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We study the effect of hedgehog suppression in tfi®) Gigma model iD =2+ 1. Weshow via Monte Carlo
simulations that the sigma model can be disordered while effectively forbidding these point topological defects.
The resulting paramagnetic state has gauge charged matter with half-integésppons and also an emer-
gent gauge fieldphotons, whose existence is explicitly demonstrated. Hence, this is an explicit realization of
fractionalization in a model with global SB) symmetry. The zero-temperature ordering transition from this
phase is found to be continuous but distinct from the regular Heisenberg ordering transition. We propose that
these phases and this phase transition are captured by the nonc@®auobdel, which contains a pair of
bosonic fields coupled to a noncompactl) gauge field. Direct simulation of the transition in this model
yields critical exponents that support this claim. The easy-plane limit of this model also displays a continuous
zero temperature ordering transition, which has the remarkable property of being self-dual. The presence of
emergent gauge charge and hence Coulomb interactions is evidenced by the presence of a finite temperature
Kosterlitz-Thouless transition associated with the thermal ionization of the gauge charged spinons. Generali-
zation to higher dimensions and the effects of nonzero hedgehog fugacity are discussed.
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[. INTRODUCTION possess an emergent gauge field in the deconfined phase.
Moreover this model is found to have a quantum critical
Since the initial proposal of fractionalizatiofphases point with full spin rotation symmetry, but which is distinct
where the elementary excitations are fractions of the elecfrom the Heisenberg transition. The properties of the frac-
tron) as the underlying explanation for the unusual propertiesionalized phase and the transition, as well as various defor-
of the cuprate superconductdrsthere has been much mations on the model, will be studied in detail in this paper.
progress in the theoretical understanding of these phases. Most of the earlier work that constructed models exhibit-
Whether such fractionalized phases in the absence of magng fractionalization engineered the energetics so as to select
netic fields in spatial dimension greater than 1 are actuallya low energy manifold. Constraining states to lie in this
realized in any experimental system is a matter of currenmanifold introduces the gauge fields, which then need to be
debate. Fractionalized phases can exhibit properties that ane the deconfined phase for fractionalization to occur. Here
strikingly different from conventional phases of matter, we will rely on a different route to fractionalization, which
hence they are attractive candidates for modeling stronglynay be described as fractionalization from defect suppres-
correlated systems that exhibit anomalous behaviour. Howsion. Indeed this approach is closer in spirit to Ref. 12, where
ever, unambiguous experimental evidence for the presence tife Z, fractionalized state was regarded as a quantum disor-
such phases in any experimental system is still lacking. Irdered superconductor, obtained by proliferating even
part this may be because the correlations in such phases amnding-number vortices while suppressing vortices of odd
subtle, and hence definitive experimental signatures are hasdinding number.
to devise. This provides a strong motivation to seek a deeper Here we will mainly be concerned with the(8 sigma
understanding of these phases. Furthermore, fractionalizetiodel inD=2+1.This model consists of 3) quantum ro-
states have been proposed as a means to build quantum bié$s represented by unit three-vectgtspins”), defined on
that are inherently robust against decoherénce. the sites of a two dimensional spatial lattice. Neighboring
An important theoretical development has been the disrotors are coupled via a ferromagnetic interaction. By the
covery of a number of microscopic mode&fs that can be  usual quantum to classical statistical physics mapping, the
shown to exhibit this exotic physics. Although these micro-ground-state properties of this model can be conveniently
scopic models are defined in terms of bos@mssping on a  mapped onto the physics of the Heisenberg model at finite
lattice with short ranged interactions, fractional excitationstemperature in three dimensions. Clearly, there exist point
that are charged under an emergent gauge field, as well aspological defects in the three-dimensional Heisenberg
excitations of this emergent gauge field are obtained on solvmodel that carry an integer topological charge, which simply
ing these models. However to date, there have been no m¢orrespond to hedgehog configurations of the spins. In terms
croscopic models available with the full $2) spin rotation  of the quantum model, these are events in space<iimsé&n-
symmetry. Indeed it is important to verify that the additionaltong which change the skyrmion number of the system. We
constraints imposed by spin rotation symmetry do not exnow ask the question: Is it possible to disorder the three
clude the possibility of fractionalization. Here we will de- dimensional Heisenberg model in the effective absence of
scribe a model that possesses the full spin rotation symmetryhe hedgehog defects? This has been a long standing issue,
but can be explicitly shown to exhibit fractionalization and discussed in several works, for example Refs. 13 and 14, but
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had not been conclusively settled. Here we will present frestion is proof of the existence of gauge charged particles.
results from Monte Carlo simulations and arguments that We now briefly comment on the relation of the present
convincingly demonstrate that the answer to this question ipaper to earlier relevant work. Lau and Dasgugtapnsid-

yes. ered the @3) model in three Euclidean dimensions on a
Having established this, we will ask the question, what iscubic lattice and applied complete monopole suppression at
the nature of this hedgehog-free paramagnetic pR48éAl-  every cube of the lattice. This strong constraint led to the

though the spin-spin correlations are short ranged, the abmodel always being in the ferromagnetic phase, and the ex-
sence of hedgehog fluctuations lead to a “hidden order” imtic paramagnet was not uncovered in that work. Subse-
this phase. Indeed, it will be proposed that the physics of thguently, in an important extension, Kamal and Mutthy
hedgehog-free model is captured by what we will call theallowed for a more flexible definition of the no monopole
non compac€P! (NCCP?) (Ref. 15 model inD=2+1.This constraint by allowing monopole-antimonopole pair fluctua-
model consists of a doublet of bosonic fieltispinons’) that ~ tions if they occurred on neighboring cubes. In this way, they
transforms as a spinor under spin rotations, coupled to ¥€re able to obtain a disordered phase, and also found a
noncompact 1) gauge field“photon”). In this representa- continuous ordering transition with non-Heisenberg expo-

tion, the hedgehogs correspond to the monopoles of the U nents. However, as pointed out in that work itself, there are
gau’ge field, and eliminating hedgehogs leads to the nonco unsatisfactory features of this algorithm when closely spaced

g | . Th bl ises in th f
pactness of the gauge field. The 8B' model has two ob- onopoles occr © probem arses in e presence o

) . . loops of monopole and antimonopoles, where combining
vious phases, one where the spinons are condensed whichijsm in pairs is ambiguous. This allows for Monte Carlo

