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We investigate theoretically the ground-state behavior of the coupled electron-electron and electron-hole
quantum wire systems by incorporating dynamic correlation effects within the quantum version of Singwi,
Tosi, Land, and Sjölander theory. The numerical results are presented for the pair-correlation function, the
ground-state energy, the static density susceptibility, and the static and dynamic local-field correction factors
over a wide range of system parameters,viz., linear particle number densityrs, wire sizeb, and interwire
spacingd. The results reveal that the inclusion of the dynamical nature of particle correlations brings in
quantitative as well as qualitative changes in the ground-state behavior of both the electron-electron and
electron-hole wire systems. In particular, it is found that these(dynamic) correlations can cause the(homoge-
neous) liquid phase, in these quantum wire systems, to become unstable against a phase transition into a(n)
(inhomogeneous) coupled Wigner crystal ground state at sufficiently low particle density and/or narrow wire
size in the close approach of two wires. The interwire correlations are found to reduce the criticalrs for the
onset of Wigner crystallization with respect to an isolated quantum wire system, and atb/a0

* =1 the reduction
in rs is about 15% and 4% in the electron-hole and electron-electron wire systems, respectively;a0

* is the
effective Bohr atomic radius. Our prediction of Wigner crystallization for the electron-electron wire system
agrees qualitatively with the recent results of Tanataret al., which they have obtained on the basis of an
approximate density functional theory calculation.
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I. INTRODUCTION

Recent years have witnessed a surge of theoretical and
experimental studies exploring various static and dynamic
properties of the low-dimensional electron systems, where
the dynamics of electrons is restricted quantum-mechanically
along one or two of the spatial dimensions, thus giving rise
to the formation of dynamically two-dimensional(2D)1 or
one-dimensional(1D)2 electron systems, respectively. These
electron systems can be realized, for example, at the inter-
face of semiconductor heterostructures. The development of
experimental techniques to grow a periodic structure of such
electron systems(the so-called electron superlattice) has
added an extra impetus to the importance of their study.
Many interesting phenomena have been found3,4 to arise due
entirely to the presence of additional layers of mobile carri-
ers. In particular, Neilson and co-workers,5 and Kalmanet
al.6 have theoretically discovered that the interlayer interac-
tion effects can favor a phase transition from the(uniform)
liquid state to a(nonuniform) density-modulated ground
state, of the charge-density-wave(CDW) and the Wigner
crystal(WC) types, in an electron bilayer at sufficiently low
electron density in the close vicinity of two layers. Of par-
ticular interest is the result that the critical density for the
onset of Wigner crystallization is enhanced appreciably in
the bilayer as compared to that for an isolated electron layer.
This result has been corroborated by the recent quantum
Monte Carlo (QMC) simulation studies by Senatore and
co-workers.7 The studies based upon the use of the density
functional theory,8 the mode-coupling approach,9 and the
hypernetted-chain method10 have also confirmed this result.

In this work, we intend to examine the ground-state be-
havior of a double quantum wire system, in particular, the
stability of its ground state against phase transition into a
density-modulated phase of the type as has been predicted5,6

to occur in an electron bilayer system. In a quantum wire
system, the electrons can move freely only along one spatial
direction, while their motion is restricted quantum-
mechanically along the remaining two transverse directions.
These electron systems have attracted considerable attention
both from the fundamental and applied physics
viewpoints.2,11 A double quantum wire system consists of
two such parallel and spatially separated quantum wires. It is
appropriate to mention here that earlier Gold,12 and Wang
and Ruden13 addressed the problem of the existence of a
density-modulated ground state in a double electron quantum
wire system, and predicted that this system too could support
a CDW ground state at low electron density in the close
approach of two wires. Gold predicted the CDW instability
in the long-wavelength region(i.e., q→0), while Wang and
Ruden showed, in addition to theq→0 instability, the pres-
ence of a CDW instability atq/qF=2 (qF is the 1D Fermi
wave vector). The calculations of Gold, and Wang and
Ruden differed in terms of the approximation used for the
treatment of intrawire correlations; Gold used the Hubbard
approximation,14 while Wang and Ruden treated these corre-
lations within the self-consistent mean-field approximation
of Singwi, Tosi, Land, and Sjölander(STLS),15 which goes
beyond the Hubbard approximation by including the effect of
Coulomb correlations. However, the interwire correlations,
which may play a vital role when wires are closely placed,
were neglected completely in both of these calculations.
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Moreover, it was assumed that the intrawire correlations are
not affected by the interwire interaction effects. Recently,
one of the present authors16 has incorporated both the intra-
and interwire correlations on the same footing within the
completely self-consistent STLS approach, and found that
although the interwire correlations tend to stabilize the liquid
phase against transition into a CDW state, their effect is not
so strong as to eliminate the existence of a long-wavelength
CDW instability.

