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With the aim of future applications in quantum mechanical embedding in extended systems such as crystals,
we suggest a simple and computationally efficient method which enables construction of a set of nonorthogo-
nal highly localized one-electron orbitals for periodic nonmetallic crystals which reflect their chemical nature.
The orbitals are also used to build up the Hartree-Fock(HF) electron density of the entire crystals. Our method
does not require usage and/or modification of periodic electronic structure codes, and is instead based on the
HF calculation of a sequence of finite clusters with subsequent application of a localization procedure to
transform the HF canonical molecular orbitals. Two extreme cases of chemical bonding, ionic(MgO crystal)
and covalent(Si crystal), are considered for which a number of known localization schemes are applied and
compared. With some modifications our method can also be applied to nonperiodic nonmetallic systems as
well. Our method can easily be reformulated for the Kohn-Sham orbitals of the density functional theory.
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I. INTRODUCTION

Electronic structure calculations of extended systems with
a local perturbation, such as point defects in the bulk of
crystals1 or adsorption of molecules at their surfaces2 are of
fundamental importance in solid state physics and chemistry.
Over the last decade a number of effective computational
techniques have been developed to study the electronic
ground state of such systems which are based on periodic
boundary conditions(PBC’s) and either Hartree-Fock(HF)3,4

or density functional theory(DFT)5,6 approaches. In these
methods a local perturbation(e.g., an adsorbed molecule to-
gether with a fragment of a crystal surface) is artificially
periodically repeated; the periodic cell is chosen to be large
enough to ensure that the interaction between periodic im-
ages is negligible. These methods can also be applied to
study extended(but not infinite) biological systems in which
important chemistry is usually associated with a local part of
the entire molecule(s).7

Another set of methods, commonly referred to asembed-
ding techniques, originate from a model in which a single
local perturbation is considered in the direct space of the
entire system. This makes the model closer to reality at low
concentration, but, at the same time, it makes it more chal-
lenging since, due to the lack of periodic symmetry, well
developed PBC based techniques cannot be applied here. In-
stead, a number ofhybrid methods have been developed
which treat different parts of the system at different levels of
the theory. Most of these methods combineab initio quantum
mechanics(QM) methods(based either on the DFT or the
HF methods and their extensions) applied to a finite fragment
of the system(a quantum cluster), with molecular mechanics
(MM ) methods based on semiclassical force fields and ap-
plied to the rest of the system(environment region). The idea
is to consider the most relevant part of the system(e.g., with
respect to a process in question) in great detail, while the rest
of the system is treated at a substantially lower level. These
methods, developed mostly within the quantum chemistry
community, and usually referred to as QM/MM have proven
to be extremely successful.8–12 Note that some other embed-

ding schemes13–20 developed mostly in the solid state com-
munity are very close in spirit to the QM/MM methods.

Almost in all embedding methods mentioned above the
quantum cluster is surrounded by point charges of the MM
region. In addition, in covalent systems the bonds coming
out of the cluster are usually terminated by pseudoatoms
(see, e.g., Ref. 19), so-called link atoms9,11,12 or
pseudopotentials.18–22

Another class of embedding schemes relies on a more
“electronic” (less “mechanical”) representation of the envi-
ronment region surrounding the quantum cluster. For in-
stance, in Refs. 9, 23, and 24 this is achieved by a special
total energy construction which allows a combination of sev-
eral electronic structure methods of different complexity ap-
plied to different parts of the system; other methods13–16rely
on a representation of the wavefunction via strongly orthogo-
nal many-electron group functions(see, e.g. Refs. 25 and 26)
associated with atoms, bonds, or molecules depending on the
specific type of chemical bonding in the system.

We believe that the formalism based on group functions is
the most appropriate one for the derivation of any embedding
scheme. A rather general method based on overlapping(not
strongly orthogonal) group functions27,28 is presently being
developed in our laboratory. Our method which is similar in
spirit to some one-electron methods29–31 is based on con-
struction of strongly localized orbitals which are designed to
represent the true electronic density of the entire reference
system(normally, a perfect periodic crystal) via a combina-
tion of elementary densities associated in simple cases with
atoms, ions and/or bonds. Then when considering a defective
(nonperiodic) system, the environment region is constructed
via a set of the strongly localized orbitals of the reference
system as shown schematically in Fig. 1, while the cluster
itself is represented using a many-electron wave function.

Our initial effort in this project is focused on the devel-
opment of an embedding scheme based on the HF approxi-
mation and applied to point defects in the bulk or at surfaces
of periodic crystals. Our intention is to create a rather general
technique which can be valid for systems of different chemi-
cal character, ranging from purely ionic to strongly covalent
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(note that our method cannot be directly applied to metals).
Therefore, the proper choice of the localization technique
which can deliver localized orbitals across a wide range of
systems with various character of chemical bonding is cru-
cial for our method to work for those systems.

It is the main objective of the present paper to critically
analyze and develop further a number of localization meth-
ods in order to verify their ability to describe a wide range of
different chemical bondings inperiodic crystals.Two sys-
tems are considered in the present paper in detail, MgO and
Si bulk crystals, which are examples of extreme ionic and
covalent bonding, respectively. Note, however, that the
method we suggest is not limited to periodic systems and,
with some insignificant modifications, can also be applied,
e.g., to infinite amorphous and finite biological systems. The
application of the present method to those systems will be a
matter of future publications.

It is relevant to mention, as far as the localization methods
are concerned, that there are several methods developed32,33

for obtaining orthogonal localized orbitals(i.e., Wannier
functions) out of the Bloch-like solutions of the HF or Kohn-
Sham (KS) equations6 for periodic crystals. Due to the
built-in orthogonality even strongly localized Wannier func-
tions have long-range tails which make these functions non-
transferable to other systems, e.g., when a chemical bond
between the same species is placed in a different chemical
environment. That is why our interest is focused on construc-
tion of nonorthogonal localized orbitals which do not have
this disadvantage and thus are more appropriate for our pur-
poses.

