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Comparison of localization procedures for applications in crystal embedding
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With the aim of future applications in quantum mechanical embedding in extended systems such as crystals,
we suggest a simple and computationally efficient method which enables construction of a set of nonorthogo-
nal highly localized one-electron orbitals for periodic nonmetallic crystals which reflect their chemical nature.
The orbitals are also used to build up the Hartree-RétiR electron density of the entire crystals. Our method
does not require usage and/or modification of periodic electronic structure codes, and is instead based on the
HF calculation of a sequence of finite clusters with subsequent application of a localization procedure to
transform the HF canonical molecular orbitals. Two extreme cases of chemical bondingMg@ccrysta)
and covalen(Si crysta), are considered for which a number of known localization schemes are applied and
compared. With some modifications our method can also be applied to nonperiodic nonmetallic systems as
well. Our method can easily be reformulated for the Kohn-Sham orbitals of the density functional theory.
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l. INTRODUCTION ding schemés$-2° developed mostly in the solid state com-
Electronic structure calculations of extended systems witﬁnunl'ty are verﬁ closbe (Iirtlj_Splrlt to;hg QM/MM mgth%ds. H
a local perturbation, such as point defects in the bulk of Almost in all embedding methods mentioned above the

crystalg or adsorption of molecules at their surfatese of ~duantum cluster is surrounded by point charges of the MM

fundamental importance in solid state physics and chemistrj€9ion. In addition, in covalent systems the bonds coming
ut of the cluster are usually terminated by pseudoatoms

Over the last decade a number of effective computationa . 110
techniques have been developed to study the electroni€® €. Ref. 19 so-called link atonfs'12 or
ground state of such systems which are based on periodRrseUdOpOtem'a@ . .

boundary condition€PBC’s) and either Hartree-FoaiiF)34 Anotht_er” class “of embe_ddlf?g schemes relies on a more
or density functional theoryDFT)®6 approaches. In these electronic” (less “mechanical’ representation of the envi-

methods a local perturbatide. . an adsorbed molecule to- ronment region surrounding the quantum cluster. For in-
| P ae.g., i o stance, in Refs. 9, 23, and 24 this is achieved by a special
gether with a fragment of a crystal surfads artificially

iodicall 4 th iodi Ilis oh be | total energy construction which allows a combination of sev-
periodically repeated, the periodic cell is chosen to be 1arg@ 5| electronic structure methods of different complexity ap-

enough to ensure that the interaction between periodic implied to different parts of the system; other metHéd€ rely

ages is negligible. These methods can also be applied igh a representation of the wavefunction via strongly orthogo-
study extendedbut not infinitg biological systems in which  na| many-electron group functioiisee, e.g. Refs. 25 and 26
important chemistry is usually associated with a local part ofssociated with atoms, bonds, or molecules depending on the
the entire molecule).’ specific type of chemical bonding in the system.

Another set of methods, commonly referred toeasbed- We believe that the formalism based on group functions is
ding techniques, originate from a model in which a singlethe most appropriate one for the derivation of any embedding
local perturbation is considered in the direct space of thescheme. A rather general method based on overlapjpiog
entire system. This makes the model closer to reality at lovstrongly orthogonalgroup function$”?8 is presently being
concentration, but, at the same time, it makes it more chaldeveloped in our laboratory. Our method which is similar in
lenging since, due to the lack of periodic symmetry, wellspirit to some one-electron methd@s?! is based on con-
developed PBC based techniques cannot be applied here. Istruction of strongly localized orbitals which are designed to
stead, a number ofiybrid methods have been developed represent the true electronic density of the entire reference
which treat different parts of the system at different levels ofsystem(normally, a perfect periodic crysyavia a combina-
the theory. Most of these methods combateinitio quantum  tion of elementary densities associated in simple cases with
mechanicg QM) methods(based either on the DFT or the atoms, ions and/or bonds. Then when considering a defective
HF methods and their extensigrapplied to a finite fragment (nonperiodi¢ system, the environment region is constructed
of the systeni{a quantum clustgrwith molecular mechanics via a set of the strongly localized orbitals of the reference
(MM) methods based on semiclassical force fields and apsystem as shown schematically in Fig. 1, while the cluster
plied to the rest of the syste@nvironment region The idea itself is represented using a many-electron wave function.
is to consider the most relevant part of the systerg., with Our initial effort in this project is focused on the devel-
respect to a process in questiam great detail, while the rest opment of an embedding scheme based on the HF approxi-
of the system is treated at a substantially lower level. Thesenation and applied to point defects in the bulk or at surfaces
methods, developed mostly within the quantum chemistryof periodic crystals. Our intention is to create a rather general
community, and usually referred to as QM/MM have proventechnique which can be valid for systems of different chemi-
to be extremely successfti*? Note that some other embed- cal character, ranging from purely ionic to strongly covalent
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Cluster bo\urgory bination of the original canonical sgp’(r)} (and which thus

span the same occupied Fock spaoae has first to identify
the regions of space where each of the funcfigg(s) has to

be localized. This question can be viewed as purely technical
since any linear combination of the canonical set will give
Environment the same electron densip(r). We, however, adopt in our
work a strategy based on the chemistry of the system in
question. Namely, the choice of the localization regions is
based on the type of the chemical bonding, e.g., on atoms in
the cases of atomic or ionic systems, on two atoms in the
case of covalent bonding, etc. A more complicated choice

FIG. 1. The philosophy of the embedding: the entire system ignay be necessary in the cases of intermediate bonding. Sev-

split in two parts. One of these is a finite quantum clugter the eral different nonequwalent_ regions may be necessary to rep-
left from the broken lingwhich is treated in detail, and the other is resent a crystal unit cell Wh'Ch,an,then be periodically trans-
an infinite environment regiogon the righy which is considered lated to reproduce th(? whole _'nf'n'te Cry,Stal' Nc_)te that there
approximately. could be several localized orbitals associated with every such
a region forming together an electronic grodp® For in-
(note that our method cannot be directly applied to mgtals stance, in the case of the Si crystal one needs four localized
Therefore, the proper choice of the localization techniqueegions associated with four bonds; each bond is represented
which can deliver localized orbitals across a wide range of)y a single double occupied localized orbital.
systems with various character of chemical bonding is cru-  gnce the occupied Fock space is obtained via a set of
cial for our method to work for those systems. » canonical orbitals and localized regions are identified, it is
It is the main objective of the present paper to critically necessary to find such linear combinations of canonical or-
analyze and develop further a number of localization methyias \which are localized in each of the regions. The topic of
ods in order to verify their ability to describe a wide range of ;. \srction of localizednoncanonical molecular orbitals
different chemical bondings iperiodic crystals.Two sys- MQ's) out of delocalized canonical solutions of the HF or

tems are considered in the present paper in detail, MgO a . .
Si bulk crystals, which are examples of extreme ionic an ohn-S_ham equations is an old dfiend many methods
ave since been developed.

