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We present the case where Luttinger liquids are characterized by a form of hidden order which is similar, but
distinct in some crucial regards, to the hidden order characterizing spin-1 Heisenberg chains. We construct a
string correlator for the Luttinger liquid which is similar to the string correlator constructed by den Nijs and
Rommelse for the spin chain. We reanalyze the spin one chain, introducing a precise formulation of the
geometrical principle behind the so-called “squeezed space” construction, to demonstrate that the physics at
long wavelength can be reformulated in terms af,agauge theory. Peculiarly, the normal spin chain lives at
infinite gauge coupling where it is characterized by deconfinement. We identify the microscopic conditions
required for confinement thereby identifying a novel phase of the spin chain. We demonstrate that the Luttinger
liquid can be approached in the same general framework. The difference from the spin chain is that the gauge
sector is critical in the sense that the Luttinger liquid is at the phase boundary whetg Ith@al symmetry
emerges. In addition, the “mattefEpin) sector is also critical. We evaluate the string correlator analytically for
the strongly coupled Hubbard model and we further demonstrate that the squeezed space structure is still
present even in the noninteracting fermion gas. This adds new insights to the meaning of bosonization. These
structures are hard wired in the mathematical structure of bosonization and this becomes obvious by consid-
ering string correlators. Numerical results are presented for the string correlator using a non-abelian version of
the density matrix renormalization group algorithm, confirming in detail the expectations following from the
theory. We conclude with some observations regarding the generalization of bosonization to higher dimensions.
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I. INTRODUCTION vantages for the numerical determination of exponéaex.

The Luttinger liquid, the metallic state of one dimensional VD ) . .
electron matter, is an old subject which is believed to be fully  This pursuit was born out from a state of confusion we
understood. In the 1970’s the bosonization theory was devefound ourselves in some time ago, caused by a view on the
oped which has a similar status as the Fermi-liquid theoryluttinger liquid from an unusual angle. Our interest was pri-
making it possible to compute long wavelength properties irmarily in what is now called “stripe fractionalizatior*!°
detail with only a small number of input parametéfdn the  Stripes refer to textures found in doped Mott insulators in
present era, the theory is taken for granted, and it has foundigher dimensions. These can be alternatively called
many applications, most recently in the context of‘charged domain walls the excess charges condense on
nanophysics. Here we will attempt to persuade the reader(d—1)-dimensional manifolds, being domain walls in the
that there is still something to be learned about the fundaeollinear antiferromagnet found in the Mott-insulating do-
mentals of the Luttinger liquid. mains separating the stripes. Evidence accumulated that such

In the first instance, it is intended as a clarification ofa stripe phase might be in close competition with the High-
some features of the Luttinger liquid which appear to besuperconducting state of the cuprdt€sand this triggered a
rather mysterious in the textbook treatments. We make théheoretical effort aimed at an understanding of stripe quan-
case that a physical conception is hidden in the mathematidsim liquids. The idea emerged that, in principle, a supercon-
of the standard treatise. This physical conception might alductor could exist characterized by gquantum-delocalized
ternatively be called “hidden order,” “critical gauge decon-stripes which are, however, still forming intact domain walls
finement” or “fluctuating bipartite geometry.” It all refers to in the spin system. Using very similar arguments as found in
the same entity, viewed from different angles. This connecSecs. 1l and Ill of this paper, it can then be argued that
tion was first explored in our previous pagengre we ex- several new phases of matter exist governed by Ising gauge
pand on these ideas to yield some practical consequegaes: theory. This is not the subject of this paper and we refer the
we identify symmetry principles allowing a sharp distinction interested reader to the literaturé® However, we realized
between Luttinger liquids and, for instance, the bosonic lig-early on that these ideas do have an intriguing relationship
uids found in spin-1 chaifigthe “no-confinement” principle, with one dimensional physics.

Secs. Il and I}, (b) we identify a new competitor of the Specifically, we were intrigued by two results which, al-
Luttinger liquid (the manifestly gauge invariant supercon-though well known, do not seamlessly fit into the Luttinger
ductor, Sec. lll, a close sibling of the superfltied model of  liquid mainstream:(a) the hidden order in Haldane spin
Batista and Orti%, and (c) these insights go hand in hand chains as discovered by den Nijs and Rommelge), the
with special “string”(or “topological”) correlation functions squeezed space construction as deduced by Woynatdvich
which makes it possible unprecedented precision tests of th@nd Ogata and Shib&from theU — « Bethe ansatz solution
analytical theory by computer simulations, offering also ad-of the Hubbard model. As we will discuss in much more
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detail, after some further thought one discovers that bottio pay when one wants to represent fermion dynamics in one
refer to precisely the same underlying structure. This strucdimension in terms of bosonic variables.
ture can be viewed from different sides. Ogata and Shiba  In Sec. V we turn to bosonization. Viewing the bosoniza-
emphasize the geometrical side: it can be literally viewed asion formalism from the perspective developed in the previ-
a dynamically generated “fluctuating geometry,” althoughous sections it becomes clear that the squeezed space struc-
one of a very simple kind. Den Nijs and Rommelse ap-ture is automatically wired into the structure of the theory. In
proached it using the language of ordex:correlation func-  this regard, the structure of bosonization closely parallels the
tion can be devised approaching a constant value at infinitygxact derivations presented in Sec. lll. In Sec. VI we present
signaling symmetry breaking. The analogy with stripe frac-numerical density matrix renormalization grodpMRG)
tionalization makes it clear that it can also be characterizeg@alculations for the string correlators starting from the Hub-
as a deconfinement phenomenon in the language of gaudeard model at arbitrary fillings and interaction strength, em-
theory. ploying a non-Abelian algorithm. These results confirm in a
Whatever one calls it, this refers to a highly organized,great detail the expectations built up in the previous sections:
dynamically generated entity. The reason we got confused ithe strongly interacting limit and the noninteracting gas are
that there is no mention whatsoever in the core literature o§moothly connected and in the scaling limit the string cor-
the Luttinger liquid of how these squeezed spaces fit in theelator(1) isolates the spin only dynamics regardless the mi-
standard bosonization lore. To shed some light on these matroscopic conditions. This also has practical consequences;
ters we found inspiration in the combined insights of denwe deliver the proof of principle that the nonuniversal expo-
Nijs and Rommelse and Ogata and Shiba and we constructegnts associated with the logarithmic corrections showing up
a den Nijs type “string” correlator but now aimed at the in the spin correlations can be addressed away from half
detection of the squeezed space of Ogata and Shiba. Thisfiing. From the combination of bosonization and the exact
the principal device that we use, and it has the form, results for strong coupling, we suggest that the two point
spin correlator can always be written in the scaling limit as
the product of Eq(1) and a chargelike string correlator

(S - S(0)) ~ DX OgtlX), 2)
where§ is the spin operator on sifewhile n measures the \here the “charge” string operator is defined as
charge density. By studying the behavior of this correlator o o _
one can unambiguously establish the presence of squeezed- Don|i = i) = (ng)[TZ(= D™V Ing(j)), 3)
space-like structures. We spend roughly the first half of this

o ; . whereng(i) is 1 for asingly occupied site and 0 otherwise.
paper explaining how this works and what it all means. InWe confirm numerically that, except for a nonuniversal am-
Sec. Il we start with a short review of the den Nijs— y ' P

Rommelse work on thé=1 “Haldane™ spin chains. This is plitude, the relation2) seems to be always satisfied at long

an ideal setting to develop the conceptual framework Wedistances. The conclusion to this paper addresses the broader

subsequently reformulate the spin chain “string” correlator in_perspecti.ve inqluding the relation to stripe fractionalization
2+1 dimensions.

a geometrical setting which makes the relationship with the"
Woynarovich-Ogata-Shiba squeezed space manifest. We fin-
ish this section with the argument why it is ISing gauge ,, eovETRY, GAUGE THEORY, AND HALDANE SPIN

theory in disguise. This is helpful, because the gauge theory CHAINS

sheds light on the limitations of the squeezed space: we

present a recipe of how to destroy the squeezed space struc- The “Haldane®® S=1 Heisenberg spin chains are an ideal
ture of the spin chain. stage to introduce the notions of “hidden order,” squeezed

In Sec. Il we revisit Woynarovich, Ogata, and Shiba. Thespace, and the relation with Ising gauge theory. These sys-
string correlator Eq(1) is formulated and subsequently in- tems are purely bosonic, i.e., dualization is not required for
vestigated in the large limit. This analysis shows that the the identification of the bosonic fields, and the powers of
Luttinger liquid (at least for largeJ) can be viewed as the bosonic field theory can be utilized with great success to
critical version of the Haldane spin chain. It resides at theenumerate the physics completely. We refer in particular to
phase transition where the gauge invariance emerges, whitee mapping by den Nijs and Rommélsmto surface statis-
the matter fields are critical as well. In this section we alsatical physics. We are under the impression that this way of
argue why the squeezed space of éhectronliquid cannot  thinking is not widely disseminated and we start out by re-
be destroyed. This turns out to be an unexpected conse&iewing some highlights. In the surface language, the mean-
quence of Fermi-Dirac statistics. ing of “hidden order” becomes particularly simp(&ec.

In the remaining two sections the string correlator is usedl A). We subsequently use these simple insights to reformu-
to interrogate the Luttinger liquid regarding squeezed spackte this hidden order in the geometrical language, the
away from the strong coupling limit. In Sec. IV we demon- “squeezed spacd&Sec. Il B. The next benefit of the Haldane
strate in a few lines a most surprising result: squeezed spaahain is that the identification of squeezed space geometry
exists even in the noninteracting spinful fermion gas Thiswith Ising gauge theory is literglSec. Il Q. This sets the
confirms in a dramatic way that squeezed space is deeplyonceptual framework within which we view the Luttinger
rooted in fermion statistics; it is a complexity price one hasliquid.

