PHYSICAL REVIEW B 70, 075205(2004)

RKKY interaction in semiconductors: Effects of magnetic field and screening
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We derive the Ruderman-Kittel-Kasuya-YositRKKY ) theory for semiconductors including band degen-
eracy, modulation of the band edges, and external fields. Explicit expressions are given for a three- and
two-dimensional semiconductor in a magnetic field. Screening effects are included by calculating the density
correlation function. We show that the RKKY theory with screening is equivalent to the mean-field Zener
model.
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I. INTRODUCTION role in the absence of Zeeman splitt#fgn semiconductors,

Diluted magnetic semiconductot®MS) have been ex- Z€éman splitting is usually not negligible. The spin suscep-
tensively studied for more than a decddeThe exchange fibility, including screening, was calculated already in the
Coup”ng between magnetic ions and electrons leads to a g‘ate S|Xt|e§:0 but these results did not make their way Into
ant effectiveg factor. In recent years, ferromagnetism in Mn- the theory of ferromagnetism in semiconductors. It is also
doped 111V and 1I-VI semiconductors has been predictednot clear if the perturbation-theoretical character of the
theoretically~” and measured experimentafty** for a re- RKKY theory limits its validity and in which way RKKY
view, see Ref. 15. In low-dimensional semiconductors, fertheory and mean-field Zener theory are related to each other.
romagnetism can be controlled through the modulation of the In this paper, we present a rigorous derivation of the
band edges, external fields, and carrier injection by opticaRKKY theory for semiconductors. First, in Sec. Il, we derive
pulses’'#14The goal is the development of semiconductorthe RKKY interaction by means of both perturbation theory
devices which use the spin degree of freedom for the storaggnd Kubo theory and show the equivalence. Then, in Sec. llI,
and processing of information, known as spintrorfcs. we derive the effective RKKY Hamiltonian for low-

The indirect exchange interaction of magnetic ions bydimensional semiconductors, including the sample geometry,
electrons has been explained by the RUderma”'z'é'ttdband degeneracy, and external fields. To illustrate the useful-
Kasuya-YosidaRKKY) theory, developed in the 1956%, ness of the theory, in Sec. IV we derive analytical results for
and by a mean-field Zener theory, which goes back to paperg ik semiconductor and an ideally two-dimensional semi-
by Stoner from the 19308.The range function of the RKKY conductor in a magnetic field. The results are compared with

oo st Bt ame I ten . Ao et e range funcions fo he thee-, o, and ane-dimensiona
both in momentur#? and in real spacé-25 Dietl et al,? as- électron gas, and limiting cases are studied. In Sec. V, we

suming only the lowest subband to be occupied, expresse lculate the range function in the presence of screening and
the RKKY interaction of a low-dimensional semiconductor SOV the equwalence of RKKY theory including screening
in terms of the range function of the ideal three-, two-, anda_”d m_ean-ﬁeld Zener theory. Summary and conclusions are
one-dimensional electron gas. given in Sec. VI.
However, realistic low-dimensional semiconductors are
never perfectly two or one dimensional. For example, quan-
tum wells and superlattices have an effective dimension be- Il. THE RKKY INTERACTION
tween two and three, quantum wires between one and two.
As the translational symmetry is broken in the directions of The derivation of the effective Hamiltonian by second-
confinement, the range function does no longer depend onlgrder perturbation theory in the original paper by Ruderman
on the difference of the coordinates. It is quite common toand Kittel is somewhat hand wavid§An alternative ap-
treat Bloch electrons like free electrons and few papers papgroach to the effective interaction is based upon the magnetic
attention to the details of the band structtifé:2 susceptibility, which was pioneered by Wolff3! Here we
Moreover, the magnetic field itself leads to a quantizationgive a rigorous derivation of the effective Hamiltonian by
of the electron and hole motion and to reduction of the di-_gwdin’s perturbation theory and by linear response theory,
mensionality. For example, a bulk semiconductor in @ magwhich gives the same result. The effective interaction is re-
netic field has features both of a three- and of a onetated to the density correlation function, which allows us to

dimensional semiconductor. To describe experiments in higgystematically study the role of many-particle effects.
magnetic fields, it is no longer justified to assume the RKKY

interaction to be the same as in the field-free case and the
influence of the magnetic field on the range function needs to A. Degenerate perturbation theory
be taken into account.
An open problem is the effect of screening. It was argued We start with Léwdin’s degenerate perturbation theory.
on the basis of the diagram technique that screening plays rduppose the Hamiltonian of a system is of the form

1098-0121/2004/10@)/075205%14)/$22.50 70075205-1 ©2004 The American Physical Society



ZIENER, GLUTSCH, AND BECHSTEDT PHYSICAL REVIEW B0, 075205(2004)

Haa Hag plicity of the ground state i€2S+1)N. Therefore Ha, in Eq.
H= (H H ) D (1) is a square matrix of dimensio2S+1)N, with all ele-
BA BB ments being zeros. Likewise, the excited states |&be
The block indices correspond to Lowdin’s clasgesand B ®|[My, ... ,My), where I'#T,. Their multiplicity is also
for the resonant and off-resonant eigenstates. The elementgs+1)N. ConsequentlyHgg is a diagonal matrix with ele-
of the diagonal blocks aréiaajj=E;d;: for j,j"€A and  mentsér; T'# I, where eacke appearg2S+1)N times.
Hggjjr =E;d;- for j,j’ €B. The nondiagonal blocks, which  The sum in Eq(2) has to be carried out over all excited
contain the perturbation, may be fully occupied and fulfill electron stated™ and over all angular-momentum quantum
Hga=HAg. Then, in second-order perturbation theory, the einumbersMj, ...,My, of the magnetic ions. As the unper-
genvalue problem of the clags solutions is determined by turbed energies of the magnetic ions are independent of the

an effective Hamiltoniaft ion spin projections, the sum over th,, ... My is equiva-
HyjHy lent to inserting &2S+ 1)N-dimensional identity matrix. Fur-
Hest jjr = Ej G + E . I EA. (2) thermore, instead of calculating &2S+1)N X (2S+1)N ma-
E Ejr trix elements ofH 4, we can directly calculate the effective
. Hamiltonian, acting in the subspace of the magnetic ions,
We assume thail magnetic ions with magnetic moments just by dropping(M, ... My| and|M., ... .M.} on the left

Sp.....Sy with g (or Landg factor g, are located at the ang right side, respectwely Then the Hamiltonian of the ef-
lattice pointsRy, ... ,Ry. The magnetic ions are equally dis- tgctive ion-ion interaction becomes

tributed so that the material is macroscopically homoge-
neous. The probability of a lattice site being occupied by a -~ i D2
magnetic ion is equal to the mole fracti& [0, 1]. (For Hion-ion = 2 ? & - 5r <F0|S dr1(r = RpS(r)[T)
semiconductors with two cations per unit cell, in the result- 0
ing expressions has to be replaced byx3 3 A 2