covalent bonding, respectively. Note, however, that th . . .
method we suggest is not limited to periodic systems and, Let us assume that a canonical solution of the restricted
with some insignificant modifications, can also be applied " equations for the entire syste@ closed shell crystals
e.g., to infinite amorphous and finite biological systems. Th nowr?
application of the present method to those systems will be a .
matter of future publications. o Fof(r) =ei¢i(r), (1)

It is relevant to mention, as far as the localization methods
are concerned, that there are several methods deveéfoided
for obtaining orthogonal localized orbitals(i.e., Wannier ef(r) =2, Coixu(r), (2)
functiong out of the Bloch-like solutions of the HF or Kohn- w
Sham (KS) equation$ for periodic crystals. Due to the

built-in orthogonality even strongly localized Wannier func- \yhere E is the Fock operatorgl(r) is a spin-independent

tions have long-range tails which make these functions nonczs:?nonical MO (CMO) which is expanded over a set of

transferable to other systems, e.g., when a chemical bon - : ; - .

between the same spe)(/:ies is plaged in a different chemicg c;rtglr; orbitals(AO's) x,(r)- The electronic density of the

environment. That is why our interest is focused on construc®Y

tion of nonorthogonal localized orbitals which do not have occ

this disadvantage and thus are more appropriate for our pur-

poses. ? PRIoP P p(r)= 22 | (r)[? (3)
The plan of the paper is the following. Our philosophy in '

co.ns'tructmg '.006?"290' orbltals.as yvell asa short overview Ofcontains the summation only over occupied CMQ's thus en-

existing localization methods is given in Sec. Il with special

: . suring the correct normalization to the numbeof the elec-
emphasis on the methods used in our present work. All th?rons in the system. If an arbitrarigenerally nonunitary

geceszary nopatlolns aret "’;!SO m;roduced ]Ehtire' In t?]e((:j. i Wgansformationuzﬂuaj” of the CMO’s within the occupied
escribe our implementation of some of the methods and ;oo is performed,

their application to MgO and Si crystals. The paper is fin-
ished with a short discussion and conclusions in Sec. IV. oce

Il. LOCALIZATION METHODS “@ar) = E Uaje(r) = 20 Craxu(r) (4)
j u

Cluster

Region (SE)

A. General philosophy
In order to describe the crystal as a set of overlappingnen the expression for the density via the new set of orbitals
localized functiongg,(r)} which are given as a linear com- should contain the inverse of the overlap maix||S,[:?°
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occ _ density (6), i.e., it preserves the invariance property of the
p(r)= Zz"g'éa(r)(S);épr(r), (5) localizing functional it is built from.
ab Using standard methods, i.e., setting the variational de-

~ _ _ ) ) rivative of the functional7) with respect to the orbitéz}b;(r)
where S;p=(44(r) | ¢y(r)) is the overlap integral. Note that o zero and then performing a unitary transformation of the
the two representations of the electron density, E8sand | MO’s which diagonalizes the matrix of Lagrangian multi-

(5), are absolutely equivalent. Moreover, any linear combipliers, one can easily obtain the following equations for the
nation(4) of the occupied CMO’s leads to the same density._ MO’s sought for:

If the transformation is unitary, then the overlap matrix is the .

unity matrix and the density takes on its “diagonal” fo(@). Qx54(r) = N @4(r) (8)
In general, any localization procedure is equivalent to

some transformatiot) of the CMO’s. Suppose, we would O

like to obtainn localized MO’s(LMQ’s) in some regionA. oce

To find the necessary transformation, one can formulate an S 0AU, =2\ U, (9)
. . e . .. . ] als

optimization (minimization or maximization problem for i

some specific localizing functionda[{e,}] with the con- A . _ -
straint that the LMO’s associated with regiérare orthonor-  Where()jj is given via matrix elements of the operatap
mal (of course, LMO’s associated with different regions will calculated using canonical orbitaf$(r) and ¢j(r).
not be orthogonal in genejaMWe shall limit ourselves with Equationg(8) resemble an eigenvalue problem for the op-
such functionals which are invariant under arbitrary unitaryerator(),. Note, however, that in some cases the localization
transformations of LMO's, i.e., which in fact depend on the operator may still depend on the region density and thus on
orbitals {¢,} via invariants in the form of the nondiagonal the orbitals themselves. Therefore, similarly to the HF or
“density” Kohn-Sham problem, the system of equati¢8sshould be
solved self-consistently.
" . The eigenvalue problen8) or (9) may give a set of so-
oAl 1) = 2 GalrTa(r") (6)  Jutions from which only the firs(in the case wher, is
a=l minimized or the last(maximized n solutions should be

constructed out of the LMO’s associated with regiyi.e., chosen. If the localization criteriofi.e., the functionak,)

TR . . used is appropriate, thef) the chosem solutions would
Qu{pa}]=0alon]. We shall see in a moment that this re- have close eigenvalues, which correspond to their similar

quirement ensures an existence of a simple eigenvaluem(i%calization in regionA andii) the gap in the eigenvaluas

problem for the LMO's. Note in passing that some Otherbetween the chosen and other solutions is considerable,

types of functionals are also sometimes used which do nq'_te_, the other solutions have much worse localization in re-

fall within this category. For instance, Admiston and Rueden-. ; ; )
berg proposed to find the maximum of the self-repulsionglon A (cf. see Ref. 3f By collecting LMO's from all re

V¥ while lat Ni ted t . >.'gions in the unit cell and then translating those over the
energy,” while fater on von NIESSEn Suggested 1o maximize, o crystal it should be possible to span the whole occu-
the charge density overlap functiorfélSince the mentioned

. . : ; . 1pied Fock space and thus construct the total electron density
functionals are not invariant under unitary transformations o (5)

LMO'’s and are also quite expensive computationally, we d
not consider them in the following. The quantits(r,r’)
will be referred to in the following as the region electron
density or region density for short.