Ogl|i = i) = (S[M= (- HMIS), (1)
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A. Haldane spin chains: a short review this reason it was called “hidden order.” The main purpose of

Let us first review some established wisdoms concerninigis section will be to introduce a more precise definition of

the Haldane spin chains. The relevant model is a standardis order. _
Heisenberg model foiS=1 extended by biquadratic ex- Den Nijs and RommelSededuced the string correlator

change interactions and single-ion anisotropy using the insightg f_ollowing _from the path-i_ntegral map_ping
onto surface statistical physics. A first, crucial observation is

H=X§ -S+a> (§-572+DX (2 (4)  that the natural basis for the spin chain is not in terms of
Gij) (i) [ generalized coherent states, but instead simply in terms of

the microscopicM¢=0, +1 states of individual spins. Mar-

shall signs are absent and these states can be parametrized in

ground state is a singlet, separated by a finite energy ga "o r o~ ot subjected to a local con-
from propagating triplet excitations. It was originally be- straint> b'b =1 The s in'o ielrators become
lieved that the long distance physics was described by an araTe T pin op

O(3) nonlinear sigma modéP, suggesting that the ground S=nq,-n_g,
state is featureless singlet. However, Affleekal®17 dis- ' '
covered that fora=1/3, D=0 the exact ground state wave

In the proximity of the Heisenberg poinfe=D=0) the

— ot T
function can be deduced, having a particularly simple form. §= V2(by 1010+ by b 1),
This “AKLT” wave function can be parametrized as follows. _
Split the S=1 microscopic singlets into two Schwinger S = V’Z(bﬁobi'ﬁ biT,_lbi,o)- (8)
bosons [S=1,M9~b{} b}, ,. The individual Schwinger

bosons carnB=1/2 and thavave function is constructed by A second crucial observation is that because of the con-

pairing, say, the “1” boson with a “1” boson on the left straint the problem is isomorphic to that ofdirected quan-

neighboring site forming a singlet of valence bond, and thdum s_tring Iivi_ng on a square lattice. Th!; Is somewhat im-
same with the “2” boson with its counterpart on the right plicit in the original formulation by den Nijs and Rommelse,
neighbor but used to great effect by Eskes$ all® The mapping is

; ; ; : elementary. A lattice string corresponds with a connected tra-
W)kt = 27V (bl 4,0l by blyy) jectory of “particles” living on a lattice and this string can in
x(bh.bh . —b b, ) turn be parametrized by a center of mass coordinate and the
B2PEL2L M2 2] set of links connecting all particles. Consider only “forward
X (bf1,11bf 20, = bli10)bl20) -+ Jvag. (5)  moving” links (the string is directexdand identify a nearest-
Thi functi learly has to do with a t lati Inelghbor link with aM¢=0 bond, and an “upward” and
is wave function clearly has to do with a translational.,nvard” next-nearest-neighbor linkkinks”) with M,

symmetry breaking involving nearest-neighbor singlet pairs,:1 andM.=-1 states of the spin on a site of the Haldane

although in terms of spin degrees of freedom which are dif-p, i " respectively. It is easy to convince oneself that every
ferent from the elementary spins. It has become a habit t

Qtate in the Hilbert space of the spin chain corresponds with
call it “valence bond solid order,” i.e., to link it exclusively P P P

a particular string configuration. TheY terms are respon-

to _the Itjendilr_l_cy indtrl]_\? spin %ysctjzmdto Lorm spig 172 Sidngletsible for the creation of kink-antikink pairs and the propaga-
pairs. Den Nijs and Rommefsadded a deep understanding 4, f individual kinks along the string, while Ising terms

of the phy_sics of these boson_ic.spin chai.ns by intrOdUCin%overn the interactions between the kinks. In the path inte-
the mapping on surface statistical physics. Although theyo| tormulation, quantum strings spread out into world
AKLT wave function is a correct prototype for the ground sheets and the world sheet of the lattice string corresponds

state of the Heisenberg chain, it is not helpful with regard Qyith a surface statistical physics which is completely under-

what else can happen. On the other hand, by employing th§tood: the restricted solid-on-soliRSOS surface.

formidable powers of surface statistical physics there are no The topological order of the Haldane spin chain translates

secrets and it yields a natural view on the physics of the Spirihto a simple form of order in the surface language: the dis-
chains. A highlight is their demonstration that this vacuumg yared flat phase. The +1 and -1 kinks on the time slice
can be understooq by a no?lorc](alogciglcgl ) é)rder pa-f turn into up and down steps on the world sheet in space time,
rameter structure in terms of the r SPIn Aegrees ol geqq Fig. 1. In the disordered flat phase these steps have pro-

f lation f . Th ional . . %erated(kinks occur at finite density while they are delocal-
of a correlation function. The conventional two-point spin ized) but on this surface every “up” step is followed by a

correlator in the Haldane chain decays exponentially f0ry,n step and the surface as a whole is still flat, pinned to

large i -], the lattice. In the string language the order is therefore mani-
() ~ g li-ille. (6) fest, but it becomes elusive when translated back to the spin
o ) ) system. It implies that the ground state of the spin chain is a
However, considering the following nonlocal spin cor- coherent superposition of a special class of states. These are
relator (or “string” correlatoy composed of indeterminate mix of 0, +1 states. Take the 0’s
' as a reference vacuum and view =+1 states as par-
(ST (- Dﬁ%l) ~ const @) ticles carrying an in internal “flavor’?igl. These particleps are
signaling a form of long range order which only becomesdelocalized. However, every +1 particle is followed by a -1
visible when probed through the nonlocal correlaf®r For  particle, modulo local violationgvirtual excitation$ which
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._./. e e e e e FIG. 2. The geometrical mapping from “fulla) to “squeezed”

spacgb). Given that some antiferromagnet lives in squeezed space,
FIG. 1. Mapping of the spin chain on a directed quantum stringall that matters is the fate of the sublattice paptyWhen sites are
living on a lattice(Ref. 18. TheM¢=0, +1 states of the spin chain reinserted, the sublattice parity of the system in squeezed space flips
are equivalent to horizontal and upward/downward diagonal linksvery time a hole is passed when viewed in full space. These sub-
tracing out the trajectory of the string on the lattice. Téterms  lattice parity flips hide the order present in squeezed space.
in the spin Hamiltonian correspond with the kinetic energy of the
string problem causing both the creation of kink-antikink péine
+1 bond$ and the coherent propagation of individual kinks. At the show the antiferromagnetic order. In order to construct a two
Heisenberg and AKLT points, hidden order is present. Althoughpoint correlator capable of probing this “internal” order it is
kinks are proliferated their direction is ordered: every up kink is necessary to redefine the space in which the internal degrees
followed by a down kink(@). In the string representation this just of freedom live. Start out with the full spin chain and for
means that the string pins to the links of the lattice. In the rougheach configuration, whenever a site occupigdald particle
(XY) phase kinks have proliferated while their direction is disor- is found remove this site and shift, say, all right neighbors to
dered as wellb). the left, see Fig. 2. This new space is called “squeezed
) o ) space” and the effect of the map from “full” to squeezed
can be integrated out perturbativelyig. 1). The hidden or-  space is such that every configuration appearing in(E).
der is thereby nothing else than the staggered order of the +haps on the same antiferromagnetic order as realized on the
flavors of the “spin particles.” This order is not seen by thesqueezed chain.
spin-1 operators because these also pick uppibgtional Obviously, if it would be possible to probe squeezed
disorder of the +1 “particles.” space directly, the hidden order would be measurable using
conventional two point correlators. The string correlator
B. Squeezed space: sublattice parity as a gauge freedom aChieVeS jUSt th|S purpose. A" that matters iS that the Ol’der in
squeezed space is a staggefaotiferromagneticorder. For
such order one needs a bipartite geometry: it should be pos-
sible to divide the lattice inté\ and B sublattices such that
every site on theA sublattice is neighbored by sublattice

String correlators similar to Eq7) have the purpose of
“dividing out” the positional disorder with the effect that the
order of the “internal” +1 flavors becomes observable. In

order to see the similarity with the phenomena occurring i ites and vice versa. One dimensional space is bipaetiten
the Luttinger liquid we need a more precise description o he continuum This subdivision can be done in two ways:
how this ‘division’ is accomplished than that found in the .-A-B=A-B:- or -~-B-A-B-A--, corresponding with

o_r|g|r|1alklllt%ra_truhre. It .amountsl toa geortr:etnc_al mapping of ?‘the Z, valued quantity we call sublattice parity. For a normal
simple kind. The string correlator can be written in terms of|,yice the choice of sublattice parity is arbitrary, it is a “pure

the bosons as gauge.” However, in the mapping of squeezed to full space it

' _ becomes “alive,” actually in a way which is in close corre-
(= ={n -1
(ST 1)ﬁ%z> <(n,,1A M- spondence to the workings of a dynamiZalgauge field as
XTI} (- 1)t Mo x (Nj1—Nj-0). will become clear later. Consider what happens when

(9) squeezed space is unsqueeded. 2). When a “0” particle
including its site is reinserted, the “flavor” site, say, on its
Why is this tending to a constant while the two-point spinright side is shifted one lattice constant to the right. The
correlator is decaying exponentially? From the discussion ireffect is that relative to the reference sublattice parity of
Sec. Il Ait follows that modulo local fluctuations the ground squeezed space the sublattice parity in unsqueezed space

state wave function has the form changes sign every time a “0” particle is passed. The effect is
that flips in the sublattice appear to be “bound” to the 0
W) =2 alXy, X, - Xoi Xaien, ---) particles viewing matters in full space. In order to interrogate

_ _ the “flavor” order in squeezed space one has to remove these
X (D)X= 1), oo Xa(= Doxaa(D), 0 (A0 oo parity flips. This can be achieved by multiplying
where thex;’s refer to the positions of the +1 particles on the the spin with a minus one every téra 0 particle is encoun-
chain, and the amplitudesare independent from the “inter- tered: (-1) X (-1)""1=(-1)". The den Nijs string operator is
nal” (1) degrees of freedom; these “internal” Ising spinsconstructed to precisely achieve this purpose,
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ABABABABA f';_% <T|ZTJZ> o e_“_”/f(riz[ﬂf:ioﬂsz>, (15
I 1o d o o i.e., at distances large comparedttthe correlations between

AB the 7 spins have disappeared but they re-emerge when the

operator strindIll_;o{] is attached to every spin.

FIG. 3. Same as Fig. 2 but now for the case that an Ising long This suffices to precisely specify the governing symmetry
range order is present in squeezed space, corresponding with tipginciple: the long distance physics is governed by.a
hidden order of th&s=1 Heisenberg spin chain. From such pictures gauge field(the ¢'s) minimally coupled to spin-1/2 matter
one can directly deduce the workings of string operators by jusithe 7's). The StringS[Hf:ia'lz] simply correspond with the
focusing on the spins. However, matters are equally meaningful inyjijson loop associated with th& gauge fields rendering the
the absence of long range order in squeeze space, and the formulgeiter correlation function gauge invariant. The two point
tion terms of a geometrical mapping involving sublattice parity iscorrelator in ther's is violating gauge invariance and has
more general. therefore to disappear. This gauge invariance is emerging. It

_ is not associated with the microscopic spin Hamiltonian and
(2= [} (= Do)y 1 = 0y —p)) it needs some distancebefore it can take control. There-
_ i ; N fore, the gauge-violatingr?7?) is nonzero fofi—j| <¢&.
={=1) (_n"l_n"‘l)[m=‘(_ 1] This is an interesting and deep connection: the indeter-
X (=D —ny_p). (11 minedness of the sublattice parity in full space is just the
) _ .same as invariance und&s gauge transformations. One can
Hence, the string correlator measures the spin order e the squeezed space construction as an ultraviolet regu-
squeezed space by removing the sublattice parity flips. Thgyi-ation ofZ, gauge theory, demonstrating a simple mecha-

positional disorder of the particles is equivalent to motions ofism for the “making” of gauge symmetry which is distinct
the sublattice parity flips, scrambling the order I|\_/|ng N from the usual mechanism invoking local constraifesy.,
squeezed space, and these are removed by the string opeggsis 10 and 19.
tors. . . Is this yet another formal representation or does it reveal
The above argument emphasizes the geometrical nature pf, physical principles? As we will now argue, the latter is
the mechanism hiding the ordgr. It might at this point apPeafhe case. Viewing it from the perspective of the gauge theory,
as a detour because one arrives at the same conclusion Rypecomes immediately obvious that there is yet another
just focusing on the “flavor” orientations, see Fig. 3. How'gossible phase of the spin chain: thenfiningphase of the

ever, as will become clear in later sections, the constructio auge theory. To the best of our knowledge this phase has

is still applicable even when the spin system in squeezeflgqn oyeriooked because its existence is not particularly ob-
space is disordered. Hence, it is more general and rigorous {@, s in the spin language

invoke the geome_trjcal sublattice parity as a separate degree For a good tutorial in gauge theory we refer to Kogut's
of freedom in addition to the degrees of freedom populatlngreview_zo Focusing on the most relevant operators, Zo&Z,
squeezed space. theory can be written as

