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We present the case where Luttinger liquids are characterized by a form of hidden order which is similar, but
distinct in some crucial regards, to the hidden order characterizing spin-1 Heisenberg chains. We construct a
string correlator for the Luttinger liquid which is similar to the string correlator constructed by den Nijs and
Rommelse for the spin chain. We reanalyze the spin one chain, introducing a precise formulation of the
geometrical principle behind the so-called “squeezed space” construction, to demonstrate that the physics at
long wavelength can be reformulated in terms of aZ2 gauge theory. Peculiarly, the normal spin chain lives at
infinite gauge coupling where it is characterized by deconfinement. We identify the microscopic conditions
required for confinement thereby identifying a novel phase of the spin chain. We demonstrate that the Luttinger
liquid can be approached in the same general framework. The difference from the spin chain is that the gauge
sector is critical in the sense that the Luttinger liquid is at the phase boundary where theZ2 local symmetry
emerges. In addition, the “matter”(spin) sector is also critical. We evaluate the string correlator analytically for
the strongly coupled Hubbard model and we further demonstrate that the squeezed space structure is still
present even in the noninteracting fermion gas. This adds new insights to the meaning of bosonization. These
structures are hard wired in the mathematical structure of bosonization and this becomes obvious by consid-
ering string correlators. Numerical results are presented for the string correlator using a non-abelian version of
the density matrix renormalization group algorithm, confirming in detail the expectations following from the
theory. We conclude with some observations regarding the generalization of bosonization to higher dimensions.
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I. INTRODUCTION

The Luttinger liquid, the metallic state of one dimensional
electron matter, is an old subject which is believed to be fully
understood. In the 1970’s the bosonization theory was devel-
oped which has a similar status as the Fermi-liquid theory,
making it possible to compute long wavelength properties in
detail with only a small number of input parameters.1,2 In the
present era, the theory is taken for granted, and it has found
many applications, most recently in the context of
nanophysics.3 Here we will attempt to persuade the reader
that there is still something to be learned about the funda-
mentals of the Luttinger liquid.

In the first instance, it is intended as a clarification of
some features of the Luttinger liquid which appear to be
rather mysterious in the textbook treatments. We make the
case that a physical conception is hidden in the mathematics
of the standard treatise. This physical conception might al-
ternatively be called “hidden order,” “critical gauge decon-
finement” or “fluctuating bipartite geometry.” It all refers to
the same entity, viewed from different angles. This connec-
tion was first explored in our previous paper,4 here we ex-
pand on these ideas to yield some practical consequences:(a)
we identify symmetry principles allowing a sharp distinction
between Luttinger liquids and, for instance, the bosonic liq-
uids found in spin-1 chains5 (the “no-confinement” principle,
Secs. II and III), (b) we identify a new competitor of the
Luttinger liquid (the manifestly gauge invariant supercon-
ductor, Sec. III, a close sibling of the superfluidt−J model of
Batista and Ortiz6), and (c) these insights go hand in hand
with special “string”(or “topological”) correlation functions
which makes it possible unprecedented precision tests of the
analytical theory by computer simulations, offering also ad-

vantages for the numerical determination of exponents(Sec.
VI ).

This pursuit was born out from a state of confusion we
found ourselves in some time ago, caused by a view on the
Luttinger liquid from an unusual angle. Our interest was pri-
marily in what is now called “stripe fractionalization”.7–10

Stripes refer to textures found in doped Mott insulators in
higher dimensions. These can be alternatively called
“charged domain walls”:11 the excess charges condense on
sd−1d-dimensional manifolds, being domain walls in the
collinear antiferromagnet found in the Mott-insulating do-
mains separating the stripes. Evidence accumulated that such
a stripe phase might be in close competition with the high-Tc
superconducting state of the cuprates7,12 and this triggered a
theoretical effort aimed at an understanding of stripe quan-
tum liquids. The idea emerged that, in principle, a supercon-
ductor could exist characterized by quantum-delocalized
stripes which are, however, still forming intact domain walls
in the spin system. Using very similar arguments as found in
Secs. II and III of this paper, it can then be argued that
several new phases of matter exist governed by Ising gauge
theory. This is not the subject of this paper and we refer the
interested reader to the literature.7–10 However, we realized
early on that these ideas do have an intriguing relationship
with one dimensional physics.

Specifically, we were intrigued by two results which, al-
though well known, do not seamlessly fit into the Luttinger
liquid mainstream:(a) the hidden order in Haldane spin
chains as discovered by den Nijs and Rommelse,5 (b) the
squeezed space construction as deduced by Woynarovich13

and Ogata and Shiba14 from theU→` Bethe ansatz solution
of the Hubbard model. As we will discuss in much more
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detail, after some further thought one discovers that both
refer to precisely the same underlying structure. This struc-
ture can be viewed from different sides. Ogata and Shiba14

emphasize the geometrical side: it can be literally viewed as
a dynamically generated “fluctuating geometry,” although
one of a very simple kind. Den Nijs and Rommelse ap-
proached it using the language of order:5 a correlation func-
tion can be devised approaching a constant value at infinity,
signaling symmetry breaking. The analogy with stripe frac-
tionalization makes it clear that it can also be characterized
as a deconfinement phenomenon in the language of gauge
theory.

Whatever one calls it, this refers to a highly organized,
dynamically generated entity. The reason we got confused is
that there is no mention whatsoever in the core literature of
the Luttinger liquid of how these squeezed spaces fit in the
standard bosonization lore. To shed some light on these mat-
ters we found inspiration in the combined insights of den
Nijs and Rommelse and Ogata and Shiba and we constructed
a den Nijs type “string” correlator but now aimed at the
detection of the squeezed space of Ogata and Shiba. This is
the principal device that we use, and it has the form,

Ostrsui − j ud = kSW ifPl=i
j s− 1dnlgSW jl, s1d

whereSW i is the spin operator on sitei while nl measures the
charge density. By studying the behavior of this correlator
one can unambiguously establish the presence of squeezed-
space-like structures. We spend roughly the first half of this
paper explaining how this works and what it all means. In
Sec. II we start with a short review of the den Nijs–
Rommelse work on theS=1 “Haldane”15 spin chains. This is
an ideal setting to develop the conceptual framework. We
subsequently reformulate the spin chain “string” correlator in
a geometrical setting which makes the relationship with the
Woynarovich-Ogata-Shiba squeezed space manifest. We fin-
ish this section with the argument why it is Ising gauge
theory in disguise. This is helpful, because the gauge theory
sheds light on the limitations of the squeezed space: we
present a recipe of how to destroy the squeezed space struc-
ture of the spin chain.

In Sec. III we revisit Woynarovich, Ogata, and Shiba. The
string correlator Eq.(1) is formulated and subsequently in-
vestigated in the largeU limit. This analysis shows that the
Luttinger liquid (at least for largeU) can be viewed as the
critical version of the Haldane spin chain. It resides at the
phase transition where the gauge invariance emerges, while
the matter fields are critical as well. In this section we also
argue why the squeezed space of theelectron liquid cannot
be destroyed. This turns out to be an unexpected conse-
quence of Fermi-Dirac statistics.

In the remaining two sections the string correlator is used
to interrogate the Luttinger liquid regarding squeezed space
away from the strong coupling limit. In Sec. IV we demon-
strate in a few lines a most surprising result: squeezed space
exists even in the noninteracting spinful fermion gas This
confirms in a dramatic way that squeezed space is deeply
rooted in fermion statistics; it is a complexity price one has

to pay when one wants to represent fermion dynamics in one
dimension in terms of bosonic variables.

In Sec. V we turn to bosonization. Viewing the bosoniza-
tion formalism from the perspective developed in the previ-
ous sections it becomes clear that the squeezed space struc-
ture is automatically wired into the structure of the theory. In
this regard, the structure of bosonization closely parallels the
exact derivations presented in Sec. III. In Sec. VI we present
numerical density matrix renormalization group(DMRG)
calculations for the string correlators starting from the Hub-
bard model at arbitrary fillings and interaction strength, em-
ploying a non-Abelian algorithm. These results confirm in a
great detail the expectations built up in the previous sections:
the strongly interacting limit and the noninteracting gas are
smoothly connected and in the scaling limit the string cor-
relator(1) isolates the spin only dynamics regardless the mi-
croscopic conditions. This also has practical consequences;
we deliver the proof of principle that the nonuniversal expo-
nents associated with the logarithmic corrections showing up
in the spin correlations can be addressed away from half
filling. From the combination of bosonization and the exact
results for strong coupling, we suggest that the two point
spin correlator can always be written in the scaling limit as
the product of Eq.(1) and a chargelike string correlator

kSWsxd ·SWs0dl , DnnsxdOstrsxd, s2d

where the “charge” string operator is defined as

Dnnsui − j ud ; knssidfPl=i
j s− 1dnssldgnss jdl, s3d

wherenssid is 1 for a singly occupied site and 0 otherwise.
We confirm numerically that, except for a nonuniversal am-
plitude, the relation(2) seems to be always satisfied at long
distances. The conclusion to this paper addresses the broader
perspective including the relation to stripe fractionalization
in 2+1 dimensions.

II. GEOMETRY, GAUGE THEORY, AND HALDANE SPIN
CHAINS

The “Haldane”15 S=1 Heisenberg spin chains are an ideal
stage to introduce the notions of “hidden order,” squeezed
space, and the relation with Ising gauge theory. These sys-
tems are purely bosonic, i.e., dualization is not required for
the identification of the bosonic fields, and the powers of
bosonic field theory can be utilized with great success to
enumerate the physics completely. We refer in particular to
the mapping by den Nijs and Rommelse5 onto surface statis-
tical physics. We are under the impression that this way of
thinking is not widely disseminated and we start out by re-
viewing some highlights. In the surface language, the mean-
ing of “hidden order” becomes particularly simple(Sec.
II A ). We subsequently use these simple insights to reformu-
late this hidden order in the geometrical language, the
“squeezed space”(Sec. II B). The next benefit of the Haldane
chain is that the identification of squeezed space geometry
with Ising gauge theory is literal(Sec. II C). This sets the
conceptual framework within which we view the Luttinger
liquid.
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A. Haldane spin chains: a short review

Let us first review some established wisdoms concerning
the Haldane spin chains. The relevant model is a standard
Heisenberg model forS=1 extended by biquadratic ex-
change interactions and single-ion anisotropy

H = o
ki j l

SW i ·SW j + ao
ki j l

sSW i ·SW jd2 + Do
i

sSi
zd2. s4d

In the proximity of the Heisenberg pointsa=D=0d the
ground state is a singlet, separated by a finite energy gap
from propagating triplet excitations. It was originally be-
lieved that the long distance physics was described by an
Os3d nonlinear sigma model,15 suggesting that the ground
state is featureless singlet. However, Afflecket al.16,17 dis-
covered that fora=1/3, D=0 the exact ground state wave
function can be deduced, having a particularly simple form.
This “AKLT” wave function can be parametrized as follows.
Split the S=1 microscopic singlets into two Schwinger
bosons uS=1,Msl,bi1,a

† bi2,a
† . The individual Schwinger

bosons carryS=1/2 and thewave function is constructed by
pairing, say, the “1” boson with a “1” boson on the left
neighboring site forming a singlet of valence bond, and the
same with the “2” boson with its counterpart on the right
neighbor

uClAKLT = 2−N/2f¯sbi−1;1↑
† bi;1↓

† − bi−1;1↓
† bi;1↑

† d

3sbi;2↑
† bi+1;2↓

† − bi;2↓
† bi+1;2↑

† d

3sbi+1;1↑
† bi+2;1↓

† − bi+1;1↓
† bi+2;1↑

† d ¯ guvacl. s5d

This wave function clearly has to do with a translational
symmetry breaking involving nearest-neighbor singlet pairs,
although in terms of spin degrees of freedom which are dif-
ferent from the elementary spins. It has become a habit to
call it “valence bond solid order,” i.e., to link it exclusively
to the tendency in the spin system to form spin 1/2 singlet
pairs. Den Nijs and Rommelse5 added a deep understanding
of the physics of these bosonic spin chains by introducing
the mapping on surface statistical physics. Although the
AKLT wave function is a correct prototype for the ground
state of the Heisenberg chain, it is not helpful with regard to
what else can happen. On the other hand, by employing the
formidable powers of surface statistical physics there are no
secrets and it yields a natural view on the physics of the spin
chains. A highlight is their demonstration that this vacuum
can be understood by a nonlocal(“topological”) order pa-
rameter structure in terms of the realS=1 spin degrees of
freedom. The measure of order is the asymptotic constancy
of a correlation function. The conventional two-point spin
correlator in the Haldane chain decays exponentially for
large ui − j u,

kSi
zSj

zl , e−ui−j u/j. s6d

However, considering the following nonlocal spin cor-
relator (or “string” correlator)

kSi
zfPl=i

j s− 1dSl
z
gSj

zl , const s7d

signaling a form of long range order which only becomes
visible when probed through the nonlocal correlator(7). For

this reason it was called “hidden order.” The main purpose of
this section will be to introduce a more precise definition of
this order.