As the direct interaction between their angular momenta X | &I =Ry)S(r') - S| Fo). (5)
is negligible, the unperturbed Hamiltonian of the idts, is
a constant. The orthonormal and complete eigenstates of th
ionic system are given by

e pnme at the sum means that the ground dfgtes ex-

We shall now evaluate the expressi@) in a mean-field
M1, ... M) =ISMp) ® -+ ® |[S My, (e.g., Hartree, Hartree-Forkapproximation, where the
many-particle statfl’) is an antisymmetrized tensor product
(Slater determinanbf effective single-particle states. We de-
note the single-electron eigenstates and eigenenergieg by
andE,, whereE,, >E, for y'>v. With the introduction of
creation and annihilation operators,

whereSis the quantum number of the total angular momen-
tum of a magnetic ion, which is the same for all ions, and
M;E{+S,...,-S} is the projection of thgth angular mo-
mentum(here, onto the axis). The dimension of the eigens-
pace for the ionic system i2S+1)N.

The eigenstates and eigenenergies of the subsystdm of P PN 5 = 3
electrons are given byl’) and &, whereT, denotes the Ym an%m(r) Y E exnll)3y,

ground state. The exchange interaction between electrons
and magneuc ions is the electron ground state is written as

[Toy=ak---aj)), (6)
where| ) is the vacuum state, when no electron is present.
3 Only excited states of the form

P PN . ,
where | is a real, strongly localized function and IM=a a,/|F0> ve{l...PL v e{l,...PH (@)
‘ﬁlz("x"fy"fz)T is the electron spin operator with eigen- contribute to the suniS) and the resulting effective Hamil-

dm-EEstwrw E &S, -3 -R),

k=1 j=1

states|s-§, —_2> |s-§,m 1,1). In second quantization, tonian is
the operator of the spin density is expressed in terms of field i )
operators as 1-f
~ ~ IOI’] |on E E é , E
81 = 2 ) Sy Y (7). @) iy T
mm/
X 3 ,
The interaction3) has the same structure, like a spin orbit or S mEm f d r% ml(r)s“lm I =Ryey, my ,(r)
1

hyperfine interaction.
After these preparations, we are able to identify the com- 3, * ,
ponents of the Hamiltoniaril). The ground state of the X 2 d°r ‘Py';mz(r )
interaction-free electron-ion system, which is identified with mpm,
Lowdin’s classA, is given by|lTg)® My, ..., My). Without . noe
loss of generality, its energy is set equal to zero. The multi- XSyl (1" = Ry) @y (1) - S, (8)
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which is the RKKY Hamiltonian. The occupation numbéys Indeed, the expressioiiS) and(13) are identical, except

take the values 0 and 1, depending on whether the |gtate  for the contribution af=j’. The reason is that, in contrast to

occupied or not. The formulation of the interaction in secondthe classical field12), the ion spin operators do not com-

quantization(4) is independent of the number of electrons mute in the general case, more strictly, it holds that

and the derivation remains valid for a statistical ensemblgsms,Yaﬂ]:iﬁsngjj,_ As we consider only extended sys-

whenf, is replaced by the Fermi function. tems, the contributions foj=j’ are negligible and can be
B. Kubo theory dropped, as usually done in the literature.

) ) ) In the language of many-particle physics, the magnetic
Formally, the RKKY interaction can be derived by meansgysceptibility is given by

of Kubo theory and the effective Hamiltonian can be ex-

pressed in terms of th_e magnetic susceptibi_lity_. The ir_lterac- N 2 S S
tion of the electrons with an external magnetic fiel¢ ,t) is Xretaa (1, ©) = = o\ M
given by 0 g, mom

X SamlmiLrelmiml,mémz(r N w) Sy mymy s

|:|(i)(t) — % f d3r§(r,t) . H(r,t) (9) (14)

and the induced magnetization is whereL is the density correlation functiof:¢ This repre-

P sentation is helpful to systematically study the role of the
M(r,t) == ——(S(r,1)). electron-electron interaction, which will be done in Sec. V. It
Mo also allows us to consistently include nondiagonal elements
According to Kubo theory334 the linear response of the of the density matrix, which play a role in coherently excited
electron gas is semiconductors. The approximation of tH& by uncorre-
lated state$6) and(7) is equivalent to the following approxi-

M (r w):MoE fd3r/Xrem (" H (", 0) (10) mation of the density correlation function:
¢ L(1,1,2.2) = 9(1,1,2,2) =~ i#G(1,2)G(2,1).

with the susceptibility (15)

(r,r', o) . . . .
Ntetea The evaluation of1” is tedious but straightforwartf, and

. the result for the effective Hamiltonian is
1€\l Hi(wHiot/ra A (o
=— 7 | dte ([8a(r,1),5,/(r",0)]),
0

MO rT]O ~ 1 f _f ’
Hion-ion =~ EE E7 _ é
(12) iy Y Y
wheree=+0 is a positive infinitesimal. For a static magnetic XS . fdsr * A =R omr i (r
field, the change of the energy caused by the magnetization ! mzm, (P’/;ml( )smlml ( ey 'ml( )
of the electrons is v
1 X 37 */ !
RS fd:‘rjd3r’Ha(r)Xrem,(r,r’,w:0)Ha/(r’). 2 fdr ym")
2 aa’ o2
(12) X Smmy) (1 = Rj) @y (1) - Sy (16)

Formally, the interaction with the magnetic fie{@) is

equal to the electron-ion interactia), if we identify This is the same as expressi8) symmetrized in the vari-

ables%a andg,a,. Due to the positive infinitesima in Eq.
H(r) = ﬂz é—l(r -R)). (11), the sum over the eigenstates has to be interpreted as
poe 7 ! Cauchy’s principal value.

i . o ) , Suppose that the effective Hamiltoniéh6) at zero tem-
(Itis worthwhile to note thaH in this expression has nothing perature is known as a function of the Fermi enefy
to do with the magnetic field caused by the ignBnen the  Then py virtue of the relation

energy changgl12) can be identified with the effective

Hamiltonian oo
1 1 w—Er
- 1 2 —F—=|d sech O(E--E),
Hion-ion =~ EMO( mo) 2 E fdsl’ f d*r’ E-pu f EF4|(BT 2kgT (Ee-B)
Mmo€/ exp +1 =
i aa kT
X Gl (r = R xretaa (1,1, 0 = O)I(r" = R;j1)G the effective Hamiltonian as function at finite temperature is

(13 given by
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where we assumed that j’. The matrix elements

1 m—Eg~
seck = Hion.ion(T = 0,E¢). -
4kgT 2kgT L = 2 | @ U n()Sp (DU (1) (20)
mm’