The plan of the paper is the following. Our philosophy in
constructing localized orbitals as well as a short overview of
existing localization methods is given in Sec. II with special
emphasis on the methods used in our present work. All the
necessary notations are also introduced there. In Sec. III we
describe our implementation of some of the methods and
their application to MgO and Si crystals. The paper is fin-
ished with a short discussion and conclusions in Sec. IV.

II. LOCALIZATION METHODS

A. General philosophy

In order to describe the crystal as a set of overlapping
localized functionshw̃asr dj which are given as a linear com-

bination of the original canonical sethwi
csr dj (and which thus

span the same occupied Fock space), one has first to identify
the regions of space where each of the functionsw̃asr d has to
be localized. This question can be viewed as purely technical
since any linear combination of the canonical set will give
the same electron densityrsr d. We, however, adopt in our
work a strategy based on the chemistry of the system in
question. Namely, the choice of the localization regions is
based on the type of the chemical bonding, e.g., on atoms in
the cases of atomic or ionic systems, on two atoms in the
case of covalent bonding, etc. A more complicated choice
may be necessary in the cases of intermediate bonding. Sev-
eral different nonequivalent regions may be necessary to rep-
resent a crystal unit cell which can then be periodically trans-
lated to reproduce the whole infinite crystal. Note that there
could be several localized orbitals associated with every such
a region forming together an electronic group.13,25 For in-
stance, in the case of the Si crystal one needs four localized
regions associated with four bonds; each bond is represented
by a single double occupied localized orbital.

Once the occupied Fock space is obtained via a set of
canonical orbitals and localized regions are identified, it is
necessary to find such linear combinations of canonical or-
bitals which are localized in each of the regions. The topic of
construction of localized(noncanonical) molecular orbitals
(MO’s) out of delocalized canonical solutions of the HF or
Kohn-Sham equations is an old one34 and many methods
have since been developed.

Let us assume that a canonical solution of the restricted
HF equations for the entire system(a closed shell crystal) is
known25

F̂wi
csr d = «iwi

csr d, s1d

wi
csr d = o

m

Cmi
c xmsr d, s2d

where F̂ is the Fock operator,wi
csr d is a spin-independent

canonical MO (CMO) which is expanded over a set of
atomic orbitals(AO’s) xmsr d. The electronic density of the
system

rsr d = 2o
i

occ

uwi
csr du2 s3d

contains the summation only over occupied CMO’s thus en-
suring the correct normalization to the numberN of the elec-
trons in the system. If an arbitrary(generally nonunitary)
transformationU=iUaji of the CMO’s within the occupied
subspace is performed,

w̃asr d = o
j

occ

Uajw j
csr d ; o

m

C̃maxmsr d s4d

then the expression for the density via the new set of orbitals

should contain the inverse of the overlap matrixS̃=iS̃abi:25

FIG. 1. The philosophy of the embedding: the entire system is
split in two parts. One of these is a finite quantum cluster(on the
left from the broken line) which is treated in detail, and the other is
an infinite environment region(on the right) which is considered
approximately.
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rsr d = 2o
ab

occ

w̃asr dsS̃dab
−1w̃b

*sr d, s5d

where S̃ab=kw̃asr d u w̃bsr dl is the overlap integral. Note that
the two representations of the electron density, Eqs.(3) and
(5), are absolutely equivalent. Moreover, any linear combi-
nation(4) of the occupied CMO’s leads to the same density.
If the transformation is unitary, then the overlap matrix is the
unity matrix and the density takes on its “diagonal” form(3).

In general, any localization procedure is equivalent to
some transformationU of the CMO’s. Suppose, we would
like to obtainn localized MO’s(LMO’s) in some regionA.
To find the necessary transformation, one can formulate an
optimization (minimization or maximization) problem for

some specific localizing functionalṼAfhw̃ajg with the con-
straint that the LMO’s associated with regionA are orthonor-
mal (of course, LMO’s associated with different regions will
not be orthogonal in general). We shall limit ourselves with
such functionals which are invariant under arbitrary unitary
transformations of LMO’s, i.e., which in fact depend on the
orbitals hw̃aj via invariants in the form of the nondiagonal
“density”

sAsr ,r 8d = o
a=1

n

w̃asr dw̃a
*sr 8d s6d

constructed out of the LMO’s associated with regionA, i.e.,

ṼAfhw̃ajg;VAfsAg. We shall see in a moment that this re-
quirement ensures an existence of a simple eigenvaluelike
problem for the LMO’s. Note in passing that some other
types of functionals are also sometimes used which do not
fall within this category. For instance, Admiston and Rueden-
berg proposed to find the maximum of the self-repulsion
energy,35 while later on von Niessen suggested to maximize
the charge density overlap functional.36 Since the mentioned
functionals are not invariant under unitary transformations of
LMO’s and are also quite expensive computationally, we do
not consider them in the following. The quantitysAsr ,r 8d
will be referred to in the following as the region electron
density or region density for short.

To obtain alln LMO’s associated with regionA, an opti-
mum of the following functional is sought for:

VA8fsAg = VAfsAg − o
a,b=1

n

jabskw̃auw̃bl − dabd, s7d

wherejab are the corresponding Lagrangian multipliers. Be-
cause the actual dependence of the functionalVAfsAg on the
orbitals is built-in via the region density(6), the functional
derivativedVA/dw̃a

*sr d can always be written using the op-

erator V̂Asr d defined through an identitydVA/dw̃a
*sxd

=V̂Aw̃asxd since dsAsr ,r 8d /dw̃a
*sxd=w̃asr ddsx−r 8d. Ex-

amples illustrating this point will be given below. We shall

refer to the operatorV̂Asr d as the localization operator in the
following. An important property of the localization operator
is that it can also be considered as a functional of the region

density (6), i.e., it preserves the invariance property of the
localizing functional it is built from.

