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For modeling the magnetic properties of concentrated and diluted magnetic semiconductors, we use the
Kondo-lattice model. The magnetic phase diagram is derived by inspecting the static susceptibility of itinerant
band electrons, which are exchange coupled to localized magnetic moments. It turns out that rather low band
occupations favor a ferromagnetic ordering of the local moment systems due to an indirect coupling mediated
by a spin polarization of the itinerant charge carriers. The disorder in diluted systems is treated by adding a
CPA-type concept to the theory. For almost all moment concentrationsx, ferromagnetism is possible, however,
only for carrier concentrationsn distinctly smaller thanx. The charge carrier compensation in real magnetic
semiconductors(in Ga1−xMnxAs by, e.g., antisites) seems to be a necessary condition for getting carrier
induced ferromagnetism.
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I. INTRODUCTION

The exciting research field “spintronics” refers to new
phenomena of electronic transport, for which the electron
spin plays a decisive role, in contrast to conventional elec-
tronics for which the electron spin is practically irrelevant.
For a full exploitation of spintronics, one should have mate-
rials that are simultaneously semiconducting and ferromag-
netic. That is the reason for the intensive effort that has been
focused on the search for magnetic semiconductors with high
Curie temperatures. It is to the merit of Ohno and
co-workers1,2 to reach aTC of up to 110 K in Ga1−xMnxAs
and to demonstrate the electric control ofTC by means of a
gate voltage.3 (Even largerTC values have been observed for
annealed multilayers.4) Intense experimental as well as the-
oretical research on the outstanding phenomena associated
with the interplay between ferromagnetic cooperative fea-
tures and semiconducting properties is currently going on.5 It
is the important challenge of materials science to understand
the ferromagnetism in compounds such as Ga1−xMnxAs, and
to find out the conditions for Curie temperaturesTC suffi-
ciently exceeding room temperature. This paper shall con-
tribute to the fundamentals of ferromagnetism in diluted
local-moment systems.

It is commonly accepted5 that the(ferromagnetic) Kondo-
lattice model (KLM), certainly better denoted ass-f or s-d
modelor, in its strong-coupling regime, asdouble exchange
model, represents a good starting point for the description of
the so-called local-moment magnetism. To this class of mag-
netic materials belong the classical magnetic semiconductors
(insulators) such as the Eu chalcogenides EuO, EuS, EuTe,6

which today are classified as “concentrated” magnetic semi-
conductors. Other representatives are the local-moment met-
als Gd, Dy, Tb, etc., as well as Eu1−xGdxS, etc., for which
magnetic and electrical properties are provoked by two dif-
ferent electronic subsystems. Strictly localized 4f electrons
of the rare earth ion provide the magnetic moment while
itinerant 5d/6s electrons take care of the electrical conduc-
tivity. These local-moment systems reveal an exceptionally

rich variety of physical properties with basic ingredients be-
ing the electronic correlations and spin ordering. Thereby, an
interband exchange between the local moments and the itin-
erant conduction electrons appears to play a dominant role,
in particular, as far as the magnetic and magneto-optic prop-
erties are concerned.

The same holds for the already mentioneddiluted mag-
netic semiconductors (DMS). The implantation of Mn2+ ions
in the prototypical semiconductor GaAs provides local mo-
mentssS= 5

2
d which decisively influence the electronic GaAs

states giving them, e.g., an extraordinary temperature depen-
dence. Furthermore, each divalent Mn ion creates in prin-
ciple one valence band hole. The temperature dependence of
the band states induced by exchange coupling to the local-
moment system is a well-known feature of the “concen-
trated” ferromagnetic semiconductors. Striking conse-
quences of this special temperature dependence are the
“ redshift” of the optical absorption edge6 and the metal-
insulator transition in Eu-rich EuO.7,8 The responsible ex-
change interaction appears to be decisive for the physics of
the DMS, too. It creates the ferromagnetism in these materi-
als. An important question is whether and how the disorder
of the localized magneticsMn2+d moments influences the
magnetic stability. With respect to the main goal, namely,
reaching room temperature ferromagnetism, the disorder as-
pect must be considered as a central point to clarify.