(17)

|:|ion—ion(TuM):fdEF

can be traced back to a few constafti® so-called exchange
This equation is valid for any quantity that is a linear func-integralse: and ), which are determined experimentaliyr
tional of the Fermi function. The integral kernel has a widthpy ab initio pseudopotential method$.In optically excited
of the order ofkgT and a weight 1. Formulgl?) can be or doped semiconductors, the intraband contributions
generalized to nonequilibrium distributions, as occur in=y) are the dominating ones, because of the energy denomi-
highly excited semiconductors. Then the integral kernel isyator in expressioil9).
given by the derivative of the occupation number with re- g4, thel's conduction and th&g valence band of a zinc-
spect to the energy. blende semiconductor, crystal symmetry requires the cou-

pling matrix elements to be of the form
Ill. RKKY INTERACTION IN LOW-DIMENSIONAL

SEMICONDUCTORS ay

_ _ _ Icl,cl’:_lc?v Lotorr == Ldurs (21)
We shall now derive the RKKY interaction for low-

dimensional semiconductors, including band degeneracy anghere J=(J,,J,,J,)7 are the four-dimensional angular-
external fields. We start with the general expression and theg,omentum ma)irices the so-callé@dnatrices.

consider a twofold degenerate band. Explicit expressions are Comparing expressiond9) and (16), it appears that in
given for the case with and without Zeeman splitting. the effective-mass approximation the conduction and valence
electrons interact with the magnetic ions via an effective
_ _ . . ~spin-orbit interaction of the form I58(r-R;)3-S; and

In a low-dimensional semiconductor, the elgenfunctlons_lvﬁ(r_Rj)J_Sj’ respectivel§ This effective interaction de-
)bends on the band indices and is proportional to a delta

varying functions, so-called envelope functions, and lattice; . .
periodic functions. Let be an energy band which Isfold function—on the length scale of the slowly varying envelope

degenerate at thie point (k=0). The lattice-periodic parts of functlons. The coefﬁmenti;lc andl, are related to the ex-
. change integrals and 8 by
the Bloch functions atk=0 are u,y=o:m(r)=U,:m(r); |

A. Envelope-function representation

=1,... L. Then, the approximate eigenfunctions of the elec- o« B
trons in thevth band ar&’-3° le=20 =g (22

©nemlr) :E?pm;,(r)uv,;m(r), (18 For theI's conduction band, the dispersion is parabolic
l and one can easily derive analytical expressions. Fol'the
valence band, the eigenfunctios, are four-component
spinors, which need to be calculated numerically. This is, in
principle, possible. However, to take advantage of the ana-
Iytical results for the conduction band, it is common to ne-
lect the contribution of the light hole and assume a para-
olic dispersion for the heavy hole. The effective spin-orbit
interaction of the heavy hole then has the forr,,&(r

where we have neglected the cl&somponents, which do

not change the symmetry. The slowly varying functions

@, (r) are the eigenfunctions of an effective-magsit-

tingen Hamiltonian, which may include the modulations of

the band edges in form of effective potentials and externag

fields37-3° Generally, we shall use the tilde to denote quan-

tities in the effective-mass approximation. - )
The goal of the effective-mass approximation is to treat” Rj)z-S;, with

electrons in crystals like real electrons and to work only with B

the slowly varying envelope functions, while the properties lhh=3l,=7. (23

of the lattice-periodic functions are condensed in a few ma- h

trix elements. Taking into account the strong localization of

the functionl, we can separate between slowly and rapidly

varying parts and the effective Hamiltonigh6) goes over B. Twofold degenerate band

into The effective-mass Hamiltonian of a twofold degenerate

fo—f band in the presence of structural confinement and external
> 1 2N v\ . .
Hion-ion =~ 52 E E “E fields is
i i BN T B . ; 5 R
e ~ ~ H= =V FeAglr) | FeUg(r) + W(r) + Hpag
xS 2 @, RV unr@unr (Ry) 2m* [ i ext )} bx1) + WAF) + Hinag
1111 (24)

x> @unry R0, @01, (Rj7) - Sjry (19) wherem* = mg, my, is the effective mass of the particle.e
Iol5 its charge U, and A, are the scalar and the vector poten-
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tial, andW is a potential characterizing the modulation of the In case of translational invariance, the interaction matrix
band edge in a heterostructure. elements are of the form®(r,r’)=®(r —r’). Then, the Fou-

The magnetic Hamiltoniahl, ., is determined by the in- rier transform ofd®, known as the range function, is defined
mag

teraction of the Bloch electron with the magnetic field, which as

is characterized by an intrinsgefactor g*, and by the spin- ,

orbit interaction with the magnetic ions. Introducing the F(a) :f dPre 9T d(r). (31

magnetization of the ion spins,
Analogous definitions apply in two and one dimension.

_ X Gionf ¢ For a Fermi sea of three-, two-, and one-dimensional free
M(R)) == pog) 5 (8. (25 | .

electrons, where the eigenfunctions are plane waves, the
range function has been evaluated and the resilt is

which is assumed to be a slowly varying functionRyf the

magnetic Hamiltonian in the virtual crystal approximation . )_E m* ke + ( —)I q+2ke
(VCA) is given by =5 4ﬂ2ﬁ2 q q- 2k
2 * 1 2my |
sy G Baudr) -5+ =22 T2 M) s, (29 1 for g, = 2k
0 Yion

2 *
M Gion€ _Fm 2
FZ(qp) -5 2 (ka)
22mhe|1-4/1-| — for g, > 2k
wherel is eitherl.=I. or 1,,=3l, for the electron or heavy 1 1 q % F

. . K K : P
hole, respectively. In DMS, the contribution from the intrin-

sic g factor is negligible. 12 m* q,+ 2ke
We assumé,,=B,,; &,=const. Then the spin projectidn Fi(g) = 5 nﬁz ok | (32)
is a good quantum number and the eigenvalues and eigen- % 1% F
functions take the form wherekz=\2m* E¢/# is the Fermi wave number arig is
the Fermi energy. Takindr, as function of two variables
E=E £ — AE= 1 Zmo ,ER andk-€C, it has the obvious propertids;(—q,, ke)
S HoGore =F1(0y k), (0 —Ke) =—F (0, ke), Fa0yike) =Fa(ike),
andF;(q,; kg)=0 for ke €iR. The Fourier transforms of the
~ - ~ i 2-25
1) = B (1) = 3,0 (27)  functions(32) aré
2 * i —
and the effective Hamiltonia(19) becomes Pa(r) = 17 m*_ sin(2ker) = 2ker COS(ZkFr),
216742 r
|:|ion—ion= 22 E E E, . _MEm AJ (P,M(R) [2m* k2
i’ ! md ‘Dz(P):_E A2 [JO(ka)NO(kFP)+J1(kFP)N1(kFP)]
0'
@(R)QD(R) ¢(R)S 12
o “ ol 5 -sieee]
D —| = — Si|2k 33
28 12 = Py i[2kez] (33