However, the above investigations did not find any evi-
dence for the WC instability in the double quantum wire
system. At this point, we remark that in all of these studies
the correlations among carriers are assumed to be static(i.e.,
time independent), and they appear in the theory in the form
of a static local-field correction(LFC) to the bare Coulomb
interaction between the carriers. This assumption of treating
the correlations as static seems plausible as long as the ki-
netic effects dominate over the potential energy(i.e., interac-
tion) effects. However, with the increasing departure from
this condition, i.e., in the strongly correlated regime, one
should anticipate the dynamics of correlations to become in-
creasingly important in determining the many-body proper-
ties of the system.17 This point has recently been demon-
strated for the case of an isolated electron layer,18 and the
electron-electron (e-e) and electron-hole (e-h) bilayer
systems,19,20 where the accurate QMC simulations are
available21,22 to compare the theoretical predictions. In view
of this, we take into consideration, in our study of the
coupled e-e wire system, the dynamical character of both the
intra- and interwire correlations. We implement this by em-
ploying the dynamic or quantum version23 of the STLS ap-
proach(qSTLS), where the LFC factor is frequency depen-
dent. We also extend our study to the coupled e-h wire
system,24,25 where electrons are replaced by holes in one of
the wires. Recently, Tanatar and Bulutay26 have used the
qSTLS method to present a detailed account of various
ground-state properties of an isolated electron quantum wire.
Moudgil et al.19 have very recently extended the qSTLS ap-
proach to the problem of e-e and e-h bilayers, and found that
the theory captures reasonably well, though in a qualitative
way, the QMC prediction of Wigner crystallization in these
systems.

The rest of the paper is organized as follows: In Sec. II,
we present the quantum wire model and a brief account of
the qSTLS formalism for the double quantum wire system.
In Sec. III, we report the numerical results for the various
ground-state properties of the coupled e-h and e-e wire sys-
tems. The behavior of the static density susceptibility is ex-
amined in somewhat more detail to look for any signs of
phase transition from the liquid- to a density-modulated
phase. The paper is concluded with a brief summary in Sec.
IV.

II. THEORETICAL FORMALISM

A. Wire model

An electron quantum wire system can be fabricated in
laboratory by adding lateral confinement to a 2D electron
system. For theoretical studies, this confinement has been

modeled in the literature by different confining potentials.27

In our work, we consider a zero-thickness 2D electron sys-
tem (say, in thex–y plane) and assume the lateral confine-
ment to arise due to the infinite potential barriers aty
=−b/2 andb/2. The particles are assumed to occupy only
the lowest energy subbands along the confinement directions.
In a double quantum wire system, we have two such parallel
wires separated by a center-to-center distancedsùbd. With
these assumptions, the wave functions of the particles in two
wires do not overlap; therefore, the tunneling of particles
between two wires can be ignored in our model. The carriers
are electrons in one wire and electrons or holes in the other
for the e-e and e-h wire systems, respectively. The wires are
assumed to be identical in each respect except for the charge
of carriers in the e-h wire system. Further, the wire system is
assumed to be embedded in a uniform charge neutralizing
background to maintain the charge neutrality. Ignoring the
effect of averaging over the finite extent of the carrier wave
function in the lateral direction, the Coulomb interaction po-
tential among carriers is obtained as

Vll8sqd = all8
2e2

e0
K0sqÎb2 + ul − l8ud2d, s1d

with l =1,2 thewire index,all8=1 ands−1dusl−l8du for the e-e
and e-h wires, respectively,e0 the dielectric constant of the
background wire material, andK0sxd the zeroth-order modi-
fied Bessel function of the first kind. Apparently, the ground
state of the above wire model will depend, apart from the
particle number densityn, on the interwire spacingd and the
wire diameterb. The particle density is usually expressed in
terms of a dimensionless parameterrs=1/s2na0

*d, wherea0
*

=e0"2/ sm*e2d is the effective Bohr atomic radius, withm*

being the effective mass.

B. Theory

We use the dielectric formulation, developed in the linear
response framework, as the theoretical procedure. In this ap-
proach, the wave vector and frequency-dependent density-
density response function,xsq,vd, plays a central role as it
contains the necessary information about the relevant static
and dynamic properties of the system. For the double wire
system, the qSTLS derivation ofxsq,vd proceeds exactly
analogous to the one for the bilayer system given in Ref. 19,
except for the basic fact that the 2D variables are now re-
placed with the 1D ones. Therefore, we give in the following
only the central relations of the qSTLS derivation for
xsq,vd.

The density-density response function for the double wire
system can be compactly expressed in the form of a 232
matrix, with the elements of the inverse of the density re-
sponse matrix given by

xll8
−1sq,vd =

dll8

xl
0sq,vd

− Vll8sqdf1 − Gll8sq,vdg, s2d

where xl
0sq,vd is the zero-temperature density response

function of the noninteracting electrons in wirel (i.e., the 1D
Stern function28), and
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Gll8sq,vd = −
1

n
E

−`

` dq8

2p

xl
0sq,q8;vd
xl

0sq,vd

Vll8sq8d

Vll8sqd

3fSll8suq − q8ud − dll8g, s3d

is thedynamicLFC factor that accounts for the short-range
correlation effects among carriers in the wiresl andl8. In the
above equation,Sll8sqd is the static density structure factor
andxl

0sq ,q8 ;vd the inhomogeneous Stern function given by

xl
0sq,q8;vd = −

2

"
E

−`

` dk

2p

f l
0sk + q8/2d − f l

0sk − q8/2d
v − "kq/m+ ih

,

s4d

where f l
0skd is the noninteracting Fermi-Dirac distribution

function and h is a positive infinitesimal. Forq8=q,
xl

0sq ,q8 ;vd reduces to the homogeneous Stern function
xl

0sq,vd.
The fluctuation-dissipation theorem, which relates the

static structure factor with the imaginary part of the linear
response function as

Sll8sqd = −
"

np
E

0

`

dv Im xll8sq,vd, s5d

closes the qSTLS set of equations for the density response
matrix. Apparently, these equations are to be solved numeri-
cally in a self-consistent manner for the calculation of the
response function.