the ferromagnetic phase, and the other_where the spinon.s ffoves that annihilate a monopole and an antimonopole be-
gapped, which corresponds to an exotic paramagnet, with gnging to different pairs, since the remaining monopoles
gapless photon excitation. To verify that the paramagnetigng antimonopoles on the loop can be “repaired.” This re-
phaseP” obtained by the hedgehog-free disordering of thegyires making a time consuming nonlocal check for repair-
O(3) sigma model is indeed the same phase as the paramagyy every time such an event is generated. Consequently,
net in the NCCP'model, we use the Monte Carlo method 0 Kamal and Murthy had to resort to the approximation of
measure the correlations of the spin chirality, which ismaking only local checks of repairing. The algorithm then
roughly n;-(npXny) for a triangular face with three spins giso has the undesirable property that a given configuration
Nios This should be equivalent to the flux correlations Ofof spins may be allowed or not allowed depending on the
the noncompact gauge theory. Indeed the expected longstory of how it is generated. Here we will adopt a more
range correlation functions with the very characteristic dipovestrictive condition—that monopole-antimonopole pairs are
lar form are found. Furthermore, this correspondence impliegjlowed only if they ardsolated—to completely circumvent
that the ordering transition of hedgehog-fre€3Dmodel is  these problems. An improved procedure for defining the
not in the Heisenberg universality class, but in the same unimonopole number allows us to easily work with more com-
versality class as the ordering transition of the NKP*  plicated lattices. This flexibility will prove very useful in
model. This may be checked by comparing the universabptaining the disordered phase. Furthermore, our identifica-
critical exponents in the two models. Indeed, we find that thejon of the NGCP! model to describe this physics allows us
hedgehog-free (3) model undergoes a continuous orderingto bring a whole series of tests to bear on Biephase and
transition with critical exponents that are clearly distinctthe transition, which was not done previously in the absence
from the Heisenberg exponents, but which are consisterdf such an understanding.
with the exponents obtained in direct Monte Carlo simula- In this paper we will be completely suppressing the free
tion of the transition in the NCP'model. This provides fur- hedgehog defects, i.e., setting their fugacity to zero. We now
ther evidence that the NCP' model captures the physics of briefly discuss the effect of a finite fugacity, and possible
the hedgehog-free (@) model. These exponents also turn relevance of the physics described here to systems that may
out to be consistent with those obtained from an earlier atbe realized in nature. It is well known that for purg1)
tempt to disorder the hedgehog-fre¢3Dmodel** gauge theories ilD=2+1, introduction of monopoles leads
Given the central role played by the IW®* model, we  to confinement® This result also implies that tHe* phase is
also present analytical results on some of the striking propunstable to the introduction of a nonzero hedgeklog
erties of this model. First, we consider the easy-plane deformonopole fugacity. However, if this fugacity is small to
mation of the NCCP! model when the full spin rotation sym- begin with, deconfinement physics would play an important
metry is broken down to (1) by the presence of easy-plane role in the finite temperature or short wavelength properties
anisotropy. This model is found to have the amazing propertyf the system.
that under the standard duality transformation, it maps back While a finite monopole fugacity necessarily destroys the
onto itself. In particular the zero-temperature ordering tranzero-temperatur®* phase, its effect on the phase transition,
sition is found to be self-dual. Second, we consider the effecivhere critical gauge charged bosons are present which act to
of finite temperature in the NCP! model. We argue that hinder monopole tunneling, is less obvious. In fact, in the
there is a thermal Kosterlitz-Thouless phase transition out ofigma model description of the spin-half antiferromagnet on
the P* phase. This can be understood as an ionization trarthe square lattice, Berry phase efféétead to a quadrupling
sition of the logarithmically interacting spinons. The loga- of the monopoles$® which are then more likely to be irrel-
rithmic interaction is of course the Coulomb potential in two evant as compared to single monopole insertions. If mono-
spatial dimensions and hence the presence of such a trangieles are then irrelevant at the critical point, the transition
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could still be controlled by the monopole suppresse€@)O a) b)

critical point (or equally the critical NCP* mode). How- _ 00
ever, monopole relevance in the adjoiniRg phase implies - Ol+— 0
that this transition is sandwiched between two conventional ? * 00

(not deconfineglphases. This dangerously irrelevant mono- .
poles scenario is advocated in a forthcoming paparhich

argues that it is possible to have a continuous transition be"-V
tween a Néel and valence bond so(MBS) state for the

FIG. 1. Decorated cubic lattice used in the simulations. Spins
e on the lattice points shown, and the monopole number is de-

. . . T fined within each cub&b) The only spin configurations accepted in
square lattice spin-half antiferromagnet, which is in the SaMGhe simulation are those that are either hedgehog free, or have

univer_sf';llity classlas the hedge_hog free@ransition(i.e., hedgehogs that can be paired uniquely into isolated nearest-
the critical NGCP" theory) studied here. In fact, Ref. 19 qighnor hedgehog-antihedgehog pairs. A schematic depiction of

argues that the easy plane version of this transition may akych a pairing is shown here in a vertical section through an isolated
ready have been seen in the numerical experiments of Rejajr.

20, where there appears to be a continuous transition be-

tween a spin ordered state and a VBS in a square Iattlc(?ubes. This choice allows for more spin fluctuations when

spm-_hglf model with easy plane anisotropy. Such a dlreChedgehog suppression is applied than the simple cubic geom-
transition is very natural in the dangerously irrelevant mono—etry of Refs. 13 and 14. Neighboring spins are coupled via
poles scenario, and would be controlled by the critical ) |

| . S the usual ferromagnetic Heisenberg interaction and hence al-
NCCP! model with easy plane anisotropy, which is also g J

studied in this paper. Thus, the transitions of the hedgehoh(j\:]v;?oit;t?\gne&elghed with the factof, with the energy

suppressed @) model, in both the isotropic and easy plane
limits, could be realized in these situations even without ex- E=-J>n;- n;. (1)
plicit hedgehog suppression, and might potentially be seen (Gij)

directly in nature. Finally, we note that b=3+1 adecon-

fined phase, with photons and gapped spin-half particles, “ABllow Ref. 21 and first introduce an auxiliary variable, the

in principle exist even with a nonzero hedgehog fugacity. : . ) ) .
; . gauge potential4;; between any pair of neighboring sites
The layout of this paper is as follows. In Sec. Il we StUdywith spin orientations;, n;. This is defined by introducing

the Q(3) sigma model with hedgehog suppression. We begin . : .
by describing th rticular latti metrv and hedaehod” arbitrary reference vectar, and forming the spherical

y describing Ine particuiar 1attice geometry a edgeno iangle (n.,n;,n;). The edges of a spherical triangle are of
suppression scheme used in the Monte Carlo calculations. ! : .
We then present Monte Carlo results that show the presen purse segments O.f great_cwcles. If the solid angle_subtended
of a spin disordered phase in our hedgehog suppress (ytms spherical triangle i€2[n.,n;,n;], then we define
model. We argue that the physics of the hedgehog suppressed  gAij = gli12Q0n..n;.n;]
sigma model is captured by the K®* model, which im-
plies the presence of photons in this disordered phase. This
leads to the prediction that spin chirality correlations in the V2(1+n,-n)(L+n,-n)(1+n;-ny)

disordered phase take on a very particular long ranged form . .
which is tested in the Monte Carlo calculations. Next, we” different choice of the reference vecta, only leads to a

turn to the universal properties of the ordering transition in 92ug€’ transformation ofd: A;j —A;j+xi—x;, where y,

this hedgehog suppressed model and find exponents that are2[n:N«,ni], etc. Thus, gauge invariant quantities are in-
distinct from the Heisenberg exponents. These are then corflependent of the choice of the reference vector. Note also
pared with exponents calculated from directly simulating thehat €i=e™4i and these gauge fields are only defined
NCCP! model. In Sec. Ill, we consider various deformationsmodulo 2r. Thus we have defined a compact gauge field in
of the NGCP! model that correspond to an easy plane anisof€rms of the spins. We then define a fléix on every face
tropy, a Zeeman field, and the effect of finite temperature. IPounded by the site§l, 2, ... n,1):

In order to define the monopole number in each cube, we

_1+n.-np+n,.-nj+n-ni+ing - (ng X np)