In order to show the connection to the RKKY theory for The above expressions are for0; the generalization to
free electrond8-2022jt s instructive to consider the case that finite temperatures can be done by means of relatlan

Zeeman splitting is negligible, i.eE,,; =E, =E,. Then, be- In contrast to the idead-dimensional electron gas, a re-
cause of Tfo,0,)=26,,, the effectwe Hamlltonlan has the alistic d-dimensional semiconductor has dadditional di-
form of a Heisenberg Hamiltonian, rections of confined motion. In this case the functibr{30)

depends on two three-dimensional vectorsand r’, but
translational invariance is fulfilled only for the directions

Hion-ion = 2 ®(R;,R;/) (290 of free motion. Suppose that only the lowest subban@ is
occupied. Then one readily obtains for the RKKY
interaction®

where
5 ¢ D(r,r') = [po(r L)|2|¢O(r l)|2q)d(ru -rikeo), (34
| - LA _ ~F —~ . . .
O(r,r')= EE ﬁaﬂ(r)%,(r)@ﬂ,(r’)%(r’) whe.rerL andrH.denote the.dlrect|ons of confined and free
uu! TR TR motion, respectively, an@, is the ground-state wave func-
£(1-1,) tion of the confined motion. In the expression fby (33),
_2 N AT (r)cp (3, (r") the Fermi wave number has to be replaced ky,
W/ E.-E, " “ . =\2m* (Ex—Ep) /%, whereE, is the ground-state energy. For
ket e more complicated geometries or in the presence of interface
+ 0, (1)@ (r)e, (Ne,r)]. (30) roughness, it is desirable to directly calculabefrom the
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effective Hamiltonian(24). Such numerical methods have Inserting the solution&35) into the second formulation in
been proposed recently by RocHe. Eq. (30), the range functiori31) becomes

The above considerations are valid only for geometrically
low-dimensional semiconductors, where the confinement is o Hoo e
caused by the modulation of the band edges, modeled by the F(q) = EE D Mnn’()\magq;))f dk;f dk
function W in Eq. (24). The situation is more complicated if q 2 (zw)\mag)Z

=0 /=
the dimensionality is reduced by a magnetic field. Actually, on'=0

in this case, there is no unique definition of the dimension- O[E; - E(k)JO[E,/(K)) - Ec]
ality. From the point of translational symmetry, a bulk semi- X—— " = F
conductor in a magnetic field is three dimensional, whereas haodn' —n) + ﬁ_(k,z_ K2)
the 1/VE singularities in the density of states indicate one- ¢ 2m* 2 ?

dimensional behavior. Formul@4) is not applicable in this
case, because the Landau levels have an infinite degeneracy.
The form of ® (34) is also in contradiction to the transla- =
tional invariance of a bulk semiconductor in a magnetic field Whered,=va,+d, and(Ref. 43, 7.37y
As the density of states in a magnetic field is a series of o o
one-dimensional densities of states, there is hope to express Mw(Va? + B2 =M, (VP + B?)
the range function as a series of one-dimensional range func- +oo 2
tions. In the next section, we calculate the range function for _

f dge_laghn(f) hn’(éi B)

X[k, —k,—q) + 8k; -k, + @],  (36)

a three- and two-dimensional semiconductor in a magnetic

field. T
_nitfa?+ g\ -a?+ 12
IV. SEMICONDUCTOR IN A MAGNETIC FIELD "\l 2 €
In this section, we calculate the RKKY interaction of a e[ @@+ B2 |2
semiconductor in a homogeneous magnetic field. We start X[ Ly 2

with the three- and two-dimensional semiconductor, in case
that the Zeeman splitting of the conduction band is negli- A a?+ f3?
gible. Then the results are generalized to take into account - 2

Zeeman splitting. P+ B
=Ann T (37

A. Bulk semiconductor

~ ’ () \ —

We first neglect the Zeeman splitting so tidg,, o, is of ~ [of N=n". Here,L = for n€Ny anda>-1 denote the gen-
the form (29). A bulk semiconductor in a magnetic field is eralized Laguerre polynomials, defined in Refs. 43 and 44,
spatially homogeneous, even though this property is not rg?0t o be confused with the assouate(g) Laguerre functions,
flected by the form of the vector potential. Here, we use theften used in physics textbook&The L‘& can be analyti-
Landau gaugeA e(r)=Bexe,, and, without loss of general- cally cor_mnueq to arbitrary c,omple&. T.hgn the above
ity, assume thaB,,.> 0. Then, the explicit form of the eigen- formula is valid also forn<n’. The coefficientsA,,, are

functions entering Eq(30) is*2 often used in the theory of the electron gas in a magnetic
field.45-49
B, :?Dmgjkz(r) = gk ,—e"‘yywn(xi y ) For the integration limits in Eq(36) we find
\”Lz \Ly eBaxt oo
1 X -1)" . > | dk®[Er—Eq(k)]- -
W X:_h <_), h():—/_egle )1 = ‘ "
n( ) \")\mag n )\mag n § \’/—n! \J'ﬂ' n(§ n O_Do
(35) = +kF,n " +00
5 :E f dkz"' 2 fdké[En’(kﬁ_EF]"'
E,=Enk) =% ( * 1) ey ke 2 "0k '=0
= = n " ’ n + i 1 TR B
12 n W 2 2m* 0 Y.z Ly’Z . - +an,
R ryrer- e . * n ‘
where )‘m?g_ Vhl(eBsyy Iis the magnetic length, . -3 fdk;---— > J di - 39)
=eB,/m* is the cyclotron frequencyH, denotes the Her- im0 =0
mite polynomials, andL, and L, are the normalization e ke

lengths in they and z direction, respectively. The energies .
are defined relative to the conduction-band edge and the oavheren is the highest occupied Landau level, i.e., the largest
cupation numbers fof=0 aref,=®(EL-E,). integer withEx{0) <Eg, and
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Ken= W (390  quantities, defined by?/2=f=e=m*=1. To visualize the
dependence oq, andg,, we introduce the radial coordinate
is the Fermi wave number of theh Landau level. For rea- 0=|d| and the azimuthal anglé with g,=qcosé and g,
sons which become clear below we shall also considerdsiné. In Fig. 1, the range functiork of a three-
imaginaryke ,, which occur forn>n. dimensional semiconductor in a magnetic fie4@) is shown
The second; integral in Eq.(38) vanishes for symmetry for a Fermi energyEr=1/2, Corr_eglmtjlng to a three-
reasons and the remaining integrals have to be interpreted gimensional Fermi wave numbé&e=\2E¢=1, and various

o L : _magnetic-field strengthBg=1/2, Bey=1/10, and By
\?vr;r;glgildvtilgi's;?i rest of the calculation is straightfor =1/50, corresponding to 1, 5, and 25 Landau levels below