The pair-correlation functiongll8srd, which defines the
probability of finding a particle in wirel8 at a parallel dis-
tance ofr given that there is a particle at origin in wirel, can
be obtained directly from the inverse Fourier transform of
the static structure factor as

gll8srd = 1 +
1

n
E

−`

` dq

2p
cossqrdfSll8sqd − dll8g. s6d

The ground-state energyEgs can also be determined from the
knowledge of the static structure factor by a straightforward
extension of the ground-state energy theorem29 to the two-
wire system as

Egs= E0 +E
0

e2 dl

l
Eintsld, s7d

whereE0=pF
2 / s6m*d is the kinetic energy per particle of the

noninteracting system(pF="qF is the 1D Fermi momentum),
l is the strength of the Coulomb interaction potential, and
Eintsld is the interaction energy per particle, given by

Eintsld =
1

4o
l,l8

2 E
−`

` dq

2p
lVll8sqdfSll8sq;ld − dll8g. s8d

It is appropriate to point out here that the LFCs, which enter
into the density response calculation[(Eq. (2)], are frequency
independent(i.e., static) in the STLS approach, and these
formally correspond to setting xl

0sq ,q8 ;vd
=sqq8 /qdxl

0sq,vd in Eq. (3). Technically, the basic difference
between the quantum and the original STLS methods lies in

the fact that one seeks in the former the solution of the
quantum-mechanical equation of motion for the quantum
single-particle distribution function, namely, the Wigner dis-
tribution function(WDF), and this equation is just the quan-
tum analog of the corresponding classical equation of motion
for the classical distribution function used in the original
STLS approach. Nevertheless, the quantum approach em-
ploys exactly the same decoupling approximation as that of
the original STLS method to truncate the infinite hierarchy of
the coupled equations of motion; the two-particle WDF is
approximated as a product of the respective single-particle
WDFs and the equilibrium static pair-correlation function.
Thus, the dynamical nature of the qSTLS LFCs should be
seen as a quantum-mechanical correction to the original
STLS approach. The dynamics of spatial correlations among
carriers, which is expected to become vital at relatively
higher values of Coulomb coupling(i.e., at higherrs), is still
missing.

FIG. 1. Pair-correlation functionsg11srd and g12srd, commenc-
ing, respectively, in the lower and upper halves of the figure, for the
e-h wire system in the qSTLS(solid lines) approach at:(a) rs

=1,2.5, and 4;(b) d/a0
* =6 and 4.15; and(c) b/a0

* =2,1, and0.28 at
indicated wire parameters. The STLS results(dashed lines) are at:
(a) rs=4; (b) d/a0

* =4.15; and(c) b/a0
* =0.28.
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In the following section, we present numerical results for
the various ground-state properties of the e-h and e-e wire
systems.

III. RESULTS AND DISCUSSION

A. Pair-correlation functions

Equations(2), (3), and (5) are solved numerically in a
self-consistent manner for the static structure factorSll8sqd.
The v integration in the numerical computation ofSll8sqd
[Eq. (5)] is performed along the imaginaryv axis in order to
avoid the problem of dealing with the plasmon poles which
appear on the realv axis(see de Freitaset al.30 and Ref. 18).
We accepted the self-consistent solution when convergence
in results ofSll8sqd (at eachq in the grid of q points) was
better than 10−7. We report here, in place ofSll8sqd, the re-
sults for the pair-correlation functiongll8srd, as it contains

rather direct information about correlations among particles.
It is appropriate to mention here that in all of our numerical
calculations we have assumed the effective mass of holes to
be equal to that of electrons(i.e., mh

* =me
*).

We show in Figs. 1(a)–1(c) the results for the intra- and
interwire pair-correlation functions,g11srd andg12srd, over a
wide range of system parameters(viz., the particle densityrs,
the wire spacingd, and the wire diameterb) for the e-h wire
system. For ready comparison, the corresponding STLS
curves are also given in the same figures at some selected
wire parameters. Figure 1(a) depicts thers dependence of
g11srd andg12srd at fixedb andd. It is apparent that both the
intra- and interwire correlations grow in their strength with
increasingrs (i.e., decreasing density) and they exhibit an
oscillatory behavior forrsù2, with the amplitude of oscilla-
tions being an increasing function ofrs. The oscillatory be-
havior becomes quite appreciable forrsù4. In Fig. 1(b),
g11srd andg12srd are shown at different values ofd by keep-
ing rs andb as fixed parameters. Clearly,g11srd depends only
weakly ond, while g12srd shows a noticeable growth in its
magnitude with decreasingd.