Den Nijs and Rommelse5 deduced the string correlator
using the insights following from the path-integral mapping
onto surface statistical physics. A first, crucial observation is
that the natural basis for the spin chain is not in terms of
generalized coherent states, but instead simply in terms of
the microscopicMs=0, ±1 states of individual spins. Mar-
shall signs are absent and these states can be parametrized in
terms of flavored bosonsb0

†, b±1
† subjected to a local con-

straintoaba
†ba=1. The spin operators become

Si
z = ni,1 − ni,−1,

Si
+ = Î2sbi,1

† bi,0 + bi,0
† bi,−1d,

Si
− = Î2sbi,0

† bi,1 + bi,−1
† bi,0d. s8d

A second crucial observation is that because of the con-
straint the problem is isomorphic to that of a(directed) quan-
tum string living on a square lattice. This is somewhat im-
plicit in the original formulation by den Nijs and Rommelse,
but used to great effect by Eskeset al.18 The mapping is
elementary. A lattice string corresponds with a connected tra-
jectory of “particles” living on a lattice and this string can in
turn be parametrized by a center of mass coordinate and the
set of links connecting all particles. Consider only “forward
moving” links (the string is directed) and identify a nearest-
neighbor link with a Ms=0 bond, and an “upward” and
“downward” next-nearest-neighbor link(“kinks” ) with Ms
=1 andMs=−1 states of the spin on a site of the Haldane
chain, respectively. It is easy to convince oneself that every
state in the Hilbert space of the spin chain corresponds with
a particular string configuration. TheXY terms are respon-
sible for the creation of kink-antikink pairs and the propaga-
tion of individual kinks along the string, while Ising terms
govern the interactions between the kinks. In the path inte-
gral formulation, quantum strings spread out into world
sheets and the world sheet of the lattice string corresponds
with a surface statistical physics which is completely under-
stood: the restricted solid-on-solid(RSOS) surface.

The topological order of the Haldane spin chain translates
into a simple form of order in the surface language: the dis-
ordered flat phase. The +1 and −1 kinks on the time slice
turn into up and down steps on the world sheet in space time,
see Fig. 1. In the disordered flat phase these steps have pro-
liferated(kinks occur at finite density while they are delocal-
ized) but on this surface every “up” step is followed by a
down step and the surface as a whole is still flat, pinned to
the lattice. In the string language the order is therefore mani-
fest, but it becomes elusive when translated back to the spin
system. It implies that the ground state of the spin chain is a
coherent superposition of a special class of states. These are
composed of indeterminate mix of 0, ±1 states. Take the 0’s
as a reference vacuum and view theMs=±1 states as par-
ticles carrying an in internal “flavor” ±1. These particles are
delocalized. However, every +1 particle is followed by a −1
particle, modulo local violations(virtual excitations) which
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can be integrated out perturbatively(Fig. 1). The hidden or-
der is thereby nothing else than the staggered order of the ±1
flavors of the “spin particles.” This order is not seen by the
spin-1 operators because these also pick up thepositional
disorder of the ±1 “particles.”

B. Squeezed space: sublattice parity as a gauge freedom

String correlators similar to Eq.(7) have the purpose of
“dividing out” the positional disorder with the effect that the
order of the “internal” ±1 flavors becomes observable. In
order to see the similarity with the phenomena occurring in
the Luttinger liquid we need a more precise description of
how this ‘division’ is accomplished than that found in the
original literature. It amounts to a geometrical mapping of a
simple kind. The string correlator can be written in terms of
the bosons as

kSi
zfPl=i

j s− 1dSl
z
gSj

zl ; ksni,1 − ni,−1d

3 Pl=i
j s− 1d1−nl,0 3 snj ,1 − nj ,−1dl.

s9d

Why is this tending to a constant while the two-point spin
correlator is decaying exponentially? From the discussion in
Sec. II A it follows that modulo local fluctuations the ground
state wave function has the form

uCl = o asx1,x2, . . . ,x2i,x2i+1, . . . d

3ux1s1d,x2s− 1d, . . . ,x2is− 1d,x2i+1s1d, . . . l, s10d

where thexi’s refer to the positions of the ±1 particles on the
chain, and the amplitudesa are independent from the “inter-
nal” s±1d degrees of freedom; these “internal” Ising spins

show the antiferromagnetic order. In order to construct a two
point correlator capable of probing this “internal” order it is
necessary to redefine the space in which the internal degrees
of freedom live. Start out with the full spin chain and for
each configuration, whenever a site occupied by a 0 particle
is found remove this site and shift, say, all right neighbors to
the left, see Fig. 2. This new space is called “squeezed
space” and the effect of the map from “full” to squeezed
space is such that every configuration appearing in Eq.(10)
maps on the same antiferromagnetic order as realized on the
squeezed chain.

Obviously, if it would be possible to probe squeezed
space directly, the hidden order would be measurable using
conventional two point correlators. The string correlator
achieves just this purpose. All that matters is that the order in
squeezed space is a staggered(antiferromagnetic) order. For
such order one needs a bipartite geometry: it should be pos-
sible to divide the lattice intoA andB sublattices such that
every site on theA sublattice is neighbored byB sublattice
sites and vice versa. One dimensional space is bipartite(even
the continuum). This subdivision can be done in two ways:
¯A−B−A−B¯ or ¯B−A−B−A¯, corresponding with
theZ2 valued quantity we call sublattice parity. For a normal
lattice the choice of sublattice parity is arbitrary, it is a “pure
gauge.” However, in the mapping of squeezed to full space it
becomes “alive,” actually in a way which is in close corre-
spondence to the workings of a dynamicalZ2 gauge field as
will become clear later. Consider what happens when
squeezed space is unsqueezed(Fig. 2). When a “0” particle
including its site is reinserted, the “flavor” site, say, on its
right side is shifted one lattice constant to the right. The
effect is that relative to the reference sublattice parity of
squeezed space the sublattice parity in unsqueezed space
changes sign every time a “0” particle is passed. The effect is
that flips in the sublattice appear to be “bound” to the 0
particles viewing matters in full space. In order to interrogate
the “flavor” order in squeezed space one has to remove these
sublattice parity flips. This can be achieved by multiplying
the spin with a minus one every time a 0 particle is encoun-
tered: s−1d3 s−1dl+1=s−1dl. The den Nijs string operator is
constructed to precisely achieve this purpose,

FIG. 1. Mapping of the spin chain on a directed quantum string
living on a lattice(Ref. 18). TheMs=0, ±1 states of the spin chain
are equivalent to horizontal and upward/downward diagonal links
tracing out the trajectory of the string on the lattice. TheXY terms
in the spin Hamiltonian correspond with the kinetic energy of the
string problem causing both the creation of kink-antikink pairs(the
±1 bonds) and the coherent propagation of individual kinks. At the
Heisenberg and AKLT points, hidden order is present. Although
kinks are proliferated their direction is ordered: every up kink is
followed by a down kink(a). In the string representation this just
means that the string pins to the links of the lattice. In the rough
sXYd phase kinks have proliferated while their direction is disor-
dered as well(b).

FIG. 2. The geometrical mapping from “full”(a) to “squeezed”
space(b). Given that some antiferromagnet lives in squeezed space,
all that matters is the fate of the sublattice parityp. When sites are
reinserted, the sublattice parity of the system in squeezed space flips
every time a hole is passed when viewed in full space. These sub-
lattice parity flips hide the order present in squeezed space.
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ksni,1 − ni,−1dfPl=i
j s− 1d1−nl,0gsnj ,1 − nj ,−1dl

; ks− 1disni,1 − ni,−1dfPl=i
j s− 1dnl,0g

3s− 1d jsnj ,1 − nj ,−1dl. s11d

Hence, the string correlator measures the spin order in
squeezed space by removing the sublattice parity flips. The
positional disorder of the particles is equivalent to motions of
the sublattice parity flips, scrambling the order living in
squeezed space, and these are removed by the string opera-
tors.

The above argument emphasizes the geometrical nature of
the mechanism hiding the order. It might at this point appear
as a detour because one arrives at the same conclusion by
just focusing on the “flavor” orientations, see Fig. 3. How-
ever, as will become clear in later sections, the construction
is still applicable even when the spin system in squeezed
space is disordered. Hence, it is more general and rigorous to
invoke the geometrical sublattice parity as a separate degree
of freedom in addition to the degrees of freedom populating
squeezed space.

C. Squeezed spaces and Ising gauge theory

At first sight, it might appear that sublattice parity is not
quite a normal dynamical degree of freedom. However, it is
easily seen that it is nothing else than an uncommon ultra-
violet regularization ofZ2 gauge fields. From the above dis-
cussion it is clear that the “flavor” degrees of freedom of the
±1 particles can be regarded as independent from their posi-
tions in unsqueezed space. These flavors areZ2 valued and
can be measured by

t i
z = s1 − bi,0

† bi,0ds− 1diSi
z. s12d

The positions of the particles drive the uncertainty in the
value of the sublattice parity and these are captured by theZ2
valued operators

s l
z = s− 1dnl,0 s13d

and it follows that modulo a factor of order 1

ksni,1 − ni,−1dfPl=i
j s− 1d1−nl,0gsnj ,1 − nj ,−1dl

~ kt i
zfPl=i

j sl
zgt j

zl s14d

and, in the presence of the hidden order

kt i
zt j

zl ~ e−ui−j u/jkt i
zfPl=i

j s l
zgt j

zl, s15d

i.e., at distances large compared toj the correlations between
the t spins have disappeared but they re-emerge when the
operator stringfPl=i

j s l
zg is attached to every spin.

This suffices to precisely specify the governing symmetry
principle: the long distance physics is governed by aZ2
gauge field(the s’s) minimally coupled to spin-1/2 matter
(the t’s). The stringsfPl=i

j s l
zg simply correspond with the

Wilson loop associated with theZ2 gauge fields rendering the
matter correlation function gauge invariant. The two point
correlator in thet’s is violating gauge invariance and has
therefore to disappear. This gauge invariance is emerging. It
is not associated with the microscopic spin Hamiltonian and
it needs some distancej before it can take control. There-
fore, the gauge-violatingkt i

zt j
zl is nonzero forui − j u ,j.