(2)

particular we prove the remarkable self-duality of the easy oF = gi(A1zt Az +Any) 3)
plane model. Finally, in Sec. IV we briefly discuss possible
higher-dimensional extensions of this physics. with F e (=, 7]. Clearly, the flux is gauge invariant and

hence independent of the choice of reference vettomhe
physical meaning of the flux is most readily appreciated by
Il. THE HEDGEHOG FREE O (3) SIGMA MODEL considering a triangular face with spims , 3 where it is
approximately the spin chirality
A. The model
We perform Monte Carlo simulations of the three dimen-
sional classical €8) sigma model with hedgehog suppres-  The hedgehog numbés enclosed in a given volume is
sion. The lattice that we consider is a decorated cubic latticéhen the net flux out of this volum&F5=2wk, which is
as shown in Fig. @), with unit vectorsn; at the vertices and guaranteed to be an integer from the previous definitions.
edge centers of the cubic lattice. As described below, monaNote that the hedgehog number is simply some function of
pole numbers are associated with the centers of each of theti®e spins on a given cube. This definition is identical to the

sinF, ~ny-(ny, X ng). (4)
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traditionally used definition of hedgehog number for vol- 0.35
umes that are bounded by triangular faces. For more compli- 0.30
cated geometriedike the one employed in this woykow- £
ever it is a much more natural and powerful definition, since go_gs
it does not rely on an arbitrary triangulation of the faces and
can be quickly computed. £0-20

We now consider whether a disordered phase may be ob- %0 15
tained while suppressing the hedgehog configurations. This §
will favour the ferromagnetic state which is clearly free of £0.10
hedgehogs; indeed with full hedgehog suppression on the E
simple cubic lattic® an ordered phase was found even at 005
zero spin coupling. In the decorated lattice shown in Fig.

1(a), full hedgehog suppression in each cube seems to give
rise to a disordered state for small values of the spin coupling
J. However, in order to open a larger window of disordered g5 > Magnetization per spim=(|M|)/Ngpi, with M =X; n;,

phase, and obtain more solid evidence of disorder in theg 5 function of for different system sizegve show the data for
system sizes available, we will allow for hedgehog-poth sweep directionsThe inset shows the productNy%; in the
antihedgehog fluctuations on nearest neighb@ace shar-  magnetically disordered phase, we expect the meas(jidd)

ing) cubes. In contrast to Ref. 14, we will only allow for N2 (for completely uncorrelated spins, the numerical coefficient

configurations with isolated hedgehog-antihedgehog pairs; i close to }.

other words, if a cube contains a hedgehog of strengih

must contain a nearest-neighbor cube with a hedgehog of

strength € and no hedgehogs in all other nearest-neighboration per spin is expected to decreaseNg4”. Indeed, as

cubes. This is shown schematically in Figbjland gives an  seen in the figure, this situation is realized at leastlfa0.5.

unambiguous prescription for combining the hedgehog and One may nevertheless worry if there is some other spin

antihedgehogs into isolated, neutral pairs, and allows us terder, such as antiferromagnetic or spiral order, that is not

avoid altogether the problems in the work of Ref. 14, wheredetected by the above zero-momentum magnetization. The

such an isolation of pairs was not demanded. most direct evidence against any magnetic order is obtained
To summarize, the statistical ensemble is defined as folfrom the spin-spin correlation, which is found to be ferro-

lows. For each spin configuration, we determine the hedgemagnetic throughout and rather short ranged.J=d this is

hog numbers associated with each cube of the lattice. If thishown in Fig. 3, and the spin correlation indeed decays very

sample clears the constraint of no free hedgeli@gsmen-  quickly, with the correlation length of order one-half lattice

tioned two versions of this constraint, full suppression con-spacing. The above does not mean that the spins are com-

straint and the isolated neutral pairs constnaititen this  pletely uncorrelated, rather that their correlation is more

configuration is allowed in the ensemble and is weightedsubtle as we will see below.

with a relative probability determined by the energy function  This completes the evidence for the presence of a mag-

(D). netically disordered phasB* with suppressed hedgehogs.

We simulate this ensemBfeusing single spin Metropolis We now investigate the nature of this paramagnetic phase.
updates in the restricted configuration space. The data pre-

sented below is taken for 20 000—-200 000 Metropolis per
Spin. 10o T T T T T T T

_ A Spin-spin correlation 1
B. The disordered phase 107 3

We now discuss the results of the Monte Carlo simulation AT :
with hedgehog suppression. First, in the absence of any S 102 F 5
hedgehog suppression, the system is found to have the usual 5 : ]
Heisenberg ordering transition 3t ei=1.7. Implementing

hedgehog suppression that only allows neutral, isolated pairs 10° 3 3

of hedgehogs to occur, gives a smaller but still sizeable re- i

gion 0=<J<0.7 over which the system remains magnetically 107 L L

disordered. This can be seen in Fig. 2 where the magnetiza- o 1 2 3 4 5 6 7 8

tion per spinmis plotted for varying system sizes with linear r
dimensionL=6,8,12, 16(the total number of spins i, FIG. 3. Spin-spin correlations fal=0.0, measured for spins at

:_4|—3_)- The magnetization per spin is seen to approach zerghe vertices of the cubic lattice separated by a distaraieng thez
with increasing system size, for small enough valued.@ direction. The system size Is=16, so the measurements are done
more convincing demonstration is made in the inset, whereor r <8. Note the logarithmic scale for the vertical axis; the lower

we plot the product oin and the square root of the total cutoff is roughly the limit of what can be reliably measured in our
number of spins. For disordered spins, the average magnet4onte Carlo simulation.
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C. Emergent photons inP*

101 :\\Chiralitv,—chirality correlations

We argue below that the* phase of the hedgehog sup- E Cpp =
pressed @) model is distinct from the regular paramagnetic o -c. o ]
phaseP in the model without such suppression. The sharp w02 L 4
distinction arises from the fact th&" contains a low-energy h
photon excitation. While this is best understood by rewriting 2
the Q(3) sigma model in theCP! representation, we first ©
provide a heuristic argument for why such a low energy ex- 10° b 3
citation may appear before passing to this more complete ;
explanation. I

At any given time slice, the spin configuratignow of 104 . R e
spins in a plangcan be given a skyrmion number. It is easily 1 2 10

seen that hedgehog events change the skyrmion number by

unity. Therefore, suppressing hedgehogs implies that the FIG. 4. Chirality-chirality(flux) correlations measured along the
skyrmion number is a conserved quantity. Thusjyifs the  Z direction for the same system as in Fig. 3. Note the logarithmic
skyrmion density ang), , are skyrmion currents, they satisfy scale for both axes. We also show~&l/Z® line to indicate the
the conservation law,j,=0 with =0, 1, 2. This condition observed power law falloff.

may be solved by writing ,=€,,,d,8,, in which the skyr-

mion current is identified with the flux of a(l) gauge field. phases—first, a phase where thparticles are “condensed”