As the wire sizeb appears directly in the expression of
interaction potential[Eq. (1)], it may possibly be used as an
alternative(i.e., in addition tors andd) experimental param-
eter to probe the behavior of the wire system in different
correlation regimes. It is, therefore, interesting to examine
here the behavior ofg11srd andg12srd as a function ofb, and
the same is reported in Fig. 1(c) by treatingrs andd as fixed
parameters. A cross comparison of Figs. 1(a)–1(c) clearly
reveals that one can afford to have a strongly correlated re-
gime at a rather lowrs value by reducing the wire sizeb.
Also, we find from the comparison between the qSTLS and

FIG. 2. Pair-correlation functionsg11srd and g12srd, commenc-
ing, respectively, in the lower and upper halves of the figure, for the
e-e wire system in the qSTLS(solid lines) approach at:(a) rs

=1,2.5, and 4;(b) d/a0
* =6 and 3.7; and(c) b/a0

* =2,1, and0.58 at
indicated wire parameters. The STLS results(dashed lines) are at:
(a) rs=4; (b) d/a0

* =3.7; and(c) b/a0
* =0.58.

FIG. 3. Comparison of ground-state energy(per particle) Egs

between the qSTLS and RPA approaches for the coupled e-h[in
panel (a)] and e-e[in panel (b)] wire systems atd/a0

* =4 and 2;
legends indicate the values ofd/a0

* .
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STLS results that at lowrssø1d there is little difference in
the predictions of the two approaches; therefore, the STLS
results are not shown at thesers values. However, the differ-
ence starts building up with increasingrs and as a distinctive
feature the STLS approach, in contrast with the qSTLS re-
sults, does not predict any kind of oscillatory behavior for
the pair-correlation functions.

Figures 2(a)–2(c) present our results ofg11srd andg12srd
for the e-e wire system at different wire parameters, along
with the STLS results at some selected wire parameters. We
notice thatg11srd andg12srd for the e-e system exhibit at the
qualitative level a similar dependence onrs, d, andb as that
for the e-h system, except for the primary difference that the
interwire correlations are now of repulsive nature.

B. Ground-state energy

The self-consistently obtained static structure factors
S11sq;ld andS12sq;ld are used in Eq.(8) to calculateEintsld
as a function ofl. The ground-state energy is then deter-
mined by performing the coupling-constant(i.e., l) integra-
tion in Eq. (7). The numerical results of ground-state energy
(per particle) for the e-h and e-e wire systems are given,
respectively, in Figs. 3(a) and 3(b) as a function ofrs for
d/a0

* =4 and 2 atb/a0
* =1. It can be noticed that the ground-

state energy depends only weakly on the wire separation.
Also, we check that in the limit of large separation between
wires our results approach the results of an isolated wire.
This is expected as the interwire interactions become very
small in the large-d limit. To highlight the role of correla-
tions, we have compared our results with those obtained in
the random phase approximation(RPA), where correlations
among particles are completely ignored. It may be noted that
the exclusion of correlations leads to an overestimation of
ground-state energy. Further, there is a very small difference
between the qSTLS and STLS results; the STLS curves are,
therefore, not given here.

C. Density-modulated ground state

In this section, we address the main question of whether a
double quantum wire system can support a phase transition
from the (homogeneous) liquid state to a(n) (inhomoge-
neous) density-modulated ground state of the type as has
been predicted to occur in a bilayer system.5,19 For this pur-
pose, we examine, parallel to the bilayer problem,19 the be-
havior of the liquid-state static(i.e., v=0) density suscepti-
bility as a function of wire parameters. Diagonalizing the
density response matrix(2), the static density susceptibility
is obtained as

x±sq,0d =
x1

0sq,0d
1 − x1

0sq,0dfV11sqds1 − G11sq,0dd ± V12sqds1 − G12sq,0ddg
. s9d

The + and − signs correspond, respectively, to the in-phase
and out-of-phasespd modes of density modulations in two
wires. x1

0sq,0d s=x2
0sq,0dd is the static 1D Stern function.

The presence of a phase transition to a density-modulated
state (if any) may appear as a divergence inx±sq,0d at a
wave vector value corresponding to the reciprocal lattice
vector associated with the density-modulated state. We,
therefore, look for poles of Eq.(9). However, this can only
be achieved numerically in our approach, since the intra- and
interwire LFCs, which appear in the denominator of Eq.(9),
can only be determined in a numerical way from the self-
consistent solution of Eqs.(2), (3), and(5). But, it is evident
from Eq. (9) that these are the in-phase and out-of-phase
components of the susceptibility which can have a diver-
gence in the e-h and e-e wire systems, respectively. Also,
since the e-h and e-e correlations are of opposite nature, they
should tend, respectively, to support and oppose a phase tran-
sition to a density-modulated phase(if any) in the e-h and e-e
wire systems. We first discuss the behavior of the e-h wire
system.

