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We derive the Ruderman-Kittel-Kasuya-Yosida(RKKY ) theory for semiconductors including band degen-
eracy, modulation of the band edges, and external fields. Explicit expressions are given for a three- and
two-dimensional semiconductor in a magnetic field. Screening effects are included by calculating the density
correlation function. We show that the RKKY theory with screening is equivalent to the mean-field Zener
model.
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I. INTRODUCTION

Diluted magnetic semiconductors(DMS) have been ex-
tensively studied for more than a decade.1,2 The exchange
coupling between magnetic ions and electrons leads to a gi-
ant effectiveg factor. In recent years, ferromagnetism in Mn-
doped III-V and II-VI semiconductors has been predicted
theoretically3–7 and measured experimentally;8–14 for a re-
view, see Ref. 15. In low-dimensional semiconductors, fer-
romagnetism can be controlled through the modulation of the
band edges, external fields, and carrier injection by optical
pulses.7,12,14 The goal is the development of semiconductor
devices which use the spin degree of freedom for the storage
and processing of information, known as spintronics.16,17

The indirect exchange interaction of magnetic ions by
electrons has been explained by the Ruderman-Kittel-
Kasuya-Yosida(RKKY ) theory, developed in the 1950s,18–20

and by a mean-field Zener theory, which goes back to papers
by Stoner from the 1930s.21 The range function of the RKKY
interaction has been calculated already in the early papers for
interaction-free electrons in three, two, and one dimension,
both in momentum22 and in real space.22–25 Dietl et al.,3 as-
suming only the lowest subband to be occupied, expressed
the RKKY interaction of a low-dimensional semiconductor
in terms of the range function of the ideal three-, two-, and
one-dimensional electron gas.

However, realistic low-dimensional semiconductors are
never perfectly two or one dimensional. For example, quan-
tum wells and superlattices have an effective dimension be-
tween two and three, quantum wires between one and two.
As the translational symmetry is broken in the directions of
confinement, the range function does no longer depend only
on the difference of the coordinates. It is quite common to
treat Bloch electrons like free electrons and few papers pay
attention to the details of the band structure.4,26–28

Moreover, the magnetic field itself leads to a quantization
of the electron and hole motion and to reduction of the di-
mensionality. For example, a bulk semiconductor in a mag-
netic field has features both of a three- and of a one-
dimensional semiconductor. To describe experiments in high
magnetic fields, it is no longer justified to assume the RKKY
interaction to be the same as in the field-free case and the
influence of the magnetic field on the range function needs to
be taken into account.

An open problem is the effect of screening. It was argued
on the basis of the diagram technique that screening plays no

role in the absence of Zeeman splitting.29 In semiconductors,
Zeeman splitting is usually not negligible. The spin suscep-
tibility, including screening, was calculated already in the
late sixties,30 but these results did not make their way into
the theory of ferromagnetism in semiconductors. It is also
not clear if the perturbation-theoretical character of the
RKKY theory limits its validity and in which way RKKY
theory and mean-field Zener theory are related to each other.

In this paper, we present a rigorous derivation of the
RKKY theory for semiconductors. First, in Sec. II, we derive
the RKKY interaction by means of both perturbation theory
and Kubo theory and show the equivalence. Then, in Sec. III,
we derive the effective RKKY Hamiltonian for low-
dimensional semiconductors, including the sample geometry,
band degeneracy, and external fields. To illustrate the useful-
ness of the theory, in Sec. IV we derive analytical results for
a bulk semiconductor and an ideally two-dimensional semi-
conductor in a magnetic field. The results are compared with
the range functions for the three-, two-, and one-dimensional
electron gas, and limiting cases are studied. In Sec. V, we
calculate the range function in the presence of screening and
show the equivalence of RKKY theory including screening
and mean-field Zener theory. Summary and conclusions are
given in Sec. VI.

II. THE RKKY INTERACTION

The derivation of the effective Hamiltonian by second-
order perturbation theory in the original paper by Ruderman
and Kittel is somewhat hand waving.18 An alternative ap-
proach to the effective interaction is based upon the magnetic
susceptibility, which was pioneered by Wolff.29,31 Here we
give a rigorous derivation of the effective Hamiltonian by
Löwdin’s perturbation theory and by linear response theory,
which gives the same result. The effective interaction is re-
lated to the density correlation function, which allows us to
systematically study the role of many-particle effects.

A. Degenerate perturbation theory

We start with Löwdin’s degenerate perturbation theory.
Suppose the Hamiltonian of a system is of the form
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H = SHAA HAB

HBA HBB
D . s1d

The block indices correspond to Löwdin’s classesA and B
for the resonant and off-resonant eigenstates. The elements
of the diagonal blocks areHAAjj8=Ejd j j 8 for j , j8[A and
HBBjj8=Ejd j j 8 for j , j8[B. The nondiagonal blocks, which
contain the perturbation, may be fully occupied and fulfill
HBA=HAB

† . Then, in second-order perturbation theory, the ei-
genvalue problem of the classA solutions is determined by
an effective Hamiltonian32

Heff j j 8 = Ejd j j 8 + o
j9[B

Hjj 9Hj9 j8

Ej − Ej9
, j , j8 [ A. s2d

We assume thatN magnetic ions with magnetic moments

Ŝ1, . . . ,ŜN with g (or Landé) factor gion are located at the
lattice pointsR1, . . . ,RN. The magnetic ions are equally dis-
tributed so that the material is macroscopically homoge-
neous. The probability of a lattice site being occupied by a
magnetic ion is equal to the mole fractionx[ f0,1g. (For
semiconductors with two cations per unit cell, in the result-
ing expressions,x has to be replaced by 2x.)

As the direct interaction between their angular momenta

is negligible, the unperturbed Hamiltonian of the ionsĤion is
a constant. The orthonormal and complete eigenstates of the
ionic system are given by

uM1, . . . ,MNl = uS,M1l ^ ¯ ^ uS,MNl,

whereS is the quantum number of the total angular momen-
tum of a magnetic ion, which is the same for all ions, and
Mj [ h+S, . . . ,−Sj is the projection of thej th angular mo-
mentum(here, onto thez axis). The dimension of the eigens-
pace for the ionic system iss2S+1dN.

The eigenstates and eigenenergies of the subsystem ofP
electrons are given byuGl and EG, where G0 denotes the
ground state. The exchange interaction between electrons
and magnetic ions is

Ĥel-ion = o
k=1

P

o
j=1

N

Ŝj ·skIsr k − R jd = o
j=1

N E d3rŜ j · ŝsr dIsr − R jd,

s3d

where I is a real, strongly localized function ands
=" /2ssx,sy,szdT is the electron spin operator with eigen-
statesus= 1

2 ,m=±1
2l= us= 1

2 ,m=↑ ,↓l. In second quantization,
the operator of the spin density is expressed in terms of field
operators as

ŝsr d = o
mm8

ĉm
† sr dsmm8ĉm8sr d. s4d

The interaction(3) has the same structure, like a spin orbit or
hyperfine interaction.

