correlation function for different val-

FIG. 5. Difference in the correlation function for different val- ues ofx with dampingx=0.3y, . The plot starts at a value+ 0.
ues ofA with dampingx=0.3y,.

Parket al® and also of the semiclassical phenomenological

occurs between two conductance states. This is not surprif€0ry by Boese and Schoellérwe also calculate the cor-
ing, as at this point one expects fluctuations in the charge ofelation function between phonon and electron number in the

the dot, and consequently the fluctuations of phonon numbesteady state and find that it is only significant at the steps of

to be large. This interpretation implies that damping of thethe steady state conductance. The results reported in this pa-

oscillator should suppress the correlation, as the response B do not probe the full power of the master equation ap-
the oscillator to fluctuations in the dot occupation are supProach as the model does not couple the diagonal and off-
pressed. This is seen in Fig. 6. diagonal elements of the density matrix. This can arise when

the vibrational motion of the dot is subject to a conservative
driving force, in addition to the stochastic driving that arises
when electrons tunnel on and off the dot in a static electric
We have given a quantum description of a QEMS com-field. The full qguantum treatment will enable us to include
prising a single quantum dot harmonically bound betweercoherent effects which are likely to arise when a spin doped
two electrodes based on a quantum master equation for trgantum dot is used in a static or rf external magnetic field.
density operator of the electronic and vibrational degrees of
freedom. The description thus incorporates the dynamics of
both diagonal (population and off-diagonal (coherence G.J.M. and D.W.U. acknowledge the support of the Aus-
terms. We found a special set of parameters for which théralian Research Council Federation Fellowship Grant No.
equations of motion for the mean phonon number and th&F0348393. H.S.G. would like to acknowledge support from
electron number form a closed set. From this we have beeHewlett-Packard. We gratefully acknowledge discussions
able to reproduce the central qualitative features of the cumwith Jason Twamley, supported by EC IST FET Project No.
rent versus bias voltage curve obtained experimentally byST-2001-37150 QIPDF-ROSES.
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