the Fermi level. The results are compared with the three-
dimensional range functioR; (32).
> 5 For =0, the radiug) coincides with the coordinatg, and
n=0p—g 2T\mag mh°q, the radial coordinatey, is equal to zero. In this case, as
, 2o My (0)=0 for n#n’, only terms withn=n’ contribute to
hw(n’ —n) + (h212m* )q,(q, + 2Ke ) F(q,=0,0,). For a large magnetic fiel®.=0.5, we observe
hwgn' =n) + (h%12m* )a,(d, = 2ke ) | a strong peak at,=2Kg o=12. If Bgy is reduced at constant
(40) Fermi energy, more Landau levels become occupied, each
one leading to a logarithmic singularity in the interval
This is the range function of a three-dimensional semicong, (0, 2kg). The weight of the singularities decrease8as
ductor in a magnetic field. The result is equivalent to thedecreases and the range function converges towards the
expression for the random-phase approximat®RA) polar-  three-dimensional range functidty. This function does not
ization function of a three-dimensional electron gas in ahave any singularities, but is nonanalyticgt 2k:, as seen
magnetic field obtained by Schulz and Keiter. from Eg. (32). There are no singularities in the region
It is instructive to write expressio@0) in a different way.  d,>2kg for any B, and the range function closely re-
The g,-dependent parts closely resemble the range functioémbles the three-dimensional linfig even for large fields.

V2m* For the graphic representation, we use dimensionless
= E,:—ﬁwc n+—

g i Mnn’()\magqF)) m*

|2
F(q) = 2

XIn

F, (32). From For 6#0, the singularities are located g{=kg,/cosé
) =y1-Bg(2n+1)/cosd for n=0, ... n, but their magnitudes
o' —n) = h (2 —12 ) are considerably smaller than fa#=0. Furthermore, as

2m* PN TEN g,>0, the sum does now include contributions also rior

# n, which leads to additional logarithmic singularities and a
fairly irregular structure. This is clearly observable 8y,
=0.1 at#=30° andf#=60°. For 6>0, there are also singu-
larities in the regiormg> 2kg, but their height is vanishingly
small so that they cannot be seen by eye.

An azimuthal angled=90 corresponds ta,=0 andq

it follows that

In ‘ hodn'—n) + (ﬁ2/2m* )0,(q, + 2kF,n)
ﬁwc(n, - I"I) + (ﬁ2/2m* )qZ(QZ_ 2kF,n)

q.+ (kF,n + kF,n’)

g;+ (kF,n - kF,n’)

=In ket Ke o) (ke = ke ) =g,. There are no singularities in this direction, but each
Gz~ (en ™ Ko Gz~ Ken = Kemr Landau level leads to a local maximum of the functien
and, therefore, There is one maximum foB,,=0.5, five maxima forBgy,
- =0.1, and 25 maxima foB,=0.02. For all angle9, the
. M (Nmadd,) range functionF converges towardB; as B, goes to zero.
F@)=2 X 270\ 2 For any finite temperature, the logarithmic singularities
"On'=0 mag disappear, because of the integral kernel of wikiffi (17).
Ken+ Ke Ke.n = Ke This was noticed in the early papers on the dielectric re-
X|FlOg——F— |tk qZ;T . sponse of a three-dimensional electron gas in a magnetic

field 4547 In the limit kgT> %w,, Which is of practical inter-
Using the analytical properties &%,(q,;kg), we can finally  est, the sum over the quantum numlecan be approxi-
write the range function in the symmetric form mated by an integral over the continuous varidbleand the
Y result is the same as f@,,=0. Furthermore, foB=0, the
_ Mun (Nmaddp) Kent ke effect of the finite temperature is relatively small due to the
Fa)=2 > 2m\2 1\ Mz - (41) smoothness ofF;(q) (cf. Fig. 1). Consequently, forkgT
mag >hw, the range function can be approximated as
If n>nandn’>n, then the contribution to the sum is zero, F(q;B,T)=F3(q;B=0,T=0).
because the second argumentFgfis purely imaginary. As We are now ready to study the case that only the lowest
F, has a logarithmic singularity if and only if the Fermi wave Landau level is occupied. Then in expressi@®) the first
number is real, the functio@1) has(n+1)(n+2)/2 logarith-  sum is restricted tm=0. Obviously, this is not a major sim-
mic singularities in the region €q,< 2kg, wherek is the  plification, because the’ sum still runs from 0 toc. Only

n=0 =0

three-dimensional Fermi wave number. In the liBjt,— 0, in the limit ﬁ2k§’0/(2m*)<hwc or, equivalently,E,:—%ﬁwc
one expect$(q) to go over into the three-dimensional range <% w,, the terms withn’ >0 can be neglected and formula
function F5(q; kg) (32). (41) simplifies to
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0.40 0.40 T T T
0=30°
0.32 0.32 |- -
Byy =05
0.24 0.24 | =
'
By =0.1
0.16 0.16 | 3
B, =0.02 By =0.02
0.08 |- 0.08 | =
: . Bot =0 : . Bga =0 FIG. 1. Range functionF of a three-
0.00 0.00 ; ; i ; i fi
0 1 2 3 i 0 ] 2 3 4 dlmenglonal semlcondluctor in a magnetic field as
a function ofq for Eg=3 andBe,=0.5, 0.1, 0.02,
0.40 T ; T 0.40 I I T and Bg=0, corresponding to the three-
0 dimensional range functiorr; (32). The azi-
6=60 0=90° muthal angle is#=0 (g=q,), 30°, 60°, and 90°
032} {1 os2f - (@=q,).
Byg=05 By =05
0.24 0.24 |
w
By =011 By = 0.1
0.16 |- 0.16 |
w B, =0.02
0.08 |- 0.08 -
By =0 Be=0
0.00 1 ! 0.00 1 1
0 1 2 3 4 0 1 2 3 4
q q
1 Noadls F(ay) =F'(ay +F"(ay),
F(q) = 2 eX%‘ Mﬂe)Fl(qZ; ke,0)- (42)
ZW)\mag 2
2~ -
For the largest field in Fig. 1, the above approximation per- F'(q) = I—E M“”()\”Z‘agq’J) df(E) ,
fectly agrees with the exact solution. The RKKY interaction 2hz0  2TN\pgg dE E=E,
in real space is given by Fourier transform of expressi)
and the result is o 22 = Moy \magfl,) F(En) = f(En)
=52 2 > . (49
n=0 n'=0 2’77)\mag Enr - En

1 2
D(r) = p( & )cln(z;kp,o), (43)