1. Coupled electron-hole wires

Figures 4(a)–4(d) show the results ofx+sq,0d at some
selected values ofrs andd for b/a0

* =1. For low rssø1d val-

ues, x+sq,0d is found to exhibit a single sharp peak at
q/qF=2 [Fig. 4(a)], with the peak height increasing gradu-
ally on decreasingd, but its value remaining finite for the
range ofd values allowed in our model(i.e., dùb). At rs
=2 too, there is no singularity found inx+sq,0d, but an ad-
ditional peak starts developing at smallq, and the large-q
peak(i.e., the one atq/qF=2 for rs=1) moves slightly to its
higher side on theq axis. With further increase inrs, the peak
at smallq becomes quite dominant in its strength over the
peak positioned atq/qF.2. This can be noticed from Fig.
4(b), where x+sq,0d is plotted at rs=3; d/a0

* =2,1.8, and
1.75. We notice that the small-q peak grows quite fast in its
height with decreasingd. However, we encounter now a
critical wire spacingdc below which it becomes almost im-
possible to obtain the self-consistent solution of Eqs.(2), (3),
and(5) and, hence, thex+sq,0d; for instance,dc/a0

* <1.75 at
rs=3 and b/a0

* =1. As has been the case for the bilayer
problem,19 the difficulty in obtaining the self-consistent so-
lution emanates due to the appearance of a numerical insta-
bility in the density response function while computing
Sll8sqd from Eq. (5). Although we are not able here to calcu-
latex+sq,0d for d,dc, the peak at smallq appears to diverge
in thisd region. The small-q peak continues to dominate over
the large-q peak until a critical value ofrs is reached, at
which point the large-q peak starts dominating. Atb/a0

* =1,
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this shift occurs atrs<4.25. This point is demonstrated in
Fig. 4(c), where x+sq,0d is plotted at rs=4.25 andd/a0

*

=3.1,3, and 2.91; here,dc/a0
* <2.91. The large-q peak is

now positioned atq/qF<3.4. Increasingrs beyond 4.25 re-
sults in a complete disappearance of the small-q peak, with
the large-q peak continuing to appear atq/qF<3.4, as can be
noticed from Fig. 4(d) wherex+sq,0d is shown atrs=4.5 and
d/a0

* =4.5,4.3, and 4.15;dc/a0
* <4.15.

As in the bilayer problem,19 the development of a strong
and seemingly diverging peak inx+sq,0d at smallq could be
interpreted as a precursor for the instability of the liquid state
in the e-h wire system against transition into a(long-
wavelength) CDW ground state. Meanwhile, theq/qF<3.4
peak, whose position lies close to the reciprocal lattice vector
sq/qF=4d of a linear lattice, could indicate the instability of
the liquid phase against transition into a coupled WC ground
state. This interpretation is supported if we look at the be-
havior of the pair-correlation functions as given in Fig. 1(b)
at rs=4.5 andd/a0

* =6 and 4.15. Evidently,g11srd andg12srd
exhibit pronounced in-phase oscillations atd/a0

* =4.15, sig-
naling a strong tendency for the formation of an ordered WC
phase in the e-h wire system. Although not reported here, the
static structure factorS11sqd shows for rsù4.25 a strong
maxima at a wave vector value coinciding almost exactly
with the position of the large-q peak inx+sq,0d, which pro-
vides further support to our claim for the onset of transition
to the WC phase.

Thus, a crossover seems to occur from a CDW ground
state to a WC ground state at a critical densityrs

c<4.25. We
have also performed the qSTLS calculations of the static
density susceptibility for an isolated electron quantum wire.
It is found that this system too can become unstable against
transition to an ordered WC phase, and atb/a0

* =1 the critical
density isrs<5. However, there is no indication for the ex-
istence of a CDW phase. Thus, we may deduce that the e-h
correlations in the e-h wire system act to lower the criticalrs
for Wigner crystallization as compared to that for an isolated
quantum wire, and atb/a0

* =1, the reduction inrs is about
15%.

Further, we have also examined the behavior ofx+sq,0d
as a function ofb, in particular, its role in determining the
critical density for the onset of Wigner crystallization. In Fig.
5 we depictx+sq,0d at rs=3 andd/a0

* =2 as a function of
decreasingb. It may be noted from Fig. 4(b) that the small-
q peak is relatively stronger than the one at largeq at b/a0

*

=1. However, with reduction inb, the large-q peak grows
monotonically (Fig. 5) in its magnitude, with its position
moving gradually towards higherq on theq axis. The large-
q peak is eventually seen to dominate over the small-q peak
for b/a0

* ø0.5. A critical value ofb s<0.27a0
*d is encoun-

tered, below which it becomes impossible to obtain a self-

FIG. 4. (a)–(d) In-phase component of the static density suscep-
tibility x+sq,0d for the coupled e-h wire system for differentd/a0

* at
indicatedrs andb/a0

* , according to the qSTLS theory. For compari-
son, the STLS results are given in(d) at d/a0

* =2.5 and 2.49. Leg-
ends indicate the values ofd/a0

* .

FIG. 5. In-phase component of the static density susceptibility
x+sq,0d for the coupled e-h wire system for differentb/a0

* at indi-
catedrs andd/a0

* , according to the qSTLS approach; legends indi-
cate the values ofb/a0

* .
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consistent solution of the qSTLS equations, which can again
be interpreted as a signature for transition into a density-
modulated phase. Atb/a0

* =0.27, the peak inx+sq,0d is lo-
cated atq/qF<3.5. This leads us to recognize the emerging
density-modulated phase as of the WC type. More physical
insight can be gained from the knowledge of the correspond-
ing b dependence ofg11srd and g12srd, which has been dis-
played already in Fig. 1(c). Clearly, the behavior of the cor-
relation functions is quite similar to the one atrs=4.5 and
b/a0

* =1 [Fig. 1(b)]. It may be recalled here that the CDW
phase dominated atb/a0

* =1 for rs approximately up to 4.2.
In view of this result, we may conclude that the criticalrs for
the onset of Wigner crystallization can be reduced by reduc-
ing the wire sizeb. Further, at a givenrs, the criticalb for the
onset of WC phase is found to increase with decreasingd.
One can obtain, at the cost of computation time, a phase
diagram in thers−d−b space depicting the regions of stabil-
ity of the liquid- and the density-modulated phases, respec-
tively. For example, we have plotted in Fig. 6 the critical
wire spacingdc/a0

* as a function ofrs at b/a0
* =1 and 0.5. It

may be noted that a reduction inb lowers the cutoffrs for the
onset of instability, while it results in an increase indc at a
given rs. Also, the critical rs at which a crossover from a
CDW state to a WC state occurs decreases with a decrease in
b.