A natural dynamics would then be given by a Lagrangianich is the ferromagnetic pha&Second, a phase where
L=] ], which would give rise to a linearly dispersing pho- e 7 particles are gapped—this we identify with the para-
ton. . L magnetic phas®*. However, the noncompact nature of the
To gain further insight into the nature of tiRe phase, we  g5,,e field implies that there will be a low energy photon
use theCP" representation of the @) sigma model. Itis  gycitation in this phase. Indeed, within the 8B model,
well known that the pure (3) sigma modelno hedgehog the asymptotic correlation of the flug,,=(F ,(r)F,(0)) in
suppressioncan be rewritten in terms of a pair of complex ipig phase is simply governed by the free propagation of the

bosonic field=(z, 2)" that is minimally coupled to @ com-  photon which leads to the characteristic dipolar form
pact gauge field. The fieldstransform as spinors under spin

rotations, and have unit magnitudé-z=1. The spin vector 3r,r, - 5”,;2
is given by the bilinean=z"-¢0-z (where o are the Pauli Cur) ~ 5 :
matrices, and the flux of the gauge field corresponds to the ) ) o
skyrmion density of the original spin variables. Compactnesdn particular, for two points separated along theirection,
of the gauge field implies the existence of monopoles, whicveé would expect

act as sources or sinks of the gauge flux. These are then to be 2B B

identified with the hedgehogs which change the skyrmion C,{2) = =y Cy(2) = =t (7)
number when they occur. Clearly, thi@P* model has two

phases, one where tlzeparticles are “condensed” which is \whereB is some numerical coefficient.

the ferromagnetic phagsince the gauge neutral unit vectors  Thjs prediction of the emergence of a photon in e
n acquire an expectation valyeand another where the  phase may be readily checked by using the definit®)n(3)

particles are gapped. The gapped phase is essentially equivgF-the flux in terms of the spins on a fa@@e spin chirality,
lent, at low energies, to a pure compact gauge theory whic@nd studying its correlations

is known to be confining iD=2+1¢ This we associate _ _
with the regular paramagnetic phase. C,.(r) = (sin F,(r)sin F,(0)) (8)
We now turn to a description of the phases with full in the hedgehog suppressed sigma medslusualF , is the

hedgehog suppression within ta#* representation. Indeed, fl h h af icular ta). Th |
given the identification of the hedgehog defects with the ux through a face perpendicular {a). The results are

| fthe P! th hedaeh ion imoli shown in Fig. 4 which was taken deep in tRé phase with
monopoles of t theory, hedgehog suppression Implies j_ 4 = rp;g figure shows chirality-chirality correlations for

monopole suppression. This is most directly implemented tiéoints separated along telirection and corresponds to the

(6)

passing to_a noncompact gauge field which is free o rediction in Eq.(7). Indeed the expected d¥falloff is re-

monoples. The distinction between a compact and a nonco roduced, as well as the sign of correlations and their ap-

pact gauge theory cannot be overemphasized here, since jt . : - - :
underlies all the new physics obtained in this work. The Eu pltommate relative magnitudgor the data in Fig. 4, we find

. ) ..~ C,{2)=-1.7C(2); the slight discrepancy is most likely be-
1 z Yy
Slil\(/j:r?rg;ctlon for the noncompaCiP™ model on a lattice is cause the scaling regime is not quite reached for the separa-

tion in several lattice spacingsThus, although the spin-spin
J + . K ) correlation function is short ranged B, the spin chirality
Succplz‘EE (zrzr+ﬁe'ar#+c.c.)+5§ (AXa% (5  correlations have long-ranged power law forms. This is a
hh result of the hidden internal order present in the system that
where the lattice curl is the sum of the gauge potentialsarises from the suppression of hedgehog defects. It is this
around a plaquette. This NEP! model has two obvious internal order that gives rise to the coherent photon excita-
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17 _Scaling plots with v=1.0, B/v=080 1_J\|CCP,1 scaling plots with v=0.80. B/v=0.85 .
L=6 5 ¥,
1.7 Fom-aw® 8 -m- 4 ]
L g W . |12
15 r " -.,_'
1.0
14|
10.8
13 F
12} - ' 106
1.1 fome"® Ty 0.4
1 ! . ! . 0.5 1 L \ ) L \ | 0.2
sz O ! 2 3 2 15 -4 05 0 05 1 15 2
(J-JaL (-0 LN
FIG. 5. Finite-size scaling plots for the cumulant ratieft ver- FIG. 6. Finite-size scaling study of the ordering transition in the

tical axis and magnetizatiogright axis, corresponding to the scal- NC CP!model Eq.(5). The system is aK=0.6 and the transition

ing forms (10) and (12). We usedJ.=0.725, »=1.0, andB/v  from the P* to the ferromagnetically ordered phase is observed at

=0.80; the range of the horizontal axis corresponds roughly to j =1.255+0.02; the measured order parameter is defined from the

€[0.40,1.09 for L=8 (compare with Fig. 2 field n,=z 0z, The scaling analysis is similar to Fig(s5. The
exhibited plots are for=0.80, 3/ v=0.85; the horizontal range cor-

tion. (We also note that this topological order survives in aresponds tdJ [1.10,1.4Q for the L=8 system.

small applied Zeeman fiel&— E-hZ; n?, which supports

our claim for the gapped spinons— see Sec. Il B below andlimensional Heisenberg exponents which are accurately

Ref. 25) known to bé* 1,4,=0.705+0.003 and (B/v)yeis
=0.517+0.002.
D. The transition The specific heat exponert=2-dv is expected to be

negative for this transitioqd is the space-time dimensional-
ity) a=~-1.0, hence a cusp singularity is expected here. Al-
though such singularities are harder to detect than a diver-
8ence, we nevertheless look for it in the Monte Carlo study
of the hedgehog suppressed model. It is found, however, that
the specific heat remains completely featureless across the

We now study details of the ordering transition in the
hedgehog suppressed(3) model. We use standard finite
size scaling analysis in order to estimate the correspondin
critical indices. First, to find the critical point with good
accuracy, we measure the cumulant rgBinder ratig

(M%) transition; the reason for this behavior is unclear.
g= (M22’ 9 An important check on the above results in the hedgehog
free (3) sigma model is provided by comparing with direct
It is expected to have the finite size scaling form simulations on the noncompa€P* model given by the Eu-

_ Uy clidean action(5). A complete numerical phase diagram of
9(J.L) =g(aL™), (10 this model is reported elsewheifehere we focus on the
where §=J-J, is the deviation from the critical point. In transition between th®* and F phases and comparing the
particular, the curvesg(J,L) for different fixedL all cross exponents with those obtained from the hedgehog fré® O
near the critical J,, which we estimate to beJ. sigma model. Indeed we find that this transition is second
=0.725+0.025. Using the above scaling form, we also estiorder with exponents

mate the correlation length exponent

v=1.0+0.2 (hedgehog suppressed 03 (11

v=0.8+0.1, B/v=0.85+0.05(NCCP), (14

where the exponerg of course describes the onset of order-

The corresponding scaling plot is shown in Fig. 5. ing in the gauge neutral field=z"-o-z. The corresponding
~ To estimate the expone, we study the finite size scal- scaling plots for this transition are shown in Fig. 6. Clearly,
ing of the magnetization per spin these are consistent with the exponents we obtained earlier