To obtain alln LMO’s associated with regioA, an opti-
mum of the following functional is sought for:

One point is in order now. So far we have assumed that
the set of canonical MO’s which span the occupied part of
the Fock space is already known. In other words, the proce-
dure consists of two steps: first, a Kiér Kohn-Shan prob-
lem is solved and thus the occupied Fock space is deter-
mined, and, secondly, the LMQ’s are obtained by finding
n appropriate linear combinations of the canonical orbitals

/ _ _ _ within this space. However, it is also possible to formulate
Qploal = Qalonl a%;‘l Eabl(@alo) ~ ), D the problem in such a way that LMO’s are obtained together
with the set of canonical orbitals in a single stégn this
whereé&,, are the corresponding Lagrangian multipliers. Be-method a localization criterion is considered alongside the
cause the actual dependence of the functiéhdlr,] on the  energy minimization leading to a set of so-called Adams-
orbitals is built-in via the region density6), the functional ~ Gilbert (AG) equationgsee, e.g., Ref. 38wvhich are solved
derivative 50,/ 5¢,(r) can always be written using the op- in a self-consistent manner. For instance, a projectionagpera—
erator Q,(r) defined through an identitydQ,/ 5@,(x) tor on the supfspace O.f thg LMO's was us<_ad by Sﬂzplal.

~ . , « - , as the specific localization method. This technique was
=Qp@a(X)  since  Soa(r, ')/ 5@ (X)=@(r)o(x—r").  Ex- implemented in Ref. 40 for the embedded molecular cluster
amples illustrating this point will be given below. We shall c5|cylations. The LMO’s resulting from a single AG calcula-
refer to the operatof)A(r) as the localization operator in the tion are orthogonal as solutions of a single secular problem.
following. An important property of the localization operator The first eigenvectors obtained will show strong localization
is that it can also be considered as a functional of the regiowithin the chosen regioA; other eigenvectors will be much
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less localized and can usually be distinguished by a gap inentered in the chosen regién Thus, in practice the local-
their eigenvalues as explained above. To obtain LMO’sization region in this method is specified by a selection of
strongly localized in a different regioA’, one has to solve AO's in Eq.(12). This way one can make the LMO’s to have
the AG equations once again using another localization crithe maximum contribution from the specified AQ’s in region
terion and then pick up the necessary number of the mosh. Sometimes a different choice of AO’s may lead to physi-
localized orbitals. Repeating this procedure across the entireally identical localization(see the next section This
system, the whole occupied Fock space can be split into setaethod will be referred to as methadd.

of mutually nonorthogonal LMQO’s. Of course, in the case of The projection on the atomic subspace (method TP

the perfect crystals this procedure should only be applied tRRoby’s population maximizatidfi gives LMO’s for which
various localization regions within the primitive unit cell ow- the projection on the subspace spanned by the basis orbitals
ing to crystals periodic symmetry. centered within the selected region is a maximum, or is at

Note that it is also possible to obtain all the LMOs corre-|gast stationar§ In this method the localization operatQy,

sponding to several localization regions at once within than Eq. (10) is chosen in the form of a projection operator
same self-consistent calculation by solving the necessary sets

of eigenproblems associated with each redftt. The ﬁAz > |XM)(S;1)W<X,,|, (13
LMO’s obtained using this technique are known as ex- wvEA

tremely localized MO’s. This method is quite expensive -1 ;
) . > "~where S, stands for the inverse of the overlap mat
computationally since the overlap between LMQO’s localized A ap Bx

in different regions in space changes in the course of thd€fined on all AQ’su, VE.A- Note that qper‘f"mﬁA is idem-
iteration procedure and this affects the convergence. potent: (Q,)?>=Q,. It projects any orbital into a subspace
There are many ways in which a localizing functiofy{  spanned by the AO’s associated with regidronly. In par-

can be chosen. Some_ of these methods WhiCh will be Uti|iZ_€ﬂcu|ar, ﬁA'XM>:|X,u>' The detailed expression for the matrix
in the present work will be considered below in more detail.0QA is then

L | B=2CCY 2 SuSHLS.| (19
B. Methods based on functionals linear in region density AT W VEA
Ina number of mgthodéthe Iocglizing functional is pro- Here the first double summation is performed over all AO’s
portional to the nondiagonal densit§) and thus can be rep- of the system. RegioA is also defined via a subset of AO’s:
resented as a Hermitian bilinear functional with respect tdyy choosing particular AO’s one ensures the maximum over-

the LMO's of the following general form: lap of the LMO’s with them. It is seen that this method,
n which will be referred to as methad#, although different in
QA:I [Qaca(r,r)], . dr = (1) Q,B(r)dr the implementation, is very similar in spirit to the previous
=1 methodM.

Other methodsNote that several other methd#salso
=3 S U oAU (10) belong to this class of me_thods. Since we are not using them
prim aj*“jk-aks here, we shall only mention some of them.l Bader’s method
(see also Ref. 45s computationally expensive and leads to
where (A)A is some localization operator and the Hermitian LMO’s with discontinuities at the border of the localization

matrix QA:”Qﬁ(” can easily be written in terms of the ca- regions. The widely used Pipek-Mezey localization scHéme

n occ

nonical MO’s using the definitior2): could be described as the maximization of the Mulliken’s
A A gross atomic population. The Pipek-Mezey functional corre-

Qﬁ(:@ﬂQAME) = 2 Cf:jcik<)(p.|QA|Xv>' (11) spc_mds also to a minimization of the numberiof atoms over

v which the LMO is to be spread. This method is very similar

] - to the Mulliken’s net population method considered above,
For all methods of this group both the operafex and the  githough is slightly more computationally expensive. Al