(27N ag? & 2\ g _ _

. ] . ) Here we give the general expression Toe 0 because of the

with @, defined in Eq(33). We see that there is no way of gjvergence foT=0. The functionF’ contains only the diag-

writing the expressiort43) in the form(34). The extension  ona| contributionsn=n’) and the limit 0/0 is replaced by

of the function(43) in the plane perpendicular to the mag- the derivative of the Fermi function. The nondiagonal con-

netic field is in the order of the magnetic 1engMnag  tributions are contained if”, where the sum is carried out

=\l (eBsy, and is independent of the density. In theli-  only for n+#n’. The result(44) is identical to the expression

rection, @ shows an oscillating behavior with period for the polarization function in RPA found by Gerhards and

w/kF,0=1/(7-rQ)\r2nag). This means that for a constant density Gudmundssof8

o the extension ofb in the field direction is proportional to The functionF” (44) for T=0 is shown in Fig. 2 for the

the magnetic field. same parameters as in Fig. 1. Ry, 0, this function has

n+1 clear and distinct maxima in the regigpe (0, ). In

the limit q,—, F” rapidly converges towards, (lowest

curve) for any B, In fact, forg,=3, the solutions for finite
To calculate the range function of a two-dimensionalB,,; are virtually indistinguishable from the solution for

semiconductor in a magnetic field, we only need to drop théB.,=0. The behavior of in the neighborhood of|,=2kg

z direction in Eq.(36), and the resulting range function is =2 for smallB,,; can be compared to the Gibbs phenomenon

B. Two-dimensional semiconductor
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08 . . v R 1 R R
/\ Hion-ion=— EE E %Ta(baa/(Rj,Rjr)grar. (45)
’ aa!
\ By =05 g
—~— | From general principles of magnetoopt®one expects the
06 eigenvectors ofb to bee,, e, ande,, where
/\/\ 1 ' )
\\Bm=°-1 e.= =(etig) =€
V2
- \
L o4 are the unit vectors for right- and left-circular polarization,
pres known from the theory of the Faraday effect. Furthermore, it
\B =0.02. is convenient to transform also the spin operators and the
o Pauli matrices
0.2 I—
8.2 =828 =8, 0= E(orioy) =0l
V2 V2
By =0
(Note that in the quantum theory of angular momenta the
0.0 ) ) e definition usually does not include a factor\R/) Then, Eq.
o 1 2 3 4 (45) is also valid in the new coordinates —,z.
For theI's band under consideration, according to Eq.
P (28), the matrix elements ob (45) are
FIG. 2. Nondiagonal range functioR” at T=0 of a two-
dimensional semiconductor in almagnetic field as function of the P, (r,r")= 22 (I)mm(r,r’)ch T i (46)
in-plane wave numbeq, for Er=3 and B,,=0.5, 0.1, 0.02, and 2mrr{ amm’ =

Beyxi=0, corresponding to the two-dimensional range functign
(32. where

known from Fourier series. Nonuniform convergence is ob- 12

served also for,=0: the value ofF,(0) is m/(27#2), while Dy (r,r') = EE E __E

F"(q,=0)=0. pp! T mpm
For Be,:# 0, the functionF’ becomes divergent for=0, (47)

because the derivative of the Fermi function &ftE)/dE

=8(E-Eg). However, forBg— 0, T—0, iw./(kgT) —0 we  From the explicit expressions

f/.tm_f;t'm’ %

G (1), (1)G,(r").

have _
0 v 0 O
Em g =0 U*:(o \02>’ 0':< 2 0)
F'(q,) — 1 2 272 %= \
0 for q,>0. we find that® is indeed diagonal in the new coordinates and

In this limit the functionF (44) converges towards the two- the diagonal matrix elements are given by

dimensional range functioR, (32).
For fixed density, in the limiBg,— %, only the lowest
Landau level remains occupied and the contribution fiegfm

D (rr) =Dy (r,r"), O_(r,r')=d (r,r'),

d|sqppears. The RKKY interaction in real space is thgn pro- D, (rr')= %[(I)TT(r,r’) +@(rr)]. (48)
portional to thep-dependent part of expressio#3), which
does not show any oscillations. The remaining task is to determine the Fourier transforms

Formula(44) is useful to describe the RKKY interaction F,,y of the @,y (47). The eigenfunctions in the definition
of a quantum well in a perpendicular magnetic field in caseof ®,,,y (47) are given in Eq(35), and the energies, which
that only the lowest well subband is occupied. The dropped include the Zeeman splitting, are
dependence can be included in analogy to forni@4.

hAC 1
C. Inclusion of Zeeman splitting Enp, (k) = ﬁwc(“ + 5) + me * EAE- (49

As result of the giant effectivg factor, the Zeeman split-
ting is usually not negligible in DMS. In this case, one canThe rest of the calculation closely follows the derivation of
no longer assume that the RKKY interaction is isotropic, andhe result(41), when Zeeman splitting was neglected. First,
instead of Eq(29) one has we carry out thek, andk, integrations, which leads us to

075205-9



ZIENER, GLUTSCH, AND BECHSTEDT PHYSICAL REVIEW B0, 075205(2004)

nn' mag%) 1E(Enm) f(En m’

'(Nmaddp) F =
Mnn (Amaddl mnt () = E E 2
From(Q) = nEOnEO (27 hmag? fdkfdkZ 200020 2M\ag Eqy — Enm
(54)
> OLEr = Banlko)] = OLEr = By (k)] Here, the result is given for finite temperature because of the
Enmr(K7) = Enm(k) divergency forT— 0. For(n,m)=(n’,m’), the limit 0/0 has
X K.~ k- ). (50) to be replaced by the derivativedf/dE at E=E,,,
The function ®[Ex-E,(k,] restricts thek, integration to
the interval[—kg nm, +Kg nml, With ke o, defined by V. INFLUENCE OF SCREENING
£2K2 " The expression&30) and(47) for the range function rely
Enm(0) + o Er, (51)  on two approximations, which are commonly found in the

literature?>-28 namely, (i) the density correlation functioh

and the summation to=0, ... Ny, for whichkg . is real. It is replaced by its irreducible patl, which means that

is worthwhile to note tham, may be different fromm,, which ~ screening is neglected, ani) II is approximated by,

means a different number of Landau levels inside the Fermivhich contains no pair correlations. The spin susceptibility,

sphere for the spin-up and spin-down states. including screening, was calculated decades ago by &im
Now the denominator in Eq50) can be expressed in al., 30 but these works are largely unnoticed in present publi-

terms ofkg ,m and ke, (real or imaginary, the integrals ~ cations on ferromagnetism in DMS.

can be carried out explicitly, and the resulting logarithms can Besides the approximations made in the calculation of the

be represented by one-dimensional range functions. The rgéusceptibility, the RKKY theory is a perturbation theory,

sult of the calculation is which relies on the smallness of the interaction Hamiltonian,
in comparison to the energetic distance between ground and
M (Amadd,) ke nm+ Kenrme excited states. This approximation is never fulfilled if the
From (4) = 2 E T 1 sz spectrum of the electrons is continuous. Some authors ex-
n=0n’=o mag

press the exchange field in terms of the magnetization of the
( Ke o= ke n,m,)} electrons’® which is called mean-field Zener theory and
+Fqil g — : goes back to Stonét. In this section we show that both
2 approaches are equivalent when screening is included in the

o oy Mnn,()\magqp)[ ( _kF,n’m’+kF,nm) RKKY interaction.
1\ Yz,

P AmN2 2
n=0n'=0 mag
)} A. Mean-field theory of ferromagnetism

I(F,n’m’ B kF,nm

5 (52 The treatment of the ion-ion interaction is considerably

simplified by means of mean-field theory, which reduces the
many-particle problem to an effective one-particle problem.
This allows to approximately calculate the magnetization and
to estimate the Curie temperature. Here, we introduce the
Z S M (Zma 4, Ke nm+ Ke vy fundamental equations of mean-field theory.