After these preparations, we are able to identify the com-
ponents of the Hamiltonian(1). The ground state of the
interaction-free electron-ion system, which is identified with
Löwdin’s classA, is given by uG0l ^ uM1, . . . ,MNl. Without
loss of generality, its energy is set equal to zero. The multi-

plicity of the ground state iss2S+1dN. Therefore,HAA in Eq.
(1) is a square matrix of dimensions2S+1dN, with all ele-
ments being zeros. Likewise, the excited states areuGl
^ uM1, . . . ,MNl, where GÞG0. Their multiplicity is also
s2S+1dN. Consequently,HBB is a diagonal matrix with ele-
mentsEG; GÞG0, where eachEG appearss2S+1dN times.

The sum in Eq.(2) has to be carried out over all excited
electron statesG and over all angular-momentum quantum
numbersM1, . . . ,MN of the magnetic ions. As the unper-
turbed energies of the magnetic ions are independent of the
ion spin projections, the sum over theM1, . . . ,MN is equiva-
lent to inserting as2S+1dN-dimensional identity matrix. Fur-
thermore, instead of calculating alls2S+1dN3 s2S+1dN ma-
trix elements ofHeff, we can directly calculate the effective
Hamiltonian, acting in the subspace of the magnetic ions,
just by droppingkM1, . . . ,MNu and uM18 , . . . ,MN8 l on the left
and right side, respectively. Then the Hamiltonian of the ef-
fective ion-ion interaction becomes

Ĥion-ion = − o
j j 8

o
G

8
1

EG − EG0

kG0uŜj ·E d3r Isr − R jdŝsr duGl

3 kGu E d3r 8Isr 8 − R j8dŝsr 8d · Ŝj8uG0l. s5d

The prime at the sum means that the ground stateG0 is ex-
cluded.

We shall now evaluate the expression(5) in a mean-field
(e.g., Hartree, Hartree-Fock) approximation, where the
many-particle stateuGl is an antisymmetrized tensor product
(Slater determinant) of effective single-particle states. We de-
note the single-electron eigenstates and eigenenergies byugl
andEg, whereEg8.Eg for g8.g. With the introduction of
creation and annihilation operators,

ĉm
† = o

g

âg
†wg;m

* sr d, ĉm = o
g

wg;msr dâg,

the electron ground state is written as

uG0l = âP
†
¯ â1

†ul, s6d

where u l is the vacuum state, when no electron is present.
Only excited states of the form

uGl = âg8
† âguG0l; g P h1, . . . ,Pj, g8 ¹ h1, . . . ,Pj s7d

contribute to the sum(5) and the resulting effective Hamil-
tonian is

Ĥion-ion = − o
j j 8

o
gg8

fgs1 − fg8d

Eg8 − Eg

3 Ŝj · o
m1m18

E d3rwg;m1

* sr dsm1m18
Isr − R jdwg8;m18

sr d

3 o
m2m28

E d3r 8wg8;m2

* sr 8d

3sm2m28
Isr 8 − R j8dwg;m28

sr 8d · Ŝj8, s8d
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which is the RKKY Hamiltonian. The occupation numbersfg

take the values 0 and 1, depending on whether the stateugl is
occupied or not. The formulation of the interaction in second
quantization(4) is independent of the number of electrons
and the derivation remains valid for a statistical ensemble
when fg is replaced by the Fermi function.

B. Kubo theory

Formally, the RKKY interaction can be derived by means
of Kubo theory and the effective Hamiltonian can be ex-
pressed in terms of the magnetic susceptibility. The interac-
tion of the electrons with an external magnetic fieldHsr ,td is
given by

Ĥsidstd =
m0e

m0
E d3rŝsr ,td ·Hsr ,td s9d

and the induced magnetization is

M sr ,td = −
m0e

m0
kŝsr ,tdl.

According to Kubo theory,33,34 the linear response of the
electron gas is

Masr ,vd = m0o
a8
E d3r 8xretaa8sr ,r 8,vdHa8sr 8,vd s10d

with the susceptibility

xretaa8sr ,r 8,vd

=
1

m0
Sm0e

m0
D2 i

"
E
0

`

dt e+isv+iedtkfŝasr ,td,ŝa8sr 8,0dgl,

s11d

wheree=+0 is a positive infinitesimal. For a static magnetic
field, the change of the energy caused by the magnetization
of the electrons is

−
1

2
m0o

aa8
E d3r E d3r 8Hasr dxretaa8sr ,r 8,v = 0dHa8sr 8d.

s12d

Formally, the interaction with the magnetic field(9) is
equal to the electron-ion interaction(3), if we identify

Hsr d =
m0

m0e
o

j

ŜjIsr − R jd.

(It is worthwhile to note thatH in this expression has nothing
to do with the magnetic field caused by the ions.) Then the
energy change(12) can be identified with the effective
Hamiltonian

Ĥion-ion = −
1

2
m0S m0

m0e
D2

o
j j 8

o
aa8

E d3r E d3r 8

3 ŜjaIsr − R jdxretaa8sr ,r 8,v = 0dIsr 8 − R j8dŜj8a8.

s13d

Indeed, the expressions(5) and (13) are identical, except
for the contribution atj = j8. The reason is that, in contrast to
the classical field(12), the ion spin operators do not com-
mute in the general case, more strictly, it holds that

fŜja ,Ŝj8,a+1g= i"Ŝj ,a+2d j j 8. As we consider only extended sys-
tems, the contributions forj = j8 are negligible and can be
dropped, as usually done in the literature.

In the language of many-particle physics, the magnetic
susceptibility is given by

xretaa8sr ,r 8,vd = −
1

m0
Sm0e

m0
D2

o
m1m18

o
m2m28

3 sam1m18
Lretm18m1,m28m2

sr ,r 8,vdsa8m2m28
,

s14d

whereL is the density correlation function.35,36 This repre-
sentation is helpful to systematically study the role of the
electron-electron interaction, which will be done in Sec. V. It
also allows us to consistently include nondiagonal elements
of the density matrix, which play a role in coherently excited
semiconductors. The approximation of theuGl by uncorre-
lated states(6) and(7) is equivalent to the following approxi-
mation of the density correlation function:

Ls1I ,1I8,2I ,2I8d < Ps0ds1I ,1I8,2I ,2I8d = − i"Gs1I ,2I8dGs2I ,1I8d.

s15d

The evaluation ofPs0d is tedious but straightforward,36 and
the result for the effective Hamiltonian is

Ĥion-ion = −
1

2o
j j 8

o
gg8

fg − fg8

Eg8 − Eg

3 Ŝj · o
m1m18

E d3rwg;m1

* sr dsm1m18
Isr − R jdwg8;m18

sr d

3 o
m2m28

E d3r 8wg8;m2

* sr 8d

3sm2m28
Isr 8 − R j8dwg;m28

sr 8d · Ŝj8. s16d

This is the same as expression(8) symmetrized in the vari-

ablesŜja andŜj8a8. Due to the positive infinitesimale in Eq.
(11), the sum over the eigenstates has to be interpreted as
Cauchy’s principal value.

Suppose that the effective Hamiltonian(16) at zero tem-
perature is known as a function of the Fermi energyEF.
Then, by virtue of the relation

1

exp
E − m

kBT
+ 1

=E
−`

+`

dEF
1

4kBT
sech2

m − EF

2kBT
QsEF − Ed,

the effective Hamiltonian as function at finite temperature is
given by
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Ĥion-ionsT,md =E
−`

+`

dEF
1

4kBT
sech2

m − EF

2kBT
Ĥion-ionsT = 0,EFd.

s17d

This equation is valid for any quantity that is a linear func-
tional of the Fermi function. The integral kernel has a width
of the order ofkBT and a weight 1. Formula(17) can be
generalized to nonequilibrium distributions, as occur in
highly excited semiconductors. Then the integral kernel is
given by the derivative of the occupation number with re-
spect to the energy.