| ~Blvg g v for the hedgehog free @) sigma model, which leads us to
ML) =LA (12 conclude that this transition is indeed distinct from the
Our best scaling of the data is also shown in Fig. 5, and wédeisenberg ordering transition and is instead described by
find the deconfined to Higgs transition in the B€* model. The
remaining difference between our best estimates for the criti-
Blv=0.80+0.05(hedgehog suppressed 03 (13) .| indices[and also between the apparent values of the
We remark that these exponents are consistent with thBinder cumulant at the critical pointg(J;)~1.35 for the
exponents obtained in the study by Kamal and Murtlgn ~ NCCP! transition, andg(J,)=~1.25 for the hedgehog sup-
the same model but using a different monopole suppressiopressed @8) transitiorj we attribute to the small system
scheme. These exponents are clearly different from the thresizes considered. For example, for the sizes studied here, the
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raw data(not shown hergBinder cumulant crossing in the =d%12/2, and the direction of the spin in the easy plane is
NCCP! model has a clear downward trend with increasinggiven byn*+inY=2zz,=€/(¥2"#). The partition function on a
system sizes, while it changes more slowly in the hedgehotattice in three Euclidean dimensions can then be written as
suppressed @) model; this would narrow the difference on " .
going to larger system sizes. ZEP:f [Da]’f [D D epyle SeP,
Finally let us note an important physical distinction be- — -
tween this transition and the Heisenberg transition, which is
brought out by comparing the exponents. This exponent is _ _ _
related to the anomalous dimension of thefield and is Sep = ‘J% [codA, by ~a,) + codA, by~ 3,)]
given by »=2-d+2(8/v). For the Heisenberg transition,
this exponent is very smaly=0.033+0.004. However, for + EEI(A X a)? (15)
the hedgehog suppressed3Ptransition we find this expo- 2 ’

nent to be fairly large;~ 0.6 (and »~0.7 from direct simu- where the integration over the gauge fields is performed after

. ] : .
lt?]téorr:]zo;é?\efi’\elﬁpcanr:odd:géAilr?trg?Vyolsd;%gﬁﬁﬁzzegt?:o';s suitable gauge fixing to ensure finiteness of the partition
9 Y P * function(hence the prime in the integration measuiiza]’).

!ndeed, in the limit of nonir!teracting spinons, this'exponentBeIOW we will consider applying the standard duality trans-
's expected to approach unity. Hence, the laggebtained at formations on this mod@®27 For this purpose it is more

this transition is to be expected on physical grounds. X I : )
P phy 9 convenient to pass to the Villain representation which makes

use of the approximate rewriting’°se~3, eneg™n727,

Note that the Villain form has the samer2periodicity «

PLANE, ZEEMAN FIELD, AND EFFECTS OF — at+ 27 as the original partition weight, and for lardeve
FINITE TEMPERATURE will have J7=J. The Villain form is expected to retain the

In this section we consider various deformations of theuhiversal properties .and phasg structure of tr_]e original_model
NC CP! model, and the effect of finite temperatures. Theand therefore we will start with it and consider a series of
motivation for this is twofold. First, understanding the be-€xact transformations that perform the duality. The partition
havior of this model in these limits will provide us with a function written in the dual variables will be seen to be es-
whole slew of potential checks to further strengthen the idenSentially the same as that written in the direct variables thus
tification between the NCP! model and the hedgehog sup- €stablishing the “self-dual” nature of these models.
pressed C8) model. Some of these explicit checks, like the ~ The Villain form of the partition function is
correspondence in the easy plane limits and the effect of a % w ,

Zeeman field on the isotropic models, will be presented ZV:J [Da]’J [DpDep, >, e KA xa)
elsewheré? while others are left for future work. Second, — - IEBP;

we will see below that these models ha_lve several_ interesting % e‘(l’mﬁ(iiﬂg) J2(Ady-a) 1+Adyai) (16)
properties and may themselves be directly realizable. For '

example, the continuous transition seen in the numerical exwherej, , are integer current fields that live on the links of
periments of Ref. 20 has been conjectured in Ref. 19 to behe lattice. We first writeZ, as a model in terms of the

lIl. DEFORMATIONS OF THE NC CP! MODEL: EASY

described by the easy plane B€' model. current loops only, and then perform an exact rewrifidg-
ality) in terms of the vortex loops. The two forms will have
A. Easy plane deformation essentially identical characters when viewed as integer loop

i i , i models; with proper identification of the coupling constants,
We first consider modeling the easy plane deformation otis is the statement of self-duality.

our QO(3) invariant sigma model with hed_gehog suppresgio'n. We begin by integrating out the phase fields,. This

This can be accomplls_hed, e.g., by_ having ferromagnetic Nimposes the condition that the integer current fiéjlp§are
teraction between neighboring spins of the ford(mn’  givergence free. These integer loops are simply the world
+niyn}/). Clearly, in this case the SpinS would pl‘efer to lie in lines of the two bosonalvzl which carry the same gauge
thex-y plane in spin space; the global spin symmetry of thischarge and hence their sum couples to the gauge field. Inte-
model is now broken down from @) to O(2) X Z,, where  grating out the gauge field gives rise to a long range Biot-
the O(2) corresponds to spin rotations about th@xis in  Savart-type interaction between the total currents. The result
spin space, and, arises from symmetry undef— -n% The  can be written as

appropriate deformation of the NEP' model involves ap-

plying the termU(|z|*+|z,|*) at each site withU>0 that 2y= 2 SA - j)AA -jp)e M1+ i)
favors equal amplitudes for the two components of the spinor Iul2
field. The corresponding vector will then lie in the easy « e—%(jl—jz)rg_(r,r’)(jl—jz)r/ (17)
plane. We will call this the easy plane KB model.

In fact it will be useful to consider the limit of extreme 1 1
easy plane anisotropy, where the amplitude fluctuations of E+(k) =—+ . (19
the z fields are frozen out, and only the phase fluctuations 27 ke ok ok

. . . 4K| sirf= + sirt = + sir?