Using standard methods, i.e., setting the variational de-
rivative of the functional(7) with respect to the orbitalw̃a

*sr d
to zero and then performing a unitary transformation of the
LMO’s which diagonalizes the matrix of Lagrangian multi-
pliers, one can easily obtain the following equations for the
LMO’s sought for:

V̂Aw̃asr d = law̃asr d s8d

or

o
j

occ

Vi j
AUaj = laUai, s9d

whereVi j
A is given via matrix elements of the operatorV̂A

calculated using canonical orbitalswi
csr d andw j

csr d.
Equations(8) resemble an eigenvalue problem for the op-

eratorV̂A. Note, however, that in some cases the localization
operator may still depend on the region density and thus on
the orbitals themselves. Therefore, similarly to the HF or
Kohn-Sham problem, the system of equations(8) should be
solved self-consistently.

The eigenvalue problem(8) or (9) may give a set of so-
lutions from which only the first(in the case whenVA is
minimized) or the last(maximized) n solutions should be
chosen. If the localization criterion(i.e., the functionalVA)
used is appropriate, then(i) the chosenn solutions would
have close eigenvaluesla which correspond to their similar
localization in regionA and(ii ) the gap in the eigenvaluesla
between the chosenn and other solutions is considerable,
i.e., the other solutions have much worse localization in re-
gion A (cf. see Ref. 37). By collecting LMO’s from all re-
gions in the unit cell and then translating those over the
whole crystal it should be possible to span the whole occu-
pied Fock space and thus construct the total electron density
(5).

One point is in order now. So far we have assumed that
the set of canonical MO’s which span the occupied part of
the Fock space is already known. In other words, the proce-
dure consists of two steps: first, a HF(or Kohn-Sham) prob-
lem is solved and thus the occupied Fock space is deter-
mined, and, secondly, the LMO’s are obtained by finding
appropriate linear combinations of the canonical orbitals
within this space. However, it is also possible to formulate
the problem in such a way that LMO’s are obtained together
with the set of canonical orbitals in a single step.34 In this
method a localization criterion is considered alongside the
energy minimization leading to a set of so-called Adams-
Gilbert (AG) equations(see, e.g., Ref. 38) which are solved
in a self-consistent manner. For instance, a projection opera-
tor on the subspace of the LMO’s was used by Stollet al.39

as the specific localization method. This technique was
implemented in Ref. 40 for the embedded molecular cluster
calculations. The LMO’s resulting from a single AG calcula-
tion are orthogonal as solutions of a single secular problem.
The first eigenvectors obtained will show strong localization
within the chosen regionA; other eigenvectors will be much
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less localized and can usually be distinguished by a gap in
their eigenvalues as explained above. To obtain LMO’s
strongly localized in a different regionA8, one has to solve
the AG equations once again using another localization cri-
terion and then pick up the necessary number of the most
localized orbitals. Repeating this procedure across the entire
system, the whole occupied Fock space can be split into sets
of mutually nonorthogonal LMO’s. Of course, in the case of
the perfect crystals this procedure should only be applied to
various localization regions within the primitive unit cell ow-
ing to crystals periodic symmetry.

Note that it is also possible to obtain all the LMOs corre-
sponding to several localization regions at once within the
same self-consistent calculation by solving the necessary sets
of eigenproblems associated with each region.30,31 The
LMO’s obtained using this technique are known as ex-
tremely localized MO’s. This method is quite expensive
computationally since the overlap between LMO’s localized
in different regions in space changes in the course of the
iteration procedure and this affects the convergence.

There are many ways in which a localizing functionalVA
can be chosen. Some of these methods which will be utilized
in the present work will be considered below in more detail.

B. Methods based on functionals linear in region density

In a number of methods41 the localizing functional is pro-
portional to the nondiagonal density(6) and thus can be rep-
resented as a Hermitian bilinear functional with respect to
the LMO’s of the following general form:

VA =E fV̂AsAsr ,r 8dgr8→rdr = o
a=1

n E w̃a
*sr dV̂Aw̃asr ddr

; o
a=1

n

o
jk

occ

Uaj
* V jk

AUak, s10d

where V̂A is some localization operator and the Hermitian
matrix VA=iV jk

A i can easily be written in terms of the ca-
nonical MO’s using the definition(2):

V jk
A = kw j

cuV̂Auwk
cl = o

m,n
Cm j

c* Cnk
c kxmuV̂Auxnl. s11d

For all methods of this group both the operatorV̂A and the
matrix VA do not depend on the LMO’s sought for so that in
order to obtain the localized orbitals one has simply to find
the eigenvectors of the matrixVA using Eq.(9). Two meth-
ods of this group are implemented in our work and will be
considered in the following in more detail.

Mulliken’s net population (method M).Magnasco-Perico
criterion maximizes Mulliken’s42 net atomic population pro-
duced by the LMO’s in the selected region.41,43 In this case
the matrixVA is chosen in the following form:

V jk
A = o

m,n[A

Cm j
c* SmnCnk

c , s12d

whereSmn is the overlap integral between two AO’sxm and
xn. The summation here is performed over AO’s which are

centered in the chosen regionA. Thus, in practice the local-
ization region in this method is specified by a selection of
AO’s in Eq. (12). This way one can make the LMO’s to have
the maximum contribution from the specified AO’s in region
A. Sometimes a different choice of AO’s may lead to physi-
cally identical localization (see the next section). This
method will be referred to as methodM.

The projection on the atomic subspace (method P).The
Roby’s population maximization44 gives LMO’s for which
the projection on the subspace spanned by the basis orbitals
centered within the selected region is a maximum, or is at

least stationary.41 In this method the localization operatorV̂A
in Eq. (10) is chosen in the form of a projection operator

V̂A = o
m,n[A

uxmlsSA
−1dmnkxnu, s13d

where SA
−1 stands for the inverse of the overlap matrixSA

defined on all AO’sm, n[A. Note that operatorV̂A is idem-

potent: sV̂Ad2=V̂A. It projects any orbital into a subspace
spanned by the AO’s associated with regionA only. In par-

ticular, V̂Auxml= uxml. The detailed expression for the matrix
VA is then

V jk
A = o

l,t
Cl j

c*Ctk
c F o

m,n[A

SlmsSA
−1dmnSntG . s14d

Here the first double summation is performed over all AO’s
of the system. RegionA is also defined via a subset of AO’s:
by choosing particular AO’s one ensures the maximum over-
lap of the LMO’s with them. It is seen that this method,
which will be referred to as methodP, although different in
the implementation, is very similar in spirit to the previous
methodM.