This is an interesting and deep connection: the indeter-
minedness of the sublattice parity in full space is just the
same as invariance underZ2 gauge transformations. One can
view the squeezed space construction as an ultraviolet regu-
larization ofZ2 gauge theory, demonstrating a simple mecha-
nism for the “making” of gauge symmetry which is distinct
from the usual mechanism invoking local constraints(e.g.,
Refs. 10 and 19.)

Is this yet another formal representation or does it reveal
new physical principles? As we will now argue, the latter is
the case. Viewing it from the perspective of the gauge theory,
it becomes immediately obvious that there is yet another
possible phase of the spin chain: theconfiningphase of the
gauge theory. To the best of our knowledge this phase has
been overlooked because its existence is not particularly ob-
vious in the spin language.

For a good tutorial in gauge theory we refer to Kogut’s
review.20 Focusing on the most relevant operators, theZ2/Z2
theory can be written as

Z =E DtDse−S,

S=E ddxdtFJo
i j

tisi jt j + Ko
plaq

PplaqsG , s16d

leaving the gauge volume implicit in the measure.t and s
areZ2 valued fields living, respectively, on the sites and the
links of a (hypercubic) space-time lattice. The action of the
gauge fields is governed by a plaquette action, i.e., the prod-
uct of the fields encircling every plaquette, summed over all
plaquettes. The gauge invariance corresponds with the in-
variance of the action under the flip of the signs of all thes’s
departing from a sitei, accompanied by a simultaneous flip
of the ti. This gauge invariance implies thatti =1↔−1 and
ktit jl=0 while ktifPGsgt jl can be nonzero(with G a line of
bonds on the lattice connectingi and j ; the Wilson loop).
This is the most general ramification of the gauge symmetry
and Eq.(15) is directly recognized.

The relation between the gauge theory and the squeezed
space construction is simple(Fig. 4). The gauge invariance is
just associated with the indeterminacy of the sublattice parity
in unsqueezed space. If the 0’s would not fluctuate one could

FIG. 3. Same as Fig. 2 but now for the case that an Ising long
range order is present in squeezed space, corresponding with the
hidden order of theS=1 Heisenberg spin chain. From such pictures
one can directly deduce the workings of string operators by just
focusing on the spins. However, matters are equally meaningful in
the absence of long range order in squeeze space, and the formula-
tion terms of a geometrical mapping involving sublattice parity is
more general.
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ascribe a definite value to the sublattice parity everywhere,
and this is equivalent to choosing a unitary gauge fix in the
gauge theory. However, because of the delocalization of the
0’s one cannot say if the sublattice parity is +1 or −1 and this
corresponds with the gauge invariance.

As is obvious from the string correlator, theZ2 gauge
fields (coding for the indeterminacy of the sublattice parity)
are coupled to matter degrees of freedom being just the “fla-
vors” living in squeezed space. In the hidden-order/
disordered flat phase these are Ising spins showing long
range order. The constancy of the string correlator at long
distances reflects this fact. From the viewpoint of the gauge
theory this appears as anabsurdity. It means that the hidden
order phase is the Higgs phase of theZ2/Z2 gauge theory,
characterized by a gauged matter propagator becoming as-
ymptotically constant. In the gauge theory this can only hap-
pen in the singular limit where the gauge couplingK→`.

Even under the most optimal circumstances(high dimen-
sionality), a Wilson loop should decay exponentially with a
perimeter law due to local fluctuations in the gauge sector.
Stronger, it is elementary that in 1+1 dimensions the Higgs
and deconfining phases are fundamentally unstable to con-
finement. This law can only be violated in the singular limit
K→`. Hence, the hidden order appears as highly unnatural
within the framework of the gauge theory. What is the reason
that confinement is avoided in the Haldane spin chain? More
interestingly, what has to be done to recover the natural con-
finement state?

The disorder operators in the gauge sector are the visons
or gauge fluxes. These are pointlike entities(instantons) in
s1+1d-dimensional space-time. For any finite value of the
coupling constantK these will be present at a finite density
with the result that the vacuum is confining and the implica-
tion that ktifPGsgt jl→0 at large distances. Translating this

to the geometrical language, a vison corresponds with a pro-
cess where a squeezed space of even length on time slicet
turns into a squeezed space of odd length on time slicet
+dt or vice versa. In this way a minus gauge flux is accu-
mulated on a timelike plaquette(see Fig. 5). In terms of the
degrees of freedom of the spin chain this means that asingle
Ms=0 state can fluctuate into aMs=±1 state and vice versa.
It is obvious now why the spin chain corresponds with the
K→` limit of the gauge theory, namely the Hamiltionian of
the former only containspairs of spin raising or lowering
operators,Si

+Sj
−. From Eq.(8) it follows immediately that

“0” particles can only be created or annihilated in pairs.
These processes do change the length of squeezed space but
they turn even-length squeezed space into even-length
squeezed space, or odd-length squeeze space into odd-length
squeezed space. Confinement requires odd to even or even to
odd fluctuations. In the geometrical language, deconfinement
means that space-time is still bipartite although the two ways
of subdividing space-time are indistinguishable. Confine-
ment means that bipartiteness is destroyed outright because
squeezed space-time can no longer be divided in two sublat-
tices due to the presence of the visons.

Going back to the spin chain, the message is that there is
apparently yet another phase of theS=1 spin chain which
has not been identified yet: a state corresponding with the
confining phase of the gauge theory. The recipe for confine-
ment is clear. At first sight, a simple a transverse field
BoiSi

x=sB/2doifSi
++Si

−g seems a candidate because it creates
isolated visons. However, becausefS2,Szg=0 the singlet
ground state wave function is not changed at all by such a
field and the hidden order stays intact—we believe this has
to do with “phase(Marshall sign) strings.”21,22 Surely this is
an accident of SU(2). One can conceive more interesting
“transverse fields” which exists in the extended[SU(3)]
space of operators which can be constructed from theS=1
states. For example, a termBoisu−1lk0u− u0lk+1u+H.c.d al-
most does the job; the den Nijs string correlator decays ex-
ponentially to zero in the in thex andz directions, although
the y direction remains Néel ordered.

An interesting feature is that despite the qualitative
change in the behavior of the string correlators, the ground
state energy changes smoothly when such a “confining” field

FIG. 4. Squeezed space mappings as geometrical interpretation
of Ising gauge theory. Although the word lines(in space-timex, t)
of the ±1 particles span up a bipartite lattice for an observer which
is just watching word lines, this bipartiteness is hidden in full space
when the particles are delocalized. This is equivalent to the conven-
tional lattice regularization of aZ2 gauge theory involving a
plaquette action where the +↔− gauge invariance of the link vari-
ables acquires the meaning that it is impossible to determine the
bipartiteness of squeezed space by measuring in full space. The
absence of free visons(minus fluxes) does imply that the hidden
bipartiteness exists and the existence of squeezed space corresponds
with deconfinement. Taking the unitary gauge is equivalent to
squeezing space.

FIG. 5. As in Fig. 4 except that now a single ±1 particle is
annihilated. This means that the bipartiteness of squeezed space is
destroyed and this is in one-to-one correspondence with the pres-
ence of isolated visons(minus fluxes) in the Z2 gauge theory for-
mulation: the “natural” confining state.
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is switched on—this has to be because of the incompressible
nature of the vacuum. Hence, something is changing in the
ground state but this is not accompanied by a level crossing
signalling a true thermodynamic phase transition. This is
fully consistent with the gauge interpretation. This puzzle
has been around in gauge theory since the 1970’s under the
label “Abelian gauge theories with matter in fundamental
representation.”23 We are dealing here with theZ2/Z2
matter/gauge theory and it is well known that the Wilson
loop turns from a constant to a perimeter law when the gauge
coupling becomes large but finite and the system enters the
“Higgs-confinement” phase, while the free energy is smooth.
As we will discuss elsewhere in more detail, this signals a
subtle, nonthermodynamic topological change of the vacuum
state. Interestingly, this seems to bear a direct relationship
with the quantum-information theoretic “localizable en-
tanglement,” recently introduced in this context by Verstra-
ete, Martín-Delgado, and Cirac.24

Exploiting the relationship with gauge theory and quan-
tum information, a number of other interesting conclusions
can be reached regarding of the spin chains. However, spin
chains are not the real subject of this paper, and we leave this
for a future publication. The primary aim of this section is to
supply a conceptual framework for the discussion of the
more convoluted “hidden order” in the Luttinger liquids. Let
us list the important lessons to be learned from the spin
chains, and indicate how these relate to the Luttinger liquids.

(1) The central construction is squeezed space, the exis-
tence of which can be detected using den Nijs–type string
correlators. The determination of such a correlator for the
Luttinger liquid is the subject of the next section.

(2) The phases where sublattice parity flips are truly de-
localized are characterized by an emergentZ2 gauge symme-
try. We make the case that such phases can in principle occur
also in the Luttinger liquid context, while the Luttinger liq-
uid itself resides right at the phase boundary where theZ2
local invariance emerges.

(3) In the spin chains, squeezed space can be destroyed by
transverse fields causing confinement. We argue that in the
Luttinger liquids this is impossible because of the fermion
minus signs of the electrons, with the ramification that
squeezed spaceis universal.

III. LUTTINGER LIQUIDS: SQUEEZED SPACE
IN THE LARGE U LIMIT

The focus in this section is entirely on the Luttinger liq-
uids which can be regarded as continuations of those describ-
ing the long distance physics of Hubbard models. The bot-
tom line is that these Hubbard-Luttinger liquids are
characterized by a critical form of the spin-chain type hidden
order as discussed in the previous section. This criticality has
two sides:(a) the sZ2d gauge fields are critical, in the sense
that the Luttinger liquid is associated with the phase transi-
tion where the local symmetry emerges,(b) the matter fields
(spins) are also in a critical phase.

The argument rests again on the squeezed space construc-
tion, and this should not come as a surprise to the reader who
is familiar with the one dimensional literature. This construc-

tion was introduced first by Ogata and Shiba,14 who redis-
covered earlier work by Woynarovich13 regarding a far-
reaching simplification in the Lieb and Wu Bethe-ansatz
solution of the Hubbard model25 in the U→` limit. This
Woynarovich-Ogata-Shiba work just amounts to the realiza-
tion that in the largeU limit the structure of the Bethe-ansatz
solution coincides with a squeezed space construction. For
simplicity, assume a thermodynamical potentialm.0 such
that no doubly occupied sites occur. ForU tending to infinity,
the ground state wave functionc of a Hubbard chain of
lengthL occupied byN electrons(with N,L) factorizes into
a simple product of spin- and charge wave functions

csx1, . . . ,xN;y1, . . . ,yMd = cSFsx1, . . . ,xNd cHeissy1, . . . ,yMd.

s17d

The charge partcSF represents the wave function of nonin-
teracting spinless fermions where the coordinatesxi refer to
the positions of theN singly occupied sites. The spin wave-
function cHeis is identical to the wave function of a chain of
Heisenberg spins interacting via an antiferromagnetic nearest
neighbor exchange, and the coordinatesyj, j =1, . . . ,M refer
to the M positions occupied by the up spins in the Heisen-
berg chain. The surprise is that the coordinatesyj do not refer
to the original Hubbard chain with lengthL, but instead to a
new space: a chain of lengthN constructed from the sites at
coordinatesx1,x2, . . . ,xN given by the positions of the
charges(singly occupied sites) in a configuration with am-
plitudecSF. One immediately notices that it is identical to the
squeezed space mapping for the Haldane spin chains dis-
cussed in the previous section, associating theMs=0 states
of the spin chain with the holes and theMs=±1 states with
the singly occupied sites carrying electron spin up(1) or
down (2). In fact, as already pointed out by Batista and
Ortiz,6 one can interpret the spin chain as just a bosonict-
Jz mode, i.e., lowering the SU(2) symmetry of the Hubbard
model to Ising, dismissing the Jordan-Wigner strings making
up the difference between spinless fermions and hard-core
bosons, and last but not least adding an external Josephson
field forcing the holes(Ms=0, in the spin language) to con-
dense giving a true Bose condensate.