A : . _ ) _
matrix (" do not depend on the LMO's sought for so that in 5opylation methods have an advantage of being very simple
order to obtain the localized orbitals one has simply to findiy the implementation which results in fast non-self-

the eigenvectors of the matr®* using Eq.(9). Two meth-  consistent algorithms: indeed, only overlap integrals are to
ods of this group are implemented in our work and will béhe computed. Note that instead of the overlap, one can also

considered in the following in more detail. _ maximize an exchange interaction of the LMO’s with a set of
Mulliken’s net population (method MMagnasco-Perico aQ's in regionA.37
criterion maximizes I\/.IuIIiken‘é2 net atomi.c popuIat.ion pro- Perhaps the most widely used, due to its relatively low
duced by the LMO’s in the selected regithf® In this case  computational cost, is the Foster-B&ymethod in which the
the matrixQ* is chosen in the following form: dipole moment matrix element between so-called exclusive
0h= S s co (12) _orbitals is _maximized. The_efficienc_y of the_HF method was
ik Ln i S~ vk improved in Ref. 48 by using localized orbitals constructed

from the Foster-Boys method as AO’s. Recetttihe Wan-
whereS,, is the overlap integral between two AOjg, and  nier functions were calculated for periodic Si and MgO crys-
X, The summation here is performed over AO’s which aretals using the modified version of the Foster-Boys method
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which ensured better localization within the cell volume.combinations of AO’s of the whole system as in EB). In
Note that, according to Ref. 41, the Pipek-Mezey functionalother words, the difference with the usual setup of the HFR
unlike the Fosters-Boys method, preserves dtier separa- problem is that in our case the preset linear combinatigns
tion of double bonds, which is in chemistry usually preferredof the AO’s of the whole system are used in place of the
over ther picture (where the orbitals are proportional to the AO’s themselves. Correspondingly, this method is computa-
linear combinationso+ and o—) associated with the tionally expensive since all the one- and two-electron inte-
Fosters-Boys localization procedure. grals which are necessary for the construction of the Fock
matrix QA are expressed as double and quadruple sums of

the corresponding AO integrals.
C. Methods based on functionals bilinear in region density

More complicated localization procedures can be con- D. Localization criteria
structed if the localizing functional is bilinear in nondiagonal
density(6) of regionA in question, i.e., is of the fourth order
with respect to the LMO’s sought for. Three important gen-
eral points should be mentione@) for all methods of this

Application of the various schemes described above re-
sults in LMO’s which may be localized in 3D space differ-
ently. It is therefore useful to have a simple critericor
. . . . criteria) which identifies the degree of their localization. In
group the Iogal!2|ng o.peratloflA is linear in _the density g paper we shall use two methods. The first one, the so-
oa(r,r') and(ii) is thus invariant under any unitary transfor- 5.4 jocalization index, is the measure of localization pro-

mation of the LMQO’s;(iii ) there,fo_re, one still .has the sequ_lar posed by Pipek and Mez&ywhich is based on the gross
problem(8) or (9) for the LMO's in this case; however, itis \y|jiken populations. Qualitatively, it gives the number of

to be_ s_ol_ved_ self-consistently. atoms where the orbita,(r) is predominantly localized and
Minimization of the HF energy of a structure elementiS defined by the formula

(method E)In this paper we shall only apply one method of
this group in which the functional), is chosen as the HF d.=[S n2 -1 15
energy of a finite fragment of the system. The fragment, a'[ > (€25) ] ' (15
which is usually called atructure elementSE), (see Ref.

13), comprises all electrons belonging to regidnand the \yith
corresponding nuclgior their parts, see belgwNote that if

a SE is positively charged or electrically neutral, then every A .
electron in it can be approximately viewed as moving in a 23=2 2 C..S,.C.a (16)
potential well of a finite depth. This is also true if the SE is
negatively chargede.g., an oxygen ion © in the MgO ~ . - .
crysta); however, in this case one has to add the Madelun%'erecVa are the expansion coefficients of the LMO in ques-

field of the rest of the crystal to stabilize it. This method, . on, see Eq(4). Note that this c_r|_ter|c_>n IS s!m|lar, but not
which will be referred to as methdd in the following, in its identical, to the method of participation ratio proposed by

3
simplest version of the localization on a single atom origi-Bell and Dear?.

nates from Adamé? It was recently used in Ref. 50 to derive Alternatively, the overlap between localized orbitals gives

an embedding potential provided by a part of a moleculealso an important information about their localization. That

MethodE is based on an intuitive idea that every stable finite'> Why.as the second criterion we _shaII consider the maxi-
system, e.g., a SE, will try to find an energetically favorableMum eigenvalue of the overlap matrix. Note that for periodic

ground state which will be localized in space. Indeed, thestructures it is more convenient to use the Fourier transfor-

ground state wavefunction for an electron in a potential weIImatlon of the overlap matriX

is known to be strongly localized in the well. The SE could .

be an atom, group of atoms or a bond. In the latter case the Sun(K) = 2 (@a(N)[@p(r — L)), (17)
SE for the Si crystal represents essentially a hydrogen-like L

molecule consisting of fragments of two nearest atomic cores . - S —
each of charge & (e is the electron chargeand two elec- WHerek is a point in the Brillouin zon€p,(r) andgy(r) are

trons of opposite spingee the next section LMO'’s in the elementary cell and is the lattice translation

The eigenvalue probleii®) in this case is nothing but the vector. Note, that if any of the eigenvalues of the overlap

usual Hartree-Fock-RoothaghiFR) problen?s for molecu- matrix S=||S,,(k)|| is larger than 2 it is impossible to obtain
lar orbitals of regionA, i.e., the elements of the matr* the total crystal density in this basis via the Léwdin’s expan-
are S sion method* Therefore, existence of large eigenvalues of

the matrixS correspond to weak localization of the corre-
Qﬁ:WﬂﬁAVPD' sponding LMO's. In practice, when applying this criterion,
L we apropriately sample the Brillouin zone, calculate the ei-
whereQ,=F, is the usual HF operator of the SE containing genvalues of th&(k) matrix at everyk point and then pick
both electron-electron and electron-core interactions. The peip the largest eigenvalue. It is worth noting that the overlap
culiarity of this case is that the MO’6wvhich are, in fact, matrix has all its eiegenvalues equal to unity in the case of
LMQ’s) are expanded not via AQ’s but rather via canonicalorthogonal orbtals, so that this criterion is only applicable to
HF orbitals for the whole system which, in turn, are linearthe case of nonorthogonal orbitals.
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ll. LOCALIZED MOLECULAR ORBITALS FOR Si and with the cluster size depends on the “boundary conditions”
MgO BULK CRYSTALS used in every case, i.e., it depends on the way the cluster is
terminated; it is nothing but the embedding method itself.