remain. Thez field can then be parametrized B, 2 2 2
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~ 1 system is in the “insulating” or paramagnetic stBteIn this
G-(k :{7- (19 phase there is a single low-energy excitation—the photon.
On the other hand, when these loops become arbitrarily
Thus, the original model is equivalent to a model of integerlarge, which certainly occurs if both, K>1, we are in the
current loopg® where the combinationf,—j, have short- “superfluid” or ferromagnetic phagde. Here too we have a
range interactions, while the gauge charged current combingingle low-lying mode, the magnon, which is the Goldstone
tionsj,+j, have long-range interactions with the asymptoticmode arising from the spontaneously broken spin symmetry
form G,(R—)=(1/47K)(1/R). within the easy plane.
We now perform an exact duality transformation on Eq.  The two integer loops of the dual representaii@@) cor-
(17). First, the divergence free current loops can be writterrespond to the world lines of the vortices in the two boson
as the lattice curl of a vector fielf ,=A XA, /27 that fields. It is easily seen, for example by analyzing the dual
lives on the links of the dual lattice, and the integer con-action in different parameter extremes, that Biephase oc-
straint is implemented using the identit{2m)3S, &(A curs if large vortex loops of botH, I, proliferate, while if
-2mn)=3, €"A. Integrating out the fieldd, , we obtain the both the vortex loops are typically small, tRgphase results.
following form for the partition function in terms of the dual  In terms of the direct boson variables, thephase is the
integer current loopé, »: ordered phase, and hence has a low-energy Goldstone mode,
' while the P* phase is the disordered phase and has a low-
2y 2 S(A 1) 8(A - 1,)e W21+ 1 Fulrr )y + ) energy photon mode. In the dual variables the roles are
I3y reversed—thd- phase is the disordered phase with the dual
photon, while theP* phase is the dual “ordered” phase, with
the Goldstone mode. In particular, a direct transition between
P* andF can either be thought of as an ordering transition in
KT the direct variables, or the reverse in terms of the dual vari-
k K : (21 aples. This interchange of ordered and disordered phases is
J+ ZK(Sinzgx + Sinz-zx +SianZ> typical of a duality transformation. What is special in this
case is that the partition function is essentially identical when
written in terms of the direct and dual variables. This implies
T 22 that the transition must be self-dual. One direct consequence
ke ok ok, (22) of this self duality is that the critical exponef®®) measuring
2 szz +S|r\22 +S|an the rise of the order parameter on the ordered side of the
transition is equal to that of a suitably defined disorder pa-
One can argue that the two integer loops of this dual reprerameter on the opposite side of the transition. Further conse-
sentation(20) are precisely interpreted as the vorticities in quences arising from the self-duality and other phases con-
the original two boson fields. A vortex of equal strength intained in this easy plane NEP* model will be discussed at
both boson field$l,=1,) can be screened by the gauge field,length elsewheré& along with results of Monte Carlo stud-
and hence has only short-range interactions, while unbal€s. Here, we just note that a continuous transition from the
anced vortices which cannot be completely screened intera@’ to F phase is obtained, with critical indices
via long-range interactions. Correspondingly, the combina- _ _
tion of the dual current$; +1, interact via a short-range in- »=0.6020.05, f/»=0.70+0.05(easy plang (23
teraction 7,(R), while the other combinatiom, -1, has a Finally, we note that this critical point is conjectured in
long-range interaction with the same asymptotic form as irRef. 19 to control the continuous transition seen in the nu-
Eq. (18), F_(R—=)=(wJ/2)(1/R). Indeed the partition merical experiments of Ref. 20.
function written in terms of dual loop®0) is essentially the
same as when written in terms of the direct varialfles, B. Effect of Zeeman field

which can be seen by making the associatipn-j; and We now consider applying a uniform Zeeman field along
l2<>=],. The only differences are in the form of the short- o 2 direction in spin spaceS,=-hs; 7, and study the

range interactions \.Nh.iCh do.not affect_ universal propert?eseﬁect on the various phases and phase transitions in both the
As argued below this immediately implies that the trans't'onisotropic and easy plane models. In 16" representation
betweenP” andF phases in this model will be self-dual. Of (s term can be written as

course, we can also rewrite ERO) in terms of the fields

conjugate to the currents ,, obtaining the action in terms of S,=-h>, (|22 - 2> (24)

the dual(vorteX) fields and the dual gauge field, which will

have essentially the same form as the original action Eqwhich breaks the; < z, and the only remaining symmetry is

(16). We do not spell this out here since the exhibited formsthat of U(1) spin rotations about the* axis.

already suffice. For the model with the isotropic exchange coupling, add-
We first note the description of the various phases inng the term(24) to the action(5) will result in the phase

terms of the properties of boson current loops and also thdiagram shown in Fig.(d). At zero field we have th®* and

vortex (dual) loops. In the direct representation, when theF phases separated by the monopole suppres$gdt@ansi-

partition function is dominated by small loops joftj,, the  tion, or equivalently the NOCP! ordering transitionC,.

x @ WA= 1) F(rr )y = 1)y (20)

Fu(k) =

F(k)=
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ISOTROPIC EASY PLANE For the model with easy plane exchange coupling, the
effect of adding the Zeeman field perpendicular to the easy
plane can be argued to lead to the phase diagram in y. 7
Here we avoid using the extreme easy plane limit, whére
was set identically to zero, in order to have a finite coupling
to the applied field[Alternatively, we can model the effect

J J of the Zeeman field by considering an action similar to Eq.
Ly Cxy (16) but with different couplings); andJ, for the two angle
b variables] At zero field we have th®* andF phases sepa-

] rated by the monopole suppressed easy plane transition.

FIG. 7. Effect of a Zeeman field on the zero-temperature phaseggain in the presence of a Zeeman fieldP @hase is pos-
of the NCZC_P1 model.(a) Isotropic case—two (_Jlistinct paramagnetic sible, with no spontaneously broken symmetry and no low
phases exist in the presence of a Zeeman field. Ahghase has a v, excitations, where only the, field is condensed. The
low lying excitation, the photon, while the phase is gapped and phase transition betweeR* and P is then driven by the
breaks no global symmetries. The two are separated by a continuo . . .
transition in the 3DXY universality clasgthe arrow indicates the Lcinggtne Sdaig%eognt?r?e gs‘:‘lﬁg Lfrtl}sre%?glfil[el?:,Iairs]daésthheeg(r:gere d
ordered to disordered 3RY transition. At zero field the transition PS - y 26 N

to disordered transition of the 3RY model=° Starting in the

C, is described by the critical NCP* model.(b) Easy plane case— h h h i is further i d i
Zeeman field is applied perpendicular to the easy plane. Spins c% phase, as the exchange coupling is further increased, it

order in the easy plane to give tifephase which has a low lying P0€comes favourable for tf@ field to also condense, so that
excitation, the Goldstone mode. This is separated from the disoinere develops afinite expectation value for the in-plane spin
deredP phase by a 3IXY transition. There are two paramagnetic OPeratorsn*+in¥=2zz,. This leads to the~ phase, which
phasesP* with a photon and a gappeRl phase separated by a 3D Spontaneously breaks the remaining spin rotation symmetry
XY transition. At zero Zeeman field the two 30 transitions meet and has one Goldstone mode. Since the gauge field has al-
to give the self duaCyy transition. ready been “Higgsed” away, this transition is the regular or-

dering transition of the 3DXY model. As described previ-

Turning up the Zeeman field, the ordered momerf dficks ously, Fhe orig.inal easy pIane_modeI is essentially self—_dual,
into the field direction—the resulting phase does not breaf@"d this remains true on adding the Zeeman term. This ex-
any of the global symmetries and has no low-lying modes,pla'ns the refl_ect|on symmetry of the unlve_rsa_l properties
Hence we will call this phas®. (Note that for the isotropic N the phase diagram—for example, the duality interchanges
NCCP! model at zero temperature, this phase is only preserf€ P” andF phases while the phase is taken to itself. This
when a Zeeman field is appliedThis phase can be under- also implies that the transition frof* to P must be in the

stood as a Higgs phase with condensation ofzhfield but ~ Same universality class as the transition frénto P, which
not of thez, field. was indeed the result of the previous analysis, which finds