Other methods.Note that several other methods41 also
belong to this class of methods. Since we are not using them
here, we shall only mention some of them. Bader’s method
(see also Ref. 45) is computationally expensive and leads to
LMO’s with discontinuities at the border of the localization
regions. The widely used Pipek-Mezey localization scheme46

could be described as the maximization of the Mulliken’s
gross atomic population. The Pipek-Mezey functional corre-
sponds also to a minimization of the number of atoms over
which the LMO is to be spread. This method is very similar
to the Mulliken’s net population method considered above,
although is slightly more computationally expensive. All
population methods have an advantage of being very simple
in the implementation which results in fast non-self-
consistent algorithms: indeed, only overlap integrals are to
be computed. Note that instead of the overlap, one can also
maximize an exchange interaction of the LMO’s with a set of
AO’s in regionA.37

Perhaps the most widely used, due to its relatively low
computational cost, is the Foster-Boys47 method in which the
dipole moment matrix element between so-called exclusive
orbitals is maximized. The efficiency of the HF method was
improved in Ref. 48 by using localized orbitals constructed
from the Foster-Boys method as AO’s. Recently33 the Wan-
nier functions were calculated for periodic Si and MgO crys-
tals using the modified version of the Foster-Boys method
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which ensured better localization within the cell volume.
Note that, according to Ref. 41, the Pipek-Mezey functional,
unlike the Fosters-Boys method, preserves thes /p separa-
tion of double bonds, which is in chemistry usually preferred
over thet picture(where the orbitals are proportional to the
linear combinationss+p and s−p) associated with the
Fosters-Boys localization procedure.

C. Methods based on functionals bilinear in region density

More complicated localization procedures can be con-
structed if the localizing functional is bilinear in nondiagonal
density(6) of regionA in question, i.e., is of the fourth order
with respect to the LMO’s sought for. Three important gen-
eral points should be mentioned:(i) for all methods of this

group the localizing operatorV̂A is linear in the density
sAsr ,r 8d and(ii ) is thus invariant under any unitary transfor-
mation of the LMO’s;(iii ) therefore, one still has the secular
problem(8) or (9) for the LMO’s in this case; however, it is
to be solved self-consistently.

Minimization of the HF energy of a structure element
(method E).In this paper we shall only apply one method of
this group in which the functionalVA is chosen as the HF
energy of a finite fragment of the system. The fragment,
which is usually called astructure element(SE), (see Ref.
13), comprises all electrons belonging to regionA and the
corresponding nuclei(or their parts, see below). Note that if
a SE is positively charged or electrically neutral, then every
electron in it can be approximately viewed as moving in a
potential well of a finite depth. This is also true if the SE is
negatively charged(e.g., an oxygen ion O2− in the MgO
crystal); however, in this case one has to add the Madelung
field of the rest of the crystal to stabilize it. This method,
which will be referred to as methodE in the following, in its
simplest version of the localization on a single atom origi-
nates from Adams.49 It was recently used in Ref. 50 to derive
an embedding potential provided by a part of a molecule.
MethodE is based on an intuitive idea that every stable finite
system, e.g., a SE, will try to find an energetically favorable
ground state which will be localized in space. Indeed, the
ground state wavefunction for an electron in a potential well
is known to be strongly localized in the well. The SE could
be an atom, group of atoms or a bond. In the latter case the
SE for the Si crystal represents essentially a hydrogen-like
molecule consisting of fragments of two nearest atomic cores
each of charge +e (−e is the electron charge) and two elec-
trons of opposite spins(see the next section).

The eigenvalue problem(9) in this case is nothing but the
usual Hartree-Fock-Roothaan(HFR) problem25 for molecu-
lar orbitals of regionA, i.e., the elements of the matrixVA

are

V jk
A = kw j

cuV̂Auwk
cl,

whereV̂A; F̂A is the usual HF operator of the SE containing
both electron-electron and electron-core interactions. The pe-
culiarity of this case is that the MO’s(which are, in fact,
LMO’s) are expanded not via AO’s but rather via canonical
HF orbitals for the whole system which, in turn, are linear

combinations of AO’s of the whole system as in Eq.(2). In
other words, the difference with the usual setup of the HFR
problem is that in our case the preset linear combinations(2)
of the AO’s of the whole system are used in place of the
AO’s themselves. Correspondingly, this method is computa-
tionally expensive since all the one- and two-electron inte-
grals which are necessary for the construction of the Fock
matrix VA are expressed as double and quadruple sums of
the corresponding AO integrals.

D. Localization criteria

Application of the various schemes described above re-
sults in LMO’s which may be localized in 3D space differ-
ently. It is therefore useful to have a simple criterion(or
criteria) which identifies the degree of their localization. In
this paper we shall use two methods. The first one, the so-
called localization index, is the measure of localization pro-
posed by Pipek and Mezey46 which is based on the gross
Mulliken populations. Qualitatively, it gives the number of
atoms where the orbitalw̃asr d is predominantly localized and
is defined by the formula

da = Fo
A

sVa
Ad2G−1

, s15d

with

Va
A = o

m
o
n[A

C̃ma
* SmnC̃na. s16d

HereC̃na are the expansion coefficients of the LMO in ques-
tion, see Eq.(4). Note that this criterion is similar, but not
identical, to the method of participation ratio proposed by
Bell and Dean.53

Alternatively, the overlap between localized orbitals gives
also an important information about their localization. That
is why as the second criterion we shall consider the maxi-
mum eigenvalue of the overlap matrix. Note that for periodic
structures it is more convenient to use the Fourier transfor-
mation of the overlap matrix54