III. RKKY INTERACTION IN LOW-DIMENSIONAL
SEMICONDUCTORS

We shall now derive the RKKY interaction for low-
dimensional semiconductors, including band degeneracy and
external fields. We start with the general expression and then
consider a twofold degenerate band. Explicit expressions are
given for the case with and without Zeeman splitting.

A. Envelope-function representation

In a low-dimensional semiconductor, the eigenfunctions
can approximately be represented by products of slowly
varying functions, so-called envelope functions, and lattice-
periodic functions. Letn be an energy band which isL-fold
degenerate at theG point sk =0d. The lattice-periodic parts of
the Bloch functions atk =0 are un,l,k=0;msr d=unl;msr d; l
=1, . . . ,L. Then, the approximate eigenfunctions of the elec-
trons in thenth band are37–39

wnl;msr d = o
l

w̃nl;lsr dunl;msr d, s18d

where we have neglected the classB components, which do
not change the symmetry. The slowly varying functions
w̃nl;lsr d are the eigenfunctions of an effective-mass(Lut-
tinger) Hamiltonian, which may include the modulations of
the band edges in form of effective potentials and external
fields.37–39 Generally, we shall use the tilde to denote quan-
tities in the effective-mass approximation.

The goal of the effective-mass approximation is to treat
electrons in crystals like real electrons and to work only with
the slowly varying envelope functions, while the properties
of the lattice-periodic functions are condensed in a few ma-
trix elements. Taking into account the strong localization of
the functionI, we can separate between slowly and rapidly
varying parts and the effective Hamiltonian(16) goes over
into

Ĥion-ion = −
1

2o
j j 8

o
nln8l8

fnl − fn8l8

En8l8 − Enl

3 Ŝj ·o
l1l18

w̃nl;l1
* sR jdI nl1,n8l18

w̃n8l8;l18
sR jd

3 o
l2l28

w̃
n8l8;l28
* sR j8dI n8l28,nl2

w̃nl;l2
sR j8d · Ŝj8, s19d

where we assumed thatj Þ j8. The matrix elements

I nl,n8l8 = o
mm8

E d3runl;m
* sr dsmm8Isr dun8l8;m8sr d s20d

can be traced back to a few constants(the so-called exchange
integralsa andb), which are determined experimentally1 or
by ab initio pseudopotential methods.40 In optically excited
or doped semiconductors, the intraband contributionssn
=n8d are the dominating ones, because of the energy denomi-
nator in expression(19).

For theG6 conduction and theG8 valence band of a zinc-
blende semiconductor, crystal symmetry requires the cou-
pling matrix elements to be of the form

I cl,cl8 = − Ic

sll8

2
, I vl,vl8 = − IvJll8, s21d

where J=sJx,Jy,JzdT are the four-dimensional angular-
momentum matrices, the so-calledJ matrices.

Comparing expressions(19) and (16), it appears that in
the effective-mass approximation the conduction and valence
electrons interact with the magnetic ions via an effective

spin-orbit interaction of the form −Icdsr −R jd
s
2 ·Ŝj and

−Ivdsr −R jdJ ·Ŝj, respectively.3 This effective interaction de-
pends on the band indices and is proportional to a delta
function—on the length scale of the slowly varying envelope
functions. The coefficientsIc and Iv are related to the ex-
change integralsa andb by1

Ic =
a

"
, Iv =

b

3"
. s22d

For the G6 conduction band, the dispersion is parabolic
and one can easily derive analytical expressions. For theG8
valence band, the eigenfunctionsw̃vl are four-component
spinors, which need to be calculated numerically. This is, in
principle, possible. However, to take advantage of the ana-
lytical results for the conduction band, it is common to ne-
glect the contribution of the light hole and assume a para-
bolic dispersion for the heavy hole. The effective spin-orbit
interaction of the heavy hole then has the form −Ihhdsr
−R jd

s
2 ·Sj, with

Ihh = 3Iv =
b

"
. s23d

B. Twofold degenerate band

The effective-mass Hamiltonian of a twofold degenerate
band in the presence of structural confinement and external
fields is

H̃
ˆ

=
1

2m*
F"

i
¹ 7 eAextsr dG2

± eUextsr d + Wsr d + H̃
ˆ

mag,

s24d

wherem* = me,mhh is the effective mass of the particle,7e
its charge,Uext andAext are the scalar and the vector poten-
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tial, andW is a potential characterizing the modulation of the
band edge in a heterostructure.

The magnetic HamiltonianH̃
ˆ

mag is determined by the in-
teraction of the Bloch electron with the magnetic field, which
is characterized by an intrinsicg factor g*, and by the spin-
orbit interaction with the magnetic ions. Introducing the
magnetization of the ion spins,

M sR jd = − m0
x

V0

gione

2m0
kŜjl, s25d

which is assumed to be a slowly varying function ofR j, the
magnetic Hamiltonian in the virtual crystal approximation
(VCA) is given by

H̃
ˆ

mag=
g * e

2m0
Bextsr d ·s+

1

m0

2m0

gione

I

"
M sr d ·s, s26d

where I is either Ie= Ic or Ihh=3Iv for the electron or heavy
hole, respectively. In DMS, the contribution from the intrin-
sic g factor is negligible.

We assumeBext=Bext ez=const. Then the spin projectionl
is a good quantum number and the eigenvalues and eigen-
functions take the form

El = Emm, Em↑ − Em↓ = DE =
1

m0

2m0

gione
IM

w̃l;lsr d = w̃mm;lsr d = w̃msr ddml, s27d

and the effective Hamiltonian(19) becomes

Ĥion-ion = −
1

2
I2o

j j 8
o
mm8

o
mm8

fmm − fm8m8

Em8m8 − Emm
Ŝj · w̃m

* sR jd

3
smm8

2
w̃m8sR jdw̃m8

* sR j8d
sm8m

2
w̃msR j8d · Ŝj8.

s28d

In order to show the connection to the RKKY theory for
free electrons,18–20,22it is instructive to consider the case that
Zeeman splitting is negligible, i.e.,Em↑=Em↓=Em. Then, be-
cause of Trssasa8d=2daa8, the effective Hamiltonian has the
form of a Heisenberg Hamiltonian,

Ĥion-ion = −
1

2o
j j 8

FsR j,R j8dŜj · Ŝj8, s29d

where

Fsr ,r 8d =
I2

2 o
mm8

fm − fm8

Em8 − Em

w̃m
* sr dw̃m8sr dw̃m8

* sr 8dw̃msr 8d

=
I2

2 o
mm8

fms1 − fm8d

Em8 − Em

fw̃m
* sr dw̃m8sr dw̃m8

* sr 8dw̃msr 8d

+ w̃m
* sr 8dw̃m8sr 8dw̃m8

* sr dw̃msr dg. s30d

In case of translational invariance, the interaction matrix
elements are of the formFsr ,r 8d=Fsr −r 8d. Then, the Fou-
rier transform ofF, known as the range function, is defined
as

Fsqd =E d3re−iq·rFsr d. s31d

Analogous definitions apply in two and one dimension.
For a Fermi sea of three-, two-, and one-dimensional free

electrons, where the eigenfunctions are plane waves, the
range function has been evaluated and the result is22

