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We improve the recently developed functional renormalization g¢&R@) for impurities and boundaries in
Luttinger liquids by including renormalization of the two-particle interaction, in addition to renormalization of
the impurity potential. Explicit flow equations are derived for spinless lattice fermions with nearest-neighbor
interaction at zero temperature, and a fast algorithm for solving these equations for very large systems is
presented. We compute spectral properties of single-particle excitations, and the oscillations in the density
profile induced by impurities or boundaries for chains with up té [hftice sites. The expected asymptotic
power laws at low energy or long distance are fully captured by the fRG. Results on the relevant energy scales
and crossover phenomena at intermediate scales are also obtained. A comparison with numerical density matrix
renormalization results for systems with up to 1000 sites shows that the fRG with the inclusion of vertex
renormalization is remarkably accurate even for intermediate interaction strengths.
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[. INTRODUCTION new computation tools for interacting Fermi systems, espe-
Low-dimensional electron systems exhibit a rich varietyCially for low-dimensional systems with competing instabili-
ties and entangled infrared singularities. The starting point of

of surprising effects which are due to the cooperative inter-

play of impurities and interactions. In one dimension eventhis approach is an exact hierarchy of differential flow equa-

clean metallic systems are always strongly affected by interiOns for the Green or vertex functions of the system, which
obtained by taking derivatives with respect to an infrared

actions: at low-energy scales physical properties obey®

anomalous power laws, known as Luttinger-liquid behavior cUtoff A2 Approximations are then constructed by truncat-

which is very different from the conventional Fermi-liquid "9 the hierarchy and parametrizing the_ﬁrtex functions with
behavior describing most higher-dimensional met8ldn & manageable set of variaples or functiohs.

. o . S 2 X . A relatively simple fRG approximation for impurities in
Lutt]nger I'q.u'd.s with repulsive interactions already a Slnf-zllespinless Luttinger liquids has been developed recently by
static impurity is known to affect the low-energy properties

drastically>® The i it potential i sive Luti some of us?# The scheme starts from an fRG hierarchy for
rastically = 1he impurity potential in a repulsive LUtiNGer onq_sarticle irreducible vertex functions, as first derived in a

liquid becomes dressed by long-range oscillations whichjg|q theoretical context by Wetterighand Morrist® and for
suppress the spectral weight for single-particle eXCitatiO”?nteracting Fermi systems by Salmhofer and Honerkafp.
near the impurity and also the conductance through the imyatsubara frequency cutoff is used as the flow parameter.
purity down to zero in the low-energy limit. The hierarchy is then truncated already at first order, such
Theasymptotidow-energy properties of Luttinger liquids that the two-particle vertex remains unrenormalized, and the
with a single impurity are rather well understood. Universalflow of the self-energy, which describes the renormalized
power laws and scaling functions have been obtained bympurity potential, is determined by the bare two-particle
bosonization, conformal field theory, and exact solutions foiinteraction. No simplified parametrization of the self-energy
the low-energy asymptotics in special integrable cd%es.is necessary such that the full spatial dependence of the
What remains to be developed, however, is a many-bodyenormalized impurity potential can be obtained for very
method formicroscopicmodels of interacting fermions with large lattice systems. In spite of the striking simplicity of this
impurities, which does not only capture correctly the univer-scheme it was shown that the effects of a single static impu-
sal low-energy asymptotics, but allows one to compute obrity in a spinless Luttinger liquid are fully captured qualita-
servables on all energy scales, providing thus a@souni- tively, and in the weak coupling limit also quantitativéfyn
versal properties, and in particular an answer to theparticular, one obtains that impurity potentials in repulsive
important question at whadcale the ultimate asymptotics Luttinger liquids become effectively stronger at lower energy
sets in. That scale can indeed be surprisingly low, and thecales, and act ultimately as a weak link between two other-
properties above it very different from the asymptotic behavwise separate wires, as predicted by Kane and Fisfiae
ior. Some of the nonuniversal properties can be computetRG also correctly yields the universal low-energy power
numerically by the density matrix renormalization group laws with exponents that do not depend on the bare impurity
(DMRG),* but this method is limited to lattice systems with strength. In addition, it was shown that the asymptotic be-
about 1000 sites, and only a restricted set of observables cédravior holds typically only at very low-energy scales and for
be evaluated with affordable computational effort. very large systems, except for very strong bare impurities.
In the last few years it has been realized that the funcThe fRG approach to impurities in Luttinger liquids was
tional renormalization grougfRG) is a source of powerful originally developed and tested for spectral densities of
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single-particle excitations, but has been applied very regently Ho= - » (C-T+1Cj + c-ch+1) ()
also to transport problems, such as persistent currents in me- i ! !
soscopic ring$1° and the conductance of interacting wires . ] ) , ,
connected to noninteracting lead€° The full power of the IS given by nearest-neighbor hopping with an amplittiead
fRG with its ability to deal naturally also with complex -
) WIth H,=U> nn,, (3)