Sabskd = o
L

kw̃asr duw̃bsr − L dleikL , s17d

wherek is a point in the Brillouin zone,w̃asr d andw̃bsr d are
LMO’s in the elementary cell andL is the lattice translation
vector. Note, that if any of the eigenvalues of the overlap
matrix S=iSabskdi is larger than 2 it is impossible to obtain
the total crystal density in this basis via the Löwdin’s expan-
sion method.54 Therefore, existence of large eigenvalues of
the matrixS correspond to weak localization of the corre-
sponding LMO’s. In practice, when applying this criterion,
we apropriately sample the Brillouin zone, calculate the ei-
genvalues of theSskd matrix at everyk point and then pick
up the largest eigenvalue. It is worth noting that the overlap
matrix has all its eiegenvalues equal to unity in the case of
orthogonal orbtals, so that this criterion is only applicable to
the case of nonorthogonal orbitals.
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III. LOCALIZED MOLECULAR ORBITALS FOR Si and
MgO BULK CRYSTALS

In this section we shall examine LMO’s obtained using
three methods described above. Two crystalline systems with
extreme types of chemical binding will be considered: MgO
(ionic) and Si(covalent).

A. General method

We are interested in calculating LMO’s for perfect peri-
odic solids. In this case the canonical MO’s are Bloch-like
solutions of the HF or Kohn-Sham equations. This means
that the eigenvalue problem(9) is of an infinite dimension
which makes the calculation quite complicated; in addition,
it would be necessary to use(and modify) a periodic elec-
tronic structure code. To avoid these difficulties, we suggest
a very simple procedure based on a cluster method. The ba-
sic idea relies on the fact that when the cluster size is in-
creased, the distribution of the electron density in its central
region should become closer to the actual electron distribu-
tion of the infinite periodic system.

Our method is based on the following steps.
(1) Analyze the known electron charge densityrsr d of

the 3D periodic system in question to identify regionsA, B,
C, etc., which can each be associated with even numbers of
localized electrons, e.g., atoms, ions, bonds; the densityrsr d
can be found in the literature or our own calculations.

(2) Consider a quantum cluster which contains regionA
in its center (or close to it); terminate the cluster using
pseudoatoms(see below) and/or an array of point charges to
reproduce the correct Madelung field; obtain the occupied
canonical orbitalswi

csr d for the whole cluster.
(3) Then consider a localization problem for regionA us-

ing one of the methods of the previous section; this should
give the necessary number of LMO’sw̃asr d sa=1, . . . ,nd as a
linear combination of the occupied canonical MO’shwi

csr dj,
Eq. (4); note that in some cases when, e.g., pseudoatoms are
used to terminate the cluster, their contribution to the LMO’s
should be removed and the orbitals renormalized.

(4) Repeat procedures 2 and 3 for larger clusters to en-
sure that the LMO’s obtained have converged.

(5) If other types of regions exist, repeat steps 2–4 for
those regions as well; when finished, LMO’s for the whole
unit cell should be available; sometimes(as is the case for
silicon), LMO’s of some other regions can be obtained with-
out additional calculation by simply translating and possibly
rotating the LMO’s of a single region.

(6) The LMO’s within the primitive cell can be displaced
by all possible lattice translations to obtain the complete set
of crystal LMO’s spanning the complete occupied Fock
space; these can now be employed for the calculation of the
density according to Eq.(5). We shall denote the electron
density calculated in this wayr̃sr d. We distinguish it from
the actual periodic densityrsr d calculated using a periodic
code and identical basis set by a tilde since the two densities
will not be exactly the same due to a number of approxima-
tions employed here in calculating the LMO’s(see below).

Some general comments of our general method are nec-
essary at this point. First, the convergence of our procedure

with the cluster size depends on the “boundary conditions”
used in every case, i.e., it depends on the way the cluster is
terminated; it is nothing but the embedding method itself.
The latter is, however, unknown. Therefore, our procedure
can be considered only as the first iteration and thus larger
cluster sizes are expected. In principle, when the LMO’s are
obtained, one can use them for a new set of embedding cal-
culations to obtain a better approximation for them, etc. In
this case smaller cluster sizes may only be necessary.

Secondly, it has already been mentioned that any linear
combination of the canonical set of MO’s should lead to the
same electron density. Therefore, one may think that the den-
sity r̃sr d obtained using the procedure outlined above will
always result in the correct electron densityrsr d. This is,
however, do not need to be the case due to a number of
approximations adopted. Indeed, we only consider finite
clusters withad hoc boundary conditions; in addition, the
contribution of boundary cluster atoms may be modified
when pseudoatoms are used. Finally, the cluster size may be
insufficient to accommodate completely the LMO’s. There-
fore, the obtained occupied Fock space will never be exactly
the same as that obtained using the periodic calculation.
Hence, the comparison of the electron densitiesr̃sr d andrsr d
may indicate on the quality of the calculated LMOs, and this
method will be used in this paper.

The calculation ofr̃sr d is performed by exploiting the
periodic symmetry and representing the LMO’s as an inte-
gral over the Brillouin zone.54 This method is exact and does
not depend on the degree of localization of the LMO’s. It
also allows exact handling of the inverse of the overlap ma-
trix in Eq. (5). To calculate the reference densityrsr d, we
used our cluster calculations in the following way:(i) a par-
allelepiped in the central part of the cluster with the sides
along the primitive lattice translationsa1, a2 anda3 which is
equivalent to the primitive unit cell is identified; its density is
denotedrcsr d. (ii ) The density of the whole 3D crystal is then
modeled asrsr d;rcsr 1d, where r 1 is obtained fromr by
removing any lattice translations(this is most conveniently
performed by first calculating fractional coordinates ofr in
terms ofa1, a2, anda3 and then removing integral parts from
them). The larger size of the cluster is used in the calcula-
tions, the better approximation for the densityrsr d will be
obtained in this way. All numerical calculations reported in
this paper were done using the HF method and the
Gamess-UK(Ref. 51) code within the pseudopotential ap-
proximation.