It is interesting to compare our above prediction on the
existence of a density-modulated phase with the correspond-
ing results obtained by using the STLS approach. We find
that the STLS calculations ofx+sq,0d also signal a transition
into a density-modulated phase, but only of the CDW type,
with q/qF=2 as the CDW wave vector. There is no evidence
found for transition into a WC ground state. For comparison,
the STLSx+sq,0d is plotted in Fig. 4(d) at rs=4.5, b/a0

* =1,
andd/a0

* =2.5 and 2.49. We should mention here that Thakur
and Neilson25 have previously studied the e-h wire system
within the STLS approach by including the mass asymmetry
of the system(i.e., mh

* Þme
*), and detected an instability of

the CDW type only.
In order to understand the above difference between the

predictions of the qSTLS and STLS approaches, we draw a
comparison between their respective intra- and interwire
LFCs, since the behavior ofx±sq,0d [Eq. (9)] is solely de-

termined in terms of these LFCs. Figures 7(a) and 7(b) show,
respectively, the static(i.e.,v=0) qSTLS intra- and interwire
LFCs along with the STLS LFCs(which, of course, are
originally static) at rs=4.5, b/a0

* =1, and different values of
d/a0

* . We notice a marked difference in the results of the two
approaches. Among the notable distinctive points,G11sq,0d
andG12sq,0d exhibit an oscillatory behavior as a function of
q, with their values becoming exactly equal to zero atq/qF
=2. G11sq,0d has a sharp maximum atq/qF<4, with its
value lying well above unity. The zero atq/qF=2 in
G11sq,0d and G12sq,0d arises due to the fact thatx0sq,0d,
which appears directly in the denominator ofGll8sq,0d [Eq.
(3)], has logarithmic singularity atq/qF=2. On the other
hand, the STLS LFCs depend quite smoothly onq and in
particular,G11sqd hardly exceeds unity in the relevantq re-
gion. It may be noted here thatxsq,0d for the single wire
system can exhibit a singular behavior only if the corre-
sponding LFC factor exceeds unity by a sufficient amount.
However, this is not seen to be a necessary condition for the
double wire system due to the presence of the interwire in-
teraction term in the denominator of Eq.(9), i.e.,x±sq,0d can
exhibit singularity at someq even if the single wirexsq,0d is
a nonsingular one. Now, the behavior of the single wire static
LFC factor is found, both in the STLS and qSTLS ap-
proaches, to be qualitatively similar to that of the intrawire
LFC of the double wire system. As a result, the single wire
STLS xsq,0d does not show any divergence in the investi-
gated density range ofrsø25 for b/a0

* =1, while the qSTLS
xsq,0d appears to diverge clearly atrs<5 for b/a0

* =1, with
its peak located atq/qF<3.4. Thus, in the qSTLS approach,
the e-h interaction term tends to reduce the criticalrs value

FIG. 6. Critical wire spacingdc/a0
* depicting the points of in-

stability for the coupled e-h wire system as a function ofrs at
b/a0

* =1 and 0.5. The lines are just a guide for the eye. For each case
the arrows show the criticalrs where crossover from the CDW
instability to the Wigner crystal instability occurs.

FIG. 7. Intrawire[in panel(a)] and interwire[in panel(b)] static
local fieldsG11sq,0d andG12sq,0d for the coupled e-h wire system
in the qSTLS approach at indicatedrs, b, and d. The STLS local
fields are shown for comparison atd/a0

* =6 and 4.15. Legends in-
dicate the values ofd/a0

* .
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for the onset of divergence in theq/qF<3.4 peak inx+sq,0d,
and to give rise to an additional diverging peak inx+sq,0d
(in the close approach of wires) at smallq for rs greater than
a certain cutoff value, but lower than the criticalrs for the
dominance ofq/qF<3.4 peak. In the STLS approach, the
e-h interactions give rise to only a single diverging peak in
x+sq,0d at q/qF<2 for rs greater than a certain cutoff value.
Therefore, the origin of theq/qF<3.4 peak inx+sq,0d,
whose divergence in our approach has been interpreted as a
signature of transition into an in-phase coupled WC state in
view of the proximity of its location to the reciprocal lattice
vector of the linear lattice and the behavior of corresponding
pair-correlation functions, may be explicitly attributed to the
inclusion of the dynamical nature of correlations in the form
of the dynamic qSTLS LFC factors.