Since the geometrical mapping is the same, a “string”
operator equivalent to that of den Nijs and Rommelse can be
constructed for the Luttinger liquid. In order to measure the
spin correlations in squeezed space starting from unsqueezed
space one should construct an operator which removes the
sublattice parity flips. Define the staggered magnetization in
unsqueezed space as

MW sxd = s− 1dxSWsxd. s18d

Compared to the corresponding quantity in squeezed space,
these acquire an additional fluctuation due to the motions of
the sublattice parity flips. Since these flips are attached to the
holes, they can be “multiplied out” by attaching a “charge
string”

sM8dzsxd = Mzsxds− 1do j=−`
x−1 f1−ntots jdg, s19d

where 1−ntots jd is the number of holes on sitej and the
charge operatorntots jd=n↑s jd+n↓s jd taking the values 0, 1,
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and 2 for an empty, singly, and doubly occupied site, respec-
tively. sM8dz is representative for the “true” staggered mag-
netization living in squeezed space. The action of the charge
string P js−1d1−ntots jd is to add a −1 staggering factor only
when the sitej is singly occupied, thereby reconstructing the
bipartiteness in squeezed space. It follows that the analogue
of the den Nijs topological operator becomes

Ostrsxd = ksM8dzsxdsM8dzs0dl

= kMzsxds− 1do j=0
x−1f1−ntots jdgMzs0dl

= − fSzsxds− 1do j=1
x−1ntots jdSzs0dl. s20d

The focus of the remainder of the paper is on the analysis
of this correlator. To the best of our knowledge, correlators
of this form have only been considered before in the context
of stripe fluids in 2+1 dimensions.7,27 String correlators have
been constructed before in the one-dimensional context28,29

but these are of a different nature, devised to detect “hidden
order” of an entirely different type.

On this level of generality it might appear that the hidden
order of the Haldane chain duplicates that of the Luttinger
liquid. However, dynamics matters and in this regard the
Luttinger liquid is quite different. Instead of genuine disorder
in the “charge” sector and the true long range order in the
“spin” sector of the spin chain, both charge and spin are
critical in the Luttinger liquid and this makes matters more
delicate.

We learned in the previous section that in order to mea-
sure the hidden order one should compare the conventional

two point spin correlatorkMW srdMW s0dl with the string cor-
relator defined in Eq.(20). Let us compute these correlators
explicitly in the largeU limit. In the calculation, the string
correlator turns out to be a simplified version of the two
point correlator. The latter was already computed by Parola
and Sorella26 starting from the squeezed space perspective.
Let us retrace their derivation to find out where the simplifi-
cations occur.

Start with the observation that a Heisenberg spin antifer-
romagnet is realized in squeezed space. This implies that the
squeezed space spin-spin correlator has the well-known
asymptotic form

OHeiss jd ; kSzs jdSzs0dl → s− 1d jG
ln1/2s jd

j
; s− 1d jOstags jd,

s21d

whereG is a constant,30 while j labels the sites in squeezed
space.

The charge dynamics are governed by an effective system
of noninteracting spinless fermions. Define their number op-
erators asnsld wherel refers to sites in full space. Define the
following correlation function, to be evaluated relative to the
spinless fermion ground state

PSF
x s jd = kns0dnsxddSo

l=0

x

nsld − jDlSF. s22d

By definition this measures the probability of findingj spin-
less fermions in the intervalf0,xg, given one fermion located

at site 0 and one at sitex. Parola and Sorella26 show that the
exact relation between Eq.(21) and the two point correlator
in full space is

kSzsxdSzs0dl = o
j=2

x+1

PSF
x s jdOHeiss j − 1d

= o
j=2

x+1

PSF
x s jds− 1d j−1Ostags j − 1d

→ − o
j=2

x+1

PSF
x s jds− 1d jOstags j − 1d. s23d

Let us now consider instead the string correlator

Ostrsxd = − kSzs0ds− 1do j=1
x−1ns jdSzsxdl

= − o
j=2

x+1

PSF
x s jds− 1d j−2OHeiss j − 1d

→ o
j=2

x+1

PSF
x s jdOstags j − 1d. s24d

The difference between the two point correlator and the
string correlator looks at first sight to be rather unremark-
able. The staggering factors−1d j associated with the sign of
staggered spin in squeezed space[Eq. (21)] survives for the
two point correlator, but it is canceled for the topological
correlator becauses−1d j−23 s−1d j−1=s−1d2j−3=−1. However,
this factor is quite important because it is picked up by the
charge sector due to thed function appearing in the defini-
tion of PSF [Eq. (22)].

In Eqs.(23) and(24) spin and charge are still “entangled”
due to the common dependence onj . However, it can be
demonstrated that asymptotically this sum factorizes. It can
be proven26 that the sumo j=2

x+1PSF
x s jds−1d j fs jd with fs jd

bounded and satisfying

U fs jd − fs j8d
j − j8

U ø 2G
ln1/2sxd

x2 s25d

differs from the sum

Fo
j=2

x+1

PSF
x s jds− 1d jG fskrlxd, s26d

where

krlx =
1

kns0dnsxdlSF
o
j=2

x+1

jPSF
x s jd = xrtot + 1→ xrtot s27d

by terms vanishing faster than ln3/2sxd /x2. Here,rtot=N/L is
the fermion density. Equation(25) is satisfied by the
squeezed space staggered magnetizationfs jd,Ostags jd and
since the above result does not depend on the presence of the
staggering factors−1d j it applies equally well to the two
point spin correlator and the string correlator.

Given this factorization property, let us first consider the
string correlator
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Ostrsxd = o
j=2

x+1

PSF
x s jdOstags jd

= Fo
j=2

x+1

PSF
x s jdGOstagsxrtotd + OS ln3/2sxd

x2 D . s28d

It is easy to demonstrate that the sum over thePSF is just the
density-density correlator of the noninteracting spinless fer-
mion system

o j=1

x+1
PSF

x s jd = kns0dnsxdlSF= rtot
2 −

1

2
S1 − coss2kFxd

px2 D ,

s29d

with kF=prtot. We arrive at the simple exact result

Ostrsxd = knsxdns0dlSF
G

rtotx
ln1/2srtotxd + OS ln3/2sxd

x2 D
= G

rtot

x
ln1/2srtotxd + OS ln3/2sxd

x2 D . s30d

This confirms the intuition based on the squeezed space
picture. The topological correlator just measures the spin cor-
relations in squeezed space which are identical to those of a
Heisenberg spin chain, Eq.(21). At short distances this is not
quite true, but it becomes precise at large distances due to the
asymptotic factorization property Eq.(28). Of course,Ostr
measures in units of length of the full space and because in
squeezed space sites have been removed the unit of length is
uniformly dilatedx→rtotx. By the same token, the amplitude
factor reflects the fact that there are onlyrtot spins per site
present in full space.

The calculation of the two point spin correlator is less
easy. Using again the factorization property

kSzsxdSzs0dl = − o
j=2

x+1

PSF
x s jds− 1d j fs jd

= −Fo
j=2

x+1

PSF
x s jds− 1d jGOstagskrlxd + OS ln3/2sxd

x2 D
= − Dnn,SFsxdG

ln1/2srtotxd
rtotx

+ OS ln3/2sxd
x2 D . s31d

Due to the staggering factor, the “charge function”Dnn,SFsxd
is now more interesting,

Dnn,SFsxd = o
j=2

x+1

PSF
x s jds− 1d j

= o
j=2

x+1Kns0dnsxddSo
l=0

x

nsld − jDL
SF

s− 1d j

= kns0ds− 1dol=0
x nsldnsxdlSF. s32d

The spin correlations are modulated by a function reflect-
ing the uncertainty in the number of sublattice parity flips
which can be expressed in terms of expectation values of
charge string operators. For spinless fermions the following
exact identity holds for the number operator

ns jd =
1

2
f1 − s− 1dns jdg, s33d

which implies

Dnn,SF=
1

4
fDSFsx − 2d + DSFsxd − 2DSFsx − 1dg, s34d

demonstrating that this function is the second lattice deriva-
tive of the charge-string correlator

DSFsxd ; ks− 1dol=0
x nsldlSF. s35d

Even for free spinless fermions this function has not been
derived in closed analytic form. However, it can be easily
evaluated numerically and we show in the appendix that it is
very accurately approximated by

ks− 1do j=1
x−1ns jdlSF=

A2Î2
Îsinsprtotd

cosfprtotsx − 1dg
Îx − 1

, s36d

where A is a constant evaluated to beA=0.6450002448.26

Using Eq.(34) it follows immediately that

Dnn,SFsxd = knsxds− 1do j=1
x−1ns jdns0dlSF

=
A2fcossprSFd − 1g

Î2sinsprSFd
cossprSFxd

Îx

→ A2

Î2

coss2kFxd
xKc

, s37d

where, as before, 2kF=prtot and introducing the charge stiff-
nessKc which takes the value 1/2 in a free spinless fermion
system. This is the desired result, and combining it with Eq.
(31) we arrive at the asymptotically exact result for the two
point spin correlator in the largeU limit

kSzsxdSzs0dl = A2Î2G
coss2kFxd

rx1+Kc
ln1/2sx/2d + OS ln3/2sxd

x2 D .

s38d

This calculation demonstrates quite explicitly why the
spin correlations in this Luttinger liquid are sensitive to the
charge fluctuations. The latter enter via the uncertainty in the
location of the sublattice parity flips which is expressed via
the functionDnn or equally the more fundamental function
D. Due to the factorization property(31) it enters in a mul-
tiplicative fashion. The string correlator is constructed to be
insensitive to the sublattice parity fluctuation and it follows
that

kSzsxdSzs0dl ~
1

xKc
kSzsxds− 1do j=1

x−1ntots jdSzs0dl. s39d

This is in close analogy with Eq.(15) for the Haldane chain.
The difference is that in the spin chain the string correlator is

GEOMETRY AND THE HIDDEN ORDER OF LUTTINGER… PHYSICAL REVIEW B 70, 075109(2004)

075109-9



decaying exponentially slower than the two point correlator
while in the largeU Luttinger liquid the difference is only
algebraic. This has an obvious reason. In the spin chain, the
“charge” sector is truly disordered(Bose condensed), such
that the “charge-charge” correlations decay exponentially
and this will obviously also cause an exponential decay of
the charge string correlatorD. The charge sector in the Lut-
tinger liquid is critical, exhibiting algebraic correlations. As
we demonstrated explicitly above, this also rendersD to be
algebraic. We argued in Sec. II that the exponential differ-
ence found in the spin chain signals the emergence of an
Ising gauge symmetry: the charge string just corresponds to
the Wilson loop of the gauge theory. By the same token, the
algebraic difference in the Luttinger liquid means that the
Ising gauge symmetry is not quite realized. However, power
laws indicate criticality and this is in turn associated with a
second order phase transition. Thus we are considering a
correlator which measures directly the gauge fields; its power
law characteristic indicates that the gauge symmetry itself is
involved, and the logical consequence is that the Luttinger
liquid is located at the continuous phase transition where
local Ising symmetry emerges.