B. Localized orbitals for the MgO bulk

MgO crystal has a face centered cubic lattice with the
distance between magnesium and oxygen ions of 2.122 Å.55

Each Mg atom donates its both valence electrons to the O
sublattice resulting in effective atomic charges of ±2e. For
the investigation we have chosen a sequence of three finite
clusters of increased size, Mg6O, Mg38O13, and Mg44O19,
containing 7, 51, and 63 atoms, respectively; each of the
clusters was surrounded by an array of nearly 103 point
charges of ±2e to simulate the Madelung field. The largest
cluster used is shown in Fig. 2.
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To consider explicitly only the valence electrons, for both
Mg and O we used coreless Hartree-Fock pseudopotentials
(CHF) with LP-31G basis set from Ref. 52. The number of
electrons in each cluster was calculated by adopting a well
known ionic character of the MgO crystal, i.e., by assuming
that every Mg2+ ion is associated with no electrons, while
every O2− ion has eight electrons. The LP-31G basis set was
used in all our calculations.

After the HF solution was obtained for every cluster, we
applied the three localization procedures(methodsM, P, and
E) considered in the previous section to obtain the LMO’s
for this system. Since there are only two atoms in the primi-
tive cell, Mg and O, and it is well known that the valence
electron density is localized predominantly on the O atoms,
one can choose essentially a single regionA within the
primitive unit cell to localize the LMO’s into, namely, on the
O atom. We should expect four LMOs localized on every O
atom: one of thes type w̃ssr d and three of thep type w̃pxsr d,
w̃pysr d, andw̃pzsr d.

Therefore, when applying the methodsM andP we used
thes andpx, py, andpz type AO’s centered on the O atom in
the center of every cluster when applying Eqs.(12) and(14).
In the case of methodE, we considered the HF problem for
a single oxygen ion O2− in the basis set of all occupied
canonical MOs of the entire cluster. In every case exactly

four LMO’s were obtained as having the smallest eigenval-
ues; other states were found to be separated by a consider-
able gap.

We find that the density is perfectly converged already for
the smallest of the clusters. This means that the electron
density in the center of any of the clusters can be considered
as being very close to the density of the actual 3D periodic
crystal calculated in the HF approximation using the same
basis set. The HF electron density through the central O atom
for the largest cluster is shown in Fig. 3(b).

The partial oxygen electron density

rOsr d = w̃s
2sr d + w̃px

2 sr d + w̃py

2 sr d + w̃pz

2 sr d s18d

can be conveniently used to characterize the localization of
the obtained LMO’sw̃ssr d, w̃px

sr d, etc. Note that we have
omitted the factor of two here(due to spin) since it is not
essential in assessing the localization of the LMO’s. We
comparerOsr d obtained for all clusters using methodM in
Fig. 3(a). Note that other methods give practically identical
densities. It is seen that all four LMO’s are extremely well
localized on the O atom(as one would expect for such an
extremely ionic system) and converge very quickly with the
cluster size. The LMO’s are essentially identical for all three
methods. These findings are also confirmed by both localiza-
tion criteria(Sec. II D) as shown in Table I. The localization
indices for the LMO’s calculated using either of the methods
E, M, andP are only slightly larger than one which confirms
the predominant localization of the LMO’s on the single O
atom. Moreover, the largest eignevalues of the overlap ma-
trix S are found to be all smaller than 2 which demonstrates
that the overlap between neighbouring LMO’s is very small.

Obviously, LMO’s associated with any other unit cell can
now be obtained simply by moving the calculated four
LMO’s by the appropriate lattice translation. We have made
a careful comparison of the total electron densityr̃sr d con-
structed using Eq.(5) with the densityrsr d calculated using
the central part of the largest cluster. In particular, such a
comparison is shown in Fig. 3(b) along the(001) direction
across the central O atom. One can see that either method

FIG. 2. (Color online) The largest quantum cluster used in our
HF calculations to model the MgO crystal. Point charges surround-
ing the MgO cluster to simulate the Madelung field are not shown.

FIG. 3. (a) Partial densityrOsr d, Eq. (18), calculated using methodM for all clusters,(b) electron densities of the MgO crystal
constructed from LMO’s obtained using methodsM, P, andE (lines) are compared with the HF density calculated from the middle of the
largest cluster(stars). All densities are shown along the Mg-O-Mg direction. Mg and O atoms are indicated on the picture.
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results in the perfect matching between the densityr̃sr d ob-
tained using the LMO’s(indistinguishable on the plot) and
the reference densityrsr d. Thus, all three localization tech-
niques work equally well in the case of MgO and require
clusters of very moderate sizes.

C. Localized orbitals for the Si bulk

Crystalline Si has the diamond-type lattice with the dis-
tance between the nearest Si atoms of 2.35 Å. Each Si atom
is surrounded by four neighbors forming four covalent bonds
with them. There are two Si atoms, and thus eight electrons
(within the valence approximation), to be assigned to every
primitive cell. Since each bond is associated with two elec-
trons, there should be four bonds per cell. We expect that
well localized orbitals can be constructed for this crystal if
localization regions are associated with every two-electron
bond. Therefore, in this case we have four regionsA, B, C,
andD of identical nature in the primitive cell as shown sche-
matically in Fig. 4.

Note that the choice of four inequivalent bonds is not
unique. In our choice shown in the figure all four bonds
share atom 1 and can be obtained from any single bond(e.g.,
the central bond between atoms 1 and 2) by applying appro-
priate displacements and rotations.