The natural precondition for an understanding of the “di-
luted” ferromagnetic semiconductors is to have understood
the “concentrated” counterparts. From a theoretical point of
view, that means to find a convincing(approximate) solution
of the (ferromagnetic) KLM. 9–12 The general solution of the
sophisticated many-body problem provoked by KLM is not
yet available. The model describes the mutual influence of
two well-defined electronic subsystems, localized magnetic
moments and itinerant band electrons. It turns out to be a
nontrivial challenge to treat both subsystems simultaneously
on the same theoretical level. To our information, such a
theory does not yet exist. It is the aim of this paper to pro-
pose a new way to approach this problem.
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The second step is to introduce disorder of the localized
magnetic moments by dilution and to inspect its influence on
the magnetic stability.13–15Does the disorder weaken or even
strengthen the ferromagnetism? How can we understand the
fact that surprisingly low moment concentrations and carrier
densities are able to mediate a ferromagnetic ordering in di-
luted magnetic semiconductors Ga1−xMnxAs. The final goal
is to work out the prerequisites for room temperature ferro-
magnetism in diluted magnetic semiconductors. We there-
fore, derive the magnetic phase diagram of a diluted Kondo-
lattice (concentrationx) in terms of model parameters such
as x, the carrier concentrationnøx, and the exchange cou-
pling J. For this purpose, we introduce in the next section the
KLM and a proposal for its electronic self-energy. The con-
cept of disorder is developed in Sec. III, while the magnetic
phase diagram[Curie temperatureTC=TCsx,n,Jd] is read off
from the singularities of the paramagnetic susceptibility
(Sec. IV). The results are discussed in Sec. V.

II. KONDO-LATTICE MODEL

The (ferromagnetic) Kondo-lattice model is today cer-
tainly one of the most frequently applied models in solid
state theory, because of its great variety of potential applica-
tions to technologically promising topics in the wide field of
collective magnetism. It refers to magnetic materials that get
their magnetic properties from a system of localized mag-
netic moments being indirectly coupled via interband ex-
change to itinerant conduction electrons. Many characteristic
features of such materials can be traced back to this inter-
band exchange. The respective model Hamiltonian,9,10

H = Hs + Hsf, s1d

describes the interaction of itinerant band electrons in a ho-
mogeneous magnetic fieldB (mB is the Bohr magneton),

Hs = o
i j s

sTij − zsmBBdi jdcis
† cjs s2d

and localized magnetic moments(spins Si) via an intra-
atomic exchange,

Hsf = − Jo
j

s j ·Sj = −
1

2
Jo

js

szsSj
znjs + Sj

−scjs
† cj−sd s3d

without any direct exchange interaction between the local-
ized spins.cjs

† scjsd is the creation(annihilation) operator for
a Wannier electron with spins ss= ↑ , ↓ d at site R j (njs

=cjs
† cjs; zs=ds↑−ds↓; Sj

s=Sj
x+izsSj

y). J is the exchange cou-
pling andTij the hopping integral. The latter is connected by
Fourier transformation to the Bloch energyeskd:

Tij =
1

N
o
k

eskdeik·sRi−R jd. s4d

In spite of its simple structure, the model Hamiltonian(1)
provokes a rather sophisticated many-body problem, which,
at least for the general case, could not be solved exactly up to
now. One of the main challenging questions is whether or not
and under what conditions the interband exchangeJ may

cause a collective(ferromagnetic) ordering of the coupled
local-moment/itinerant electron system. Conventional
second-order perturbation theory predicts an indirect Heisen-
berg exchange [Rudermann-Kittel-Kasuya-Yoshida
(RKKY )] between the local moments. Approximate statisti-
cal mechanics of the resulting Heisenberg model, e.g., in the
framework of the Tyablikov method,16 indeed predicts ferro-
magnetism, but only for very low band occupationsn
=s1/Ndo jsknjsl (Ref. 10). A modified RKKY theory pre-
sented in Ref. 10, which takes into account higher order
terms of the induced conduction electron spin polarization by
a mapping of thes-f interaction (3) on an effective
Heisenberg-Hamiltonian, results in a magnetic phase dia-
gram with respect to the coupling strengthJ and the band
occupationn. To our information, however, there does not
exist a complete theory that treats the electronic part and the
magnetic moment part of the KLM on the same level and in
the same theoretical framework. Admittedly, this indeed ap-
pears to be a rather involved task. Very often, only the elec-
tronic problem is investigated while the local moment mag-
netization is phenomenologically simulated by a Brillouin
function.9,17,18 Such procedure presumes ferromagnetism,
that by no means is always valid, without deriving it self-
consistently within the KLM.