C. Squeezed spaces and Ising gauge theory 7= f DiDoeS

At first sight, it might appear that sublattice parity is not
quite a normal dynamical degree of freedom. However, it is
easily seen that it is nothing else than an uncommon ultra- | 4
violet regularization oZ, gauge fields. From the above dis- S= f d XdT[J% T T K%ql‘[p,aqa ’ (16)
cussion it is clear that the “flavor” degrees of freedom of the
+1 particles can be regarded as independent from their posieaving the gauge volume implicit in the measureand o
tions in unsqueezed space. These flavorsZarealued and areZ, valued fields living, respectively, on the sites and the

can be measured by links of a (hypercubig¢ space-time lattice. The action of the
‘ gauge fields is governed by a plaquette action, i.e., the prod-
i=(1 —bﬁobi,o)(— 1)'S. (12)  uct of the fields encircling every plaquette, summed over all

. . . . . plaguettes. The gauge invariance corresponds with the in-
Thle pOfStI:IIOI’\S Slf tthe part'ltcles ddra/e the unce:ta'néyb'nhthevariance of the action under the flip of the signs of all #fe
value of the sublattice parity and these are captured by the departing from a sité, accompanied by a simultaneous flip

valued operators of the 7. This gauge invariance implies that=1<-1 and

oF= (= )Mo (13) (r;7)=0 while (r[II;o]7;) can be nonzergwith I" a line of
bonds on the lattice connectirigand j; the Wilson loop.
and it follows that modulo a factor of order 1 This is the most general ramification of the gauge symmetry
i 1-n and Eq.(15) is directly recognized.
((my 2= )[H (= D)y =0y ) The relation between the gauge theory and the squeezed
o <TiZ[H{:i0'IZ]TjZ> (14) space construction is simp(Eig. 4). The gauge invariance is
just associated with the indeterminacy of the sublattice parity
and, in the presence of the hidden order in unsqueezed space. If the 0’s would not fluctuate one could
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FIG. 4. Squeezed space mappings as geometrical interpretation FIG. 5. As in Fig. 4 except that now a single 1 particle is
of Ising gauge theory. Although the word linéa space-timex, 7) annihilated. This means that the bipartiteness of squeezed space is
of the £1 particles span up a bipartite lattice for an observer whictdestroyed and this is in one-to-one correspondence with the pres-
is just watching word lines, this bipartiteness is hidden in full spaceence of isolated visongninus fluxe$ in the Z, gauge theory for-
when the particles are delocalized. This is equivalent to the convermulation: the “natural” confining state.
tional lattice regularization of &, gauge theory involving a . . .
plaguette action where the-+— gauge invariance of the link vari- {0 the geometrical language, a vison corresponds with a pro-
ables acquires the meaning that it is impossible to determine th§€SS Where a squeezed space of even length on timesslice
bipartiteness of squeezed space by measuring in full space. THEMMS into a squeezed space of odd length on time slice
absence of free visongninus fluxes does imply that the hidden *O7 Or vice versa. In this way a minus gauge flux is accu-
bipartiteness exists and the existence of squeezed space correspofdidlated on a timelike plaquetteee Fig. 3. In terms of the
with deconfinement. Taking the unitary gauge is equivalent todegrees of freedom of the spin chain this means tistgle
squeezing space. M¢=0 state can fluctuate intoM =+1 state and vice versa.

It is obvious now why the spin chain corresponds with the
ascribe a definite value to the sublattice parity everywherek — < limit of the gauge theory, namely the Hamiltionian of
and this is equivalent to choosing a unitary gauge fix in the¢he former only containgairs of spin raising or lowering
gauge theory. However, because of the delocalization of theperators~S'S. From Eq.(8) it follows immediately that
0's one cannot say if the sublattice parity is +1 or —1 and thisO” particles can only be created or annihilated in pairs.
corresponds with the gauge invariance. These processes do change the length of squeezed space but

As is obvious from the string correlator, th& gauge they turn even-length squeezed space into even-length
fields (coding for the indeterminacy of the sublattice parity squeezed space, or odd-length squeeze space into odd-length
are coupled to matter degrees of freedom being just the “flasqueezed space. Confinement requires odd to even or even to
vors” living in squeezed space. In the hidden-order/odd fluctuations. In the geometrical language, deconfinement
disordered flat phase these are Ising spins showing lon@eans that space-time is still bipartite although the two ways
range order. The constancy of the string correlator at lon@f subdividing space-time are indistinguishable. Confine-
distances reflects this fact. From the viewpoint of the gaugénent means that bipartiteness is destroyed outright because
theory this appears as asurdity It means that the hidden sdqueezed space-time can no longer be divided in two sublat-
order phase is the Higgs phase of thg¢Z, gauge theory, tices due to the presence of the visons.
characterized by a gauged matter propagator becoming as- Going back to the spin chain, the message is that there is
ymptotically constant. In the gauge theory this can only hapapparently yet another phase of tBe 1 spin chain which
pen in the singular limit where the gauge couplifg- . has not been identified yet: a state corresponding with the

Even under the most optimal circumstan¢eigh dimen-  confining phase of the gauge theory. The recipe for confine-
sionality), a Wilson loop should decay exponentially with a ment is clear. At first sight, a simple a transverse field
perimeter law due to local fluctuations in the gauge sectoB2S=(B/2)2[S +5] seems a candidate because it creates
Stronger, it is elementary that in 1+1 dimensions the Higgdsolated visons. However, becau$&?,§]=0 the singlet
and deconfining phases are fundamentally unstable to comround state wave function is not changed at all by such a
finement. This law can only be violated in the singular limit field and the hidden order stays intact—we believe this has
K — . Hence, the hidden order appears as highly unnaturgb do with “phaseMarshall sign strings.22 Surely this is
within the framework of the gauge theory. What is the reasoran accident of S(2). One can conceive more interesting
that confinement is avoided in the Haldane spin chain? Morétransverse fields” which exists in the extendggU(3)]
interestingly, what has to be done to recover the natural corspace of operators which can be constructed fromShé
finement state? states. For example, a terBX;(|-1)(0|-|0){+1|+H.c.) al-

The disorder operators in the gauge sector are the visomaost does the job; the den Nijs string correlator decays ex-
or gauge fluxes. These are pointlike entit{@sstanton$ in ponentially to zero in the in the andz directions, although
(1+1)-dimensional space-time. For any finite value of thethey direction remains Néel ordered.
coupling constanK these will be present at a finite density ~ An interesting feature is that despite the qualitative
with the result that the vacuum is confining and the implica-change in the behavior of the string correlators, the ground
tion that(r[IIro]7)— 0 at large distances. Translating this state energy changes smoothly when such a “confining” field
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is switched on—this has to be because of the incompressibléon was introduced first by Ogata and Shiiayho redis-
nature of the vacuum. Hence, something is changing in theovered earlier work by Woynarovith regarding a far-
ground state but this is not accompanied by a level crossingeaching simplification in the Lieb and Wu Bethe-ansatz
signalling a true thermodynamic phase transition. This issolution of the Hubbard mod@lin the U—o limit. This

fully consistent with the gauge interpretation. This puzzleWoynarovich-Ogata-Shiba work just amounts to the realiza-
has been around in gauge theory since the 1970’s under thi®n that in the larg&J limit the structure of the Bethe-ansatz
label “Abelian gauge theories with matter in fundamentalsolution coincides with a squeezed space construction. For
representation?® We are dealing here with th&2/Z2  simplicity, assume a thermodynamical potentiat0 such
matter/gauge theory and it is well known that the Wilsonthat no doubly occupied sites occur. Rbtending to infinity,
loop turns from a constant to a perimeter law when the gaugthe ground state wave functio#r of a Hubbard chain of
coupling becomes large but finite and the system enters thHengthL occupied byN electrongwith N<L) factorizes into
“Higgs-confinement” phase, while the free energy is smootha simple product of spin- and charge wave functions

As we will discuss elsewhere in more detail, this signals a )

subtle, nonthermodynamic topological change of the vacuum‘p(xl’ c XYL - Ym) = X ) YeidY - )

state. Interestingly, this seems to bear a direct relationship 17

with the quantum-information theoretic “localizable en-
tanglement,” recently introduced in this context by Verstra-

etel,a'(\/l?c:ittliz_D(ter!?aa?ecl)ét?gr?sﬁilré\?\/.ith auge theorv and uan-the positions of thé\ singly occupied sites. The spin wave-
b 9 P gaug y d function 45 is identical to the wave function of a chain of

tum information, a number of other interesting conclusion . L . ; . .
9 %—|e|senberg spins interacting via an antiferromagnetic nearest

can be reached regarding of the spin chains. However, spin . . -
chains are not the real subject of this paper, and we leave th{nselghbor exchange, and the coordinatgg =1, ... M refer

- . : . L 0 the M positions occupied by the up spins in the Heisen-
fora lfuture DUbI'Cat'OIn]; The prlrrlla;y a|r;]1 Ofdt.h's septlon :CS tr? berg chain. The surprise is that the coordinatedo not refer
supply a conceptual framework for the discussion of t . Lo .
more convoluted “hidden order” in the Luttinger liquids. Leteto the original Hubbard chain with length but instead to a

) . . new space: a chain of lenghh constructed from the sites at
us list the important lessons to be learned from the spin : - L
: - . -~ coordinatesxy, X, ... Xy given by the positions of the
chains, and indicate how these relate to the Luttinger liquids; . ; N : . .

(1) The central construction is squeezed space, the exis- harges(singly occupied sitgsin a configuration with am-
q pace, litude 5. One immediately notices that it is identical to the

tence of which can be detected using den Nijs—type strin@ ueezed space maopind for the Haldane spin chains dis-
correlators. The determination of such a correlator for the q P ppIng P

Luttinger liquid is the subject of the next section. cussed in the previous section, associatinghhe 0 states

(2) The phases where sublattice parity flips are truly de-Of the spin chain with the holes and thé;=+1 states with

localized are characterized by an emergéngauge symme- the singly occupied sites carrying electron spin (4p) or
try. We make the case that such phases can in principle occ
also in the Luttinger liquid context, while the Luttinger lig-
uid itself resides right at the phase boundary wherezhe
local invariance emerges.

(3) In the spin chains, squeezed space can be destroyed @2
transverse fields causing confinement. We argue that in thﬁ:e
Luttinger liquids this is impossible because of the fermion
minus signs of the electrons, with the ramification that
squeezed spade universal.

The charge partigr represents the wave function of nonin-
teracting spinless fermions where the coordinategfer to

down (—). In fact, as already pointed out by Batista and
ldfrtiz,6 one can interpret the spin chain as just a bosonic

J, mode, i.e., lowering the S@) symmetry of the Hubbard
model to Ising, dismissing the Jordan-Wigner strings making
the difference between spinless fermions and hard-core
sons, and last but not least adding an external Josephson
Id forcing the holegM¢=0, in the spin languagdo con-
dense giving a true Bose condensate.