F3sqd =
I2

2

m*

4p2"2

1

q
FqkF + SkF

2 −
q2

4
DlnUq + 2kF

q − 2kF
UG

F2sqrd =
I2

2

m*

2p"25 1 for qr ø 2kF

1 −Î1 −S2kF

qr
D2

for qr . 2kF 6
F1sqzd =

I2

2

m*

p"2

1

qz
lnUqz + 2kF

qz − 2kF
U , s32d

wherekF=Î2m* EF /" is the Fermi wave number andEF is
the Fermi energy. TakingF1 as function of two variables
qz[R and kF[C, it has the obvious propertiesF1s−qz,kFd
=F1sqz,kFd, F1sqz,−kFd=−F1sqz,kFd, F1sqz;kF

* d=F1sqz;kFd,
andF1sqz;kFd=0 for kF[ iR. The Fourier transforms of the
functions(32) are22–25

F3srd =
I2

2

m*

16p3"2

sins2kFrd − 2kFr coss2kFrd
r4 ,

F2srd = −
I2

2

m* kF
2

4p"2 fJ0skFrdN0skFrd + J1skFrdN1skFrdg,

F1szd =
I2

2

m*

p"2Sp

2
− Siu2kFzuD . s33d

The above expressions are forT=0; the generalization to
finite temperatures can be done by means of relation(17).

In contrast to the ideald-dimensional electron gas, a re-
alistic d-dimensional semiconductor has 3-d additional di-
rections of confined motion. In this case the functionF (30)
depends on two three-dimensional vectorsr and r 8, but
translational invariance is fulfilled only for thed directions
of free motion. Suppose that only the lowest subbandn=0 is
occupied. Then one readily obtains for the RKKY
interaction:3

Fsr ,r 8d = uw̃0sr 'du2uw̃0sr '8 du2Fdsr i − r i8;kF,0d, s34d

where r ' and r i denote the directions of confined and free
motion, respectively, andw̃0 is the ground-state wave func-
tion of the confined motion. In the expression forFd (33),
the Fermi wave number has to be replaced bykF,0
=Î2m* sEF−E0d /", whereE0 is the ground-state energy. For
more complicated geometries or in the presence of interface
roughness, it is desirable to directly calculateF from the
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effective Hamiltonian(24). Such numerical methods have
been proposed recently by Roche.41

The above considerations are valid only for geometrically
low-dimensional semiconductors, where the confinement is
caused by the modulation of the band edges, modeled by the
function W in Eq. (24). The situation is more complicated if
the dimensionality is reduced by a magnetic field. Actually,
in this case, there is no unique definition of the dimension-
ality. From the point of translational symmetry, a bulk semi-
conductor in a magnetic field is three dimensional, whereas
the 1/ÎE singularities in the density of states indicate one-
dimensional behavior. Formula(34) is not applicable in this
case, because the Landau levels have an infinite degeneracy.
The form of F (34) is also in contradiction to the transla-
tional invariance of a bulk semiconductor in a magnetic field.
As the density of states in a magnetic field is a series of
one-dimensional densities of states, there is hope to express
the range function as a series of one-dimensional range func-
tions. In the next section, we calculate the range function for
a three- and two-dimensional semiconductor in a magnetic
field.

IV. SEMICONDUCTOR IN A MAGNETIC FIELD

In this section, we calculate the RKKY interaction of a
semiconductor in a homogeneous magnetic field. We start
with the three- and two-dimensional semiconductor, in case
that the Zeeman splitting of the conduction band is negli-
gible. Then the results are generalized to take into account
Zeeman splitting.

A. Bulk semiconductor

We first neglect the Zeeman splitting so thatĤion-ion is of
the form (29). A bulk semiconductor in a magnetic field is
spatially homogeneous, even though this property is not re-
flected by the form of the vector potential. Here, we use the
Landau gauge,Aextsr d=Bextxey, and, without loss of general-
ity, assume thatBext.0. Then, the explicit form of the eigen-
functions entering Eq.(30) is42

w̃msr d = w̃nkykz
sr d =

1
ÎLz

eikzz
1

ÎLy

eikyywnSx ±
"ky

eBext
D ,

wnsxd =
1

Îlmag

hnS x

lmag
D, hnsjd =

s− 1dn

Î2nn ! Îp
e−j2/2Hnsjd,

s35d

Em = Enskzd = "vcSn +
1

2
D +

"2kz
2

2m*
, n [ N0, ky,z [

2pZ

Ly,z
,

where lmag=Î" / seBextd is the magnetic length,vc

=eBext/m* is the cyclotron frequency,Hn denotes the Her-
mite polynomials, andLy and Lz are the normalization
lengths in they and z direction, respectively. The energies
are defined relative to the conduction-band edge and the oc-
cupation numbers forT=0 are fm=QsEF−Emd.

Inserting the solutions(35) into the second formulation in
Eq. (30), the range function(31) becomes

Fsqd =
I2

2 o
n=0

`

o
n8=0

` Mnn8slmagqrd

s2plmagd2 E
−`

+`

dkz8E
−`

+`

dkz8

3
QfEF − EnskzdgQfEn8skz8d − EFg

"vcsn8 − nd +
"2

2m*
skz8

2 − kz
2d

3 fdskz8 − kz − qzd + dskz8 − kz + qzdg, s36d

whereqr=Îqx
2+qy

2 and (Ref. 43, 7.377)

Mnn8sÎa2 + b2d = Mn8nsÎa2 + b2d

= *E
−`

+`

dje−iajhnsjdhn8sj ± bd*
2

=
n8!

n!
Sa2 + b2

2
Dn−n8

e−a2+b2/2

3FLn8
sn−n8dSa2 + b2

2
DG2

= Ann8Sa2 + b2

2
D

= An8nSa2 + b2

2
D s37d

for nùn8. Here,Ln
sad for n[N0 anda.−1 denote the gen-

eralized Laguerre polynomials, defined in Refs. 43 and 44,
not to be confused with the associated Laguerre functions,
often used in physics textbooks.42 The Ln

sad can be analyti-
cally continued to arbitrary complexa.44 Then the above
formula is valid also forn,n8. The coefficientsAnn8 are
often used in the theory of the electron gas in a magnetic
field.45–49

For the integration limits in Eq.(36) we find

o
n=0

` E
−`

+`

dkzQfEF − Enskzdg¯

= o
n=0

n̄ E
−kF,n

+kF,n

dkz¯ o
n8=0

` E
−`

+`

dkz8QfEn8skzd − EFg¯

= o
n8=0

` E
−`

+`

dkz8 ¯ − o
n8=0

n̄ E
−kF,n8

+kF,n8

dkz8 ¯ , s38d

wheren̄ is the highest occupied Landau level, i.e., the largest
integer withEn̄s0d,EF, and
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kF,n =
Î2m*

"
ÎEF − "vcSn +

1

2
D s39d

is the Fermi wave number of thenth Landau level. For rea-
sons which become clear below we shall also consider
imaginarykF,n, which occur forn. n̄.