The electronic part of the many-body problem is solved as
soon as the single-electron Green functionGkssEd is avail-
able or, equivalently, the electronic self-energyMssEd,

GkssEd =
"

E − eskd + zsmBB − MssEd
. s5d

For simplicity, we assume from the very beginning a wave-
vector independent self-energy. Ak dependence of the self-
energy would be mainly due to magnon energies"vskd ap-
pearing as a consequence of magnon emission and
absorption processes by the band electron.12 However, the
neglect of a direct Heisenberg exchange between the local-
ized spins in the KLM(1) can be interpreted as the"vskd
→0 limit. In a previous paper,17 we have developed a theory
for the electronic self-energy, which fulfills, in the low
carrier-density limit sn→0d, all the known exact limiting
cases:

MssEd = −
1

2
JzskSzl +

1

4
J2

asG0sE − 1
2JzskSzl − zsmBBd

1 − bsG0sE − 1
2JzskSzl − zsmBBd .

s6d

An extensive discussion of the reliability of this self-energy
can be found in the above mentioned paper.17 as, bs are
parameters which are fixed by rigorous high-energy expan-
sions to fulfill the first four spectral moments,

as = SsS+ 1d − zskSzlszskSzl + 1d, bs = b−s =
J

2
, s7d

G0sEd is the “free” propagator,
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G0sEd =
1

N
o
k

1

E − eskd
. s8d

Since Eq.(6) is exact for a maximum number of special
cases in the low-density limit, it should represent a reason-
able starting point for the description of ferromagnetic semi-
conductors, which, by definition, is restricted to low densities
of itinerant charge carriers.MssEd is the electronic self-
energy for the “concentrated” (periodic) Kondo lattice. In
the next section, we propose how to model the disorder of
the magnetic moments in diluted ferromagnetic semiconduc-
tors.

III. ELECTRONIC SELF-ENERGY OF THE DILUTED
SYSTEM

We consider a binary alloy of constituentsa (concentra-
tion 1−x) and b (concentrationx). a symbolizes nonmag-
netic sitessGa3+d, while site b carries a magnetic moment
(Mn2+ ion) being exchange coupled via(3) to the itinerant
charge carriers. The atomic level ofa sites is in the presence
of a magnetic fieldB,

eas = T0 − zsmBB. s9d

On b sites, however, the local interband exchangeHsf (3)
acts on the charge carriers. That is accounted for by a “dy-
namic” atomic energy level incorporating the self-energy
MssEd (6),

ebs = T0 + MssEd − zsmBB. s10d

We consider the charge carriers in the “diluted” Kondo lat-
tice as a system of particles propagating in the above-defined
fictitious binaryab alloy, thereby neglecting a Coulomb dis-
order potential which might be important in some
circumstances13 (e.g., metal-insulator transition). The single-
particle properties can then be derived from the propagator

RssEd =E
−`

+`

dv
r0svd

E − v − SssEd
, s11d

whereSssEd is now the electronic self-energy in the diluted
system andr0sxd the Bloch-density of states of the noninter-
acting carriers. For the determination of the decisive self-
energy we use a standard CPA formalism,19 i.e., this quantity
is determined by the CPA equation,

0 = s1 − xd
− zsmBB − SssEd

1 − RssEds− zsmBB − SssEdd

+ x
MssEd − zsmBB − SssEd

1 − RssEdsMssEd − zsmBB − SssEdd
. s12d

The limiting casesx=0 fSssEd=−zsmBBg andx=1 [“concen-
trated” KLM with SssEd=MssEd−zsmBB] are obviously ful-
filled.