On the other hand, in the* phase there is a gap #g and them both to be in the 3IXY umvers_allty class. _
2, particles. Tuming up the Zeeman coupling lowers zhe The shap(_e of the phase boundaries near the zero field easy
branch until at the transition it condenses to giveRghase. plane transition can be relatgd to the crltlcgl exponents of the
Thus, the transition between th& and P phases involves €Sy plane NCP! model using Eq(26). While the thermal
condensing a single scalar field coupled to a gauge field angi9envalue in this case is already knoffy. (23)], the scal-
hence is expected to be in the inverdéd- universaliy N9 dimension of the Zeeman operator needs to be deter-
clasg® (i.e., theP* to P transition is the ordered phase to mmled. This is conveniently done within the easy plane NC
disordered phase transition of the 30Y mode). CP* model at crltlcallty, by .studylng the scalmg_ dimension
The shape of the phase boundary near the zero field tra/2f the operator that gives rise to unequal hopping strengths
sition can be related to the critical exponents of the Giet 917 J2 for the two species of bosons in EG6). To this end,
model. In particular it depends on the ratio of the scalingtonsider defining the link operators
dimension of the Zeeman operatgf,=d- 8/ v for the iso-
tropic casgto the scaling dimension of the “thermal” opera- Oﬁ(r) ={coqA ¢; —a) + co9A ¢, — a)}. 27
tor (y;=1/v). Thus, if 81 is the deviation away from the zero
field critical pointC,, then the phase boundary is given by Clearly, adding=;, O; will give rise to unequal hoppings,
the curve and hence has an overlap with the Zeeman operator. Simi-
h, o (83)% (25) larly, =, Oi’} will have an overlap with the “thermal” opera-
z ’ tor. Thus, studying the power law decay of the correlators of
Oﬁ at criticality allows us to extract the scaling dimensions
&= YnlYr- (26)  of the Zeeman and thermal operators. The latter may be com-
The expressions for the scaling dimensions yield pared against other, more accurate deter_minations of the
=y, /y,=vd— B. Using the numerical values of the exponentsSame quantity and serves as a check of this approach. Thus
in Eq. (14), we haves~ 1.7, which gives a phase boundary We find
that approaches the isotropic transition point horizontally as
shown in Fig. 7a). Vh=1.2+0.3, (28)
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yi=1.6+0.2 (29) sum over all configurations of the integer charge figldand

real electric fields, , (since we are working with a noncom-
pact gauge theojythat satisfy the Gauss law constraint
A-e=n, at each site of the lattice. Note that the boson num-
ber and electric field variables that we use here are conjugate
éo the phase and gauge potential variables that have been
sed so farfsee Egs.5) and (6)]. Our treatment here is

the value ofy, obtained is consistent with the value of
quoted in Eq.(23) from which y;=~1.7. Thus we havep
=0.75+0.2. Note that since 0¢<1, the shapes of the
phase boundaries are as shown in Figp).?°

Finally we note that these properties of the easy plan
model in the presence of a perpendicular Zeeman field arg>cd S0 ; I .
potentially useful to testing the conjecture of Ref. 19 that the?r€CiSe in the regime where the total Hamiltonian is domi-
continuous transition seen in the numerical experiments of@ted by the exhibite&{n, e} part, but is also valid more
Ref. 20 is controlled by the critical easy plane Ntp:  generally in the effective sense. _ _
model. An important point is that given the mapping of the ~The Gauss law constraint can be implemented using a
Néel field to the unit vector of the sigma model, the Zeemarl-agrange multipliera, to give the following expression for
field considered here actually corresponds to a staggerdbe partition function:
Zeeman field on the spins of Ref. 20.

C. Finite temperatures Zﬁ~2 J[De]f[Dao]e‘ﬁE{”rvem}Han(A.&n)_ (31
We now investigate the finite temperature properties of e

the NC CP* model [or equivalently, the monopole Sup- Tq establish that there is a thermal transition, we integrate

pressed O3 sigma modeboth for the isotropic as well s oyt the fieldsay(r) €, S0 the partition weight is now just a
the easy plane case. The main result is that there is a finitg  ion of the integer charges. This yields

temperature version of the* phase, which we call the ther-
mal C_ou_lomb phas«_’e"#, _Wi_th power law correlations of the _ 2~ S @ BRZnVny
electric fields. This is distinct from the regular paramagnetic B ) ’
phaseP with short-ranged correlations, and is separated from '

it by a finite temperature Kosterlitz-Thouless phase transiyhere for large separation the potential between charges
tion. The existence of such a transition can be seen from thg,, a5 the formV,, ~ (1/2ak)log(1/|r —r'|), which is the

following physical argument. In the zero-temperatife o 16mp interaction in two dimensions. It is well known that
S : e . . . ghch a Coulomb gas has two phases, one with the charges
mic interaction. If this interaction persists to finite tempera-

tures, then clearly for small enough temperatures, thermeﬁﬁund |nttohpehuttral palrstat low temp?rgtuges, alz'(lj' ? p'a.st'f“a
fluctuations will only generate neutral spinon pairs. This jghnase at high temperatures separated by a ransition

the P phase. However, at some higher temperature it be?Nich occurs alg= (4xK) . This is not surprising since we

comes entropically favorable to proliferate unbound spinon&now that NCCP? model is dual to the () quantum rotor
(exactly as with logarithmically interacting vortices in the Model in two spatial dimensions, and the spinons of the NC
two-dimensionalXY mode) and a Kosterlitz-Thouless type CP° map onto the vortices of the (@) rotor model, which
transition to a spinon-plasma phase will be expected. Indeednteract logarithmically.
for the hedgehog suppressed3D model, the existence of A sharp distinction between the low and high temperature
such a finite-temperature transition may be viewed as eviparamagnetic phases can be drawn by looking at the electric
dence for the existence of emergent gauge charged objedigld correlators. In the low(but nonzerp temperatureP;
interacting via a Coulomb potential, that happens to be logaphase, these fall off as the inverse square of the distance,
rithmic in two spatial dimensions which gives rise to thewhile in the high-temperature “spinon plasma” phaBe
transition. these correlators are short ranged:

We now sketch a derivation of these results—we choose
to do this in a model with a single species of “spinon” or
gauge charged particle. Treating this single comporient (e(r)e,(0)) N{
noncompacCP?) model will simplify the discussion and the
very same results hold for the models of interest,. i.e., th§ynere the indicesu, v e {x,y}. As shown elsewher®, ex-
isotropic and easy-plane NEP! models, because it is only actly the same results are obtained for the isotropicQW&
the logarithmic binding/unbinding of the gauge charged Ob'model, and the phase diagram is shown in Fig).8n par-

jects that matters. Since the finite temperature physics deh'cular, despite the presence of a global(8lusymmetry, the
scribed above occurs in the charge and electric field sector, 'F

: ) o g {tansition remains KT.
v_V|II be useful_ltga (_:onS|der writing the thermal partition func- For the easy plane NCP! model, the expected finite-
tion Z=Tr e In terms of the zero Maf[subara frgquency temperature phase diagram is shown in Figh)8Here, in
components of these fields. The appropriate effective energyiion to the discusse;. and P phases, there is also a
IS power law phase(XY) that appears out of the zero-
U 1 temperature ferromagnetically ordered phase and terminates
Eln. &} = EE e + %2 € (30)  at the usual KT transition to thé phase. Again, the similar-
' is ity between thePT and XY sides of this phase diagram have

wherer and u run over the sites and directions of the two- to do with the self duality of the underlying easy-plane NC
dimensional spatial lattice. The partition function involves aCP* model.

(32

(r?)(2r,r Jr2=5,,) T<T,

33
short ranged T>T,, (33
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ISOTROPIC EASY PLANE model can be disordered without monopoles, and answered it
T T in affirmative. We provided an explicit example of ar{3p
Heisenberg spin system with no free hedgehogs and no mag-
netic order in(2+1)D. While this is in agreement with the
earlier work of Kamal and Murth¥/ the potentially problem-

atic features of the procedure adopted in that work have been
entirely avoided in the present paper.