The secondkz8 integral in Eq.(38) vanishes for symmetry
reasons and the remaining integrals have to be interpreted as
principal values. The rest of the calculation is straightfor-
ward and the result is

Fsqd =
I2

2 o
n=0

n̄

o
n8=0

` Mnn8slmagqrd

2plmag
2

m*

p"2qz

3lnU"vcsn8 − nd + s"2/2m* dqzsqz + 2kF,nd
"vcsn8 − nd + s"2/2m* dqzsqz − 2kF,nd

U .

s40d

This is the range function of a three-dimensional semicon-
ductor in a magnetic field. The result is equivalent to the
expression for the random-phase approximation(RPA) polar-
ization function of a three-dimensional electron gas in a
magnetic field obtained by Schulz and Keiter.45

It is instructive to write expression(40) in a different way.
The qz-dependent parts closely resemble the range function
F1 (32). From

"vsn8 − nd =
"2

2m*
skF,n

2 − kF,n8
2 d

it follows that

lnU"vcsn8 − nd + s"2/2m* dqzsqz + 2kF,nd
"vcsn8 − nd + s"2/2m* dqzsqz − 2kF,nd

U
= lnUqz + skF,n + kF,n8d

qz − skF,n + kF,n8d
U + lnUqz + skF,n − kF,n8d

qz − skF,n − kF,n8d
U

and, therefore,

Fsqd = o
n=0

n̄

o
n8=0

` Mnn8slmagqrd

2plmag
2

3FF1Sqz;
kF,n + kF,n8

2
D + F1Sqz;

kF,n − kF,n8

2
DG .

Using the analytical properties ofF1sqz;kFd, we can finally
write the range function in the symmetric form

Fsqd = o
n=0

`

o
n8=0

` Mnn8slmagqrd

2plmag
2 F1Sqz;

kF,n + kF,n8

2
D . s41d

If n. n̄ andn8. n̄, then the contribution to the sum is zero,
because the second argument ofF1 is purely imaginary. As
F1 has a logarithmic singularity if and only if the Fermi wave
number is real, the function(41) hassn̄+1dsn̄+2d /2 logarith-
mic singularities in the region 0,qz,2kF, wherekF is the
three-dimensional Fermi wave number. In the limitBext→0,
one expectsFsqd to go over into the three-dimensional range
function F3sq;kFd (32).

For the graphic representation, we use dimensionless
quantities, defined byI2/2="=e=m* =1. To visualize the
dependence onqr andqz, we introduce the radial coordinate
q= uqu and the azimuthal angleu with qz=q cosu and qr

=q sinu. In Fig. 1, the range functionF of a three-
dimensional semiconductor in a magnetic field(40) is shown
for a Fermi energyEF=1/2, corresponding to a three-
dimensional Fermi wave numberkF=Î2EF=1, and various
magnetic-field strengthsBext=1/2, Bext=1/10, and Bext
=1/50, corresponding to 1, 5, and 25 Landau levels below
the Fermi level. The results are compared with the three-
dimensional range functionF3 (32).

For u=0, the radiusq coincides with the coordinateqz and
the radial coordinateqr is equal to zero. In this case, as
Mnn8s0d=0 for nÞn8, only terms withn=n8 contribute to
Fsqr=0,qzd. For a large magnetic field,Bext=0.5, we observe
a strong peak atqz=2kF,0=Î2. If Bext is reduced at constant
Fermi energy, more Landau levels become occupied, each
one leading to a logarithmic singularity in the interval
qz[ s0,2kFd. The weight of the singularities decreases asBext
decreases and the range function converges towards the
three-dimensional range functionF3. This function does not
have any singularities, but is nonanalytic atq=2kF, as seen
from Eq. (32). There are no singularities in the region
qz.2kF for any Bext and the range function closely re-
sembles the three-dimensional limitF3 even for large fields.

For uÞ0, the singularities are located atqn=kF,n/cosu
=Î1−Bexts2n+1d /cosu for n=0, . . . ,n̄, but their magnitudes
are considerably smaller than foru=0. Furthermore, as
qr.0, the sum does now include contributions also forn8
Þn, which leads to additional logarithmic singularities and a
fairly irregular structure. This is clearly observable forBext
=0.1 atu=30° andu=60°. Foru.0, there are also singu-
larities in the regionq.2kF, but their height is vanishingly
small so that they cannot be seen by eye.

An azimuthal angleu=90+ corresponds toqz=0 and q
=qr. There are no singularities in this direction, but each
Landau level leads to a local maximum of the functionF.
There is one maximum forBext=0.5, five maxima forBext
=0.1, and 25 maxima forBext=0.02. For all anglesu, the
range functionF converges towardsF3 asBext goes to zero.

For any finite temperature, the logarithmic singularities
disappear, because of the integral kernel of widthkBT (17).
This was noticed in the early papers on the dielectric re-
sponse of a three-dimensional electron gas in a magnetic
field.45,47 In the limit kBT@"vc, which is of practical inter-
est, the sum over the quantum numbern can be approxi-
mated by an integral over the continuous variablekr, and the
result is the same as forBext=0. Furthermore, forB=0, the
effect of the finite temperature is relatively small due to the
smoothness ofF3sqd (cf. Fig. 1). Consequently, forkBT
@"vc, the range function can be approximated as
Fsq ;B,Td<F3sq;B=0,T=0d.

We are now ready to study the case that only the lowest
Landau level is occupied. Then in expression(40) the first
sum is restricted ton=0. Obviously, this is not a major sim-
plification, because then8 sum still runs from 0 to`. Only
in the limit "2kF,0

2 / s2m* d!"vc or, equivalently,EF− 1
2"vc

!"vc, the terms withn8.0 can be neglected and formula
(41) simplifies to

RKKY INTERACTION IN SEMICONDUCTORS:… PHYSICAL REVIEW B 70, 075205(2004)

075205-7



Fsqd =
1

2plmag
2 expS−

lmag
2 qr

2

2
DF1sqz;kF,0d. s42d

For the largest field in Fig. 1, the above approximation per-
fectly agrees with the exact solution. The RKKY interaction
in real space is given by Fourier transform of expression(42)
and the result is

Fsr d =
1

s2plmag
2 d2 expS−

r2

2lmag
2 DF1sz;kF,0d, s43d

with F1 defined in Eq.(33). We see that there is no way of
writing the expression(43) in the form (34). The extension
of the function(43) in the plane perpendicular to the mag-
netic field is in the order of the magnetic lengthlmag
=Î" / seBextd, and is independent of the density. In thez di-
rection, F shows an oscillating behavior with period
p /kF,0=1/sp%lmag

2 d. This means that for a constant density
% the extension ofF in the field direction is proportional to
the magnetic field.