Fron () = E E > N\NOy——, The Hamiltonian of the magnetic ions in the presence of
=0n=o  2MAmag 2 an external magnetic field is given by

If nn,=n,, which means that eithem=m’ or m#m’ and
n,=n;, the sums can be rearranged to give

(53)

o Hlon Hlon ion Hion—mag
where the contributions fon,n’ >n,,=n,, are zero. The
functionsF;; andF | are identical to the range function in =- —2 > éjaq%a,(Rj - Rj,)s,a,
the absence of Zeeman splitticgfl), when the Fermi energy i’
is replaced byEg + 3AE.
For the system under consideration, we find that + ME > Bext a(Rj)sa, (55)
Frm (@) =Fym(q) and, thereforeF,,(q)=F__(q). Thus, the '
RKKY interaction is diagonal also in Cartesian coordinate
and is isotropic in thexy plane withF,,(q)=F(q)=F,,(q). We assume thatB
Normally, F,, is different fromF . In the limit kgT> 7w,
according to the dlscus[sm(n in Sec I\)/ A, |(t can be apﬁ)rom
mated by F,(q)=5LF3\q;Ez— 2AE +F5\q;Ep+35 1AE)], A Oion€
whereF; is the three-dimensional range functi(BQ). Hye = 2m, 4 E Sz Bext(Rj) + Bexej] + const,
For the ideally two-dimensional semiconductor, the result,
including Zeeman splitting, is where

ext(N)=Bgy(r)e, In the mean-field
approximatior?, the expressioli55) is replaced by an effec-
tive one-particle Hamiltonian

(56)
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2 “ B. The exchange field
-SOS 0 R-RpNG) (67

Gion€ We have seen that, in the mean-field approximation, the
magnetization is determined by the integral over the RKKY

is the exchange field, which approximately describes the ininteraction, which gives the range function g&0. As
teraction of one magnetic ion with the background of theshown in Sec. Il B, the RKKY interaction is related to the
other magnetic ions. The constant in E§6) is a scalar, density correlation functiorgl4). In the effective-mass ap-
which merely shifts the energy to zero and can be neglecteghroximation for a Kramers-degenerate band, considered in
Formally, the mean-field Hamiltoniaf®6) describes a para- Sec. Ill B, these equations write
magnetic system in an effective fieBL,;+Be, In the ca-

Bech =

nonical ensemble, the expectation values for the spin projec- M |2
tions aré&! ®,, (rr')= Mo<_> 1%Xret aa' (.1 = 0)
o€
&\ ) Yion€ 1%~
<§z> - ﬁ%s{gﬁ[Bext(Rj) + Bexc,j] , (58 =- ELret we (1,1, 0=0),
with the Brillouin function
~ 1
25+1 2S+1 1 1 L (M, l®) == D> 2 Copy
Bgé) = cot - —cothl —=¢]. (59 retajap\’ 107 20 amymy
9 2S r( 2S 5) 2S r<285> 9 v 2m1mi mpm, '
The functionBg is monotonous and its derivative &0 is xt,etmlmi,%mé(rl,rz,w)aazmémz. (64)

(S+1)/(39). The asymptotic behavior i84¢) — +1 for ¢

—too. As the exchange fiel®,.; itself depends on the - ~ . .. .
&3 Eqs(5 d4(58) h o b ved self istentl Here’y andL are the spin susceptibility and the density cor-
(S, Egs.(57) and(58) have to be solved self-consistently. o 100 function of an electron gas governed by the one-

We assume thaBe, is constant over the size of the haricle Hamiltonian24) and subjected to Coulomb interac-
sample. As® is slowly varying, compared with the lattice iy
constant, the sum in Eq57) can be approximated by an . ~ o .
integral overd®R;, times a factorx/ Q. With the definition The relation betweeh and its irreducible part, the polar-

of the magnetizatioi25), Egs.(58) and(57) go over into  ization functionIT is given by

X Gion€ 1S Qign€ ~ ~
M= /-’“Oa0 %Ln:oﬁsgs{ QT gzllc,)rr:o (Bext Bexc)} (60) Lret mlmi,mzmé(qv“)) =1l mlmi,mzmé(q, )
and + %4 1’:[ret mlmi,nbm3(qvw)5(Q)
1(2m)* <L (o) (65)
Bexe=— Fzz(o)M . (61) ret mymy,mym’, q,w).
#o \ Gion€

The system is called ferromagnetic if there exists a nontriviafiere: the Coulomb |nlteract|on(q):e2/ (£080) statically
solution M # 0 for Be,=0. This is the case fof <T¢ with sgreened by a dlelectrlc' constari= 10 th'rpugh mterac'qon
the Curie temperatufé? with nonresonant band@nterband HansFuorls To rewrite
the above equation for the functiohg,; and 11,z (64), we
_ h?S(S+ 1)LF 0 62 also take into account the components3=0, where oy
- ks A0)- (62) =diag1,1) is the two-dimensional unity matrix, and employ
the orthonormality and completeness relations of the Pauli
For a direct experimental measurement of ferromagnetisij,atrices
it is necessary that the magnetization on the account of para-
magnetism is well below the saturation value. This is the

Tc

case if forB,,.=0 the value of the Brillouin functio60) is }2 G it Tt = O v
much smaller than unity, which requires that 2 " 2 v
on(S+ 1) eB
Gon(STDAEB | o (63) .
6 m 1

5 EO T amim; T amy,m) = 5m1m2 5mimé-
a=

(66)
This also means thditw. <kgT, especially for the heavy hole
and, following the discussion in Sec. IV C, the effect of the
magnetic field on the orbital motion can be neglected. In théfThe componentsxr=0 and @=1,2,3=X,y,z correspond to
following we shall restrict ourselves to this limit; the inclu- the singlet and triplet states of the two-particle system. In the
sion of the Landau quantization is straightforward. new indices, Eq(65) reads®
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Eret alaz(q ’ (1)) = 1P:Iret alaz(qr (1))
4
+ 2 Mietagag(0 ©)0 g, (Dlret aga, (0, ©)

az,a,=0
(67)
with the transformed Coulomb potential
- 2v(q) for ag=a,=0
B g0, (0) = ot (68)
374 0 elsewhere.