This sounds odd at first sight. However, one should real-
ize that this Ising gauge symmetry is just dual to the super-
fluid phase order in the charge sector. Although in 1
+1dimensions true long range superfluid order cannot exist,
the Luttinger liquid can be viewed as an entity which is at
the same time an algebraic superfluid and an algebraic
charge density wave. In principle, when one applies an ex-
ternal Josephson field acting on the charge sector alone it
will directly turn into a true superfluid. In this superfluid the
number correlations are short ranged and this implies that the
charge-string will decay exponentially.

A caveat is that this Josephson field has to be applied in
such a way that the spin system is unaffected. For instance,
applying a standard Josephson field acting, say, on the singlet
channel,C↑C↓ has the automatic effect that a spin gap
opens and one can continue adiabatically to the strong singlet
pairing limit. At long distances, only doubly occupied sites
and holes remain and it is no longer possible to construct
squeezed space. It is “eaten” by the spin gap. However, at
least in principle one can construct a “charge only” Joseph-
son field. Consider the largeU limit. The Bethe-ansatz wave
function demonstrates that the ground state in the decoupled
charge sector is in one-to-one correspondence to that of a
free spinless fermion Hamiltonian. One can simply add to
this Hamiltonian a Josephson field acting directly on the
spinless fermions,HJoki j lci

†cj
† and for any finite strength of

HJ the charge ground state will correspond with a BCS su-
perconducting state. By construction, this field will leave the
squeezed space structure and the spin sector unaffected. The
ramification is that the quantization of number density is
truly destroyed and since holes continue to be bound to the
sublattice parity, the disorder in the number sector becomes
the same asZ2 gauge degeneracy in the spin sector. This is
the same type of construction as suggested by Batista and
Ortiz6 in their identification of the Haldane spin chain with a
superfluidt-Jz model.

IV. SQUEEZED SPACE AND NONINTERACTING
ELECTRONS

The existence of squeezed space is remarkable, and intu-
itively one might think that one needs highly intricate dy-
namics associated with strong electron-electron interactions
in order for squeezed space to have a chance to emerge. The
evidence for its existence presented so far is entirely based
on very special strongly interacting cases(the Haldane spin
chain, the largeU Hubbard model) which can be solved ex-
actly for more or less accidental reasons. However, in the
previous paragraphs we have constructed and tested a mea-
suring device which can unambiguously detect squeezed
space also in cases where simple exact wave functions are
not available. Alternatively, it can be detected even in cases
where one knows the wave function but where the squeezed
space structure is deeply buried because the coordinates are
not of the right kind. Our measuring recipe is straightfor-
ward: compute the string correlator(20) and find out if it
behaves similar to the pure spin chain, or whatever “matter”
system one expects to populate squeeze space.

The simplest possible example is the noninteracting, spin-
ful electron system. As we will demonstrate using only a few
lines of algebra, it survives the test. We interpret this to be a
remarkable feat of the fermion minus signs. Squeezed space
refers eventually to a bosonic representation of the fermion
problem, and apparently the minus sign structure in terms of
the fermion representation is of sufficient complexity to
make possible an entity as organized as squeezed space in
the boson language.

The proof is as follows. For a system ofS=1/2 fermions
we can use the following operator relations:

Szsyd = 1
2fn↑syd − n↓sydg,

ntotsyd = n↑syd + n↓syd. s40d

The string correlator can be written as

Ostrsxd = − kSzsxds− 1dS j=1
x−1ntots jdSzs0dl

= − 1
4kn↑sxds− 1dS j=1

x−1n↑s jdn↑s0dlks− 1dS j=1
x−1n↓s jdl

− 1
4kn↓sxds− 1dS j=1

x−1n↓s jdn↓s0dlks− 1dS j=1
x−1n↑s jdl

+ 1
4kn↑sxds− 1dS j=1

x−1n↑s jdlkn↓s0ds− 1dS j=1
x−1n↓s jdl

+ 1
4kn↓sxds− 1do j=1

x−1n↓s jdlkn↑s0ds− 1dS j=1
x−1n↑s jdl.

s41d

In the noninteracting limit, the spin up and spin down
electrons behave as two independent species of free spinless
fermions. Since the expectation value of any operator involv-
ing only either up- or down-spin creation and annihilation
operators is the same, Eq.(41) simplifies to

Ostr = − kSzsxds− 1dS j=1
x−1ntots jdSzs0dl

= − 1
2knSFsxds− 1dS j=1

x−1nSFs jdnSFs0dlks− 1dS j=1
x−1nSFs jdl

+ 1
2knSFsxds− 1dS j=1

x−1nSFs jdlknSFs0ds− 1dS j=1
x−1nSFs jdl,

s42d
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where the operators now refer to spinless fermions. We rec-
ognize in this expression theDSF and theDnn,SF we already
encountered in Sec. III[Eqs. (32) and (35)]. In addition we
also need

Dn,SF= knSFsxds− 1dS j=1
x−1nSFs jdl = 1

2fDSFsx − 2d − DSFsx − 1dg,

s43d

the first lattice derivative ofD. Here, we employ, once again,
the operator identity of Eq.(33). The topological correlator
can therefore be expressed entirely in terms of the “funda-
mental” string operatorDSFsxd,kPs−1dnSFl as

Ostrsxd = 1
8fDSFsx − 2dDSFsxd − DSFsx − 1d2g. s44d

The functionDSFsxd was already encountered[Eq. (36),
see also Appendix A] and using this result

Ostrsxd =
A4 sinsprSFd

4x
=

A4 sinskFd
4x

=
A4 sinsprtot/2d

4x
,

s45d

where rSF=rtot/2=sr↑+r↓d /2. Note that 2kF=prtot

=ps2NSF/Vd and sokF=spNSF/Vd=prSF. We also calculated
the string correlator numerically using the method explained
in Appendix A.

In Fig. 6 we show the numerical result forOstrsxd for a
densityrtot=2NSF/V=0.2 andV=200 which is in excellent
agreement with the analytic expression(45). In Fig. 7 we
show the numerical results for various densities on a log-log
plot highlighting the algebraic decay with an exponent
Ks=1.

It is obvious where this exponent, equal to unity, is com-
ing from in the calculation. From Eq.(44) it follows that
Ostr,1/sxKc,SFd2 where the spinless fermion exponentKc,SF

=1/2. This looks at first sight rather unspectacular but one
has to realize that the two point spin correlator of the free-
fermion gas decays fasterkSSl,1/x2 and the topological

correlator therefore uncovers a more orderly behavior. Fur-
thermore, the only symmetry reason to expect such an expo-
nent to be equal to unity is the protection coming from SU(2)
(spin) symmetry. Can we be certain that this result proves
that even in the noninteracting limit a Heisenberg chain is
lying within squeezed space? The above computation is not
very explicit in this regard and the persuasive evidence is
still to come: bosonization, and especially the numerical re-
sults presented in Section VI showing that the asymptotic
behavior of the string correlator is independent ofU and
density.

V. SQUEEZED SPACES AND BOSONIZATION

Arriving at this point, we are facing evidence that the
squeezed space is actually not at all special to the largeU
limit. It could well be ubiquitous in one dimensional electron
systems. How does bosonization fit in? After all, during the
last thirty years overwhelming evidence accumulated for
bosonization to be the correct theory in the scaling limit.
Squeezed space is of course fundamental; it is among others
a precise description of the meaning of spin-charge separa-
tion. How could bosonization ever be correct if it would not
somehow incorporate the squeezed space structure? In Sec.
V B we make the case that the peculiarities in the structure of
the theory, originating in the core of the bosonization
“mechanism”(i.e., the Mandelstam construction for the fer-
mion operators), are just coding for squeezed space. Again,
the string operator is the working horse. By just tracking the
fate of the string and two point spin correlators in the
bosonization framework, it becomes evident that it is in one-
to-one correspondence with the strong coupling limit. This
observation is further amplified in Appendix B where we
discuss an intuitive argument by Schulz which turns out to
subtly misleading. To fix conventions, let us start out collect-
ing some standard expressions.

FIG. 6. The functionOstr=−kSzsxds−1do j=1
x−1ntots jdSzs0dl for U=0

calculated numerically using the algorithm discussed in Appendix
A. Here rtot=2NSF/V=0.2 andV=200. The drawn line is the ana-
lytic solution Eq.(45).

FIG. 7. The functionOstr=−kSzsxds−1do j=1
x−1ntots jdSzs0dl as com-

puted numerically for the free spinful fermion gas at densitiesrtot

=0.2, rtot=0.6, andrtot=1, shown in a log-log plot. The algebraic
decay implied by Eq.(45) is indicated by the straight line.

GEOMETRY AND THE HIDDEN ORDER OF LUTTINGER… PHYSICAL REVIEW B 70, 075109(2004)

075109-11



A. The bosonization dictionary

To fix conventions, let us collect here the various standard
bosonization expressions that we will need later.1,2 At the
Tomonaga-Luttinger fixed point the dynamics is described in
terms of gaussian scalar fieldsws andwc for spin and charge,
respectively. Introducing conjugate momentaPs,c the Hamil-
tonian is

HTL = S
m=c,s

vm

2
E dxFKmPm

2 +
1

Km

s]xwmd2G , s46d

where Kssvsd and Kcsvcd are the spin and charge stiffness
(velocity), respectively. For globally SU(2) symmetric spin
systemsKs=1 andKc depends on microscopy yet generally
0øKc,1 for repulsive interactions.

Electron operators can be reexpressed in terms of these
bosonic fields via the Mandelstam construction. Starting
from the spinful Dirac Hamiltonian describing the linearized
electron-kinetic energy

H0 = − ivFo
s
E dxfcs

†sxd]xcssxd − c̄s
†sxd]xc̄ssxdg,

s47d

the field operators of the left-sc̄sd and right- scsd moving
fermions are expressed in terms of the Bose fields as

cssxd =
hs

Î2p
eiÎpfwsxd−e−`

x dyPsydg,

c̄ssxd =
h̄s

Î2p
e−fwsxd+e−`

x dyPsydg, s48d

wherehs ,h̄s are the Klein factors keeping track of the fer-
mion anticommutation relations.

Starting from the normal ordered charge density the total
charge density can be written as

ntotsxd = :n↑sxd + n↓sxd: .Î 2

p

]wc

]x
+ OCDWsxd + OCDW

† sxd,

s49d

where ]xwc represents uniform components of the charge
density, while the various finite momentum components are
lumped together intoOCDW. The dominant contributions
come from momentaq=2kF and 4kF,

OCDWsxd = O2kF
sxd + O4kF

sxd,

O2kF
sxd =

1

p
e−2ikFxeiÎ2pwcsxd cosfÎ2pwssxdg,

O4kF
sxd = e−4ikFx 1

2p2eiÎ8pwcsxd. s50d

Similarly, the spin operatorSzsxd becomes

Szsxd =
:n↑sxd − n↓sxd:

2

=Î 1

2p
]xwssxd + OSDW,zsxd + OSDW,z

† sxd, s51d

where]xws refers to the uniform(ferromagnetic) component
while the finite wave vectors are dominated by theq=2kF
component

OSDW,z
† sxd . OSz,2kF

sxd =
i

2p
e−2ikFxeiÎ2pwcsxd sinfÎ2pwssxdg.

s52d

In addition we need the usual rules for constructing the
propagators of(vertex) operators in a free field theory such
as Eq.(46)

k]xwmsxd]xwns0dl = − dm,n
Kc

2p

1

x2 ,

keinÎ2pfwmsxd−wms0dgl =
1

xn2Km
. s53d

B. Vertex operators and squeezed space

It is a peculiarity of bosonization that the charge field
enters the spin sector in the form of a vertex operator,eiwc,
see Eq.(52). This can be traced back to the Mandelstam
construction for the fermion field operators(48) indicating
that the fermions are dual to the fieldsw: the fermions have
to do with solitons or kinks in the bose fields.