Since the geometrical mapping is the same, a “string”
operator equivalent to that of den Nijs and Rommelse can be
constructed for the Luttinger liquid. In order to measure the
. LUTTINGER LIQUIDS: SQUEEZED SPACE spin correlations in squeezed space starting from unsqueezed

IN THE LARGE U LIMIT space one should construct an operator which removes the

. ) . ) ) . sublattice parity flips. Define the staggered magnetization in
The focus in this section is entirely on the Luttinger lig- unsqueezed space as

uids which can be regarded as continuations of those describ-

ing the long distance physics of Hubbard models. The bot- M(x) = (- 1)*S(x). (18)

tom line is that these Hubbard-Luttinger liquids are ] o

characterized by a critical form of the spin-chain type hidderCOmpared to the corresponding quantity in squeezed space,

order as discussed in the previous section. This criticality hall'€se acquire an additional fluctuation due to the motions of
two sides:(a) the (Z,) gauge fields are critical, in the sense the sublattice parity flips. Since these flips are attached to the

that the Luttinger liquid is associated with the phase transil©!es, they can be “multiplied out” by attaching a “charge

tion where the local symmetry emergés) the matter fields  StINg’
(sping are also in a critical phase. NZ(x) = MZs) (= 1VE S 1)

The argument rests again on the squeezed space construc- (M09 = M) (= 1) o (19)
tion, and this should not come as a surprise to the reader whehere 1-(j) is the number of holes on sitg and the
is familiar with the one dimensional literature. This construc-charge operaton(j)=n;(j)+n(j) taking the values 0, 1,
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and 2 for an empty, singly, and doubly occupied site, respecat site 0 and one at site Parola and Soref& show that the
tively. (M’)% is representative for the “true” staggered mag-exact relation between E¢21) and the two point correlator
netization living in squeezed space. The action of the chargi full space is

string I1;(-1)* ™)) is to add a -1 staggering factor only ol

when the sitg is singly occupied, thereby reconstructing the z _ - e

bipartiteness in squeezed space. It follows that the analogue (S)$10)) = J% Pse(i)Opeisi = 1)

of the den Nijs topological operator becomes .

Ogel(X) = ((M)AX)(M")(0)) =S PA) (- 110 - 1)
= (M0 (- 1510 I 7(0)) T
= — [S(0)(- 1> melDsK(0)). (20) S - D P (- D0gadi - D). (23
j=2

The focus of the remainder of the paper is on the analysis o )
of this correlator. To the best of our knowledge, correlators-et us now consider instead the string correlator

of this form have only been considered before in the context B sl
of stripe fluids in 2+1 dimensions?” String correlators have Og(x) = = (S(0)(- )7=1"V'S(x))
been constructed before in the one-dimensional cof¥té&kt x+1
but these are of a different nature, devised to detect “hidden == PE)(- D ?Opeidj - 1)
order” of an entirely different type. j=2
On this level of generality it might appear that the hidden x+1
order of the Haldane chain duplicates that of the Luttinger =y P5H)Ogtadi = ). (24)
liquid. However, dynamics matters and in this regard the j=2

Luttinger liquid is quite different. Instead of genuine disorder ) )
in the “charge” sector and the true long range order in thef he difference between the two point correlator and the

“spin” sector of the spin chain, both charge and spin arestring correlator looks at first sight to be rather unremark-
critical in the Luttinger liquid and this makes matters more@ble. The staggering factér1)! associated with the sign of
delicate. staggered spin in squeezed spfEq. (21)] survives for the
We learned in the previous section that in order to meafWo point correlator, but it is canceled for the topological
sure the hidden order one should compare the convention&PITelator because-1)"2 (-1)I"!=(~1)#"*=~1. However,
two point spin correlat0|(|\7l(r)|\7|(0)> with the string cor- this factor is quite important because it is picked up by the

relator defined in Eq(20). Let us compute these correlators ggﬁrgfe; ec[tlc:_); d(li(;ﬁo théfunction appearing in the defini-
explicitly in the largeU limit. In the calculation, the string SE ) : A -
correlator turns out to be a simplified version of the two In Egs.(23) and(24) spin and charge are still “entangled

oint correlator. The latter was already computed b Paroldue to the common dependence prHowever, it can be
P ) y P y Jemonstrated that asymptotically this sum factorizes. It can

and Sorell#® starting from the squeezed space perspectiv 5 M ANIT . .
Let us retrace their derivation to find out where the simplifi%guﬁéz\ée:n dtr;iistfr;/?n SuMZj5Pse(l)(=111()) with 1())
cations occur. 9

Start with the observation that a Heisenberg spin antifer- f(j) - f(j") In*/2(x)
romagnet is realized in squeezed space. This implies that the | S ZFT (25)
squeezed space spin-spin correlator has the well-known 17
asymptotic form differs from the sum
O} = (SHFO) — (- DT = (- 1i0 ) @
el == jo el S PG D [f(r)), (26)
(21) =
whererl is a constant? while j labels the sites in squeezed where
space. x+1
The charge dynamics are governed by an effective system (Ny= —————> PE) = Xpror+ 1 — Xpot  (27)
of noninteracting spinless fermions. Define their number op- (NO)N(X))srj=

erators asi(l) wherel refers to sites in full space. Define the
following correlation function, to be evaluated relative to the
spinless fermion ground state

by terms vanishing faster than*{f(x)/x?. Here,p:=N/L is
the fermion density. Equation25) is satisfied by the
squeezed space staggered magnetizatipn~ Og,dj) and

X .
« . ) since the above result does not depend on the presence of the
sej) =(n(0)n(x) 5 2 n() =j sk (220 staggering facto-1)! it applies equally well to the two

1=0 point spin correlator and the string correlator.
By definition this measures the probability of findingpin- Given this factorization property, let us first consider the
less fermions in the interv@D,x], given one fermion located string correlator
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x+1

Ogi(X) = 22 PéF(j)Ostag(j)
j=

|n3/2(x)

v ) (28)

x+1
= |:22 PéF(])i| Ostag(xptot) + O(
j=

It is easy to demonstrate that the sum overReis just the

PHYSICAL REVIEW B 70, 075109(2004)

The spin correlations are modulated by a function reflect-
ing the uncertainty in the number of sublattice parity flips
which can be expressed in terms of expectation values of
charge string operators. For spinless fermions the following
exact identity holds for the number operator

n(j) = {1 - (- ) 33

density-density correlator of the noninteracting spinless feryhich implies

mion system

" _ 1(1-cog2k
211 P) = (n(0)N(0)sr= il ~ —(M)

2 X

(29)
with kg=mp,o. We arrive at the simple exact result

|n3/2(x)
INY2(pyox) + O( 2

|n3/2 X
= F%Otlnllz(l)totx) + O( Xz( ) .

r

F
ProtX

Ost(X) =(n(x)n(0))s

(30)

1
Dnnse= Z[DSF(X —2)+Dgs(x) - 2Dgex - 1], (34

demonstrating that this function is the second lattice deriva-
tive of the charge-string correlator

Dee¥) = (= 1)%=0") g, (35)

Even for free spinless fermions this function has not been
derived in closed analytic form. However, it can be easily
evaluated numerically and we show in the appendix that it is
very accurately approximated by

(- 1)2}‘;%n<j)>SF: A2 codmpi(x = 1)] (36)
\r’Sin(Wptot) \‘JX -1 ,

This confirms the intuition based on the squeezed space . .
picture. The topological correlator just measures the spin coMvhereA is a constant evaluated to Be=0.6450002448
relations in squeezed space which are identical to those of dsing Ed.(34) it follows immediately that

Heisenberg spin chain, ER1). At short distances this is not
quite true, but it becomes precise at large distances due to the
asymptotic factorization property E@28). Of course,Og,
measures in units of length of the full space and because in
squeezed space sites have been removed the unit of length is
uniformly dilatedx— p;X. By the same token, the amplitude
factor reflects the fact that there are omly; spins per site

present in full space.

DonsX) = ((¥)(= 1>"Vn(0))s
_ A%cog mpsp) — 1] cog mpsX)
v2sin(mpgsp) VX

AZ coq2k-x
—F—S(K 3 ), (37)
V2o X

—

The calculation of the two point spin correlator is lesswhere, as before, k2 =mp,,; and introducing the charge stiff-

easy. Using again the factorization property

x+1

(F(XSH0)) = - 2 PEi) (- DIF(j)
=2

1 3/2,
== [2 PSHI) (- 1>j] Ostad (1) + O( . xz(X))
j=2

In"(pox) o( In®2(x)

=-D r . 1
nn,SF(X) ProX X2 ) (3 )

Due to the staggering factor, the “charge functi@y, s{x)
is now more interesting,

x+1

Dnn,SF(X) = E PéF(J)(_ 1)j
=2

x+1

= n<0>n(x)5(2 n(l) _,-) (- 1)
j=2 S

1=0 =

= (n(0)(- DZ="n(x))s. (32)

nessK. which takes the value 1/2 in a free spinless fermion
system. This is the desired result, and combining it with Eq.
(31) we arrive at the asymptotically exact result for the two
point spin correlator in the largée limit

coq2kex)

(F()S(0)) = A2 e

3/2
n(2) + O( In XZ(X))'

(38)

This calculation demonstrates quite explicitly why the
spin correlations in this Luttinger liquid are sensitive to the
charge fluctuations. The latter enter via the uncertainty in the
location of the sublattice parity flips which is expressed via
the functionD,,, or equally the more fundamental function
D. Due to the factorization proper{l) it enters in a mul-
tiplicative fashion. The string correlator is constructed to be
insensitive to the sublattice parity fluctuation and it follows
that

1 X1
(S)S(0)) = g (SKI(= DH=els(0)). (39

This is in close analogy with Eq15) for the Haldane chain.
The difference is that in the spin chain the string correlator is
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decaying exponentially slower than the two point correlator IV. SQUEEZED SPACE AND NONINTERACTING
while in the largeU Luttinger liquid the difference is only ELECTRONS

algebraic. This h.as an ob_vious reason. In the spin chain, the The existence of squeezed space is remarkable, and intu-
“charge” sector is truly disorderedose condensgdsuch jvely one might think that one needs highly intricate dy-
that the “charge-charge” correlations decay exponentiallhamics associated with strong electron-electron interactions
and this will obviously also cause an exponential decay ofn order for squeezed space to have a chance to emerge. The
the charge string correlat®. The charge sector in the Lut- evidence for its existence presented so far is entirely based
tinger liquid is critical, exhibiting algebraic correlations. As on very special strongly interacting cagéise Haldane spin

we demonstrated explicitly above, this also render® be  chain, the largeJ Hubbard modglwhich can be solved ex-
algebraic. We argued in Sec. Il that the exponential differ-actly for more or less accidental reasons. However, in the
ence found in the spin chain signals the emergence of aprevious paragraphs we have constructed and tested a mea-
Ising gauge symmetry: the charge string just corresponds teuring device which can unambiguously detect squeezed
the Wilson loop of the gauge theory. By the same token, thépace also in cases where simple exact wave functions are
algebraic difference in the Luttinger liquid means that thenot available. Alternatively, it can be detected even in cases
Ising gauge symmetry is not quite realized. However, powekvhere one knows the wave function but where the squeezed
laws indicate criticality and this is in turn associated with aSpace structure is deeply buried because the coordinates are
second order phase transition. Thus we are considering 2Pt Of the right kind. Our measuring recipe is straightfor-
correlator which measures directly the gauge fields; its powef@rd: compute the string correlat20) and find out “'f it
law characteristic indicates that the gauge symmetry itself i@€haves similar to the pure spin chain, or whatever “matter
involved, and the logical consequence is that the LuttingePYSIEM ONne expects to populate squeeze space.