B. Two-dimensional semiconductor

To calculate the range function of a two-dimensional
semiconductor in a magnetic field, we only need to drop the
z direction in Eq.(36), and the resulting range function is

Fsqid = F8sqid + F9sqid,

F8sqid =
I2

2 o
n=0

`
Mnnslmagqrd

2plmag
2 U− dfsEd

dE
U

E=En

,

F9sqid =
I2

2 o
n=0

`

o
n8=0

` Mnn8slmagqrd

2plmag
2

fsEnd − fsEn8d

En8 − En
. s44d

Here we give the general expression forTù0 because of the
divergence forT=0. The functionF8 contains only the diag-
onal contributionssn=n8d and the limit 0 /0 is replaced by
the derivative of the Fermi function. The nondiagonal con-
tributions are contained inF9, where the sum is carried out
only for nÞn8. The result(44) is identical to the expression
for the polarization function in RPA found by Gerhards and
Gudmundsson.48

The functionF9 (44) for T=0 is shown in Fig. 2 for the
same parameters as in Fig. 1. ForBext.0, this function has
n̄+1 clear and distinct maxima in the regionqr[ s0,2kFd. In
the limit qr→`, F9 rapidly converges towardsF2 (lowest
curve) for anyBext. In fact, forqrù3, the solutions for finite
Bext are virtually indistinguishable from the solution for
Bext=0. The behavior ofF in the neighborhood ofqr=2kF
=2 for smallBext can be compared to the Gibbs phenomenon

FIG. 1. Range functionF of a three-
dimensional semiconductor in a magnetic field as
a function ofq for EF= 1

2 andBext=0.5, 0.1, 0.02,
and Bext=0, corresponding to the three-
dimensional range functionF3 (32). The azi-
muthal angle isu=0 sq=qzd, 30°, 60°, and 90°
sq=qrd.
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known from Fourier series. Nonuniform convergence is ob-
served also forqr=0: the value ofF2s0d is m/ s2p"2d, while
F9sqi=0d=0.

For BextÞ0, the functionF8 becomes divergent forT=0,
because the derivative of the Fermi function is −dfsEd /dE
=dsE−EFd. However, forBext→0, T→0, "vc/ skBTd→0 we
have

F8sqrd → 5 I2

2

m*

2p"2 for qr = 0

0 for qr . 0.
6

In this limit the functionF (44) converges towards the two-
dimensional range functionF2 (32).

For fixed density, in the limitBext→`, only the lowest
Landau level remains occupied and the contribution fromF9
disappears. The RKKY interaction in real space is then pro-
portional to ther-dependent part of expression(43), which
does not show any oscillations.

Formula(44) is useful to describe the RKKY interaction
of a quantum well in a perpendicular magnetic field in case
that only the lowest well subband is occupied. The droppedz
dependence can be included in analogy to formula(34).

C. Inclusion of Zeeman splitting

As result of the giant effectiveg factor, the Zeeman split-
ting is usually not negligible in DMS. In this case, one can
no longer assume that the RKKY interaction is isotropic, and
instead of Eq.(29) one has

Ĥion-ion = −
1

2o
j j 8

o
aa8

Ŝja
† Faa8sR j,R j8dŜj8a8. s45d

From general principles of magnetooptics,50 one expects the
eigenvectors ofF to bee+, e−, andez, where

e± =
1
Î2

sex ± ieyd = e7
*

are the unit vectors for right- and left-circular polarization,
known from the theory of the Faraday effect. Furthermore, it
is convenient to transform also the spin operators and the
Pauli matrices

Ŝj± =
1
Î2

sŜjx ± iŜjyd = Ŝj7
† , s± =

1
Î2

ssx ± isyd = s7
† .

(Note that in the quantum theory of angular momenta the
definition usually does not include a factor 1/Î2.) Then, Eq.
(45) is also valid in the new coordinates+,−,z.

For the G6 band under consideration, according to Eq.
(28), the matrix elements ofF (45) are

Faa8sr ,r 8d =
1

2 o
mm8

Fmm8sr ,r 8dsamm8
†

sa8m8m, s46d

where

Fmm8sr ,r 8d =
I2

2 o
mm8

fmm − fm8m8

Em8m8 − Emm
w̃m

* sr dw̃m8sr dw̃m8
* sr 8dw̃msr 8d.

s47d

From the explicit expressions

s+ = S0 Î2

0 0
D, s− = S 0 0

Î2 0
D

we find thatF is indeed diagonal in the new coordinates and
the diagonal matrix elements are given by

F++sr ,r 8d = F↑↓sr ,r 8d, F−−sr ,r 8d = F↓↑sr ,r 8d,

Fzzsr ,r 8d = 1
2fF↑↑sr ,r 8d + F↓↓sr ,r 8dg. s48d

The remaining task is to determine the Fourier transforms
Fmm8 of the Fmm8 (47). The eigenfunctions in the definition
of Fmm8 (47) are given in Eq.(35), and the energies, which
include the Zeeman splitting, are

En↑,↓skzd = "vcSn +
1

2
D +

"2kz
2

2m*
±

1

2
DE. s49d

The rest of the calculation closely follows the derivation of
the result(41), when Zeeman splitting was neglected. First,
we carry out thekx andky integrations, which leads us to

FIG. 2. Nondiagonal range functionF9 at T=0 of a two-
dimensional semiconductor in a magnetic field as function of the
in-plane wave numberqr for EF= 1

2 and Bext=0.5, 0.1, 0.02, and
Bext=0, corresponding to the two-dimensional range functionF2

(32).
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Fmm8sqd =
I2

2 o
n=0

`

o
n8=0

` Mnn8slmagqrd

s2plmagd2 E
−`

+`

dkzE
−`

+`

dkz8

3
QfEF − Enmskzdg − QfEF − En8m8skz8dg

En8m8skz8d − Enmskzd

3dskz8 − kz − qzd. s50d

The functionQfEF−Enmskzdg restricts thekz integration to
the intervalf−kF,nm, +kF,nmg, with kF,nm defined by

Enms0d +
"2kF,nm

2

2m*
= EF, s51d

and the summation ton=0, . . . ,n̄m, for which kF,nm is real. It
is worthwhile to note thatn̄↑ may be different fromn̄↓, which
means a different number of Landau levels inside the Fermi
sphere for the spin-up and spin-down states.

Now the denominator in Eq.(50) can be expressed in
terms ofkF,nm and kF,n8m8 (real or imaginary), the integrals
can be carried out explicitly, and the resulting logarithms can
be represented by one-dimensional range functions. The re-
sult of the calculation is

Fmm8sqd = o
n=0

n̄m

o
n8=0

` Mnn8slmagqrd

4plmag
2 FF1Sqz;

kF,nm+ kF,n8m8

2
D

+ F1Sqz;
kF,nm− kF,n8m8

2
DG

+ o
n=0

`

o
n8=0

n̄m8 Mnn8slmagqrd

4plmag
2 FF1Sqz;

kF,n8m8 + kF,nm

2
D

+ F1Sqz;
kF,n8m8 − kF,nm

2
DG . s52d

If n̄m= n̄m8, which means that eitherm=m8 or mÞm8 and
n̄↑= n̄↓, the sums can be rearranged to give

Fmm8sqd = o
n=0

`

o
n8=0

` Mnn8slmagqrd

2plmag
2 F1Sqz;

kF,nm+ kF,n8m8

2
D ,

s53d

where the contributions forn,n8. n̄m= n̄m8 are zero. The
functionsF↑↑ and F↓↓ are identical to the range function in
the absence of Zeeman splitting(41), when the Fermi energy
is replaced byEF7

1
2DE.

For the system under consideration, we find that
Fmm8sqd=Fm8msqd and, therefore,F++sqd=F−−sqd. Thus, the
RKKY interaction is diagonal also in Cartesian coordinates
and is isotropic in thexy plane withFxxsqd=Fyysqd=Frrsqd.
Normally, Fzz is different fromFrr. In the limit kBT@"vc,
according to the discussion in Sec. IV A, it can be approxi-
mated by Fzzsqd= 1

2
fF3sq;EF− 1

2DEd+F3sq;EF+ 1
2DEdg,

whereF3 is the three-dimensional range function(32).
For the ideally two-dimensional semiconductor, the result,

including Zeeman splitting, is

Fmm8sqid =
I2

2 o
n=0

`

o
n8=0

` Mnn8slmagqrd

2plmag
2

fsEnmd − fsEn8m8d

En8m8 − Enm
.

s54d

Here, the result is given for finite temperature because of the
divergency forT→0. For sn,md=sn8 ,m8d, the limit 0 /0 has
to be replaced by the derivative −df /dE at E=Enm.