Because of this strcuture of the Coulomb interaction, the
effect of screening is different for the singlet and triplet com-

ponents.

Now we replaceﬁ by the RPA polarization function,
which is given by®

7(0
Hﬁe: mlmz(r 2 w)

.Y f

E —_
pu! R

MMy B fﬂ/mz
Epm, ~ hlw+ie)

E’;(rlﬁ’#'(r 1)
X@, (1) @,u(r2). (69)

In the coordinatesy, 8, the matrix ofl1© has the form

iy o 0 ) Gy g

- 0 19 0 o0 e
o= 0 SX o Q=11 . (70

vy 0 = 7O

g o o fig) 0T

This structure results from rotational invariance in the spin

space and is found also for the exact polarization fundtlon

PHYSICAL REVIEW B0, 075205(2004)
~ 1 ~
Meq=00=0= J ory f oralligtAr1.rz0)

1
53|
. - df(E)
dE

- df(E)
dE E:E/.LT

E:EW]

1
=- E[DT(EF) +D | (Ep)]

-~ o),

> (73

where (), is the normalization volume, which is considered
in the limit Q—« and we assumed=0 so that df/dE
=8(E-Eg). The functionsD; and D, denote the density of
states of the electrons in the spin-up and spin-down sub-
bands. Here, we clearly see that the influence of the Landau
quantization and the finite temperature is negligible in the
limit Zw.<kgT<<u, whereu is the chemical potential. The
relation(73) also follows from the explicit expressions of the
range functions. Analogously, for the nondiagonal element of

1 we find

M9,4(q=0,0=0=-[D\(E) -D(E)]. (74

Inserting these expressions into EG&L) and(72), we obtain
the final result

D.(Er)D,(Ep)
0) = |22 L\EF F
Fd0)=] D.(Ef) + D (Ep)

- 4[DT(EF)+DL(EF)]{1 {DT(EF)"'DL(EF) |
(75)

Equation (67) can now easily be solved. We introduce a 1he effect of screening leads to the additional factor in curly

screened potentiz?!(s)35 with the only nonvanishing compo-

nents
Vizt 0d 0,©) = Too(@) X [Lrer od 0, @)Too(@)]¥
k=0
_ Vgo(Q)
1 -111g) od 9, )T oo(Q)
The denominator in Eq(71) yields the Lindhard dielectric

(71)

function. With the above definition we obtain a closed ex-

pression for the density correlation function
Lret AQ,0) = Hggz ZZ(q’ w) + ngo

X (0, )V od a0, 01 (0, 0).  (72)

For the calculation of the magnetization in mean-field ap-

proximation we only need the functidn atq=0 andw=0.

Taking into account the spatial homogeneity and employing

the orthonormality of the eigenfunctiori€9), we obtain

brackets, which is equal to unity i, (Ef) =D (Eg), but van-
ishes ifD;(Ef)=0 or D|(Ef)=0. Because the Zeeman split-
ting in DMS is not small, the influence of screening is sig-
nificant. This contribution is also important to establish the
equivalence between RKKY theory and mean-field Zener
theory.

As discussed in the beginning of this subsection, the mag-
netic susceptibility10) does not establish a relationship be-
tweenM andH, but betweerdM and dH. For the problem
under consideration this means that the relat®h has to
be replaced by the differential equation

(5]

( 0BE‘XC) - ( aBexc) _ ( aBexc)
M S, \ oM Je \ oEe )y ( 0 )
=AY

1 <2mo>2
== =2 F,{0)
Mo\ Gion€ i

and the solution is
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Er periodic parts enter the effective Hamiltonian only through
B = 2my |_(Q —0), on= | dEDL(E) (76) matrix elements, which, up to prefactors, follow from crystal
T gone2 T TS e symmetry.
- We presented analytical results for the range function of a
This is exactly the expression for the exchange field used iffi"€e- and two-dimensional semiconductor in a magnetic
mean-field Zener theoR? field. In the limit of vanishing field, we recover the well-

The Curie temperature for mean-field Zener theory is th&NOWn range function; andF,, respectively. We also gave
same as for the linear theory, E@2), because it is deter- @n explicit expression in the limit of large magnetic field, in
mined by the behavior for sm'am. V\}ith QT:QL:% 0, we the case that only one Landau level is occupied.

find If Zeeman splitting of the bands is taken into account, the
RKKY Hamiltonian is no longer isotropic. For thiég con-
_ SS+D) X oL s duction band under consideration aglle,, it is found that
TC_32/34—7#/3|<560| m= e~ (77) the RKKY interaction has two principal axes wit,,
=0, * D,

So far, we did not consider the effect of Coulomb inter-  |n the presence of Zeeman splitting, the RKKY interac-
action on the polarization function. In the generalizedtion is significantly changed due to screening on the account
random-phase approximatig@RPA), this effect of the ap-  of electron-electron interaction. In particul&;,0) becomes
proximated as a prefactoﬂret(q,w:O):H(O)(q,w:O)/[l zero if one subband edge lies above the Fermi level. It is

ret R . . .
+v_(q)H£2i(q,w:O)], wherev(q)=0 is a parameter for the rigorously shown that the RKKY result, including screening,

effective pair interactioR3%52 Then the density of states 'S eduivalent to mean-field Zener theory. _

D.(E) in Eq. (76) has to be replaced by, (E)/[1 A critical point of the theory so far is the introduction of a

—vﬂ(O)D (B)] ' " magnetic Hamiltonian through the VCA. In reality, the mag-
m(E)].

The presence of disorder results in an exponential dampr_letlc impurities should lead to bound states and to a local-

ing of the RKKY interaction due to the finite mean free Zit/'(;? Xfrézgmegfgfué];;ggi’ sr?ﬁg:]igycglgr::?alclglrgiions
path%3-%5|t also leads to an effective electron-electron inter- 0 Y P

revealed significant derivation from the mean-field-VCA re-

action so that the ensemble-averaged functigi®)) is a  gits, which were addressed to short-range magnetic order
sum of ladder-bubble diagrams like in the GRPAThe net  anq |ocal carrier spin polarizatidnThere is much current

effect of disorder is an increase of the RKKY interaction andinterest in understanding the role of bound magnetic po-

H 3 . . .
a reduction ofTc. larons for the formation of ferromagnetism in DM3%°

These topics will be the subject of further studies.
VI. SUMMARY AND CONCLUSIONS

In this paper we derived the RKKY interaction in semi- ACKNOWLEDGMENTS
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