In this section we shall examine LMO's (_)btamed USING e Jatter is, however, unknown. Therefore, our procedure
three methods described above. Two crystalline systems witf

. o . . ) can be considered only as the first iteration and thus larger
extreme types of chemical binding will be considered: MgOCluster sizes are expected. In principle, when the LMO's are
(ionic) and Si(covalen. : '

obtained, one can use them for a new set of embedding cal-
culations to obtain a better approximation for them, etc. In
this case smaller cluster sizes may only be necessary.

We are interested in calculating LMO's for perfect peri-  Secondly, it has already been mentioned that any linear
odic solids. In this case the canonical MO’s are Bloch-likecombination of the canonical set of MO'’s should lead to the
solutions of the HF or Kohn-Sham equations. This meansame electron density. Therefore, one may think that the den-
that the eigenvalue probleg®) is of an infinite dimension sity 7(r) obtained using the procedure outlined above will
which makes the calculation quite complicated; in addition always result in the correct electron densitfr). This is,
it would be necessary to ugand modify a periodic elec- however, do not need to be the case due to a number of
tronic structure code. To avoid these difficulties, we suggesfipproximations adopted. Indeed, we only consider finite
a very simple procedure based on a cluster method. The bgtysters withad hoc boundary conditions; in addition, the
sic idea relies on the fact that when the cluster size is inggntribution of boundary cluster atoms may be modified
creased, the distribution of the electron density in its centrajyhen pseudoatoms are used. Finally, the cluster size may be
region should become closer to the actual electron distribuinsyfficient to accommodate completely the LMO’s. There-
tion of the infinite periodic system. fore, the obtained occupied Fock space will never be exactly

Our method is based on the following steps. the same as that obtained using the periodic calculation.

(1) Analyze the known electron charge densitfr) of  Hence, the comparison of the electron densfies andp(r)
the 3D periodic system in question to identify regighsB,  may indicate on the quality of the calculated LMOs, and this
C, etc., which can each be associated with even numbers @hethod will be used in this paper.
localized elect.rons, e.g, atoms, ions, bonds; the erén'tly The calculation ofp(r) is performed by exploiting the
can be foun.d in the literature or our own calculfmons. periodic symmetry and representing the LMO’s as an inte-

(2) Consider a quantum cluster which contains regfon  gra| over the Brillouin zon&* This method is exact and does
in its center(or close to ij; terminate the cluster using not depend on the degree of localization of the LMO?s. It
pseudoatomésee belowand/or an array of point charges t0 giso allows exact handling of the inverse of the overlap ma-
reproduce the correct Madelung field; obtain the occupiedyix in Eq. (5). To calculate the reference densr), we

canonical Orb'ta|-°§PiC(r) for the whole cluster. _ used our cluster calculations in the following wai): a par-

~ (3) Then consider a localization problem for regidms-  gjlelepiped in the central part of the cluster with the sides
ing one of the methods of the previous section; this shoulqlk,ng the primitive lattice translatiorss, a, andaz which is
give the necessary number of LMQ&(r) (a=1,....n)asa  equivalent to the primitive unit cell is identified; its density is
linear combination of the occupied canonical MQE(r)},  denotedpq(r). (ii) The density of the whole 3D crystal is then

Eq. (4); note that in some cases when, e.g., pseudoatoms afgodeled asp(r)=p.(r;), wherer, is obtained fromr by
used to terminate the Cluster, their contribution to the LMO,Sremoving any lattice trans|ati0r’(ﬂ‘]is is most Convenient|y

A. General method

should be removed and the orbitals renormalized. performed by first calculating fractional coordinatesroih
(4) Repeat procedures 2 and 3 for larger clusters to enterms ofa,, a,, andaz and then removing integral parts from
sure that the LMO’s obtained have converged. them. The larger size of the cluster is used in the calcula-

(5 If other types of regions exist, repeat steps 2—4 forions, the better approximation for the density) will be
those regions as well; when finished, LMO’s for the whole gptained in this way. All numerical calculations reported in
unit cell should be available; sometimgas is the case for hjs paper were done using the HF method and the

silicon), LMO'’s of some other regions can be obtained with- Gamess-UK(Ref. 51 code within the pseudopotential ap-
out additional calculation by simply translating and possiblypoximation.

rotating the LMO'’s of a single region.
(6) The LMO’s within the primitive cell can be displaced ) )
by all possible lattice translations to obtain the complete set B. Localized orbitals for the MgO bulk
of crystal LMO’s spanning the complete occupied Fock MgO crystal has a face centered cubic lattice with the
space; these can now be employed for the calculation of theistance between magnesium and oxygen ions of 2.122 A.
density according to Eq5). We shall denote the electron Each Mg atom donates its both valence electrons to the O
density calculated in this way(r). We distinguish it from  sublattice resulting in effective atomic charges ofexZor
the actual periodic density(r) calculated using a periodic the investigation we have chosen a sequence of three finite
code and identical basis set by a tilde since the two densitiedlusters of increased size, M0, Mg;g013 and Mg.Oso,
will not be exactly the same due to a number of approxima<containing 7, 51, and 63 atoms, respectively; each of the
tions employed here in calculating the LMQ'see below. clusters was surrounded by an array of nearly point
Some general comments of our general method are necharges of 2 to simulate the Madelung field. The largest
essary at this point. First, the convergence of our procedureluster used is shown in Fig. 2.
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four LMO’s were obtained as having the smallest eigenval-
ues; other states were found to be separated by a consider-
able gap.
Y We find that the density is perfectly converged already for
) the smallest of the clusters. This means that the electron
e ¥y density in the center of any of the clusters can be considered
—1 p .L as being very close to the density of the actual 3D periodic
b & e crystal calculated in the HF approximation using the same
basis set. The HF electron density through the central O atom
b7 for the largest cluster is shown in Fig(ts3.
¢ The partial oxygen electron density