liquid is located at the continuous phase transition wherefulZreecf’rg]:]péeziggsigIi:ﬁ?gfﬁ:i;gi;g”&gﬁragﬂ?gésfgw'
local Ising symmetry emerges. y ' g only

This sounds odd at first sight. However, one should real[lnes of algebra, it survives the test. We interpret this to be a

76 that this ISi v is iust dual to th remarkable feat of the fermion minus signs. Squeezed space
Iz€ that this 1SIng gauge symmetry 1 Just dual to IN€ SUpETiafa g eventually to a bosonic representation of the fermion
fluid phase order in the charge sector. Although in 1

i ! : ~problem, and apparently the minus sign structure in terms of
+1dimensions true long range superfluid order cannot existe fermion representation is of sufficient complexity to
the Luttinger liquid can be viewed as an entity which is atyaxe possible an entity as organized as squeezed space in
the same time an algebraic superfluid and an algebraig,q poson language.

charge density wave. In principle, when one applies an ex- the proof is as follows. For a system 8 1/2 fermions
ternal Josephson field acting on the charge sector alone e can use the following operator relations:
will directly turn into a true superfluid. In this superfluid the

number correlations are short ranged and this implies that the Fy) = %[nT(y) -n/(y)l,
charge-string will decay exponentially.
A caveat is that this Josephson field has to be applied in oY) = Ny (y) +ny(y). (40)

such a way that the spin system is unaffected. For instance , )
applying a standard Josephson field acting, say, on the singlgf‘e string correlator can be written as
channel~W¥. ¥, has the automatic effect that a spin gap _ s (i)

Tl - - =1Mtotl
opens and one can continue adiabatically to the strong singlet OsulX) (SEI(= )=S0

pairing limit. At long distances, only doubly occupied sites =— 711<”T(X)(‘ 1)2jx;fn¢(J)nT(o)><(_ 1)2,*;%%(1'))
and holes remain and it is no longer possible to construct - -

i : i 1 M) i)
squeezed space. It is “eaten” by the spin gap. However, at = 2(n, () (= D=i=t"Wn (0))((= D=i=tMY)
least in principle one can construct a “charge only” Joseph- 1 I G) 1 ()
son field. Consider the lardé limit. The Bethe-ansatz wave +2(M (= 7= ) (0) (= D=

function demonstrates that the ground state in the decoupled 1 a3 ) )
charge sector is in one-to-one correspondence to that of a * 2 () (= DTN (0) (= 7=,

free spinless fermion Hamiltonian. One can simply add to (42)
this Hamiltonian a Josephson field acting directly on the

spinless fermions-H,2,;Ci¢j and for any finite strength of electrons behave as two independent species of free spinless

H, the charge ground state will correspond with @ BCS SUsgrmions. Since the expectation value of any operator involv-
perconducting state. By construction, lth|s field will leave theing only either up- or down-spin creation and annihilation
squeezed space structure and the spin sector unaffected. T&?erators is the same, E@1) simplifies to

ramification is that the quantization of number density is N

truly destroyed and since holes continue to be bound to the Oy, = - (S(x)(- 1)ij=1nmt(1)52(o)>

sublattice parity, the disorder in the number sector becomes 1 o o
the same aZ, gauge degeneracy in the spin sector. This is =~ 3(Nsex¥) (= 1)Fi=1"sHng(0))( (- 1)*i=1"sFD)
the same type of construction as suggested by Batista and 1 X1 X1
Ortiz® in their identification of the Haldane spin chain with a + 3ns) (= DI Nns0) (= D=1,
superfluidt-J, model. (42)

In the noninteracting limit, the spin up and spin down
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FIG. 6. The functionOg=—(S(x)(~1)ZIm)(0)) for U=0
calculated numerically using the algorithm discussed in Appendix FIG. 7. The functionOstr=—(Sz(x)(—1)ij;f”wt(i)82(0)> as com-

iA't.HerT ’;FO‘_?ENSFZV_O'Z andV=200. The drawn line is the ana- puted numerically for the free spinful fermion gas at densitigs

ytic solution Eq.(45). =0.2, pit=0.6, andp,:=1, shown in a log-log plot. The algebraic
decay implied by Eq(45) is indicated by the straight line.

where the operators now refer to spinless fermions. We rec-

ognize in this expression tHese and theD,, s we already

; o correlator therefore uncovers a more orderly behavior. Fur-
encountered in Sec. I[IEgs.(32) and(35)]. In addition we y

| g thermore, the only symmetry reason to expect such an expo-
aiso nee nent to be equal to unity is the protection coming from(®U
_ gy = 1 o _ (spin) symmetry. Can we be certain that this result proves
Dr 5= (Nse) (= D717 = 5[Dsplx = 2) = Dselx = 1)], that even in the noninteracting limit a Heisenberg chain is
(43)  lying within squeezed space? The above computation is not

the first lattice derivative ob. Here, we employ, once again, 'Y explicit in this_reg_ard and the p_ersuasive evidgnce Is
! ! " still to come: bosonization, and especially the numerical re-

the operator identity of Eq.33). The topological correlator i . i ;
P y a:33) po'og sults presented in Section VI showing that the asymptotic

can therefore be expressed entirely in terms of the “funda: X ; L
mental” string opera?oDSF(x)~<H(—)1/)”SF) as agzzzi\gor of the string correlator is independentfand

Ogu(X) = 3[Dse(X — 2)Dse(X) ~ Dsx — 2. (44)

. V. SQUEEZED SPACES AND BOSONIZATION
The functionDgdx) was already encounterdéq. (36),

see also Appendix PAand using this result Arriving at this point, we are facing evidence that the
. . . squeezed space is actually not at all special to the large
4 4 4
Oy (X) = A”sin(mpse) _ A sinlke) _ A” sin(mpiof2) , limit. It could well be ubiquitous in one dimensional electron
4ax 4x 4x systems. How does bosonization fit in? After all, during the

(45) last thirty years overwhelming evidence accumulated for
bosonization to be the correct theory in the scaling limit.
where pse=pi/2=(p;+p|)/2. Note that Re=mpy  Squeezed space is of course fundamental; it is among others
=m(2Nge/ V) and soke=(7Ngg/ V) = mpse. We also calculated  a precise description of the meaning of spin-charge separa-
the string correlator numerically using the method explainedion. How could bosonization ever be correct if it would not
in Appendix A. somehow incorporate the squeezed space structure? In Sec.
In Fig. 6 we show the numerical result f@/(x) for a Vv B we make the case that the peculiarities in the structure of
density p;;=2Nge/V=0.2 andV=200 which is in excellent the theory, originating in the core of the bosonization
agreement with the analytic expressigth). In Fig. 7 we  “mechanism”(i.e., the Mandelstam construction for the fer-
show the numerical results for various densities on a log-lognion operatorg are just coding for squeezed space. Again,
plot highlighting the algebraic decay with an exponentthe string operator is the working horse. By just tracking the
Ks=1. fate of the string and two point spin correlators in the
It is obvious where this exponent, equal to unity, is com-bosonization framework, it becomes evident that it is in one-
ing from in the calculation. From Eg44) it follows that  to-one correspondence with the strong coupling limit. This
Ogy~ 1/(x¥esP2 where the spinless fermion expondfitsy  observation is further amplified in Appendix B where we
=1/2. This looks at first sight rather unspectacular but onediscuss an intuitive argument by Schulz which turns out to
has to realize that the two point spin correlator of the freessubtly misleading. To fix conventions, let us start out collect-
fermion gas decays fasté6S~1/x? and the topological ing some standard expressions.
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A. The bosonization dictionary N (X) =N, (X):
—_— . B
F(x) = BLAA AL A

To fix conventions, let us collect here the various standard 2
bosonization expressions that we will need lateAt the 1
Tomonaga-Luttinger fixed point the dynamics is described in = A /ZT(;X%(X) + OgpwAX) + O;DW,Z(X)' (51)

terms of gaussian scalar fielgg and ¢, for spin and charge,

respectively. Introducing conjugate momeitg. the Hamil-

tonian is whered, o, refers to the uniforngferromagnetiz component
while the finite wave vectors are dominated by te2ke

v 1
Hy = M_EC 5—2& dx[ KMHi + K—(axgoﬂ)z] , (46) component
- H

where Kq(vg) and K (v,) are the spin and charge stiffness OgDWz(X) ~ Ogn (X) = '_e—zikeri\er%(x) sir{\e"ans(x)].

(velocity), respectively. For globally S@2) symmetric spin F 2m

systemsK =1 andK; depends on microscopy yet generally (52)

0=<K_ <1 for repulsive interactions. . .
Electron operators can be reexpressed in terms of these N @ddition we need the usual rules for constructing the

bosonic fields via the Mandelstam construction. Starting?roPagators ofvertex operators in a free field theory such

from the spinful Dirac Hamiltonian describing the linearized @S Eq.(46)

electron-kinetic energy

K: 1

Ho=~ive X f A (003, () = 00t ()], A

(47)

_ (@M271e,(0-¢,0)) = .
the field operators of the lefiw,) and right-(¢,) moving XKy
fermions are expressed in terms of the Bose fields as

(53

P, (X) = ﬁei\f?{w(X)—ffxdyH(y)], B. Vertex operators and squeezed space
V2

It is a peculiarity of bosonization that the charge field
o enters the spin sector in the form of a vertex operatet®c,
Z (X) = Mo oo+, dyTi(y)] (49) see EQ.(52). This can bg traged back to the.Mr':md.eIstam
7 N2 ' construction for the fermion field operatof48) indicating
that the fermions are dual to the fielgs the fermions have

where 7,,, 7, are the Klein factors keeping track of the fer- to do with solitons or kinks in the bose fields.

mion anticommutation relations. Let us observe the workings of bosonization from the
Starting from the normal ordered charge density the totaliewpoint offered by the strong coupling limit discussed in
charge density can be written as Sec. II. We found that the charge-string correldddx) is the

most fundamental quantity keeping track of the fluctuations
in the sublattice parity. Let us see what bosonization has to
say about this correlator.