The configurational averaging, inherent in CPA, takes
care for translational symmetry and therewith for site-
independent average spin-dependent occupation numbers,

knsl =E
−`

+`

dE
rssEd

ebsE−md + 1
; E

−`

+`

dE f−sEdrssEd, s13d

f−sEd is the Fermi function,m is the chemical potential, and
rssEd is the quasiparticle density of states of theinteracting
particle system,

rssEd = −
1

p
Im RssEd. s14d

In the special case of a paramagnetic system andB→0+

(“pm” ) the density of states reads

rpmsEd = −
1

p
Im RpmsEd s15d

with

RpmsEd =E
−`

+`

dv
r0svd

E − v − SpmsEd
. s16d

The paramagnetic self-energy obeys the CPA equation(12)
in the following form:

0 = s1 − xd
− SpmsEd

1 + RpmsEdSpmsEd

+ x
MpmsEd − SpmsEd

1 − RpmsEdsMpmsEd − SpmsEdd
. s17d

The self-energy for the paramagnetic phase of the “concen-
trated” KLM (6) becomes in view of Eq.(7) especially
simple,

MpmsEd =
1

4
J2SsS+ 1dG0sEd

1 − 1
2JG0sEd

. s18d

We need these expressions when calculating, in the next sec-
tion, the paramagnetic susceptibility of the itinerant charge
carriers.

IV. STATIC MAGNETIC SUSCEPTIBILITY

In the theory of Ref. 17, the local moment magnetization
kSzl is left as a parameter which was represented by a Bril-
louin function. However, for a given parameter constellation,
it is by no means predetermined that the system will indeed
be ferromagnetic, i.e., a full theory would require a self-
consistent treatment ofkSzl within the (“concentrated” or
“diluted” ) KLM. This turns out to be a rather nontrivial goal.
For our purpose, to derive the magnetic phase diagram of the
KLM, we circumvent this problem by exploiting the static
susceptibility of the itinerant electron subsystem,

xsTd = o
s

zsS ]

]B
knslD

T.TC

B→0

. s19d

We inspect exclusively the possibility of ferromagnetism, the
average occupation numberknisl is therefore site indepen-
dent [Eq. (13)].

CARRIER-INDUCED FERROMAGNETISM IN… PHYSICAL REVIEW B 70, 075207(2004)

075207-3



The spontaneous magnetizationkSzl of the local moment
system and the conduction electron spin polarizationkn↑
−n↓l are mutually conditional. Therefore, they become criti-
cal for the same parameters, in particular, at the same tem-
perature. In the critical region, we can therefore assume

S ]

]B
kSzlD

T.TC

B→0

= h · xsTd. s20d

The proportionality of the response functions can be traced
back to a proportionality of the expectation valueskSzl and
kn↑−n↓l, which is in terms of a Taylor expansion certainly
fulfilled. In order to concentrate on the effects of dilution, we
made a simple ansatz for the proportionality factorh, which
neglects the dependence on model parameters and tempera-
ture. Instead we assume a equivalence of the reduced quan-
tities

kSzl
S

⇔
kn↑ − n↓l

n
s21d

and takeh=S/n. This ansatz, plausible as it is, can probably
be replaced by more profound theories in an improved ap-
proach.

A straightforward derivation of the itinerant-electron sus-
ceptibility x according to Eqs.(11), (6), (19), and(20) even-
tually ends up with the following expression:

xsTd = − 2mB
QxsTd + KxsTd
1 + hJKxsTd

. s22d

For clarity, the lengthy derivation ofQxsTd and KxsTd is
shifted to the appendix.

From the singularities of the paramagnetic susceptibility
x, we find the Curie temperatureTC as a function of model
parameters such as lattice structure, spin valueS, moment
concentrationx, band occupationnøx, and exchange cou-
pling J. The singularities are the solutions of the following
equation:

0 = 1 +hJKxsT = TCd. s23d

The instabilities of the paramagnetic phase towards ferro-
magnetism are thus given by the solutions of this equation.

V. MAGNETIC PHASE DIAGRAM

We have evaluated the criterion for ferromagnetism(23)
for a simple cubic(sc) lattice where the widthW of the
Bloch band has been chosen to be 1 eV. The goal is to find
out for which parameter constellations(moment concentra-
tion x, band occupationnøx, exchange couplingJ) the sys-
tem becomes ferromagnetic and what are the values for the
Curie temperatureTC=TCsx,n,Jd. We start the analysis of
the results with a discussion of the “concentrated” systems,
where (having substances like EuO and Gd in mind) the
exchange coupling constantJ is ferromagnetic. To be consis-
tent, we have restricted ourselves even in the case of “di-
luted” systems to a ferromagnetic exchange couplingJ.0,
although the most topical diluted magnetic semiconductors
seem to have an antiferromagnetic coupling. Furthermore,

our model study considers the coupling of electrons to local-
ized moments, the case of holes instead of electrons will not
essentially change the important statements.