Furthermore, we identified the proper description of the
hedgehog suppressed(3) model which involves spinons
coupled to a noncompact gauge field, which may be called
the noncompacC P! model. Thus the hidden topological or-

FIG. 8. Effect of finite temperatur® on the NCCP' model.(a)  der resulting from hedgehog suppression gives rise to a pho-
Isotropic case: The thermal Coulomb ph&e a finite temperature  tonlike low-energy excitation in the paramagnéft) phase
analog of P*, has power law electric field correlatiof&q. (33)] of this model, which leads to power law correlations of the
and is separated from the more conventiomalphase by a Spin chirality. This may also be viewed as an example of a
Kosterlitz-Thouless phase transition. This can be understood as tHd(1) fractionalized phasealbeit with complete monopole
thermal ionization of spinons interacting via the 2D Coulofidy)  suppressionwith full SU(2) spin rotation symmetry.
potential. TheF phase is disordered at any finite temperatuiog. Our understanding of the hedgehog suppressed disordered
Easy plane case: The ordered phase now has algebraic correlatiosiggma model is interesting from the statistical mechanics
at finite temperaturéXY) which is also separated from tiiephase  point of view and addresses some long standing questions. In

by a KT transition. a sense, we identified how to “decompose” the)Omodel
into a part that involves the topological defe@tedgehogs
IV. TOWARDS D=3+1 AND LAYERED PHASES and the part which does not involve these. Such decomposi-

tion of the Q2) model into the vortex and spin wave parts is

All of the preceding discussion was focused on tBe well known. The corresponding “spin wave” part for the
+1)-dimensional system where complete hedgehog suppre€(3) model turns out to be the NCP! model, which clearly
sion was required in order to obtain the deconfined phase. has little to do with spin waves. In particular, the commonly
is natural to ask whether similar physics can be obtained iasked question whether the spin waygsrhaps nonlinearly
models with only a finite energy cost for hedgehogs. This caigoupled can disorder the (3) model seems to have no
occur in the presence of critical bosonic fields as argued ifineaning.
Ref. 19 leading to deconfined quantum criticality in Another question has been on the role played by the
(2+1)-dimensional systems. Another way in which a decon-hedgehog defects at the Heisenberg transition. A sharp for-
fined phase can be stabilized with a finite hedgehog fugacitwulation of this question is whether the Ordering transition in
is to consider3+1)-dimensional systems. Now, the hedge- the hedgehog suppressed model is identical to the Heisen-
hog is a partic'e, and a finite hedgehog fugacity does noberg tl‘ansition-. Our C-a:lculations of the universal critical ex-
necessarily destabilize the Coulomb phase. Thus, in principlBonents for this transitiotw=1.0+0.2 and3/»=0.80+£0.05
one could obtain &-+1)-U(1) deconfined phase with global Show that it is indeed distinct from the Heisenberg transition.
SU(2) symmetry, by disordering the (@) sigma model with ~ Direct simulation of the NCP! model, however, yields ex-
a sufficiently large but finite hedgehog core energy. ThigPonents that are consistent wlth t_hesg. Moreover, the large
question is currently under investigation; the obvious exten?~ 0.6 of the vectokmagnon field implied by these expo-
sions of the presente+1)-dimensional realization either nents can be heuristically understood since the magnon can

led to ferromagnetic order or to the conventional paramaggecay into a pair of unconfined spinons at thIS. cr|t|ca}llp0|nt.
net. Thus, an important conceptual_ issue th:?\t is clarlfled by
An interesting possibility that we remark upon is a lay- our work is the existence of two different spin rotation sym-

ered system that lives in three spatial dimensions, wher etri_c_critical points inD_=2+_1. Thefirst_is t_he Heisenberg
each layer realizes th@+ 1)-dimensional deconfined phase. ransition whose “soft spin” field theory is given by the3p

< . ) Y TS
Such a phase exhibitpiantum confinemeim that the gauge ¢ the_ory. This de_sm_:n_bes, of course, the _transmon_m the
charged spinons can move freely within a layer but not be©(3) sigma model if it is regularized by putting the spins on

tween the layers, and the photon remains (&+1)- the Iattic_e. It also describes thg transition in the Iatmi_é _
dimensional particle. This is reminiscent of the sliding Lut- mode] with a cs‘)mpact.gf:\gge field. Thg second transition s
tinger liquid phas® of coupled one-dimensional systems d€scribed by a “soft spin” field theory with a pair of complex
that also exhibits the phenomenon of quantum confinemenBc@lar fieldsthat transform as spinors under spin rotatjons
and has a low-energy phonon excitatigmhich is the ana- cou_pled to a_\_noncompact_gauge f'eld' This des_crlbes the or-
logue of the photon in this lower-dimensional sysiem dering transm9n of the lattice @) sigma modgll W|th hedge-.
hog suppression. It also describes the transition in the lattice
CP! coupled to a noncompact gauge field. Earlier indiscrimi-
V. CONCLUSIONS nate use of what is effectively the NCP'model to describe
the Heisenberg transition are therefore to be reconsidered.
We conclude by highlighting the main results of this We also studied various physical extensions of the hedge-
work. We considered the question of whether tH@)igma  hog suppressed (@) model, such as adding Zeeman field
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and also the effect of finite temperature. TRéphase sur- tems at energy scales above the photon mass. In contrast to
vives in small external magnetic field and retains the photonthe P* phase which in th&€P* language is unstable to turn-
which is an evidence for gapped spinons. At finite temperaing on a finite monopole fugacity, the stability of the critical
tures, a thermal Coulomb phase with long-range power lavpoints where gapless gauge charged particles are present is a
electric field correlations exists, and undergoes a KOSterlithore involved question, and depends on the number of gap-
Thouless transition to the usual paramagnetic phase at highgiss fields present and the particular monopole creation op-
temperatures; this is indirect evidence for gauge charge cagrator under consideration. In fact, it is argued in Ref. 19 that
rying particles(spinon$ that interact via the Coulomb poten- quadrupled monopole operatofshich are relevant to the

tial Wh.iCh Is quarithmic ?” 2D. . . spin half quantum antiferromagnets on the square lattice
An interesting extension is obtained by breaking the fulliojeyant ‘at the NCP! critical point in both the isotropic

rotation symmetry down to the easy-plaxi¥ symmetry. We and easy plane limits. This would allow for a continuous

showed that this model possesses a remarkable “self-dualit o . . .
property. Indeed as far as we know this is the first pure@/{ransmons between valence bond solid and Néel phases in

bosonic model irD=2+1 that displays this property. In par- such systems, and these transitions would be controlied by
ticular the critical point describing the ordering transition in the .Icm'lgfl Eomtg Smd'sef llnDtrgSSpapeg ||:|nar:I_y,hwgllexpect a
this model is self-dual. An important role is played by this simiiar= phase in 43+1) ( ,) Moael, which will now
critical theory in a forthcoming publicatiol, where it is be present also with strong but finite monopole suppression,

conjectured that this critical point may already have beerfVhich would provide a spin rotation invariaf@+1)D model
seen in numerical experiments on easy plane spin half qual’{‘-’h'Ch e>'<h|b|ts a fractionalized Coulqmp phase with decon-
tum antiferromagnet on the square lattice where surprisingljf"€d Spinons and a true photon excitation.

a continuous transition is observed between a spin ordered

state ar_1d a valence bond solid that breaks lattice ACKNOWLEDGMENTS
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