Further, we may note that in theq region where the static
LFC factor Gsq,0d exceeds unity, the effective static inter-
action fVsqds1−Gsq,0ddg becomes negative(i.e., attractive),
and may give rise to the superconducting pairing31 in the
system. Apart from this, the attractive e-h correlations in the
e-h system may also lead to the formation of bound e-h pairs
(excitons) in the sufficiently close approach of two wires, as
has been predicted recently for an e-h bilayer system22 by the
QMC simulations. The possibility of the superconducting
and the excitonic instabilities, and in particular, their role
with respect to the predicted existence of the WC instability,
can possibly be better examined on the basis of the total
energy calculations of the respective phases of the system;
this seems to be beyond the scope of our present theoretical
approach.

2. Coupled electron-electron wires

Here, our interest lies in the behavior of the out-of-phase
component of the static susceptibility, i.e.,x−sq,0d. We infer
from a careful analysis of our results ofx−sq,0d that, al-
though the interwire correlations in the e-e system have the
tendency to suppress the peak-like structure inx−sq,0d, these
are not sufficiently strong in their effect so as to preclude the
possibility of transition to a density-modulated phase. Our
results ofx−sq,0d are plotted in Figs. 8(a)–8(c) at b/a0

* =1,
and differentrs and d values of interest.x−sq,0d does not
show any singular behavior at lowrssø2d values. A long-
wavelength CDW instability appears atrs<3, which now
continues to dominate completely forrs up to 4.7. However,
there emerges an interesting and peculiar behavior of
x−sq,0d at rs=4.8 as can be noticed from Fig. 8(c). x−sq,0d
exhibits a single strong peak atq/qF<3.3 when the wires
are widely separated. The peak height initially increases with
decrease ind, seems to diverge atd/a0

* <4.8, then starts
decreasing monotonically with further decrease ind. For
d/a0

* ,4.5, there starts developing, however, a second peak
in x−sq,0d at smallq, with its magnitude growing continu-
ously relative to that of the large-q peak on decreasingd.
Eventually, the small-q peak is found to dominate ford/a0

*

ø3.7. This might imply that there is a crossover to the WC
ground state atrs<4.8, with the WC state, however, remain-
ing stable only over a certain range of wire spacing, with a
transition back to the long-wavelength CDW phase when the

wire spacing is further diminished. Parallel to the the e-h
wire system, the criticalrs for Wigner crystallization is found
to depend upon the wire sizeb. For example, the WC ground
state could be stable atrs=4 andd/a0

* =3 by reducing the
wire sizeb/a0

* approximately to 0.58(Fig. 9). We may recall
here that it was the CDW phase which was seen to be stable
at rs=4 andb/a0

* =1 [see Fig. 8(b)]. It may also be noted
from Figs. 2(b) and 2(c) thatg11srd andg12srd show a notice-
able oscillatory behavior, typical of an ordered phase, at wire
parameters associated with the onset of Wigner crystalliza-
tion.

Thus, the interwire correlations in the e-e wire system act
to reduce(by about 4% atb/a0

* =1) the criticalrs for Wigner
crystallization with respect to an isolated electron quantum
wire. The reduction in criticalrs is, however, smaller as com-
pared to that found for the e-h wire system. Our prediction of
Wigner crystallization in the e-e wire system agrees qualita-
tively with the recent results of Tanatar,32 where the authors
have examined the problem of freezing within the density
functional theory. Their approximate total energy calcula-

FIG. 8. (a)–(c) Out-of-phase component of the static density
susceptibilityx−sq,0d for the coupled e-e wire system in the qSTLS
approach for differentd/a0

* at indicatedrs andb/a0
* ; legends indi-

cate the values ofd/a0
* .
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tions, although for a cylindrical quantum wire model of Gold
and Ghazali,27 also predict a reduction in criticalrs for the
formation of WC ground state, and interestingly, the reduc-
tion factor is of the same order as that predicted by the
qSTLS theory.

The STLS approach again predicts transition only to a
long-wavelength CDW ground state. A detailed account of
the STLS results ofx−sq,0d has been presented by one of the
present authors in Ref. 16. The difference between the pre-
dictions of the qSTLS and STLS approaches arises once
again due to a marked difference in the behavior of their
respective LFCs as can be noticed from Figs. 10(a) and
10(b), whereG11sq,0d andG12sq,0d are plotted as a function
of d at rs=4.8 andb/a0

* =1 along with the corresponding
STLS LFCs. Theq dependence ofG11sq,0d is like that in the

e-h wire system, whileG12sq,0d now has a strong positive
peak atq/qF<5.2—the features which are completely ab-
sent in the STLS LFCs.

D. Dynamic local fields

Finally, we examine the local fields for their dependence
on frequency, as it may be useful to understand the reasons
underlying the difference in predictions of the qSTLS and
STLS approaches. The dynamic LFCs can be computed by
using Eq.(3) once we have the self-consistentS11sqd and
S12sqd. We find quite generally that the real and imaginary
parts of the intra- and interwire LFCs exhibit, both for the
e-h and e-e wire systems, an oscillatory behavior as a func-
tion of real frequencyv. In the large-v limit, the respective
real parts approach a frequency-independent value, while the
imaginary parts become exactly equal to zero. This result is
in conformity with the analytically obtained limiting results.
The oscillatory character of the LFCs seems to be a basic
feature of the qSTLS theory, as a qualitatively similar behav-
ior has been observed for the 3D,33 2D,18 1D,26 and bilayer
systems.19,20 Figures 11 and 12 contain, respectively, the re-
sults of dynamic LFCs for the e-h and e-e wire systems at
q/qF=3.4 at critical wire parameters associated with the for-
mation of the WC ground state. A qualitatively similar be-
havior of LFCs is found at other values ofq, andrs, b, andd.