Three quantum clusters Si2Si*6, Si8Si*18, and
Si26Si*18Si** 12, containing 2, 8, and 26 Si atoms were used in
our calculations; every cluster contains a single Si-Si pair in
its center as shown in Fig. 5. The core electrons of all Si
atoms were described using the Hay-Wadt pseudopotential.56

To terminate unsaturated bonds of the Si atoms located at the
boundary of the clusters, we used pseudoatoms which have
the same pseudopotentials as the Si atoms. The Si* pseudoa-
toms contribute a single electron to the cluster and are posi-
tioned at the correct Si-Si distance to saturate a single dan-
gling bond. Si** atoms have two electrons and were used in
the same way to saturate two dangling bonds from two near-
est boundary Si atoms(see Fig. 5). Since the Si crystal is a
highly covalent system, the Madelung field can be consid-
ered of a secondary importance and thus was neglected. The
66-21G basis set57 was used on the Si atoms in most cases so
that the density we shall be referring to in the following
corresponds to the valence electron density. The basis set on
pseudoatoms Si* and Si** included onlys type AO’s.

To construct the LMO’s for the Si crystal, we oriented the
coordinate system in such a way that thez axis would pass
along the central Si-Si bond of every cluster. This particular
choice of the coordinate system is merely needed to simplify
the choice of the AO’s to be associated with the localization
regionA. Then, the HF solution was obtained which demon-
strated a good degree of thesp3 hybridization, as expected.
When applying the localization methodsM and P, AO’s of
thes andpz types centered on the two central Si atoms were
chosen as belonging to regionA. In order to apply methodE,
the following SE was considered in place of the central Si-Si
molecule: it consisted of two electrons and two pseudoatoms
with the Si pseudopotential and the total charge +e each.
Effectively, this way the SE was chosen as a pseudohydrogen
molecule with pseudohydrogen atoms at the Si-Si distance
described each by the Si pseudopotential.

By analyzing the electron density in the central region of
every cluster, we find that the largest cluster we considered is
sufficient for our purposes. As an example, we show in Fig.
6 the electron densities across the central Si-Si bond for the
three clusters. Note that we have carefully checked that the
comparison of the densities(orbitals) along the central Si-Si
bond reflects well the extent in which the densities(orbitals)
match each other. The single LMO’s calculated for the cen-
tral Si-Si bond of the three clusters using methodsM andE

TABLE I. Localization criteria for the LMO’s of the MgO and
Si crystals calculated using both the localization index and the
maximum eigenvalue of the overlap matrix methods. Note that in
the case of MgO there are four LMO’s altogether; the data in the
table correspond to the least localized orbital. The largest clusters
were used in each case.

Localization
scheme

Localization
index d

Max. eigenvalue of

S matrix

MgO E 1.286 1.798

M 1.211 1.738

P 1.220 1.572

Si E 19.345 27.155

M 2.078 2.860

P 2.107 2.074

FIG. 4. (Color online) Four two-electron bonds associated with
a primitive unit cell in the Si crystal.

FIG. 5. (Color online) The largest quantum cluster used in our
HF calculations to model the Si crystal. One electron Si* and two
electron Si** pseudoatoms were used to saturate bonds with the
boundary Si atoms(see text).
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are shown in Fig. 7. The LMO’s calculated using methodP
are very similar to those calculated using methodM and thus
are not shown here. The important conclusion which can be
drawn from these pictures is that the LMO obtained using
method M for the largest cluster is practically converged
with the cluster size. On the contrary, the LMO calculated
using methodE is not yet converged becoming more and
more delocalized with the increase of the cluster size.

Even bigger clusters are thus needed to converge the
LMO using this method. However, as was mentioned earlier
in Sec. II C, larger clusters require a very expensive proce-
dure of calculating two-electron integrals, and thus we did
not consider larger systems. Note that another way of cir-
cumventing the convergence problem in methodE might be
to add some potential well to the HF problem for regionA to
enforce a stronger localization; although we did not pursue
this idea in this work, we may consider it in the future.

Our conclusions concerning the localization of the LMO’s
obtained using different localization methods are also well
illustrated by the application of the localization criteria of
Sec. II D. These are summarized in Table I. One can see that
both criteria indicate to an extremely weak localization of the
LMO for the Si crystal obtained using methodE. On the
contrary, the LMO’s obtained by either of the other two
methods demonstrate a very good localization. Moreover, the

localization index is just above 2 which means that the or-
bitals are predominantly localized on only two Si atoms, as
expected.

To construct the electron densityr̃sr d of the whole Si
crystal we need other three LMO’s assigned to the same
primitive cell. These are obtained by appropriate rotations
and displacements of the central bond LMO considered
above. The LMO’s corresponding to other crystal cells are
then obtained by applying appropriate lattice translations.
The electron densitiesr̃sr d obtained using the three localiza-
tion methods for the largest cluster have been thoroughly
compared with the reference densityrsr d obtained by trans-
lating the central part of the same cluster, and are shown in
Fig. 8(a). One can see that both methodsM andP lead to the
electron density of the Si crystal which is very close to the
reference densityrsr d. However, the densityr̃sr d calculated
from the LMO’s obtained using methodE shows an unphysi-
cal oscillatory behavior which is due to their poor localiza-
tion and thus an insufficient cluster size used to construct
them.

IV. DISCUSSION AND CONCLUSIONS

We have seen in the previous section that for an ionic
system such as MgO all localization procedures give identi-
cal results and do not require large cluster sizes. This is be-
cause a natural localization takes place in those systems. In
fact we find that practically identical LMO’s can be obtained
for MgO using methodsM andP if in addition to the AO’s
centered on the central O atom one also adds AO’s of any of
the nearest Mg atoms to define regionA. This means that
these localization procedures are sufficiently flexible in terms
of the AO’s used to define the localization regions. Note also
that the localization indices calculated for the LMO’s ob-
tained by either of the localization methods are very close to
those reported in Ref. 33 where a different localization
method was used.

We find that the localization procedures for covalent sys-
tems with strong hybridization in its chemical bonding are
more sensitive to the choice of the localization region and
the particular localization method. We have seen above that
methodE fails for this system since the LMO’s it produces

FIG. 6. The HF electron densities for the Si crystal across the
central Si-Si bond for the three clusters studied. Positions of atoms
are indicated.