This function becomes in the continuum

2 dgc
Niot(X) = :N4(X) + N (X): = \/;% + Ocpw(X) + OI:DW(X),
(49)

where dy@. represents uniform components of the charge D(X) = ((- 1)2}(:0ntot(j)>

density, while the various finite momentum components are

lumped together intoOcpy. The dominant contributions * .

come from momenta=2ks and 4, :<COS{TF% Mot(1)])
J:

Ocpw(X) = Oz (X) + Oy (X), x
— (cogm f dy ney) - (54
0
l : Ay —
Osz(X)=;e_z'ker'”z"“’C(x) cog\2mey(X)], The theory is constructed to represent the scaling limit

and therefore we should focus on the leading singularities.
According to Eq.(49), the total charge is given by

IV =\2/md lus finite g components. One can easily con-
— a—dikgx 81 pa(X) \ xPc P q p y
One (x) =™ ﬂlel\ o (500 vince oneself that the latter will give rise to subdominant
contributions which can be neglected in the scaling limit.
Similarly, the spin operato®(x) becomes Hence,
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D(X) =(cogm f a2+ ) Xt ErlednedOl) 4 H-C')
0
. 1 eZI_kFX V27 00~ ¢c(0) ] amiV2 7 ¢ ()~ ¢(0)]
— (cof\2m(e() ~ @O ~ . (55 +< gz (& e e mecne )
As bosonization may only probe nonzero wave vector X<Xe—i\%[<ps(x)—<ps(0)]>+ H.c.). (59)
components of the density the expressions are correct up to

multiplicative factors~coqwpx) (p is average densijy By

convention, the left and right movers created & #re  These contributions sum up to
shifted back to the origin, picking up eiikex) terms. For

two-point correlators this is required in order to to shift the

X1, .
singularities in the correlator to the correct locations, but this Ogy(X) = = (SH(X) (= D)=l SY(0))
is not necessary for the string correlators. 1 1 1 cog2kex)
Keeping this in mind, the outcome is fully consistent with I T I R
the result obtained for the lardé case[Eq. (36), K.=1/2 in
this limit] but now extended to arbitrary values of the charge 1 cog2kgx)
stiffness. The correspondence between bosonization and the T Am? xKstAKe - (59

strong coupling analysis becomes very obvious in the deri-

vations of the two point spin correlator and the string cor- The first term is obviously théover correcteyl uniform
relator. Let us recall the standard derivation in bosonizatiormagnetization and the leading singularity at finite wave vec-
of the spin correlator tors is

1 0
(F(X)SH0)) = ZT<5L&)(:<) 34;;)(() >

+ [(Ospw AX)OLpw A0)) + H.cl,

coq2kex)

(S00(- 1FNa0SH0)) = ==

(60)
Again the caveat applies that bosonization cannot keep
track of the average charge density and the oscillatory factor
in the numerator should therefore be ignored—this “flaw” is
just inherited fromD(x), Eq.(55). Where is this leading sin-
gularity coming from? It corresponds with the third line in
Eqg. (68). This algebra is expressing that the charge vertex

1 _oi i o _
<OSDWZ(X)O£DW1(O)>: 5 2ikex( g2 ec()-¢c(0)y

x (¢ \fﬂ{qos(x)ws(o)])

1, 1 operator coming from the charge string exactly compensates
= gze ! FXXT,LKS (56) for the charge vertex operators attached to the spin operators.
We recognize that this is in precise correspondence with Egs.
and the spin-spin correlation function becomes (24)_—(30) of the strong. couplingllimit. The chgrge st_ring is
coding for the fluctuating kinks in the sublattice parity and
K. 1 1 cod2keX the string correlator is constructed to remove these from the
(S(x$(0)) =~ 4—;2; + PXEI((TKFS) (57)  spin correlations.

What have we achieved? The above leaves no doubt that
Comparing this with the larg&) outcome, Eq(38), the  the algebraic structure of bosonization is exactly coding for
correspondence is cleate\27¢s¥-¢d0l) s the staggered the structure we discussed in a geometrical language in Sec.
magnetization of the spin chain in squeezed space(Ay,. IIl. However, in Sec. Il we had to rely on the simplifications
In strong coupling, the sublattice parity fluctuations enter viaarising in the strong coupling limit. The algebraic structure
the function(n(-1)>"n) [Eq. (37)] which differs fromD by of bosonization is however universal and independent of mi-
just a factor cogmpx). This is of course precisely croscopi_c condi_tion; IiI§e the strength Of For.instanc.:e, in
e—zikFx<ei\“ﬂ{cpc(x)—%(o)b in the bosonization expressias6). the nonlnterac_tlng I|m|tKC:KS_:1 and one directly infers
Notice that the subdominant uniform componerit/x*> was that the b_osonlzanon EXpressions E(@)) and(57) are con-
just ignored in the strong coupling analysis. sistent with the exact re_su_lts_ we derived for the string and
The correspondence is further clarified by considering th&PIn correlators for this limit in Sec. IV. Although there are
string correlator. Straightforwardly, some caveats regarding the use of boso_nlzatlon to calc_ulate
(charge string correlators, these are entirely of a technical
_ s 1o i nature and these affect only subdominant singularities: see
Os(x) = = (S0~ =17V S(0)) Appendix B. We can therefore safely conclude that bosoniza-

(1 BT (50— tion is just encoding the squeezed space geometrical struc-
B (ZT<‘3X‘PS(X)eI\2ﬁ[%(X) #Olo,p4(0)) + H'C'> ture which is manifest in strong coupling. The “hard-wired”
aikex structure of bosonization, in combination with the st_ring op-
+ (e <ei«Z[%(x)—%(one—i\fﬁ[%(x)—%m)b erators, leaves no room for any other conclusion that
? squeezed spaces are ubiquitous in Luttinger liquids. It is in-
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deed the case that even noninteracting one dimensional elec- ' oo T T
tron systems have deep connections with hidden order in
Heisenberg chains.

VI. NUMERICAL RESULTS

To verify that the correlato®;, indeed demonstrates that
squeezed space exists for finite values of the Hubbard cou-
pling U/t and arbitrary density, we performed numerical cal-
culations using the DMRG methdd The DMRG is an ideal . oy
tool for these purposes, because the algorithm construction 10 2 0N 0 N0 8w
implies that string correlators are, in principle, no more dif-
ficult to construct than ordinary two-point correlators. In-
deed, the string operatdr-1)™ is precisely th.at Whlch IS (up to log corrections of the leading order term, is equal to 1
already used to ensure the correct commutation relations f%dependent of the parameters.
the creation and annihilation operators. We utilized the non-
abelian formulatio?? of the DMRG, which makes use of the
SU(2) ® SU(2)=S0O(4)/Z, spin and pseudospin symmetry
of the Hubbard mode® thereby giving a substantial im-
provement in efficiency. The pseudospin symmetry is an eXAKLT wave function. which is obtainedxactly in (non-
pansion of Y1) particle number symmetril to an SU2) Abelian) DMRG with’ m=1 states kept. In principle, the

symmetry which we denote here Ry(this is sometimes also  variational nature of DMRG implies that for a finite number
denoted byl). In the S@4) representation, the particle- of states kept one could inadvertently and incorrectly obtain
number is given by the component of the pseudosph  a state that has nonzero string order. This is not a serious
=2Q?+1. In our calculation, the basis states arg(®@nul-  issue and is entirely analogous to the case of ordinary two-
tiplets, labeled by two half-integral quantum numbé&ss)) point correlators which, in the absence of a symmetry con-
denoting the total spin and total pseudospin respectively. straint, may have a spuriogbut usually negligiblg nonde-

Addressing the scaling limit with the DMRG method is caying component. For example, a not-quite-zero uniform
subtle. In the DMRG method, the ground-state wave funcinagnetization resulting in a nonzero constant in the spin-
tion is calculated in a Hilbert space which is truncated. Thespin correlator. The point is that the construction of DMRG
parameter controlling the truncation is the number of stategeats hidden order of the den Nijs—Rommelse type on a very
kept in each “block’'m. The actual dimension of the space in Similar footing as more conventional order.
which the ground-state wave function is determined is of In the calculations presented here, we used1000
order(4m)2. This truncation introduces an error which, for a SO4) states kept, and a lattice size lof1000. The lattice
“well-behaved” system, is completely systematic and can b&ize was chosen to be rather large in an attempt to reduce the
corrected for by calculating the appropriate scalingnas €ffect of the open boundary conditions. However, this is not
—, For the ground-state energy, this scaling is understoo@trictly necessary and the usual averaging procedure suffices
and a routine calculation in DMRG. For correlation func- to eliminate the Friedel oscillations and obtain the correct
tions, the scaling is highly nonlinear and difficult to perform, scaling form of the correlators even for much smaller lat-
not least due to a result highlighted by Ostlund andtices.
Rommer34 the wave function obtained by DMRG is a  We calculated the string correlat@y,, Eq. (1), the sub-
(position-dependentmatrix-product wave function, which lattice parity correlatoD, Eg. (35), and its second lattice-
implies that the long-range asymptotic behavior of all two-derivative D, Eq. (3), for a large variety of filling factors
point correlation functions is exponential, with a correlationp=0.1:--0.9 andU/t=0---16. Notice that the number opera-
length that depends on the number of states kepwhile in ~ tors appearing in the “charge” strinfsand D,,, correspond
principle one can determine this correlation length and fit thevith ng measuring the presen¢g) or absencg0) of a singly
remaining (algebraig components of the correlation func- occupied site. In the exponent one might as well take the
tion, this is in fact not necessary due to a not so well undertotal charge densityy,=n;+n,, i.e., (=1)"ot=(=1)". How-
stood property ofposition-dependentmatrix product wave —ever,Dy,~ (ngII(=1)"ng) # (Nl 1(~1)"etny,) becauseng can-
functions, namely, in the short-distance correlations the exnot distinguish empty from doubly occupied sites whereas
ponential due to the finite truncation is not present at alln,; does. On the bosonization level this subtlety does not
Thus, as long as a sulfficiently large number of states are kepbatter, but it is consequential for the numerically exact
to be close to the scaling limit at distances less than theharge string correlators. As the strong coupling analysis in
characteristic transition point where the correlator becomeSec. IV demonstrates, the charge string coding for the
exponential, the exponents of algebraic terms can be detesqueezed space structure is actuéllly, because empty and
mined with high accuracy without any additional correctionsdoubly occupied sites are indistinguishable in the squeezing
due to the finite truncation. operation.

Also of note is that matrix-product wave functions generi- The obtained correlation functioD, appears in Fig. 8,
cally carry long-range string order, in the sense that it isplotted on a log-log scale. It is clear from the figure that the

FIG. 8. TheOg, correlator on a log-log plot, for a wide variety
of filling and couplings. The slope, which determines the exponent

likely that all string correlation functions decay exponen-
tially in the asymptotic limit, but it is permissible that the
decay is to a nonzero constant. The canonical example is the
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leading order term iDg,is algebraic, with an exponent that ' ' ' '

GO U=0
.. - . 1 eau=1 W‘M -
is independent of both the filling factor and. The fitted 302 ]
exponent is equal to 1, with a variation over all parameter 09|97 0ot _pmeooeToo
. . o . = a-
ranges of5%. We perceive this asa stnkmg restitiaking g i o PO
away all doubts regarding the “universality of squeezed e P e ]
” . . . . L - 3

space”: regardless microscopic circumstances we have iden- 5 g s

o . . L . ¥07- & * P, &&-A\A e
tified a correlation function which always behaves as if the LSS A “a,
electron system is just the same spinchain. 06k n/"/,, g P R =,

Even the small variation of the exponent is explainable, L&A <*"‘V' B A S S

employing logarithmic corrections. At theU/t—o 055 02 04 Y3 08 T 1

Woynarovich-Ogata-Shiba point, the wave function factor- P

i,ZeS gxactly an_d thOgy Co”_’e'ator measures 9xactly the Io_ga- FIG. 9. The exponent oD,,(x). This function isolates the
rithmic corrections of the isotropi8=1/2 antiferromagnetic  cparge contribution to the correlation functions, hence gives a direct
Heisenberg chaiff:* This coincides with the well-known  getermination ok,. The solid lines are guides to the eye.

form at half filling*® where the presence of the charge gap

implies Heisenberg-like behavior of the logarithmic correc-
tions for anyU > 0. In the general case, the logarithmic cor-
rections arise from the logarithmic RG flow towarkig=1
due to backscattering and as as a result they should obey

pletes our case. The fact that we not only isolate the spin-
only dynamics in the Luttinger liquid usin@Qg, but that we
can reconstruct the two point spin correlator by dressing it
with an entity which is exclusively counting the sublattice
¢y + cInt2 cpx parity mismatche$¢D,,) leaves no doubt that squeezed space
Og(X) = % ’ 6D is universal.