Let us first inspect the case of the “concentrated” Kondo
lattice sx=1d. Figure 1 shows the paramagnetic inverse sus-
ceptibility of the band electrons as a function of the tempera-
ture for various parameter constellationssn,Jd. For suffi-
ciently high temperatures and almost all parameter
constellations, a Curie-Weiß behavior can be recognized.
From the zeros ofx−1 we can read off the respective Curie
temperature. In some cases two zeros are found(not shown
in the figure). The requirement thatx must be positive in the
paramagnetic phasesT.TCd makes the choice of the physi-
cally relevant solution unique.

The band occupationn enters the susceptibility(19) and
therefore the calculatedTC via the chemical potentialm,
which is accordingly determined with the help of Eq.(13).
Additionally n is included in the choice ofh. Figure 2 dem-
onstrates that ferromagnetism does exist with a distinct band
occupation dependence of the Curie temperature. The most

FIG. 1. Paramagnetic inverse susceptibility of the “concen-
trated” sx=1d Kondo lattice as function of the temperature, in(a)
for a fixed band occupationn=0.1 and different exchange cou-
plings, in (b) for a fixed exchange couplingJ=0.5 eV and different
carrier concentrationsn.

FIG. 2. Curie temperature as a function of the band occupation
n for various exchange couplingsJ in the “concentrated” sx=1d
Kondo-lattice model. Parameters: sc lattice,W=1 eV, S= 5

2.
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remarkable feature is the restriction of ferromagnetism to
surprisingly low carrier concentrationsn. Arbitrarily small
band occupations are sufficient to create a ferromagnetic or-
der. In any case, the Curie temperature is zero forn=0. It
was, however, numerically not possible to decide whether or
not there is a steep but continuous increase to finite values.
Note that the KLM does not consider a direct exchange be-
tween the localized moments. So the collective ordering is
fully mediated by the interband exchange, i.e., by the con-
duction electron spin polarization. The width of the ferro-
magnetic phase on then axis increases with the exchange
coupling strengthJ, being restricted, however, even for
strong couplings to low itinerant electron concentrations. The
maximum value of the Curie temperature also increases with
J. Typical J values for(“concentrated”) ferromagnetic semi-
conductors such as EuO and EuS are of the order of some
tenth of eV(Refs. 20 and 21).

Similar results are found with the “modified” RKKY of
Refs. 10 and 12 where an effective Heisenberg model is
solved by the Tyablikov approximation.16 The model theory
in Ref. 22 yields also qualitatively the sameTC behavior,
namely a steep increase ofTC for very weak band occupa-
tions, a rather distinct maximum and then also a very rapid
decrease to zero. The new feature of our theory(Fig. 2) is the
TC behavior forn→0.

The generalJ dependence ofTC is shown in Fig. 3. Two
features are worth mentioning. First,TC appears to run into a
saturation in the strong coupling region. This is similar to
what is reported in Ref. 10. In the present theory, however,
the saturation needs a substantially stronger exchange cou-
pling. Second, a criticalJ=Jcsnd is needed to switch on fer-
romagnetism, which, at least in the low concentration re-
gime, increases with increasingn.

We now inspect the influence of the dilution of the mo-
mentssx,1d. We assume that each magnetic ion can in prin-
ciple donate one electron to the conduction band. However,
not all these charge carriers can be considered as really itin-
erant, so thatnøx. Therewith we simulate the situation in
the diluted ferromagnetic semiconductors. In the case of
Mn2+ in Ga3+As3−, e.g., holes are created in the GaAs va-
lence band which are partly compensated by antisites.5 The
inspection of the paramagnetic susceptibility as a function of

temperature for a given parameter constellation(Fig. 4)
makes it clear that ferromagnetism does exist in the diluted
moment system, too. The resulting Curie temperature is plot-
ted in Fig. 5 as a function of the carrier concentrationn for
various moment concentrationsx. As in the case of the “con-
centrated” system, ferromagnetism is restricted to the very
low concentration region. Also theJ dependence of the Curie