IV. SUMMARY AND CONCLUDING REMARKS

In summary, we have studied the ground-state behavior of
the coupled e-h and e-e quantum wire systems by including

FIG. 9. Out-of-phase component of the static density suscepti-
bility x−sq,0d for the coupled e-e wire system for differentb/a0

* at
indicatedrs andd/a0

* ; legends indicate the values ofb/a0
* .

FIG. 10. Intrawire[in panel (a)] and interwire[in panel (b)]
static local fieldsG11sq,0d and G12sq,0d for the coupled e-e wire
system in the qSTLS approach at indicatedrs, b, andd. The STLS
local fields are shown for comparison atd/a0

* =6 and 3.7. Legends
indicate the values ofd/a0

* .

FIG. 11. Frequency dependence of intrawire[in panel(a)] and
interwire [in panel(b)] local fieldsG11sq,vd andG12sq,vd for the
coupled e-h wire system atq/qF=3.4, rs=4.25,b/a0

* =1, andd/a0
*

=5 and 2.91. Thin and thick lines represent, respectively, the real
and imaginary parts. Legends indicate the values ofd/a0

* , andVF is
the Fermi frequency.
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the effect of dynamic correlations within the quantum ver-
sion of Singwi, Tosi, Land, and Sjölander(qSTLS) theory.
The importance of the dynamical character of correlations is
highlighted by comparing our results with the predictions of
the STLS approach, where correlations are treated at the
static level. The comparative study explicitly reveals that the
dynamics of correlations becomes increasingly important
with the increasing dominance of the interaction effects over
the kinetic effects. Their inclusion in the form of the qSTLS
theory brings in both the quantitative and qualitative changes
in the description of the many-body properties of the wire
system. As an important distinctive result, the qSTLS theory
predicts that the liquid phase, both in the e-h and e-e wire
systems, can become unstable against a phase transition into
a coupled WC ground state at sufficiently low particle den-
sity and/or narrow wire size in the close vicinity of two
wires. Interestingly, the interwire correlations are found to
reduce the criticalrs for the onset of Wigner crystallization
as compared to that for an isolated quantum wire system, and
at b/a0

* =1 the reduction inrs is about 15% and 4% for the
e-h and e-e wire systems, respectively. Further, the value of
critical rs is found to decrease with reduction in wire size.
For rs lower than the criticalrs for Wigner crystallization, but
higher than a certain cutoff value, the qSTLS theory predicts
a transition to a long-wavelength CDW ground state. Thus, a

crossover seems to occur from a CDW ground state to a WC
ground state. Our prediction of Wigner crystallization for the
e-e wire system is found to be in qualitative agreement with
the recent results of Tanatar,32 which they have obtained on
the basis of an approximate density functional theory calcu-
lation. It should be interesting to have similar calculations
for the e-h wire system.

In our present work, we have focused mainly on the pos-
sible instability of the liquid phase, for the coupled e-e and
e-h systems, against a transition into a charge density modu-
lated phase. Other instabilities could also occur such as those
associated with the spin density wave, and the partially and
fully (the Stoner instability) spin-polarized phases.34 It is im-
portant to mention here that although the Lieb-Matis35 theo-
rem rules out the spontaneous complete spin ordering in a
strictly 1D electron system, there are recent experiments36

supporting the formation of such a spin-ordered state at low
density in low-disorder GaAs/GaAlAs-based electron quan-
tum wire.

Although we have carried out our calculations of the
ground-state properties for a specific quantum wire model,
we believe that our conclusions should also apply(at the
qualitative level) to other wire models. Finally, it may be
mentioned here that to the best of our knowledge, unlike the
3D and 2D electron systems, no QMC simulation studies are
available for the ground-state properties of both the single
and double quantum wire systems. However, we anticipate
that our present study may stimulate the QMC simulations of
such quantum wire systems, which in turn would provide a
benchmark to judge the accuracy of our present or of any
other theoretical predictions. Apart from the QMC simula-
tions, it should be interesting to have specific experimental
studies aimed at exploring the possibility of the existence of
the WC ground state in the quantum wire systems. For in-
stance, one may look at examining the behavior of drag re-
sistivity in these systems. The presence of a transition to the
WC state, if any, should manifest as a divergence in drag
resistivity. Very recently, Debray37 have performed the drag
resistance measurements for the coupled e-e wire system. It
would be important to have these measurements in the low
electron density region. The coupled e-h wire system would
be a better choice for such experiments since the WC transi-
tion is expected to occur at relatively higher density(i.e.,
lower rs) in this system due to the heavier effective mass of
holes than electrons. On the theory side, the calculation of
the Coulomb drag rate38 in the coupled quantum wire system
should be equally important for confirming the transition to
the WC phase, and it deserves a separate, thorough investi-
gation.
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FIG. 12. (a), (b) Dynamic local fields for the coupled e-e wire
system at indicated parameters; description of the curves is exactly
the same as in Fig. 11 except for the fact thatrs=4.8.
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