FIG. 2. (Color online The largest quantum cluster used in our
HF calculations to model the MgO crystal. Point charges surround-

ing the MgO cluster to simulate the Madelung field are not shown. ) ) o
can be conveniently used to characterize the localization of

To consider explicitly only the valence electrons, for boththe obtained LMO’sg(r), ¢, (1), etc. Note that we have
Mg and O we used coreless Hartree-Fock pseudopotentiatgmitted the factor of two herédue to spin since it is not
(CHPF) with LP-31G basis set from Ref. 52. The number of essential in assessing the localization of the LMO's. We
electrons in each cluster was calculated by adopting a wettomparepo(r) obtained for all clusters using methdd in
known ionic character of the MgO crystal, i.e., by assumingFig. 3(@). Note that other methods give practically identical
that every Md* ion is associated with no electrons, while densities. It is seen that all four LMO's are extremely well
every G~ ion has eight electrons. The LP-31G basis set wasocalized on the O atonas one would expect for such an
used in all our calculations. extremely ionic systejnand converge very quickly with the

After the HF solution was obtained for every cluster, wecluster size. The LMO'’s are essentially identical for all three
applied the three localization procedufesethodsM, P, and  methods. These findings are also confirmed by both localiza-
E) considered in the previous section to obtain the LMO’stion criteria(Sec. Il D) as shown in Table I. The localization
for this system. Since there are only two atoms in the primiindices for the LMO’s calculated using either of the methods
tive cell, Mg and O, and it is well known that the valence E, M, andP are only slightly larger than one which confirms
electron density is localized predominantly on the O atomsthe predominant localization of the LMO’s on the single O
one can choose essentially a single regi®rwithin the  atom. Moreover, the largest eignevalues of the overlap ma-
primitive unit cell to localize the LMQO's into, namely, on the trix S are found to be all smaller than 2 which demonstrates
O atom. We should expect four LMOs localized on every Othat the overlap between neighbouring LMO’s is very small.
atom: one of thes type p4(r) and three of the type @p.(r), Obviously, LMO’s associated with any other unit cell can
Ppy(r), andgpAr). now be obtained simply by moving the calculated four

Therefore, when applying the methodsand P we used LMO's by the appropriate lattice translation. We have made
the s andp,, py, andp, type AO's centered on the O atom in careful comparison of the total electron dengity) con-
the center of every cluster when applying E4®) and(14).  structed using Eq(5) with the densityp(r) calculated using
In the case of metho#, we considered the HF problem for the central part of the largest cluster. In particular, such a
a single oxygen ion & in the basis set of all occupied comparison is shown in Fig.(B) along the(001) direction
canonical MOs of the entire cluster. In every case exactlyacross the central O atom. One can see that either method

pon) AN +FE M+ (D +F M) (18)

0.6 1.2
(a) 1 (b) —_M
— — Mgo
9 04 AR
“<0.4 *< 05 |
2 2
2 2
(7] o® 0.6
© ©
® S 7
mut o
= =
0.2 - i
S g 0.4
w
0.2

z(A)

1
z(A)

FIG. 3. (a) Partial densitypp(r), Eg. (18), calculated using methot¥ for all clusters,(b) electron densities of the MgO crystal
constructed from LMQ's obtained using methdds P, andE (lines) are compared with the HF density calculated from the middle of the
largest clusterstarg. All densities are shown along the Mg-O-Mg direction. Mg and O atoms are indicated on the picture.
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TABLE I. Localization criteria for the LMO’s of the MgO and
Si crystals calculated using both the localization index and the
maximum eigenvalue of the overlap matrix methods. Note that in
the case of MgO there are four LMO’s altogether; the data in the
table correspond to the least localized orbital. The largest clusters
were used in each case.

Localization  Localization =~ Max. eigenvalue of

scheme indexd
S matrix
MgO E 1.286 1.798 FIG. 5. (Color onling The largest quantum cluster used in our
M 1.211 1.738 HF calculations to model the Si crystal. One electron Si* and two
’ ' electron Si** pseudoatoms were used to saturate bonds with the
P 1.220 1.572 boundary Si atomgsee text
Si E 19.345 27.155
M 2.078 2.860 Three quantum clusters Sis SigSi,e and
p

2.107 2.074 SipeSi'1Si 1, containing 2, 8, and 26 Si atoms were used in
our calculations; every cluster contains a single Si-Si pair in
i ) _ its center as shown in Fig. 5. The core electrons of all Si
results in the perfect matching between the dergity ob-  atoms were described using the Hay-Wadt pseudopotéhtial.
tained using the LMO'qindistinguishable on the plpand  To terminate unsaturated bonds of the Si atoms located at the
the reference density(r). Thus, all three localization tech- boundary of the clusters, we used pseudoatoms which have
niques work equally well in the case of MgO and requirethe same pseudopotentials as the Si atoms. The Si* pseudoa-

clusters of very moderate sizes. toms contribute a single electron to the cluster and are posi-
tioned at the correct Si-Si distance to saturate a single dan-
C. Localized orbitals for the Si bulk gling bond. Si** atoms have two electrons and were used in

Crystalline Si has the diamond-type lattice with the dis-the Same way to saturate two dangling bonds from two near-

tance between the nearest Si atoms of 2.35 A. Each Si atoffst boundary Si atomsee Fig. 3. Since the Si crystal is a

is surrounded by four neighbors forming four covalent bonddighly covalent system, the Madelung field can be consid-
with them. There are two Si atoms, and thus eight electron§"®d Of & secondary importance and thus was neglected. The
(within the valence approximationto be assigned to every 66-21G basis _sé%was used on the S|_ atoms_ln most cases so
primitive cell. Since each bond is associated with two electhat the density we shall be referring to in the following
trons, there should be four bonds per cell. We expect thagorresponds to the valence electron density. The basis set on

well localized orbitals can be constructed for this crystal ifPS€udoatoms Si* and Siy** included ongtype AO's.
localization regions are associated with every two-electron 10 construct the LMO's for the Si crystal, we oriented the

bond. Therefore, in this case we have four regisns, C, coordinate system in such a way that thaxis would pass

andD of identical nature in the primitive cell as shown sche-2/0ng the central Si-Si bond of every cluster. This particular
matically in Fig. 4. choice of the coordinate system is merely needed to simplify