FIG. 7. LMO’s partial densitiesw̃2sr d calculated across the Si-Si bond for every cluster using methodsM (a) andE (b).
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are not sufficiently localized within the cluster sizes we use.
This fact is also reflected in a very large both the localization
index and overlap matrix eigenvalues(see Table I).

We have also experimented with localization methodsM
and P by trying to use different definitions of regionA in
order to find the LMO. First of all, we used all AO’s on the
two central Si atoms. Similarly to the case of MgO, in this
case an LMO practically identical to the one which we cal-
culated using onlys andpz types AO’s was obtained. Ther̃
densities calculated in these two cases are also the same as is
demonstrated in Fig. 8(b) by the good match betweenr̃
; r̃sxyz and r̃; r̃sz. The two methods succeeded since the
chemical bonding is essentially correctly reproduced by ei-
ther choice of regionA. This is confirmed by the contour plot
of the partial densityw̃2sr d associated with the LMO and
calculated using all AO’s centered on the two central Si at-
oms: as shown in Fig. 9, the LMO essentially corresponds to
the Si-Si bond.

In contrast, when assuming a wrong character of the
chemical bonding in Si, we obtained LMO’s which were
either not very well localized or had completely unexpected
(unphysical) spatial distribution. For instance, assuming
atomic character of the chemical bonding, we attempted to
use AO’s on asingleSi atom to define the single localization
region in the primitive cell. This assumption gave four
LMOs similarly to the MgO case. We find, however, that
these LMO’s become much less localized and, as a result, the
constructed electron densityr̃; r̃1 is very different fromr̃sz
as is obvious from Fig. 8(b). Another example of an “un-
wise” choice of the localization region is to use onlys, px,
and py AOs of the two central Si atoms to define regionA
(recall that the two Si atoms are positioned along thez axis).
In this case the total electron densityr̃; r̃sxy also shown in
Fig. 8(b) along the central Si-Si bond, somewhat differs from
r̃sz, but, at the same time, reproduces all its main features.
However, the LMO itself appears to have a completely dif-
ferent spatial distribution(see Fig. 9): it is not anymore lo-
calized on the Si-Si bond, but instead was found to be delo-

calized over a large volume around it. This explains why the
total densityr̃sxy was found quite different from the reference
one: much larger cluster should be considered to accommo-
date fully the LMO obtained using this particular choice of
region A. Therefore, the proper choice of the localization
regions which reflect the chemistry of the given crystal re-
sults in more localized orbitals and thus much smaller cluster
sizes needed to construct them.

It is also instructive to compare the LMO we obtained for
the Si crystal[its square is shown, e.g., in Fig. 7(a)] with the
one calculated in Ref. 33 using the all-electron method(i.e.,
without pseudopotentials) for the upper valence band. The
LMO of Ref. 33 shows characteristic spikes around the Si
atoms and thus differs considerably from the one calculated
here. Although in our method the LMOs of different regions

FIG. 8. Electron densities of the Si crystal constructed from LMO’s obtained using different methods based on the largest Si cluster. All
densities are shown along the central Si-Si bond. Positions of the two Si atoms are also indicated.(a) r̃sz based ons andpz types of AO’s
using methodsM (solid line), P (small dashes), andE (long dashes) are compared with the HF density calculated from the middle of the
largest cluster(stars), (b) r̃1–all AO’s centered on asinglecentral Si atom(long dashes); r̃sz (stars), r̃sxy (small dashes), andr̃sxyz(solid line)
were obtained usinghs,pzj, hs,px,pyj, andhs,px,py,pzj types of AO’s centered onboth central Si atoms, respectively; methodM was used
for all cases in(b).

FIG. 9. (Color online) Contour plots of the LMO partial densi-
tiesw̃2sr d obtained using methodM for the two choices of regionA:
(i) all AO’s of the two central Si atoms(solid line) and (ii ) only
hs,px,pyj AO’s (dashed lines). The plots are calculated in the plane
passing through the Si atoms and two of their nearest neighbors.
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are not orthogonal, whereas those of Ref. 33, which corre-
spond to the Wannier functions, are orthogonal with each
other, it appears that the main difference comes from the
pseudopotential method. Indeed, as demonstrated in Fig. 10,
when we use the all-electron method as well, the calculated
LMO for the upper valence band is found to be almost iden-
tical to the one reported in Ref. 33 using a different method.
Interestingly, the orthogonality of the LMO’s does not affect
the central part of the orbitals. We also found that the local-
ization index of Eq.(15) for our LMO is very close to the
one reported in Ref. 33(see Table I).

Concluding, a simple method based on a cluster approach
was suggested in order to construct localized molecular or-
bitals (LMO’s) for a periodic solid. Our method does not
require usage of periodic codes, is thus much easier to imple-
ment in practice and also, in addition, can also be applied to

nonperiodic systems. The work in this direction is presently
in progress and will be published elsewhere.

Several localization procedures were analyzed and two
crystals were considered in detail(MgO and Si) which cor-
respond to the two cases of extreme types of chemical
bonding—ionic and covalent. We find that two localization
procedures considered, one based on the Mulliken popula-
tions (method M) and another on a projection operator
(methodP), give well localized orbitals with the expected
conventional meaning adopted in chemistry, using already
quite moderate cluster sizes. The third procedure, based on
the minimization of the HF energy of a structural element
(one or two atoms) demonstrated a much slower convergence
with the cluster size and is found to be also computationally
expensive.

Two cases considered here, MgO and Si crystals, have a
well known type of chemical bonding and thus the choice of
the localization regions in these two cases was obvious. At
the same time, we find that there is a certain degree of flex-
ibility in choosing the localization regions and this can be
exploited in the cases of more complicated(e.g., intermedi-
ate) types of chemical bonding. This work is being done in
our laboratory at present and will be a matter of future pub-
lications.

We finally note that the usage of the HF orbitals is not
essential for our method which can equally be applied to the
Kohn-Sham orbitals of the density functional theory.
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