crossover phenomena emerges most convincingly in the mul- J- "
tiscale problem posed by the transport through a resonant
double barrieft is a nearest-neighbor interaction of strengthWe use stan-

In the present work we further develop the fRG approacifiard second quantization notation, whefeandc; are cre-
for impurities in Luttinger liquids by including two-particle ation and annihilation operators on sjterespectively, and
vertex renormalization, that is we go one step further in the;=c/c; is the local density operator. The impurity is repre-
hierarchy of flow equations than previoudk/For spinless sented by
fermions this extension does not matter qualitatively, as the H =SV e @)
lowest order is already qualitatively correct, but the quanti- imp =~ T
tative accuracy of the results improves considerably in par- )
ticular at intermediate interaction strengths. For si)isrys- whereV;,; is a static potential. For “site impurities”
tems, which we will treat in a subsequent wdfkyertex Vo =V 8 )
renormalization is necessary to take into account that back- e
scattering of particles with opposite spins at opposite Fermihis potential is local. For the important special case of a
points scales to zero in the low-energy limit. A crucial point single site impurity
is to devise an efficient parametrization of the vertex by a
managable number of variables. Here we focus on spinless Vj=Vdj, (6)

latttice fe(;rr]lo_lrjﬁ Wk;tr}kneargslt _nelghb?r mteragtlt?n asa pLOtofhe potential acts only on one sitg We also consider “hop-
type model. The bulk model is supplemented by site or .Ops'ping impurities” described by the nonlocal potential
ping impurities. We also analyze the influence of boundaries,

which can be viewed as infinite barriers or infinitesimal weak Vi =Vjjr = =1 ;410 je1- (7)
links. We choose to parametrize the vertex by a renormalized . . Lo .
nearest-neighbor interaction, which allows us to capture varir 0 the special case of a single hopping impurity
ous advantageous features: the low-energy flow of the vertex tije= (' =15, (8)
atkg in the pure system is obtained correctly to second order

in the renormalized couplings; the nonuniversal contribuihe hopping amplitudeis replaced by’ on the bond linking
tions at finite energy scales are correct to second order in tH&€ sitesjo and jo+1. In the following we will set the bulk
bare interaction; the algorithm for the flow of the self-energyhopping amplitudet equal to one, that is all energies are
remains as fast as in the absence of vertex renormalizatiogjven in units oft.

such that one can easily deal with up td 1ttice sites. We The clean spinless fermion mode}+H; is exactly solv-
compute spectral properties of single-particle excitationgble via the Bethe ansat?The system is a Luttinger liquid
near an impurity and the oscillations in the density profilefor all particle densities and any interaction strength except
induced by an impurity, or by a boundary. The accuracy ofat half filling for |U|>2. ForU>2 a charge density wave
the calculation is checked by comparing with DMRG resultswith wave vectorr forms, forU <-2 the system undergoes
for systems with up to 1000 lattice sites and with exact refhase separation. The Luttinger-liquid parametgr which

sults for the asymptotic behavior, which can be obtainedletermines all the critical exponents of the liquid, can be

from the Bethe ansatz and bosonization. computed exactly from the Bethe ansatz soluffoAt half
The article is structured as follows. In Sec. Il we intro- filling K, is related toU by the simple explicit formula

duce the microscopic model and various types of impurities. 2 U

The fRG formalism is developed in Sec. I, and worked out K;lz ;arcco{— —) 9

explicitly for the spinless fermion model with nearest-

neighbor interaction. Section 1V is dedicated to results forfor |U|<2.