Let us end this section with giving some numerical results
where Only the constants should depend o/t and the regarding the nonuniversal prefactdksp,u)' B(p'U), and
density. It is indeed possible to fit the numerical data to this=(, U). These are clearly sensitive to the details of the short
form with vanishing residual. However for finite-size data, yayelength dynamics and have therefore a similar status as
the constants are not meaningful; a careful scaling analysig,onyniversal amplitudes in any critical theory. Hence, these
as done by Hallberg, Horsch, and Martinez for the Heisenyayve to be calculated numerically.
berg chair®’ should present no difficulty and will be re-  1pa prefactor of th@ string correlatorA(p, U) is given

ported in a subsequent paper. _ in Fig. 10. The numerical prefactor coincides with the ex-
We have argued in previous sections that the charge flu%;

. i th . ) | ected exact expression Ht=0 and follows the expected
tuations present in the ordinary two-point correlators are du rm «p for U, for a Heisenberg chain diluted by a hole

to sublattice parity fluctuations. We found in Sec. Il that in density of (1-p). The exact slope of th&) = prefactor

the strong coupling limit the following r_igoro_us result holds depends sensitively on the exponent of the log corrections,
for the staggered component of the spin-spin correlator with the effect that the prefactor of Fig. 10 is somewhat

> . 138,39
((0) - SX)) ~ Og(X)D,(X). 62) large; the exact — o form is?
: o . 3 pIn'(px)
Our argument is that bosonization reflects this structure and Ogy(X) = wu_ (65)
we are now in the position to test this relation numerically (2m) X

for arbitrary values ofJ and density. As we already empha-
sized, to isolate the squeezed space the number operatorsciﬂ
D,» should measure the density of singly occupied sites
In addition, away from the Woynarovich-Ogata-Shiba point
Eq.(62) is not longer exact but it should become exact in the

This differs from the correlator of a stretched Heisenberg
ain by a prefactop?, which is due to the dilution of the
spins; for the Heisenberg chais)=1/2, but for theHubbard

scaling limit. Equation62) should hold up to &J, p depen- o4 ' ' .
dent prefactor factor which is set by short distance physics. < Dot o
This is exactly what we find. This is demonstrated by Fig. 9 031 9 Us LT 1
which shows the exponent of tii&,, correlator, which turns § g{;s L <
out to be given by 0zl GY gt a-
v < A A
COiZkFX) —1-K o v o4 < NS A ° 8 g g
Dnn(X) = B(p,U)T +O(X %), (63) ol Y N .
whereK, is the usual density and-dependent charge stiff-
ness of the Hubbard model. It follows that 0y : 05 . 1
P
- - COg2kex)
(8(0) - S(x)) =F(p,U) Kot In“(x) (64) FIG. 10. The prefactor oDg,. The numerical data at)=0

matches the exact form determined in Sec. IV. The o prefactor
coincident with the well known asymptotic behavior of the is proportional to the density, exactly as required for a diluted
two point spin correlator in the Luttinger liquid. This com- Heisenberg chain.
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w

— - correlators make it possible to address to what extent these

-~ Uoa o 1 notions are of relevance to generic Luttinger liquids and we

‘o] made the case that squeezed spaces are hard-wired into Lut-

1 tinger liquid theory. It is merely a matter of recognition.

. Although complementary to the standard descriptions, we
find that the squeezed space notion does exert unifying in-
. fluences. It is not an accident that we started out discussing
. the Haldane spin chains. We hope that we convinced the
e e gy | reader that there is a unity underneath which becomes obvi-
5 o5 o o o5 ] ous in this language, while it is far from obvious in the

p standard formulation of bosonization.

Is it more than just clarification? If so, it should be that
these insights can be used to deduce states of one dimen-
sional quantum matter which have been overlooked before.
9n the Luttinger liquid context we have deduced one such
novel state: the “charge only” superconductor we introduced
at the end of Sec. lll. This entity can also be discussed in the
. bosonization language. It is a prerequisite to drive the system
model(s)=ns/2. Thus, with all prefactors accounted for, the away from critically such that the charge sector is genuinely

2.51

FIG. 11. The amplitudeT" obtained from <§(O)§(x))
~T'Og(X)Dp(X). For clarity plotted as’p?, which is equal to unity
in the strong coupling limit. The heavy solid and dashed lines ar
the exact expressions &t=« and U=0, respectively. The light
dashed lines linking the numerical data are guides for the eye.

factorization of thel — = spin correlator i&3° disordered. This requires an external Josephson field stabiliz-
R R 3 1 ing superfluid phase order. A conventional Josephson field
(S(0) - S(X)) = = ——— + 5 O0g(X) D(X) acting on electrons pairs in the singlet channel is expressed
4(m)° p as(recall Sec. V A,
___3 _ _
N 4(mx)? H;= BJJ A (X) (%) = ¥ (X) ()]
.\ 3A%  cog2kg) cog2kex)InY(x) -
(2m)? p\sin(2ke) X2 ’ ~B; J dx cog \2moJsin[ V2w o] (68)
(66)

. involving the dual charge field,6.(x) =—I1(x). This imposes
with 2kg=p. phase ordexpinning of 6,) but it has also the immediate

For finite coupling the exact factorization of the wave effect of opening a spin gapvsir[\f%<ps]). This spin gap
function is destroyed by local fluctuations, so E66) only  means that the spins are paired in pairwise singlets and a

applies rigorously in the strong coupling limit. As shown in squeezed space cannot be defined for these singlets. Instead,
Sec. IV, however, the scaling form applies evette0, with  \yhat is required is a Josephson field acting exclusively on

the introduction of a nonuniversal amplitufi¢U, p), the charge fields,
- - 3 .
(S(0) - S(x)y =— A2 +1'(U,p)Os(X)Dpp(X).  (67) H)= BJJ dxcogv2mo,]. (69)

Figure 11 shows this amplitude as a function of density anGrps il enforce disorder on the charge sector, leaving the
U, which is always finite implying that squeezed space isgpin sector unaffected. Recalling the discussion of the spin

ubiquitous. chain, this charge disorder turns int&agauge invariance in
the spin sector. The spin system in squeezed space resides at
VII. CONCLUSIONS: THE FERMION MINUS SIGNS the [SW2)] critical point separating thXY and Ising fixed
points and together with the minimal coupling to the decon-
In first instance the pursuit presented above can be seen &sing Z, gauge fields a state of matter is realized which is
an exploration of the usefulness of string correlators of thesymmetry-wise indistinguishable from the critical state of the
den Nijs and Rommelse type in the context of one-Haldane spin chain found at the transition from the hidden-
dimensional physics. To our perception these correlatiororder phase to th8=1 XY phase.
functions are worthy additions to the standard repertoire of Although such a state is a theoretical possibility, it is less
one dimensional physics. This will be further amplified in aclear whether it can be realized in nature. Bosonization is
next paper where we will further explore the information onehelpful in clarifying this issue. Starting out with electron
can obtain from string correlators suchsandD,,,. operators, it appears to be impossible to construct a Joseph-
In this paper we used string correlators to clarify someson field of the form Eq(69). One will always find that the
conceptual issues in one-dimensional physics. String correlasharge Josephson field is accompanied lgekevani opera-
tors go hand in hand with the simple geometrical ideas whichior in the spin sector. This might well turn out to be a fun-
emerged in the study of Haldane spin chains and the strondamental obstruction. In the one dimensional universe the
coupling Bethe ansatz solution of the Hubbard model. Theseharge and spin fields are more fundamental than electrons,
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anda priori Eq.(69) is physical. However, a Josephson field tistical protection,” possibly leading to metallic states which
will in practice correspond with a mean field coming from are not Luttinger liquids.
three-dimensional interactions and this implies that this mean A final issue is, is there anything to be learned regarding
field has to be a composite of electron degrees of freedomne relevance of Luttinger liquid physics in higher dimen-
As we argued, squeezed space is hard-wired into thgjong? |n this paper we have worked hard to persuade the
bosonization formalism and even exotic states such as tho?@ader that squeezed space iefiningproperty of the Lut-
discussed in the previqus para_graphs_are _in principle Withi'?inger liquid. As such, it i priori not special to one dimen-
the reach of the formalism. By implication, if a state of elec-s-on, in contrast to, é.g., the lines of critical points and the

tron matter would exist where squeezed space is destroyed, . .
would be beyond bosonization. In the context of the andelstam construction. Given a complete freedom to