Note that the choice of four inequivalent bonds is notthe choice of the AO’s to be associated with the localization
unique. In our choice shown in the figure all four bonds€9ionA. Then, the HF solution was obtained which demon-

share atom 1 and can be obtained from any single ey, strated a good degree of tisg® hybridization, as expected.

the central bond between atoms 1 andg applying appro- When applying the localization metho#4 and P,_ AO’s of
priate displacements and rotations. thes andp, types centered on the two central Si atoms were

chosen as belonging to regién In order to apply metho#,

the following SE was considered in place of the central Si-Si
molecule: it consisted of two electrons and two pseudoatoms
with the Si pseudopotential and the total chargee&ach.
Effectively, this way the SE was chosen as a pseudohydrogen
molecule with pseudohydrogen atoms at the Si-Si distance
described each by the Si pseudopotential.

By analyzing the electron density in the central region of
every cluster, we find that the largest cluster we considered is
sufficient for our purposes. As an example, we show in Fig.
6 the electron densities across the central Si-Si bond for the
three clusters. Note that we have carefully checked that the
comparison of the densitigsrbitaly along the central Si-Si
bond reflects well the extent in which the densitiesbitals

FIG. 4. (Color online Four two-electron bonds associated with match each other. The single LMO'’s calculated for the cen-
a primitive unit cell in the Si crystal. tral Si-Si bond of the three clusters using methdtiand E
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0.08 localization index is just above 2 which means that the or-
A —~ g'zgl'; bitals are predominantly localized on only two Si atoms, as
wel - s Sh.si™) expected.

To construct the electron densip(r) of the whole Si
crystal we need other three LMQO’s assigned to the same
primitive cell. These are obtained by appropriate rotations
and displacements of the central bond LMO considered
above. The LMOQO's corresponding to other crystal cells are
then obtained by applying appropriate lattice translations.
The electron densitiés(r) obtained using the three localiza-
tion methods for the largest cluster have been thoroughly
compared with the reference densitfr) obtained by trans-
lating the central part of the same cluster, and are shown in

FIG. 6. The HF electron densities for the Si crystal across thé:ig' 8(@). One can see that both methddsandP lead to the

central Si-Si bond for the three clusters studied. Positions of atomglectron density of the Si crystal which i,S very close to the
are indicated. reference density(r). However, the densify(r) calculated

from the LMQO's obtained using methdgishows an unphysi-
cal oscillatory behavior which is due to their poor localiza-

are very similar to those calculated using methb@nd thus tion and thus an insufficient cluster size used to construct

are not shown here. The important conclusion which can béhem.

drawn from these pictures is that the LMO obtained using

m.ethodM for the. largest cluster is practically converged IV. DISCUSSION AND CONCLUSIONS

with the cluster size. On the contrary, the LMO calculated

using methodE is not yet converged becoming more and We have seen in the previous section that for an ionic

more delocalized with the increase of the cluster size. system such as MgO all localization procedures give identi-
Even bigger clusters are thus needed to converge theal results and do not require large cluster sizes. This is be-

LMO using this method. However, as was mentioned earliecause a natural localization takes place in those systems. In

in Sec. Il C, larger clusters require a very expensive procefact we find that practically identical LMO’s can be obtained

dure of calculating two-electron integrals, and thus we didfor MgO using method$1 and P if in addition to the AO’s

not consider larger systems. Note that another way of cireentered on the central O atom one also adds AO’s of any of

cumventing the convergence problem in mettiochight be  the nearest Mg atoms to define regién This means that

to add some potential well to the HF problem for regioto  these localization procedures are sufficiently flexible in terms

enforce a stronger localization; although we did not pursuef the AO’s used to define the localization regions. Note also

this idea in this work, we may consider it in the future. that the localization indices calculated for the LMO's ob-
Our conclusions concerning the localization of the LMO’s tained by either of the localization methods are very close to

obtained using different localization methods are also welthose reported in Ref. 33 where a different localization

illustrated by the application of the localization criteria of method was used.

Sec. Il D. These are summarized in Table I. One can see that We find that the localization procedures for covalent sys-

both criteria indicate to an extremely weak localization of thetems with strong hybridization in its chemical bonding are

LMO for the Si crystal obtained using methdsl On the more sensitive to the choice of the localization region and

contrary, the LMO’s obtained by either of the other two the particular localization method. We have seen above that

methods demonstrate a very good localization. Moreover, theethodE fails for this system since the LMO's it produces

Electron density (A~1
g
>
1

o

o

N
|

are shown in Fig. 7. The LMO’s calculated using mettdd

0.04 0.04
— — Si,Si% o
2 — — Si,Si*
(a) - S'!S| 18 (b) s:’s'*‘
e SlnSI*u Si*:z Jrm——— s. Sll' Si-n-
0.03 0.03 beOl'ts O 3,
E < M\
2> 2 ’/ \\
g 0.0 g 0.02 ; \
© b= | \
g 2
0.0 = 0.0H
0.00+ T - 0.00+1
S LA 15
z(A)

FIG. 7. LMO’s partial densities?(r) calculated across the Si-Si bond for every cluster using methb¢s) andE (b).
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FIG. 8. Electron densities of the Si crystal constructed from LMO's obtained using different methods based on the largest Si cluster. All

densities are shown along the central Si-Si bond. Positions of the two Si atoms are also inthggigdased ors and p, types of AO’s

using methoddV (solid ling), P (small dashes andE (long dashesare compared with the HF density calculated from the middle of the

largest cluste(starg, (b) p;—all AO’s centered on ainglecentral Si aton{long dasheg ps, (starg, psy, (small dashes andpsy,(solid line)

were obtained usings, p}, {s, py, Py}, and{s, py,py,p, types of AO’s centered ohoth central Si atoms, respectively; methbtlwas used

for all cases in(b).