Let us observe the workings of bosonization from the
viewpoint offered by the strong coupling limit discussed in
Sec. II. We found that the charge-string correlatorDsxd is the
most fundamental quantity keeping track of the fluctuations
in the sublattice parity. Let us see what bosonization has to
say about this correlator.

This function becomes in the continuum

Dsxd ; ks− 1do j=0
x ntots jdl

= kcosfpo
j=0

x

ntots jdgl

→ kcosfpE
0

x

dy ntotsydgl. s54d

The theory is constructed to represent the scaling limit
and therefore we should focus on the leading singularities.
According to Eq. (49), the total charge is given byntot
=Î2/p]xwc plus finite q components. One can easily con-
vince oneself that the latter will give rise to subdominant
contributions which can be neglected in the scaling limit.
Hence,
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Dsxd = kcosfpE
0

x

dysÎ2/p]ywsyd + ¯ dgl

→ kcosfÎ2pswsxd − ws0ddgl ,
1

xKc
. s55d

As bosonization may only probe nonzero wave vector
components of the density the expressions are correct up to
multiplicative factors,cossprxd (r is average density). By
convention, the left and right movers created at ±kF are
shifted back to the origin, picking up exps±ikFxd terms. For
two-point correlators this is required in order to to shift the
singularities in the correlator to the correct locations, but this
is not necessary for the string correlators.

Keeping this in mind, the outcome is fully consistent with
the result obtained for the largeU case[Eq. (36), Kc=1/2 in
this limit] but now extended to arbitrary values of the charge
stiffness. The correspondence between bosonization and the
strong coupling analysis becomes very obvious in the deri-
vations of the two point spin correlator and the string cor-
relator. Let us recall the standard derivation in bosonization
of the spin correlator

kSzsxdSzs0dl =
1

2p
K ]wssxd

]x

]wss0d
]x

L
+ fkOSDW,zsxdOSDW,z

† s0dl + H.c.g,

kOSDW,zsxdOSDW,z
† s0dl =

1

8p2e−2ikFxkeiÎ2pfwcsxd−wcs0dgl

3keiÎ2pfwssxd−wss0dgl

=
1

8p2e−2ikFx 1

xKc+Ks
s56d

and the spin-spin correlation function becomes

kSzsxdSzs0dl = −
Ks

4p2

1

x2 +
1

4p2

coss2kFxd
xKc+Ks

. s57d

Comparing this with the largeU outcome, Eq.(38), the
correspondence is clear:keiÎ2pfwssxd−wss0dgl is the staggered
magnetization of the spin chain in squeezed space, Eq.(21).
In strong coupling, the sublattice parity fluctuations enter via
the functionkns−1donnl [Eq. (37)] which differs fromD by
just a factor cossprxd. This is of course precisely
e−2ikFxkeiÎ2pfwcsxd−wcs0dgl in the bosonization expression(56).
Notice that the subdominant uniform component,1/x2 was
just ignored in the strong coupling analysis.

The correspondence is further clarified by considering the
string correlator. Straightforwardly,

Ostrsxd = − kSzsxds− 1do j=1
x−1ntots jdSzs0dl

= S 1

4p
k]xwssxdeiÎ2pfwcsxd−wcs0dg]xwss0dl + H.c.D

+ Se−2ikFx

8p2 keiÎ2pfwcsxd−wcs0dge−iÎ2pfwcsxd−wcs0dgl

3e−iÎ2pfwssxd−wss0dgl + H.c.D
+ Se2ikFx

8p2 ke−iÎ2pfwcsxd−wcs0dge−iÎ2pfwcsxd−wcs0dgl

3k3e−iÎ2pfwssxd−wss0dgl + H.c.D . s58d

These contributions sum up to

Ostrsxd = − kSzsxds− 1do j=1
x−1ntots jdSzs0dl

= −
1

4p2

1

x2+Kc
−

1

4p2

coss2kFxd
xKs

−
1

4p2

coss2kFxd
xKs+4Kc

. s59d

The first term is obviously the(over corrected) uniform
magnetization and the leading singularity at finite wave vec-
tors is

kSzsxds− 1do j=1
x−1ntots jdSzs0dl =

coss2kFxd
xKs

. s60d

Again the caveat applies that bosonization cannot keep
track of the average charge density and the oscillatory factor
in the numerator should therefore be ignored—this “flaw” is
just inherited fromDsxd, Eq. (55). Where is this leading sin-
gularity coming from? It corresponds with the third line in
Eq. (58). This algebra is expressing that the charge vertex
operator coming from the charge string exactly compensates
for the charge vertex operators attached to the spin operators.
We recognize that this is in precise correspondence with Eqs.
(24)–(30) of the strong coupling limit. The charge string is
coding for the fluctuating kinks in the sublattice parity and
the string correlator is constructed to remove these from the
spin correlations.

What have we achieved? The above leaves no doubt that
the algebraic structure of bosonization is exactly coding for
the structure we discussed in a geometrical language in Sec.
III. However, in Sec. III we had to rely on the simplifications
arising in the strong coupling limit. The algebraic structure
of bosonization is however universal and independent of mi-
croscopic conditions like the strength ofU. For instance, in
the noninteracting limitKc=Ks=1 and one directly infers
that the bosonization expressions Eqs.(60) and(57) are con-
sistent with the exact results we derived for the string and
spin correlators for this limit in Sec. IV. Although there are
some caveats regarding the use of bosonization to calculate
(charge) string correlators, these are entirely of a technical
nature and these affect only subdominant singularities: see
Appendix B. We can therefore safely conclude that bosoniza-
tion is just encoding the squeezed space geometrical struc-
ture which is manifest in strong coupling. The “hard-wired”
structure of bosonization, in combination with the string op-
erators, leaves no room for any other conclusion that
squeezed spaces are ubiquitous in Luttinger liquids. It is in-
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deed the case that even noninteracting one dimensional elec-
tron systems have deep connections with hidden order in
Heisenberg chains.

VI. NUMERICAL RESULTS

To verify that the correlatorOstr indeed demonstrates that
squeezed space exists for finite values of the Hubbard cou-
pling U / t and arbitrary density, we performed numerical cal-
culations using the DMRG method.31 The DMRG is an ideal
tool for these purposes, because the algorithm construction
implies that string correlators are, in principle, no more dif-
ficult to construct than ordinary two-point correlators. In-
deed, the string operators−1dns is precisely that which is
already used to ensure the correct commutation relations for
the creation and annihilation operators. We utilized the non-
abelian formulation32 of the DMRG, which makes use of the
SUs2d ^ SUs2d.SOs4d /Z2 spin and pseudospin symmetry
of the Hubbard model,33 thereby giving a substantial im-
provement in efficiency. The pseudospin symmetry is an ex-
pansion of U(1) particle number symmetryN to an SU(2)
symmetry which we denote here byQW (this is sometimes also

denoted byIW). In the SO(4) representation, the particle-
number is given by thez component of the pseudospinN
=2Qz+1. In our calculation, the basis states are SO(4) mul-
tiplets, labeled by two half-integral quantum numbersss,qd
denoting the total spin and total pseudospin respectively.

Addressing the scaling limit with the DMRG method is
subtle. In the DMRG method, the ground-state wave func-
tion is calculated in a Hilbert space which is truncated. The
parameter controlling the truncation is the number of states
kept in each “block”m. The actual dimension of the space in
which the ground-state wave function is determined is of
orders4md2. This truncation introduces an error which, for a
“well-behaved” system, is completely systematic and can be
corrected for by calculating the appropriate scaling asm
→`. For the ground-state energy, this scaling is understood
and a routine calculation in DMRG. For correlation func-
tions, the scaling is highly nonlinear and difficult to perform,
not least due to a result highlighted by Östlund and
Rommer:34 the wave function obtained by DMRG is a
(position-dependent) matrix-product wave function, which
implies that the long-range asymptotic behavior of all two-
point correlation functions is exponential, with a correlation
length that depends on the number of states keptm. While in
principle one can determine this correlation length and fit the
remaining (algebraic) components of the correlation func-
tion, this is in fact not necessary due to a not so well under-
stood property of(position-dependent) matrix product wave
functions, namely, in the short-distance correlations the ex-
ponential due to the finite truncation is not present at all.
Thus, as long as a sufficiently large number of states are kept
to be close to the scaling limit at distances less than the
characteristic transition point where the correlator becomes
exponential, the exponents of algebraic terms can be deter-
mined with high accuracy without any additional corrections
due to the finite truncation.

Also of note is that matrix-product wave functions generi-
cally carry long-range string order, in the sense that it is

likely that all string correlation functions decay exponen-
tially in the asymptotic limit, but it is permissible that the
decay is to a nonzero constant. The canonical example is the
AKLT wave function, which is obtainedexactly in (non-
Abelian) DMRG with m=1 states kept. In principle, the
variational nature of DMRG implies that for a finite number
of states kept one could inadvertently and incorrectly obtain
a state that has nonzero string order. This is not a serious
issue and is entirely analogous to the case of ordinary two-
point correlators which, in the absence of a symmetry con-
straint, may have a spurious(but usually negligible) nonde-
caying component. For example, a not-quite-zero uniform
magnetization resulting in a nonzero constant in the spin-
spin correlator. The point is that the construction of DMRG
treats hidden order of the den Nijs–Rommelse type on a very
similar footing as more conventional order.

In the calculations presented here, we usedm=1000
SO(4) states kept, and a lattice size ofL=1000. The lattice
size was chosen to be rather large in an attempt to reduce the
effect of the open boundary conditions. However, this is not
strictly necessary and the usual averaging procedure suffices
to eliminate the Friedel oscillations and obtain the correct
scaling form of the correlators even for much smaller lat-
tices.

We calculated the string correlatorOstr, Eq. (1), the sub-
lattice parity correlatorD, Eq. (35), and its second lattice-
derivativeDnn, Eq. (3), for a large variety of filling factors
r=0.1¯0.9 andU / t=0¯16. Notice that the number opera-
tors appearing in the “charge” stringsD andDnn correspond
with ns measuring the presence(1) or absence(0) of a singly
occupied site. In the exponent one might as well take the
total charge densityntot=n↑+n↓, i.e., s−1dntot=s−1dns. How-
ever,Dnn,knsPs−1dnsnslÞ kntotPs−1dntotntotl becausens can-
not distinguish empty from doubly occupied sites whereas
ntot does. On the bosonization level this subtlety does not
matter, but it is consequential for the numerically exact
charge string correlators. As the strong coupling analysis in
Sec. IV demonstrates, the charge string coding for the
squeezed space structure is actuallyDnn because empty and
doubly occupied sites are indistinguishable in the squeezing
operation.

The obtained correlation functionOstr appears in Fig. 8,
plotted on a log-log scale. It is clear from the figure that the

FIG. 8. TheOstr correlator on a log-log plot, for a wide variety
of filling and couplings. The slope, which determines the exponent
(up to log corrections) of the leading order term, is equal to 1
independent of the parameters.
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leading order term inOstris algebraic, with an exponent that
is independent of both the filling factor andU. The fitted
exponent is equal to 1, with a variation over all parameter
ranges of,5%. We perceive this as a striking result,4 taking
away all doubts regarding the “universality of squeezed
space”: regardless microscopic circumstances we have iden-
tified a correlation function which always behaves as if the
electron system is just the same spinchain.