(bosonig spin matter of the Haldane chain we encountereo‘:hpOse the microscopic c_ondmons, which fundamental re-
this possibility. Helped by the identification of t® gauge quirements Sh_OU|d be_z fUIf'I.led to form _squee_zed spaces in
symmetry, we presented a recipéne transversal fie)dto higher dlmen5|ons_? Flrs_t, blparfutenes_s is required a_nd th|§ is
stabilize a nonsqueezed spateonfining”) phase of the spin  N° longer automatlp in hlgher Q|men5|on§. As_a starfung point
chain. Is this also possible in the electron Luttinger liquids?°n€ nNeeds a Mott insulator living on a bipartite lattice char-
In this regard it is helpful to view these matters from a yetacterized by an unfrustrated, collinear antiferromagnet. Upon
another angle: the Marshall signs introduced by Weng in th&loping such a Mott insulator the chargé®les will frus-
one dimensional conte%t as an addition to the squeezed trate this spin system unless special conditions are fulfilled:
space construction needed to describe fermion propagatoriese holes have to forniD-1)-dimensional connected
see also Ref. 22 for the extension to 2D and for some intermanifolds as a fundamental requirement to end up in a bi-
esting observations regarding Marshall signs and spin-chargeartite space after the squeezing operation. Different from
separation in 1D. Marshall signs refer to the theorem that théhe one-dimensional situation, true long range order will take
ground state wave function of 8=1/2 spin system defined over when it gets a chance. A first possibility is that these
on a bipartite lattice with nearest neighbor exchange interadD —1)-dimensional hole manifolds simply crystallize, form-
tions is nodeless: it is a bosonic state. In the strong couplingng charge ordered state accompanied by a spin system
limit the spin system in squeezed space is of this kind, anghowing a strong ordering tendency as well, with the char-
this explains in turn why the Bethe-ansatz solution revealsicteristic that the staggered order parameter flips every time
that the charges are governed by spinless fermions. The total charge manifold is crossed. One immediately recognizes
wave function has to be antisymmetric and because squeez#te stripe phases which are experimentally observed in a va-
space exists the spin sector is symmetric, so that the fermiiety of quasi-2D Mott insulators, including the cuprafes.
onic grading resides in the charge sector. Alternatively, assuming that the holes move in pairs, general
Although we are not aware of an explicit proof, it has to reasons are available demonstrating that the charge sector
be that this “division of statistics” is universal in the scaling can turn into a superconductavia a dual dislocation
limit. Our string correlator demonstrates that at long dis-condensatiof?) such that the manifolds continue to form do-
tances the squeezed space spin system does behave exaotgin walls in the sublattice parity although their locus in
as the(unfrustrategl Heisenberg chain and it is hard to imag- space is indeterminate. In direct analogy with the Haldane
ine that this would survive a drastic change involving thespin chain, such a state is characterized by an emergent “sub-
nodal structure of the spin wave function. Let us assume thdattice parity” Z, gauge invariance.
the strong coupling limit is in this regard a prototype of any = The above is just a short summary of some aspects of the
Luttinger liquid, to recollect the lessons learned from the“stripe fractionalization” ideas and for a further discussion
bosonic spin chain. There we learned that to break upve refer to the literaturé:1° Most importantly, the notion of
squeezed space “charge” fluctuations are needed changing #gueezed space make it clear why “Luttinger liquid-like”
length from odd to even and vice versa. This implies thatphysics is not at all generic in higher dimensions but instead
single charges can be created or annihilated and this is @ather fragile, if it exists at all. The bipartiteness of squeezed
course not a problem in a bosonic system because a sing#pace-time in the space directions has to be protected and
boson can condense. However, single fermions cannot corhis requires microscopic fine-tuning.
dense and since in the Luttinger liquid for reasons just dis- The punch-line is that if one wants to contemplate mani-
cussed the charge sector is fermionic, confinement is impogestations of Luttinger liquid physics in higher dimensions it
sible. Admittedly, the argument is circular. It starts outmustbe striped in one way or the other, since squeezed
postulating the existence of squeezed space as an entity uspaces are the most precise way to characterize the phenom-
frustrating the spin system in the Marshall sign sense, to fingnon of spin-charge separation as it arises in the specific one
out that the minus signs in turn offer a complete protection ofdimensional context. This insight also makes is clear why
the squeezed space. This viewpoint suggests that there mighttempts to invoke thequationsgoverning the Luttinger lig-
be ways around the squeezed space and that states canuigs in whatever phenomenological spirit to explain physics
constructed which are beyond bosonization. Starting fronin higher dimensions are bound to fail: these represent a
strongly coupled microscopic dynamics, one can image indynamics which is slaved to an underlying geometrical prin-
teractions which are strongly frustrating the spin system irciple which is only of the right kind in one space dimension.
the Marshall sign sensge., longer range spin-spin interac- To bosonize the electron itself in two space dimensions one
tions). Such interactions could lead to a “signful” spin phys- has to invoke geometrical/gauge principles of a fundamen-
ics in squeezed space, which in turn could diminish the “statally different kind?241
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Prefactor

APPENDIX A: COMPUTATION OF THE CHARGE STRING
CORRELATOR OF FREE SPINLESS FERMIONS

In this appendix we discuss the numerical computation of
the free spinless fermion charge string operé&s&y. We find
that it can be fitted very accurately with the simple expres- %5 02 04 06 08 1
sion (36). This may well be an exact result but we did not Density of electrons n
manage to find the solution with analytical means. o .

Using periodic boundary conditions, the charge string cor- FIG. 13. The crosses indicate the numerical results for the pref-

relator can be written as actor of the functionD(x)=((~1)¥=0"s#)) normalized to 1 fom
. . =pse=N/V=0.5(V=200. The full line corresponds with the func-
(= D=="0) = (kg Ky (= DFi="F DKy -+ k) sp tion 1/ysin(mpsp).
=2 .y (Olay, - - a . . .
Exl xNzyl e | N "1 occupying the lowest Nk;---ky) single fermion states. The
X (- 1)2}(;11n(j)a;rl a; |0) product term on the last line equals -1 whgre[1,x-1]
1 N and 1 otherwise, taking into account the result of the factor
x=1 .
v ( E)Ne_iklxl_'"_ikNXNeiklyl+"'+ikNyN (-=1)%i=1"s#)). Part of this sum can be written as
1 :
- t t _
= Sy Ol " BBy, 8y [0) VE VP - 20(y - 1)6(x - 1 -y)]

y
N
X (l) e—iklxl—-‘-—ikNxNeiklyl+--~+ikNyN 1 2x—l
\Y == @V - =N @yek
A Vi

2 gl(Pkx _ gi(pK)
=Py gy

= 5* (p.k), (A2)

XTI =200y - Dor -1 -y)] (Al

abbreviating the second line with the “star-delta function
6% (p,k). Using this function, the expressiai\l) can be
expressed as the determinant oN&< N matrix containing
6* (ki, k) functions

D(x)

(- 1)Siinsey
0% (kpky) 0% (Ko k) =+ 6% (K ky)
0% (kpkp) 0% (Ko, kp) -+ 6% (ky ko)
=def 0% (kyks) 0% (Kpka) -+ 8% (Ky,kg)

0 50 100 150 200 8% (ki ky) 0% (ko,ky) -0 8% (Kn kn)
Distance x
(A3)
FIG. 12. Numerical resultgcircles for the function D(x)
=((-1)3=os#D)y calculated from Eq(A3), as compared to the ana- and this determinant can be straightforwardly computed nu-
lytical form Eq.(A4) (full line) This is a representative example: we Merically for a fini_te system. )
use N=20 particles on on a chain of length=200 (density psr Careful analysis of the numerical data for a complete
=N/V=0.1), using periodic boundary conditions. range of densities, demonstrates that
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~ COE( (X — 1)N>
A%2 \Y;

. (7N V . [(m(x-1))\
\/S|n<7) \/7_7 Sln( v )
(A4)

As an example, in Fig. 12 we show results fag=N/V
=0.1 for N=20 particles on a chain of length=200
and this compared with the analytic expressi@®). In

(- D)¥Emiyg =

PHYSICAL REVIEW B 70, 075109(2004)

In the thermodynamic limilV — o, N/V— pge Eq. (A4)
becomes

A? \JE

Vsin(mpsg)

cogmps(x —1)]
Vx-1

X—

(= PFFge=

(A5)

reproducing the exact result by Parola and Sofeld the
density ps'::%. These authors showed that at this specific
density the asymptotic form dd(x) is

Fig. 13 the numerical outcomes for the prefactor of

((—1)2?;%”8#15 taking a normalization such that this
is 1 for pge=N/V=0.5. According to the

prefactor
exact result by Parola and Soréfla this

prefactor is equal td(—l)zixgll"SF(j)(\/(V/ msin(m(x—=1)/V)/

[AZVE cog7(x—1)N/V)]. The perfect match between this et Us Jor
the functiontation values(n(x)(-1)%i="YF and (n(x)(—1)*=1"Vn(0))

normalized numerical outcome and

5( (X + 1))
CO —2

I

D(x) = (- 1)Zi-onsrDy = A2\2
Vx+1

(A6)

For completeness, let us list the outcomes for the expec-

1/4sin(mpsp establishes the density dependence of the amwhich can be regarded as lattice derivatives of the charge

plitude in Eq.(A4).

((X)(= DDy g = (- DZMng(0))sr

_D(x-2)-D(x-1)
- 2

string correlatoi(A5). For example, find

AZ (COS(Wpsﬁ()[COS(Wpsp) -1+ Sir(Wpsﬁ()Sin(vrps;)>
VX

2 sin(mpsp)

A1 - cogmpsy) cog mpsex — K)

= sigricogmpsp) — 1]

where the constarK is given by

_mlp-1)
K==~ (A8)
In addition,
()= DFn(0)ge= 5[D(x-2) - 2D(x- 1) + DY)
_ Afcog mpsp) — 1] cod mpsex)
V2 sin(mpsp) o

(A9)

APPENDIX B: A CAVEAT: SCHULZ’ FLAWED LOGIC

vsin(mpsp) VX

and informative regarding the workings of sublattice parity
fluctuations.

) N
density pge v 0.1.

In the above, we rederived the “classic” result that the two
point spin correlatokSS ~ 1/xK<*Ks, Schul#? asserted that
this behavior can be explained by assuming that the system
can be seen as @l +1)-dimensional harmonic crystal of
charges in the continuum. The spins at the sites of this crystal
would just form a Heisenberg antiferromagnet. True long
range crystal order is impossible i1+ 1)dimensions be-
cause the admixture of the Goldstone bos@i®nons ren-
ders the correlations to be algebrdalgebraic long range

The idea that the charge fluctuates the space in which therder (ALRO)]. Schulz’ idea was simple: the spin systems
spin system resides has a long history. In this appendix wdoes not live on fixed positions in space but instead on a
would like to comment on an argument due to the late Heinznedium undergoing Gaussian fluctuations, as if the spin sys-
Schulz#? His argument is not correct, but the flaw is subtle tem “surfs” on the Gaussian charge waves.
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The effects on the spin correlator can be easily calculated. cod mpx)In*2(px)
In the continuum the spin density equals = W
S0 = 2 Steid M) X = %), (B1) cos2keX)
= S—|e|s( m = —(px)1+az:2k,:) |nl/2(pX). (B4)

summing over all the electrons. Starting from the ALRO
crystal, X, can be written ag,,=Ry,+Uy, whereR,=m/p is
the position in thanth electron andi,, its displacement. One
finds for the correlation function

This outcome indeed looks quite similar to the desired
result, identifyinga(2kg) with K.. However, this similarity is
actually misleading. Schulz’ crystal refers to the breaking of
translation symmetry by single electron charges. Implicitly,

- - o - _ this refers to the strongly coupled regime considered in the
(Sx) - S(0)) ~ f dg Y, €%(Sedm) - Syedm’ )R m) ahove and this crystal corresponds with the spinless-fermion

mm’ ALRO crystal(e.g., Ref. 43 The spinless fermionk? turns
X (A UnUm)y (82)  into a spinful electron K- wave vector. Accordingly, the ex-
ponenta(2kg) should be associated with the charge stiffness
Due to the Gaussian fluctuations appearing in the i charge correlations, and this stiffness is
(b)) |m_m/|—a(q)’ (B3) not K. but instead K.. For instance, in the large) case

K.=1/2 and theSchulz argument would predict that the spin
with a(q) ~ 2. Theq integration in Eq(B2) is dominated by ~ correlations would decay as #¥/instead of 1%%2.
the termqg=~ mp=2ke and using the Heisenberg correlation  Where is the flaw? In fact, the implicit assertion in the
function (21) above is thatSS ~(nnjy_ X (SSneis We learned, however,
that the geometry of the spin system is fluctuatedioksin
Sy . & ~ i0(R~Ry—X)/& & (! their translational sectofthe sublattice parity flips These
(S0 - S0 quE ST Sl + Sy M) are dual to the chargeO((r)trder and one Eas }[/0 ugz instead the
exponentiated charge string8S ~ (N(-1)>") X (SSeisc AS

mm’

—a(2k . . .
X |m = m|ee) we showed{n(-1)>"n) decays with an exponent whichks
_ ) (- ™ itself. From the discussion in Sec. IV it is clear that this dual
~ f dg> eampm /p—X)m structure is in fact respected by bosonization. In this sense,
mm’ m=m| bosonization “knows” about squeezed space.
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