V. INFLUENCE OF SCREENING

The expressions(30) and(47) for the range function rely
on two approximations, which are commonly found in the
literature,25–28 namely,(i) the density correlation functionL
is replaced by its irreducible partP, which means that
screening is neglected, and(ii ) P is approximated byPs0d,
which contains no pair correlations. The spin susceptibility,
including screening, was calculated decades ago by Kimet
al.,30 but these works are largely unnoticed in present publi-
cations on ferromagnetism in DMS.

Besides the approximations made in the calculation of the
susceptibility, the RKKY theory is a perturbation theory,
which relies on the smallness of the interaction Hamiltonian,
in comparison to the energetic distance between ground and
excited states. This approximation is never fulfilled if the
spectrum of the electrons is continuous. Some authors ex-
press the exchange field in terms of the magnetization of the
electrons,3,5 which is called mean-field Zener theory and
goes back to Stoner.21 In this section we show that both
approaches are equivalent when screening is included in the
RKKY interaction.

A. Mean-field theory of ferromagnetism

The treatment of the ion-ion interaction is considerably
simplified by means of mean-field theory, which reduces the
many-particle problem to an effective one-particle problem.
This allows to approximately calculate the magnetization and
to estimate the Curie temperature. Here, we introduce the
fundamental equations of mean-field theory.

The Hamiltonian of the magnetic ions in the presence of
an external magnetic field is given by

Ĥion = Ĥion-ion + Ĥion-mag

= −
1

2o
j j 8

o
aa8

ŜjaFaa8sR j − R j8dŜj8a8

+
gione

2m0
o

j
o
a

Bext asR jdŜja. s55d

We assume thatBextsr d=Bextsr dez. In the mean-field
approximation,5 the expression(55) is replaced by an effec-
tive one-particle Hamiltonian

ĤMF =
gione

2m0
o

j

ŜjzfBextsR jd + Bexc,jg + const, s56d

where
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Bexc,j = −
2m0

gione
o
j8

FzzsR j − R j8dkŜj8zl s57d

is the exchange field, which approximately describes the in-
teraction of one magnetic ion with the background of the
other magnetic ions. The constant in Eq.(56) is a scalar,
which merely shifts the energy to zero and can be neglected.
Formally, the mean-field Hamiltonian(56) describes a para-
magnetic system in an effective fieldBext+Bexc. In the ca-
nonical ensemble, the expectation values for the spin projec-
tions are51

kŜjzl = − "SBSH "S

kBT

gione

2m0
fBextsR jd + Bexc,jgJ , s58d

with the Brillouin function

BSsjd =
2S+ 1

2S
cothS2S+ 1

2S
jD −

1

2S
cothS 1

2S
jD . s59d

The functionBS is monotonous and its derivative atj=0 is
sS+1d / s3Sd. The asymptotic behavior isBSsjd→ ±1 for j
→ ±`. As the exchange fieldBexc,j itself depends on the

kŜjzl, Eqs.(57) and (58) have to be solved self-consistently.
We assume thatBext is constant over the size of the

sample. AsF is slowly varying, compared with the lattice
constant, the sum in Eq.(57) can be approximated by an
integral overd3R j8 times a factorx/V0. With the definition
of the magnetization(25), Eqs.(58) and (57) go over into

M = m0
x

V0

gione

2m0
"SBSH "S

kBT

gione

2m0
sBext + BexcdJ s60d

and

Bexc=
1

m0
S 2m0

gione
D2

Fzzs0dM . s61d

The system is called ferromagnetic if there exists a nontrivial
solution M Þ0 for Bext=0. This is the case forT,TC with
the Curie temperature3,52

TC =
"2SsS+ 1d

3kB

x

V0
Fzzs0d. s62d

For a direct experimental measurement of ferromagnetism
it is necessary that the magnetization on the account of para-
magnetism is well below the saturation value. This is the
case if forBexc=0 the value of the Brillouin function(60) is
much smaller than unity, which requires that

gionsS+ 1d
6

"eB

m0
! kBT. s63d

This also means that"vc!kBT, especially for the heavy hole
and, following the discussion in Sec. IV C, the effect of the
magnetic field on the orbital motion can be neglected. In the
following we shall restrict ourselves to this limit; the inclu-
sion of the Landau quantization is straightforward.

B. The exchange field

We have seen that, in the mean-field approximation, the
magnetization is determined by the integral over the RKKY
interaction, which gives the range function atq=0. As
shown in Sec. II B, the RKKY interaction is related to the
density correlation function(14). In the effective-mass ap-
proximation for a Kramers-degenerate band, considered in
Sec. III B, these equations write

Faa8sr ,r 8d = m0S m0

m0e
D2

I2x̃ret aa8sr ,r 8,v = 0d

= −
I2

2
L̃ret aa8sr ,r 8,v = 0d,

L̃ret a1a2
sr 1,r 2,vd =

1

2 o
m1m18

o
m2m28

sa1m18m1

3L̃ret m1m18,m2m28
sr 1,r 2,vdsa2m28m2

. s64d

Here x̃ and L̃ are the spin susceptibility and the density cor-
relation function of an electron gas governed by the one-
particle Hamiltonian(24) and subjected to Coulomb interac-
tion.

The relation betweenL̃ and its irreducible part, the polar-

ization functionP̃ is given by35,36

L̃ret m1m18,m2m28
sq,vd = P̃ret m1m18,m2m28

sq,vd

+ o
m3m4

P̃ret m1m18,m3m3
sq,vdṽsqd

3L̃ret m4m4,m2m28
sq,vd. s65d

Here, the Coulomb interactionṽsqd=e2/ s«0«q2d statically
screened by a dielectric constant«<10 through interaction
with nonresonant bands(interband transitions). To rewrite

the above equation for the functionsL̃ab and P̃ab (64), we
also take into account the componentsa ,b=0, wheres0
=diags1,1d is the two-dimensional unity matrix, and employ
the orthonormality and completeness relations of the Pauli
matrices

1

2 o
mm8

sa1mm8sa2m8m = da1a2
,

1

2o
a=0

4

sam18m1
sam2,m28

= dm1m2
dm18m28

. s66d

The componentsa=0 and a=1,2,3=x,y,z correspond to
the singlet and triplet states of the two-particle system. In the
new indices, Eq.(65) reads36
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L̃ret a1a2
sq,vd = P̃ret a1a2

sq,vd

+ o
a3,a4=0

4

P̃ret a1a3
sq,vdṽa3a4

sqdL̃ret a4a2
sq,vd

s67d

with the transformed Coulomb potential

ṽa3a4
sqd = H2ṽsqd for a3 = a4 = 0

0 elsewhere.
J s68d

Because of this strcuture of the Coulomb interaction, the
effect of screening is different for the singlet and triplet com-
ponents.