Even the small variation of the exponent is explainable,
employing logarithmic corrections. At theU / t→`
Woynarovich-Ogata-Shiba point, the wave function factor-
izes exactly and theOstr correlator measures exactly the loga-
rithmic corrections of the isotropicS=1/2 antiferromagnetic
Heisenberg chain.30,35 This coincides with the well-known
form at half filling,36 where the presence of the charge gap
implies Heisenberg-like behavior of the logarithmic correc-
tions for anyU.0. In the general case, the logarithmic cor-
rections arise from the logarithmic RG flow towardsKs=1
due to backscattering and as as a result they should obey

Ostrsxd =
c1 + c2ln

1/2 c3x

x
, s61d

where only the constantsci should depend onU / t and the
density. It is indeed possible to fit the numerical data to this
form with vanishing residual. However for finite-size data,
the constants are not meaningful; a careful scaling analysis,
as done by Hallberg, Horsch, and Martinez for the Heisen-
berg chain,37 should present no difficulty and will be re-
ported in a subsequent paper.

We have argued in previous sections that the charge fluc-
tuations present in the ordinary two-point correlators are due
to sublattice parity fluctuations. We found in Sec. III that in
the strong coupling limit the following rigorous result holds
for the staggered component of the spin-spin correlator

kSWs0d ·SWsxdl , OstrsxdDnnsxd. s62d

Our argument is that bosonization reflects this structure and
we are now in the position to test this relation numerically
for arbitrary values ofU and density. As we already empha-
sized, to isolate the squeezed space the number operators in
Dnn should measure the density of singly occupied sitesns.
In addition, away from the Woynarovich-Ogata-Shiba point
Eq. (62) is not longer exact but it should become exact in the
scaling limit. Equation(62) should hold up to aU, r depen-
dent prefactor factor which is set by short distance physics.
This is exactly what we find. This is demonstrated by Fig. 9
which shows the exponent of theDnn correlator, which turns
out to be given by

Dnnsxd = Bsr,Ud
coss2kFxd

xKc
+ Osx−1−Kcd, s63d

whereKc is the usual density andU-dependent charge stiff-
ness of the Hubbard model. It follows that

kSWs0d ·SWsxdl = Fsr,Ud
coss2kFxd

xKc+1 lnasxd s64d

coincident with the well known asymptotic behavior of the
two point spin correlator in the Luttinger liquid. This com-

pletes our case. The fact that we not only isolate the spin-
only dynamics in the Luttinger liquid usingOstr but that we
can reconstruct the two point spin correlator by dressing it
with an entity which is exclusively counting the sublattice
parity mismatchessDnnd leaves no doubt that squeezed space
is universal.

Let us end this section with giving some numerical results
regarding the nonuniversal prefactorsAsr ,Ud, Bsr ,Ud, and
Fsr ,Ud. These are clearly sensitive to the details of the short
wavelength dynamics and have therefore a similar status as
nonuniversal amplitudes in any critical theory. Hence, these
have to be calculated numerically.

The prefactor of theOstr string correlator,Asr ,Ud is given
in Fig. 10. The numerical prefactor coincides with the ex-
pected exact expression atU=0 and follows the expected
form ~r for U→`, for a Heisenberg chain diluted by a hole
density of s1−rd. The exact slope of theU→` prefactor
depends sensitively on the exponent of the log corrections,
with the effect that the prefactor of Fig. 10 is somewhat
large; the exactU→` form is38,39

Ostrsxd =
3

s2pd3/2

r ln1/2srxd
x

. s65d

This differs from the correlator of a stretched Heisenberg
chain by a prefactorr2, which is due to the dilution of the
spins; for the Heisenberg chainksl=1/2, but for theHubbard

FIG. 9. The exponent ofDnnsxd. This function isolates the
charge contribution to the correlation functions, hence gives a direct
determination ofKc. The solid lines are guides to the eye.

FIG. 10. The prefactor ofOstr. The numerical data atU=0
matches the exact form determined in Sec. IV. TheU→` prefactor
is proportional to the density, exactly as required for a diluted
Heisenberg chain.
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modelksl=ns/2. Thus, with all prefactors accounted for, the
factorization of theU→` spin correlator is26,39

kSWs0d ·SWsxdl = −
3

4spxd2 +
1

r2OstrsxdDnnsxd

= −
3

4spxd2

+
3A2

s2pd3/2

coss2kFd
rÎsins2kFd

coss2kFxdln1/2sxd
x3/2 ,

s66d

with 2kF=pr.
For finite coupling the exact factorization of the wave

function is destroyed by local fluctuations, so Eq.(66) only
applies rigorously in the strong coupling limit. As shown in
Sec. IV, however, the scaling form applies even toU=0, with
the introduction of a nonuniversal amplitudeGsU ,rd,

kSWs0d ·SWsxdl = −
3

4spxd2 + GsU,rdOstrsxdDnnsxd. s67d

Figure 11 shows this amplitude as a function of density and
U, which is always finite implying that squeezed space is
ubiquitous.

VII. CONCLUSIONS: THE FERMION MINUS SIGNS

In first instance the pursuit presented above can be seen as
an exploration of the usefulness of string correlators of the
den Nijs and Rommelse type in the context of one-
dimensional physics. To our perception these correlation
functions are worthy additions to the standard repertoire of
one dimensional physics. This will be further amplified in a
next paper where we will further explore the information one
can obtain from string correlators such asD andDnn.

In this paper we used string correlators to clarify some
conceptual issues in one-dimensional physics. String correla-
tors go hand in hand with the simple geometrical ideas which
emerged in the study of Haldane spin chains and the strong
coupling Bethe ansatz solution of the Hubbard model. These

correlators make it possible to address to what extent these
notions are of relevance to generic Luttinger liquids and we
made the case that squeezed spaces are hard-wired into Lut-
tinger liquid theory. It is merely a matter of recognition.

Although complementary to the standard descriptions, we
find that the squeezed space notion does exert unifying in-
fluences. It is not an accident that we started out discussing
the Haldane spin chains. We hope that we convinced the
reader that there is a unity underneath which becomes obvi-
ous in this language, while it is far from obvious in the
standard formulation of bosonization.

Is it more than just clarification? If so, it should be that
these insights can be used to deduce states of one dimen-
sional quantum matter which have been overlooked before.
In the Luttinger liquid context we have deduced one such
novel state: the “charge only” superconductor we introduced
at the end of Sec. III. This entity can also be discussed in the
bosonization language. It is a prerequisite to drive the system
away from critically such that the charge sector is genuinely
disordered. This requires an external Josephson field stabiliz-
ing superfluid phase order. A conventional Josephson field
acting on electrons pairs in the singlet channel is expressed
as (recall Sec. V A),

HJ = BJE dxfc↑sxdc̄↓sxd − c↓sxdc̄↑sxdg

, BJE dxcosfÎ2pucgsinfÎ2pwsg s68d

involving the dual charge field]xucsxd=−Psxd. This imposes
phase order(pinning of uc) but it has also the immediate
effect of opening a spin gaps,sinfÎ2pwsgd. This spin gap
means that the spins are paired in pairwise singlets and a
squeezed space cannot be defined for these singlets. Instead,
what is required is a Josephson field acting exclusively on
the charge fields,

HJ8 = BJE dxcosfÎ2pucg. s69d

This will enforce disorder on the charge sector, leaving the
spin sector unaffected. Recalling the discussion of the spin
chain, this charge disorder turns into aZ2 gauge invariance in
the spin sector. The spin system in squeezed space resides at
the fSUs2dg critical point separating theXY and Ising fixed
points and together with the minimal coupling to the decon-
fining Z2 gauge fields a state of matter is realized which is
symmetry-wise indistinguishable from the critical state of the
Haldane spin chain found at the transition from the hidden-
order phase to theS=1 XY phase.

Although such a state is a theoretical possibility, it is less
clear whether it can be realized in nature. Bosonization is
helpful in clarifying this issue. Starting out with electron
operators, it appears to be impossible to construct a Joseph-
son field of the form Eq.(69). One will always find that the
charge Josephson field is accompanied by a(relevant) opera-
tor in the spin sector. This might well turn out to be a fun-
damental obstruction. In the one dimensional universe the
charge and spin fields are more fundamental than electrons,

FIG. 11. The amplitude G obtained from kSWs0dSWsxdl
,GOstrsxdDnnsxd. For clarity plotted asGr2, which is equal to unity
in the strong coupling limit. The heavy solid and dashed lines are
the exact expressions atU=` and U=0, respectively. The light
dashed lines linking the numerical data are guides for the eye.
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anda priori Eq. (69) is physical. However, a Josephson field
will in practice correspond with a mean field coming from
three-dimensional interactions and this implies that this mean
field has to be a composite of electron degrees of freedom.

As we argued, squeezed space is hard-wired into the
bosonization formalism and even exotic states such as those
discussed in the previous paragraphs are in principle within
the reach of the formalism. By implication, if a state of elec-
tron matter would exist where squeezed space is destroyed, it
would be beyond bosonization. In the context of the
(bosonic) spin matter of the Haldane chain we encountered
this possibility. Helped by the identification of theZ2 gauge
symmetry, we presented a recipe(the transversal field) to
stabilize a nonsqueezed space(“confining”) phase of the spin
chain. Is this also possible in the electron Luttinger liquids?

In this regard it is helpful to view these matters from a yet
another angle: the Marshall signs introduced by Weng in the
one dimensional context21 as an addition to the squeezed
space construction needed to describe fermion propagators;
see also Ref. 22 for the extension to 2D and for some inter-
esting observations regarding Marshall signs and spin-charge
separation in 1D. Marshall signs refer to the theorem that the
ground state wave function of aS=1/2 spin system defined
on a bipartite lattice with nearest neighbor exchange interac-
tions is nodeless: it is a bosonic state. In the strong coupling
limit the spin system in squeezed space is of this kind, and
this explains in turn why the Bethe-ansatz solution reveals
that the charges are governed by spinless fermions. The total
wave function has to be antisymmetric and because squeezed
space exists the spin sector is symmetric, so that the fermi-
onic grading resides in the charge sector.

Although we are not aware of an explicit proof, it has to
be that this “division of statistics” is universal in the scaling
limit. Our string correlator demonstrates that at long dis-
tances the squeezed space spin system does behave exactly
as the(unfrustrated) Heisenberg chain and it is hard to imag-
ine that this would survive a drastic change involving the
nodal structure of the spin wave function. Let us assume that
the strong coupling limit is in this regard a prototype of any
Luttinger liquid, to recollect the lessons learned from the
bosonic spin chain. There we learned that to break up
squeezed space “charge” fluctuations are needed changing its
length from odd to even and vice versa. This implies that
single charges can be created or annihilated and this is of
course not a problem in a bosonic system because a single
boson can condense. However, single fermions cannot con-
dense and since in the Luttinger liquid for reasons just dis-
cussed the charge sector is fermionic, confinement is impos-
sible. Admittedly, the argument is circular. It starts out
postulating the existence of squeezed space as an entity un-
frustrating the spin system in the Marshall sign sense, to find
out that the minus signs in turn offer a complete protection of
the squeezed space. This viewpoint suggests that there might
be ways around the squeezed space and that states can be
constructed which are beyond bosonization. Starting from
strongly coupled microscopic dynamics, one can image in-
teractions which are strongly frustrating the spin system in
the Marshall sign sense(i.e., longer range spin-spin interac-
tions). Such interactions could lead to a “signful” spin phys-
ics in squeezed space, which in turn could diminish the “sta-

tistical protection,” possibly leading to metallic states which
are not Luttinger liquids.