are not sufficiently localized within the cluster sizes we usecalized over a large volume around it. This explains why the
This fact is also reflected in a very large both the localizatiortotal densityps,, was found quite different from the reference
index and overlap matrix eigenvalugsee Table)l one: much larger cluster should be considered to accommo-
We have also experimented with localization methttls date fully the LMO obtained using this particular choice of
and P by trying to use different definitions of regiof in region A. Therefore, the proper choice of the localization
order to find the LMO. First of all, we used all AO’s on the regions which reflect the chemistry of the given crystal re-
two central Si atoms. Similarly to the case of MgO, in this sults in more localized orbitals and thus much smaller cluster
case an LMO practically identical to the one which we cal-sizes needed to construct them.
culated using only and p, types AO’s was obtained. ThHe It is also instructive to compare the LMO we obtained for
densities calculated in these two cases are also the same aghie Si crystalits square is shown, e.g., in Figay] with the
demonstrated in Fig. (B) by the good match betweém  one calculated in Ref. 33 using the all-electron mettia,
=psxyz aNd’p=ps, The two methods succeeded since thewithout pseudopotentigifor the upper valence band. The
chemical bonding is essentially correctly reproduced by eiL MO of Ref. 33 shows characteristic spikes around the Si
ther choice of regior\. This is confirmed by the contour plot atoms and thus differs considerably from the one calculated
of the partial densityg?(r) associated with the LMO and here. Although in our method the LMOs of different regions
calculated using all AO’s centered on the two central Si at-

oms: as shown in Fig. 9, the LMO essentially corresponds to ] PR e
the Si-Si bond.

In contrast, when assuming a wrong character of the e ///
chemical bonding in Si, we obtained LMO’s which were " @(”" e —om :
either not very well localized or had completely unexpected A / /\//:::\\,’\\g
(unphysical spatial distribution. For instance, assuming e /76?‘/; ,,:\\\1\\\,‘
atomic character of the chemical bonding, we attempted to o5 ¥ »L'H Of;\:‘ ;/»/Z
use AO’s on asingleSi atom to define the single localization = | 1%}' 'o( ‘)\] ||7‘ &
region in the primitive cell. This assumption gave four . /-,q ‘\\\\\w///// ‘,\\
LMOs similarly to the MgO case. We find, however, that O\ ) -
these LMO’s become much less localized and, as a result, the ) 4 \\\\ : "‘°’;j;/’\ /_ .
constructed electron densip=p; is very different fronips, el 7\a%£,mm(f
as is obvious from Fig. ®). Another example of an “un- il S & ;) T
wise” choice of the localization region is to use ormlyp,, ‘°°°° -
and p, AOs of the two central Si atoms to define regian L
(recall that the two Si atoms are positioned alongzlasis). 2%s s 5 5 (A)%% 15 25

In this case the total electron densfiy= ps,, also shown in

Fig. 8b) along the central Si-Si bond, somewhat differs from  FiG. 9. (Color onling Contour plots of the LMO partial densi-
s but, at the same time, reproduces all its main featuresiesg2(r) obtained using methokll for the two choices of regioA:
However, the LMO itself appears to have a completely dif-(i) all AO’s of the two central Si atomésolid line) and (i) only
ferent spatial distributiorisee Fig. $: it is not anymore lo-  {s,py,p,} AO's (dashed lines The plots are calculated in the plane
calized on the Si-Si bond, but instead was found to be delopassing through the Si atoms and two of their nearest neighbors.

075113-10



COMPARISON OF LOCALIZATION PROCEDURES FOR PHYSICAL REVIEW B 70, 075113(2004

100 nonperiodic systems. The work in this direction is presently
in progress and will be published elsewhere.

Several localization procedures were analyzed and two
crystals were considered in detélgO and Sj which cor-

§ respond to the two cases of extreme types of chemical
p . bonding—ionic and covalent. We find that two localization
g procedures considered, one based on the Mulliken popula-

tions (method M) and another on a projection operator
(method P), give well localized orbitals with the expected
conventional meaning adopted in chemistry, using already
quite moderate cluster sizes. The third procedure, based on
P B S the minimization of the HF energy of a structural element
z(A) (one or two atomsdemonstrated a much slower convergence
FIG. 10. The localized valence molecular orbitals calculated\év)l(tget:gvggster size and s found to be also computationally

with (dashed ling and without(solid line) pseudopotentials on Si . .
atomg. In the caze of the aII-eI(ectron ca)lc[zjlation Ft)he 6-31G basis set Two cases conS|dered_ here, MgO and Si crystals, _have a
was used. well known type of chemical bonding and thus the choice of
the localization regions in these two cases was obvious. At
are not orthogonal, whereas those of Ref. 33, which correthe same time, we find that there is a certain degree of flex-
spond to the Wannier functions, are orthogonal with eachbility in choosing the localization regions and this can be
other, it appears that the main difference comes from th&xploited in the cases of more complicai@dg., intermedi-
pseudopotential method. Indeed, as demonstrated in Fig. 18{€) types of chemical bonding. This work is being done in
when we use the all-electron method as well, the calculatedur laboratory at present and will be a matter of future pub-
LMO for the upper valence band is found to be almost idendications.
tical to the one reported in Ref. 33 using a different method. We finally note that the usage of the HF orbitals is not
Interestingly, the orthogonality of the LMO’s does not affect essential for our method which can equally be applied to the
the central part of the orbitals. We also found that the localKohn-Sham orbitals of the density functional theory.
ization index of Eq.(15) for our LMO is very close to the
one reported in Ref. 3@&ee Table).

Concluding, a simple method based on a cluster approach We are extremely grateful to I. V. Abarenkov and A.
was suggested in order to construct localized molecular orShluger for a number of useful and stimulating discussions
bitals (LMQO’s) for a periodic solid. Our method does not during his stay in London. O.D. would also like to acknowl-
require usage of periodic codes, is thus much easier to impleedge the financial support from the Leverhulme T@tant
ment in practice and also, in addition, can also be applied ttNo. F/07134/$ which made this work possible.
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