Now we replaceP̃ by the RPA polarization function,
which is given by36

P̃retm1m18,m2m28
s0d sr 1,r 2,vd = P̃ret m1m2

s0d sr 1,r 2,vddm1m28
dm2m18

,

P̃ret m1m2

s0d sr 1,r 2,vd

= − o
mm8

fmm1
− fm8m2

Em8m2
− Emm1

− "sv + ied
w̃m

* sr 1dw̃m8sr 1d

3w̃m8
* sr 2dw̃msr 2d. s69d

In the coordinatesa, b, the matrix ofP̃s0d has the form

P̃s0d =1
P̃00

s0d 0 0 P̃0z
s0d

0 P̃xx
s0d 0 0

0 0 P̃yy
s0d 0

P̃z0
s0d 0 0 P̃zz

s0d
2 ;

P̃xx
s0d = P̃yy

s0d

P̃zz
s0d = P̃00

s0d

P̃z0
s0d = P̃0z

s0d

. s70d

This structure results from rotational invariance in the spin

space and is found also for the exact polarization functionP̃.
Equation (67) can now easily be solved. We introduce a

screened potentialṼssd35 with the only nonvanishing compo-
nents

Ṽret 00
ssd sq,vd = ṽ00sqdo

k=0

`

fL̃ret 00sq,vdṽ00sqdgk

=
ṽ00sqd

1 − P̃ret 00
s0d sq,vdṽ00sqd

. s71d

The denominator in Eq.(71) yields the Lindhard dielectric
function. With the above definition we obtain a closed ex-
pression for the density correlation function

L̃ret zzsq,vd = P̃ret zz
s0d sq,vd + P̃ret z0

s0d

3sq,vdṼret 00
ssd sq,vdP̃ret 0z

s0d sq,vd. s72d

For the calculation of the magnetization in mean-field ap-

proximation we only need the functionL̃ at q=0 andv=0.
Taking into account the spatial homogeneity and employing
the orthonormality of the eigenfunctions(69), we obtain

P̃ret zz
s0d sq = 0,v = 0d =

1

V
E d3r 1E d3r 2P̃ret zz

s0d sr 1,r 2,vd

=
1

V
o
m
FU− dfsEd

dE
U

E=Em↑

+ U− dfsEd
dE

U
E=Em↓

G
= −

1

2
fD↑sEFd + D↓sEFdg

= −
1

2
DsEFd, s73d

whereV0 is the normalization volume, which is considered
in the limit V→` and we assumedT=0 so that −df /dE
=dsE−EFd. The functionsD↑ and D↓ denote the density of
states of the electrons in the spin-up and spin-down sub-
bands. Here, we clearly see that the influence of the Landau
quantization and the finite temperature is negligible in the
limit "vc!kBT!m, wherem is the chemical potential. The
relation(73) also follows from the explicit expressions of the
range functions. Analogously, for the nondiagonal element of

P̃s0d we find

P̃ret z0
s0d sq = 0,v = 0d = − 1

2fD↑sEFd − D↓sEFdg. s74d

Inserting these expressions into Eqs.(71) and(72), we obtain
the final result

Fzzs0d = I2 D↑sEFdD↓sEFd
D↑sEFd + D↓sEFd

=
I2

4
fD↑sEFd + D↓sEFdgH1 −FD↑sEFd − D↓sEFd

D↑sEFd + D↓sEFdG2J .

s75d

The effect of screening leads to the additional factor in curly
brackets, which is equal to unity ifD↑sEFd=D↓sEFd, but van-
ishes ifD↑sEFd=0 or D↓sEFd=0. Because the Zeeman split-
ting in DMS is not small, the influence of screening is sig-
nificant. This contribution is also important to establish the
equivalence between RKKY theory and mean-field Zener
theory.

As discussed in the beginning of this subsection, the mag-
netic susceptibility(10) does not establish a relationship be-
tweenM andH, but betweendM anddH. For the problem
under consideration this means that the relation(61) has to
be replaced by the differential equation

S ]Bexc

]M
D

%

= S ]Bexc

]M
D

EF

− S ]Bexc

]EF
D

M

S ]%

]M
D

EF

S ]%

]EF
D

M

=
1

m0
S 2m0

gione
D2

Fzzs0d

and the solution is
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Bexc=
2m0

gione

I

2
s%↓ − %↑d, %m =E

−`

EF

dEDmsEd. s76d

This is exactly the expression for the exchange field used in
mean-field Zener theory.3,5

The Curie temperature for mean-field Zener theory is the
same as for the linear theory, Eq.(62), because it is deter-
mined by the behavior for smallM. With %↑=%↓= 1

2 %, we
find

TC =
SsS+ 1d

32/34p4/3kB

x

V0
I2m* %1/3. s77d

So far, we did not consider the effect of Coulomb inter-
action on the polarization function. In the generalized
random-phase approximation(GRPA), this effect of the ap-

proximated as a prefactorP̃retsq ,v=0d=P̃ret
s0dsq ,v=0d / f1

+ v̄sqdP̃ret
s0dsq ,v=0dg, where v̄sqdù0 is a parameter for the

effective pair interaction.29,30,52 Then the density of states
DmsEd in Eq. (76) has to be replaced byDmsEd / f1
− v̄s0dDmsEdg.

The presence of disorder results in an exponential damp-
ing of the RKKY interaction due to the finite mean free
path.53–55 It also leads to an effective electron-electron inter-

action so that the ensemble-averaged functionkkP̃s0dll is a
sum of ladder-bubble diagrams like in the GRPA.56 The net
effect of disorder is an increase of the RKKY interaction and
a reduction ofTC.3

VI. SUMMARY AND CONCLUSIONS

In this paper we derived the RKKY interaction in semi-
conductors, including band degeneracy, modulations of the
band edges, and external fields. The functionF, which de-
termines the coupling, can be traced back to the eigenvalues
and eigenfunctions of an effective-mass Hamiltonian, acting
in the space of the envelope functions, while the lattice-

periodic parts enter the effective Hamiltonian only through
matrix elements, which, up to prefactors, follow from crystal
symmetry.

We presented analytical results for the range function of a
three- and two-dimensional semiconductor in a magnetic
field. In the limit of vanishing field, we recover the well-
known range functionsF3 andF2, respectively. We also gave
an explicit expression in the limit of large magnetic field, in
the case that only one Landau level is occupied.

If Zeeman splitting of the bands is taken into account, the
RKKY Hamiltonian is no longer isotropic. For theG6 con-
duction band under consideration andBextiez, it is found that
the RKKY interaction has two principal axes withFxx
=FyyÞFzz.

In the presence of Zeeman splitting, the RKKY interac-
tion is significantly changed due to screening on the account
of electron-electron interaction. In particular,Fzzs0d becomes
zero if one subband edge lies above the Fermi level. It is
rigorously shown that the RKKY result, including screening,
is equivalent to mean-field Zener theory.

A critical point of the theory so far is the introduction of a
magnetic Hamiltonian through the VCA. In reality, the mag-
netic impurities should lead to bound states and to a local-
ization of the eigenfunctions, especially in the limitr
!x/V0. A recent study based upon Monte Carlo calculations
revealed significant derivation from the mean-field-VCA re-
sults, which were addressed to short-range magnetic order
and local carrier spin polarization.4 There is much current
interest in understanding the role of bound magnetic po-
larons for the formation of ferromagnetism in DMS.57–59

These topics will be the subject of further studies.
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