A final issue is, is there anything to be learned regarding
the relevance of Luttinger liquid physics in higher dimen-
sions? In this paper we have worked hard to persuade the
reader that squeezed space is adefiningproperty of the Lut-
tinger liquid. As such, it isa priori not special to one dimen-
sion, in contrast to, e.g., the lines of critical points and the
Mandelstam construction. Given a complete freedom to
choose the microscopic conditions, which fundamental re-
quirements should be fulfilled to form squeezed spaces in
higher dimensions? First, bipartiteness is required and this is
no longer automatic in higher dimensions. As a starting point
one needs a Mott insulator living on a bipartite lattice char-
acterized by an unfrustrated, collinear antiferromagnet. Upon
doping such a Mott insulator the charges(holes) will frus-
trate this spin system unless special conditions are fulfilled:
these holes have to formsD−1d-dimensional connected
manifolds as a fundamental requirement to end up in a bi-
partite space after the squeezing operation. Different from
the one-dimensional situation, true long range order will take
over when it gets a chance. A first possibility is that these
sD−1d-dimensional hole manifolds simply crystallize, form-
ing charge ordered state accompanied by a spin system
showing a strong ordering tendency as well, with the char-
acteristic that the staggered order parameter flips every time
a charge manifold is crossed. One immediately recognizes
the stripe phases which are experimentally observed in a va-
riety of quasi-2D Mott insulators, including the cuprates.7

Alternatively, assuming that the holes move in pairs, general
reasons are available demonstrating that the charge sector
can turn into a superconductor(via a dual dislocation
condensation40) such that the manifolds continue to form do-
main walls in the sublattice parity although their locus in
space is indeterminate. In direct analogy with the Haldane
spin chain, such a state is characterized by an emergent “sub-
lattice parity” Z2 gauge invariance.

The above is just a short summary of some aspects of the
“stripe fractionalization” ideas and for a further discussion
we refer to the literature.7–10 Most importantly, the notion of
squeezed space make it clear why “Luttinger liquid-like”
physics is not at all generic in higher dimensions but instead
rather fragile, if it exists at all. The bipartiteness of squeezed
space-time in the space directions has to be protected and
this requires microscopic fine-tuning.

The punch-line is that if one wants to contemplate mani-
festations of Luttinger liquid physics in higher dimensions it
must be striped in one way or the other, since squeezed
spaces are the most precise way to characterize the phenom-
enon of spin-charge separation as it arises in the specific one
dimensional context. This insight also makes is clear why
attempts to invoke theequationsgoverning the Luttinger liq-
uids in whatever phenomenological spirit to explain physics
in higher dimensions are bound to fail: these represent a
dynamics which is slaved to an underlying geometrical prin-
ciple which is only of the right kind in one space dimension.
To bosonize the electron itself in two space dimensions one
has to invoke geometrical/gauge principles of a fundamen-
tally different kind.22,41
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APPENDIX A: COMPUTATION OF THE CHARGE STRING
CORRELATOR OF FREE SPINLESS FERMIONS

In this appendix we discuss the numerical computation of
the free spinless fermion charge string operator(35). We find
that it can be fitted very accurately with the simple expres-
sion (36). This may well be an exact result but we did not
manage to find the solution with analytical means.

Using periodic boundary conditions, the charge string cor-
relator can be written as

ks− 1dS j=1
x−1ns jdl = kkN ¯ k1us− 1dS j=1

x−1nSFs jduk1 ¯ kNlSF

= Sx1¯xN
Sy1¯yN

k0uaxN
¯ ax1

3s− 1dS j=1
x−1ns jday1

†
¯ ayN

† u0l

3 X 1

V
CN

e−ik1x1−¯−ikNxNeik1y1+¯+ikNyN

= Sx1¯xN
Sy1¯yN

k0uaxN
¯ ax1

ay1

†
¯ ayN

† u0l

3 X 1

V
CN

e−ik1x1−¯−ikNxNeik1y1+¯+ikNyN

3 P j=1
N f1 − 2usyj − 1dusr − 1 −yjdg sA1d

occupying the lowest Nuk1¯kNl single fermion states. The
product term on the last line equals −1 whenyj [ f1,x−1g
and 1 otherwise, taking into account the result of the factor

s−1do j=1
x−1nSFs jd. Part of this sum can be written as

1

V
o
y

eiysp−kdf1 − 2usy − 1dusx − 1 −ydg

=
1

V
o
y

eiysp−kd −
2

V
o
y=1

x−1

eiysp−kd

= dsp,kd −
2

V

eisp−kdx − eisp−kd

eisp−kd − 1

; d * sp,kd, sA2d

abbreviating the second line with the “star-delta function”
d* sp,kd. Using this function, the expression(A1) can be
expressed as the determinant of aN3N matrix containing
d* ski ,kjd functions

ks− 1dS j=1
x−1nSFs jdl

= det1
d * sk1,k1d d * sk2,k1d ¯ d * skN,k1d
d * sk1,k2d d * sk2,k2d ¯ d * skN,k2d
d * sk1,k3d d * sk2,k3d ¯ d * skN,k3d

] ] ] ]

d * sk1,kNd d * sk2,kNd ¯ d * skN,kNd
2
sA3d

and this determinant can be straightforwardly computed nu-
merically for a finite system.

Careful analysis of the numerical data for a complete
range of densities, demonstrates that

FIG. 12. Numerical results(circles) for the function Dsxd
=ks−1do j=0

x nSFs jdl calculated from Eq.(A3), as compared to the ana-
lytical form Eq.(A4) (full line) This is a representative example: we
use N=20 particles on on a chain of lengthV=200 (density rSF

=N/V=0.1), using periodic boundary conditions.

FIG. 13. The crosses indicate the numerical results for the pref-

actor of the functionDsxd=ks−1do j=0
x nSFs jdl normalized to 1 forn

=rSF=N/V=0.5 sV=200d. The full line corresponds with the func-
tion 1/ÎsinsprSFd.
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ks− 1dS j=1
x−1ns jdlSF=

A2Î2

ÎsinSpN

V
D

cosSpsx − 1dN
V

D
ÎV

p
sinSpsx − 1d

V
D .

sA4d

As an example, in Fig. 12 we show results forrSF=N/V
=0.1 for N=20 particles on a chain of lengthV=200
and this compared with the analytic expression(A4). In
Fig. 13 the numerical outcomes for the prefactor of

ks−1do j=1
x−1nSFs jdl taking a normalization such that this

prefactor is 1 for rSF=N/V=0.5. According to the
exact result by Parola and Sorella26 this

prefactor is equal toks−1do j=1
x−1nSFs jdkÎsV/pdsinspsx−1d /Vd /

fA2Î2 cosspsx−1dN/Vdg. The perfect match between this
normalized numerical outcome and the function
1/ÎsinsprSFd establishes the density dependence of the am-
plitude in Eq.(A4).

In the thermodynamic limitV→`, N/V→rSF Eq. (A4)
becomes

ks− 1do j=1
x−1ns jdlSF=

A2Î2
ÎsinsprSFd

cosfprSFsx − 1dg
Îx − 1

sA5d

reproducing the exact result by Parola and Sorella26 at the
density rSF= 1

2. These authors showed that at this specific
density the asymptotic form ofDsxd is

Dsxd = ks− 1do j=0
x nSFs jdl = A2Î2

cosSpsx + 1d
2

D
Îx + 1

. sA6d

For completeness, let us list the outcomes for the expec-

tation valuesknsxds−1do j=1
x−1ns jdlSF and knsxds−1do j=1

x−1ns jdns0dl
which can be regarded as lattice derivatives of the charge
string correlator(A5). For example, find

knsxds− 1do j=1
x−1ns jdlSF= ks− 1do j=1

x−1ns jdnSFs0dlSF

=
Dsx − 2d − Dsx − 1d

2

=
A2

Î2 sinsprSFd
ScossprSFxdfcossprSFd − 1g + sinsprSFxdsinsprSFd

Îx
D

= signfcossprSFd − 1g
A2Î1 − cossprSFd

ÎsinsprSFd
cossprSFx − Kd

Îx
, sA7d

where the constantK is given by

K =
psr − 1d

2
. sA8d

In addition,

knsxds− 1do j=1
x−1ns jdns0dlSF=

1

4
fDsx − 2d − 2Dsx − 1d + Dsxdg

=
A2fcossprSFd − 1g

Î2 sinsprSFd
cossprSFxd

Îx
.

sA9d

APPENDIX B: A CAVEAT: SCHULZ’ FLAWED LOGIC

The idea that the charge fluctuates the space in which the
spin system resides has a long history. In this appendix we
would like to comment on an argument due to the late Heinz
Schulz.42 His argument is not correct, but the flaw is subtle

and informative regarding the workings of sublattice parity
fluctuations.

densityrSF=
N

V
= 0.1.

In the above, we rederived the “classic” result that the two
point spin correlatorkSSl,1/xKc+Ks. Schulz42 asserted that
this behavior can be explained by assuming that the system
can be seen as as1+1d-dimensional harmonic crystal of
charges in the continuum. The spins at the sites of this crystal
would just form a Heisenberg antiferromagnet. True long
range crystal order is impossible ins1+1ddimensions be-
cause the admixture of the Goldstone bosons(phonons) ren-
ders the correlations to be algebraic[algebraic long range
order (ALRO)]. Schulz’ idea was simple: the spin systems
does not live on fixed positions in space but instead on a
medium undergoing Gaussian fluctuations, as if the spin sys-
tem “surfs” on the Gaussian charge waves.
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The effects on the spin correlator can be easily calculated.
In the continuum the spin density equals

SWsxd = o
m

SWHeissmddsx − xmd, sB1d

summing over all the electrons. Starting from the ALRO
crystal,xm can be written asxm=Rm+um, whereRm=m/r is
the position in themth electron andum its displacement. One
finds for the correlation function

kSWsxd ·SWs0dl , E dqo
m,m8

e−iqxkSWHeissmd ·SWHeissm8dleiqsRm−Rm8d

3keiqsum−um8dl. sB2d

Due to the Gaussian fluctuations

keiqsum−um8dl < um− m8u−asqd, sB3d

with asqd,q2. Theq integration in Eq.(B2) is dominated by
the termq<pr=2kF and using the Heisenberg correlation
function (21)

kSWsxd ·SWs0dl < E dqo
m,m8

eiqsRm−Rm8−xdkSWHeissmd ·SWHeissm8dl

3um− m8u−as2kFd

< E dqo
m,m8

eiqsm/r−m8/r−xd s− 1dm−m8

um− m8u1+as2kFd

=
cossprxdln1/2srxd

srxd1+as2kFd

=
coss2kFxd

srxd1+as2kFd ln
1/2srxd. sB4d

This outcome indeed looks quite similar to the desired
result, identifyingas2kFd with Kc. However, this similarity is
actually misleading. Schulz’ crystal refers to the breaking of
translation symmetry by single electron charges. Implicitly,
this refers to the strongly coupled regime considered in the
above and this crystal corresponds with the spinless-fermion
ALRO crystal(e.g., Ref. 43). The spinless fermion 2kF turns
into a spinful electron 4kF wave vector. Accordingly, the ex-
ponentas2kFd should be associated with the charge stiffness
appearing in the 4kF charge correlations, and this stiffness is
not Kc but instead 4Kc. For instance, in the largeU case
Kc=1/2 and theSchulz argument would predict that the spin
correlations would decay as 1/x3 instead of 1/x3/2.

Where is the flaw? In fact, the implicit assertion in the
above is thatkSSl,knnl4kF

3 kSSlHeis. We learned, however,
that the geometry of the spin system is fluctuated bykinksin
their translational sector(the sublattice parity flips). These
are dual to the charge order and one has to use instead the
exponentiated charge stringskSSl,kns−1donnl3 kSSlHeis. As
we showed,kns−1donnl decays with an exponent which isKc

itself. From the discussion in Sec. IV it is clear that this dual
structure is in fact respected by bosonization. In this sense,
bosonization “knows” about squeezed space.
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