FIG. 3. Curie temperature as a function of the exchange cou-
pling strengthJ for three different band occupationsn in the “con-
centrated” sx=1d Kondo-lattice model. Parameters: sc lattice,S= 5

2,
W=1 eV. FIG. 4. Paramagnetic inverse susceptibility of the “diluted”

Kondo lattice as a function of the temperature, in(a) for a fixed
band occupationn=0.01 and different exchange couplings, in(b)
for a fixed exchange couplingJ=0.4 eV and different carrier con-
centrationsn.

FIG. 5. Curie temperature as a function of the band occupation
n for various concentrationsx of magnetic moments in the “diluted”
sx,1d Kondo-lattice model.(a) J=0.1 eV, (b) J=0.4 eV, (c) J
=1.0 eV. Parameters: sc lattice,W=1 eV, S= 5

2.
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temperature for a givensx,nd pair is very similar to that for
the “concentrated” systems plotted in Fig. 3. What is re-
markable, however, is the fact that the concentrationn must
be very much smaller than the concentrationx in order to
allow ferromagnetic ordering. The compensation effects ob-
served in diluted magnetic semiconductors(antisites, etc.)
seem to be a necessary precondition for ferromagnetism in
the diluted system. Forn=x ferromagnetism is excluded. An
explanation for this is given by the quasiparticle density of
states.

For sufficiently high values ofJ, the (paramagnetic) qua-
siparticle density of states(Fig. 6) consists of three parts. The
low-energy and the high-energy subbands are built up by
states from the correlatedb-sites, while the middle structure
is due to the uncorrelateda sites. The correlated subbands,
which are exclusively responsible for a possible magnetic
order, are exchange-split by about1

2Js2S+1d. When the three
structures are well separated, then, the area under the two
correlated peaks amounts tox while that of the uncorrelated
middle band is 1−x. With increasingx, i.e., higher moment
density, more and more spectral weight is shifted into the
correlated quasiparticle subbands. In simple terms, the two
correlated bands can be understood as follows: An electron
propagating in the low-energy subband hops mainly over lat-
tice sites where it can orient its spin parallel to the local-
momentsMn2+d spin f,−1

2JSg. In the high-energy subband,

the spin orientation is predominantly antiparallelf,+ 1
2JsS

+1dg. Since we have used for the self-energyMssEd the low-
density approach of Ref. 17, the QDOS does not exhibit a
noteworthy band occupation dependence.

The first precondition for ferromagnetism is that the
Fermi edge lies in one of the correlated subbands. We ob-
serve in principle the same general structure as in the con-
centrated casesx=1d exhibited in Fig. 2. Extremely low car-
rier concentrations are already sufficient to induce
ferromagnetism. Roughly estimated, we find ferromagnetic
ordering for band occupations 0,n,ncsJd ·x, wherencsJd is
the critical band occupation forx=1 at a givenJ.

It is indeed observed for diluted magnetic semiconductors
that the number of itinerant carriers is substantially smaller
than the number of local moments.5 In Ga1−xMnxAs, e.g.,
each Mn2+ ion in principle provides one hole in the valence
band. However, only a certain percentage of them are really
itinerant, the others are compensated, e.g., by antisites or
interstitial Mn atoms, that act as donors. Erwin and
Petukhov23 were the first to suggest that such compensation
effects might be in favor of a collective order. In the limit
J→` they mapped the Hamiltonian(1) on an effective
Heisenberg model and evaluated the latter using classical
percolation theory. With our treatment of the Kondo-lattice
model, which is valid for quantum spins and finiteJ, we can
confirm that compensation is necessary for the existence of
ferromagnetism. The reason is the complete filling of the
lower correlated subband in Fig. 6 forn=x. This corresponds
in the “concentrated” local-moment systems(Fig. 2) to a
half-filling of the correlated spectrum, which is known to
prevent a magnetic order.10,12 In contrast to Erwinet al. the
ncsJd determined from our results is substantially smaller
than x. More recently a similar behavior was found by
Bouzeraret al.15 and Breyet al.24

Our findings are in particular interesting, because they
seem to be in disagreement with someab initio
calculations.25,26 These papers mostly refer to compensation
effects of As antisites. Since interstitial Mn atoms have a
different magnetic behavior, its compensation might have a
different effect onTC, too. Nevertheless, this point is appar-
ently still an exciting open question, both for experimental-
ists and theoreticians.

VI. SUMMARY

In conclusion, it can be stated that the basic theory for the
self-energy (6) is undoubtedly justifiable for the low-
concentration limit of the KLM. Fortunately, this is obvi-
ously just the most relevant region for stable
ferromagnetism.10,12,22The assumption of equivalent critical-
ity (20) of the two subsystems of the KLM is certainly ac-
ceptable, while the choice of the parameterh [see Eq.(21)]
seems to be plausible. Nevertheless, the latter surely needs
stronger confirmation. Interesting remarks about this fact can
be found in Ref. 27. A change ofh, however, does not quali-
tatively alter the findings of the theory. The absolute values
of the Curie temperatures depend of course sensitively onh.

We have shown by a CPA-type treatment of the disor-
dered KLM how the magnetic disorder in diluted local-

FIG. 6. Paramagnetic quasiparticle density of states of the “di-
luted” Kondo-lattice model in the paramagnetic phase as a function
of energy for different values of the moment concentrationx and
three different exchange couplingsJ. Parameters: sc lattice,W
=1 eV, S= 5

2.
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moment systems influences the existence of a ferromagnetic
phase and the respective Curie temperature. The model study
gives a qualitative explanation of the ferromagnetism in di-
luted magnetic semiconductors. A main consequence of our
model study is that a substantial compensation of the itiner-
ant charge carrierssn,xd by antisites or other mechanisms
appears to be a necessary condition for the existence of a
ferromagnetic ordering. It is intended for the future to apply
our theory to real diluted magnetic semiconductors(negative
J!).
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APPENDIX

We give here the full analytical solution for the paramag-
netic susceptibility(22). By definition (19) it is determined
by the electron polarization. Substituting(11) and (14) into
the spectral theorem(13) yields

]knsl
]B

=E
−`

+`

dE f−sEd1−
1

p
ImE

−`

+`

dv

r0svd ·S ]

]B
SssEdD

fE − v − SssEdg2 2 .
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According to the chain rule the derivative is reduced to that
of s] /]BdossEd. It is derived from the application of] /]B to
Eq. (12). Afterwards the limitB→0 is taken. Those terms
which are proportional to]kSzl /]B=h ·xsTd give rise to
KxsTd, the most important term of Eq.(22),
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The remaining terms are summed toQxsTd+KxsTd with
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Equation(22) is a consequence of the result

xsTd = − JhxsTdKxsTd − 2mBfQxsTd + KxsTdg. sA4d

In these expressions we have used further abbreviations,
which are chosen according to mathematical simplicity.
Hence, the individual terms do not carry a particular physical
meaning. Thev integrations in(A1) and(A6) are denoted as

DpmsEd =E
−`

+`

dv
r0svd

sE − v − SpmsEdd2 , sA5d

GksEd =E
−`

+`

dv
r0svd

sE − vdk+1 . sA6d

From the variety of terms emerging after differentiating Eq.
(12) an x-independent factor

HsEd =
1 − 1

2JG0sEd − 1
4J2SsS+ 1dG1sEd

s1 − 1
2JG0sEdd2 sA7d

can be separated. The remaining terms are

NxsEd = s1 − xd
1 − DpmsEdSpm

2 sEd
s1 + RpmsEdSpmsEdd2

+ x
1 − DpmsEdsMpmsEd − SpmsEdd2

s1 − RpmsEdsMpmsEd − SpmsEddd2 , sA8d

AxsEd =
1 − x

s1 + RpmsEdSpmsEdd2

+
x

s1 − RpmsEdsMpmsEd − SpmsEddd2 , sA9d

BxsEd =
x

s1 − RpmsEdsMpmsEd − SpmsEddd2 . sA10d

Obviously, for the concentrated case, wherex=1 and
MpmsEd=SpmsEd, the algebraic equations have a much sim-
pler structure.
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