the renormalized impurity potential, spectral properties, and We will compute physical properties for the above models
the density profile. We finally conclude in Sec. V with an on finite chains with open boundary conditions. The fRG

outline of promising extensions of the present work. equations can be solved easily for chains with up tosi@s,
the DMRG can be applied for up to 48ites. To avoid os-
Il. MICROSCOPIC MODEL cillations emerging from the ends of the chain we will some-

times attach noninteracting semi-infinite leads to the finite

We consider the spinless fermion lattice model with nearinteracting chain, with a smoothly decaying interaction at the
est neighbor interaction and various types of impurity potencontact.

tials. The Hamiltonian has the form
I1l. FUNCTIONAL RENORMALIZATION GROUP
H=Hg+H, +Himp, 1 _ o : . ,
0" T ime @) This section is dedicated to a detailed presentation of the
where the kinetic energy fRG equations for one-dimensional Fermi systems with im-
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S equation yields the flow of the self-energy, which is related
to the interacting propagator by the usual Dyson equation
A= A-1_ s A-1
LB " G =[(G)) -3 (1D)

Here and belowG", 34, etc., are operators, which do not
refer to any particular single-particle basis, unless we write
matrix indices explicitly. The right hand side of the flow

o ) o equation involves the two-particle vertdX*, and the so-
purities, including vertex renormalization, at zero temperagjled single scale propagatst defined as

ture. We use the one-particle irreducible version of the func-

tional RG5> The starting point is an exact hierarchy of A A At 1 4Gy 1

flow equations for the irreducible vertex functions, which is S =G [9A(Gp)IG" =~ 1-GMSA gA 1-3AGM
obtained by cutting off the infrared part of the free propaga- 0 0

tor on a scale\, and differentiating the generating functional 12
for the vertex functions with respect to this scHle.

FIG. 1. Flow equation for the self-enerd/.

Note thatS* has support only on a single frequency scale
|lo|=A. The precise flow equation for the self-energy

A. Cutoff and flow equations (sketched graphically in Fig.)Teads

The cutoff can be imposed in many different ways. The
only requirement is that the infrared singularities must be
regularized such that the flow equations allow for a regular
perturbation expansion in powers of the renormalized two- (13
particle vertex. For our purposes a sharp Matsubara fre-

Lency cutoff is the most efficient choice. A momentum Cut_Whereﬁ is the inverse temperature. The numbers 1, 2, etc.,
q y ' are a shorthand for Matsubara frequencies and labels for

off is Iess.sunable here sm_ce_the impurity spoils momemu”gingle—particle states such as site and spin indices. Note that
conservation. The cutoff is imposed by excluding modes

- ! - ! _
with frequencies below scal& from the functional integral 1=y and w,=w, due to Matsubara frequency conserva

. . . ._tion. The exponential factor in the above equation is irrel-
representation of the system, or equivalently, by mtroducm%vam at any finiteA, but is necessary to define the initial
a regularized bare propagator '

conditions of the flow at\=Ay— o0 (see below

Gi(iw) = 0(|lw| - A)Gyliw). (10) The right hand side of the flow equation for the two-

particle vertexI™®, shown in Fig. 2, involved™ itself, but

HereG, is the bare propagator of the pure system, involvingy|so the three-particle vertelk;. The latter could be com-
peither interactions nor impu_rities. Instead of the sharp cutoffyted from a flow equation involving the four-particle vertex
imposed by the step functio one may also choose a T4 and so on. To avoid this unmanagable proliferation of
smooth cutoff function, but the sharp cutoff has the advanyertex functions we make our first approximation: we ne-
tage that it reduces the number of integration variables on thgject the contribution of the three-particle vertex to the flow
right hand side of the flow equations. Note that we will fre- of TA The coupled system of flow equations 1ot and3A
quently write expressions which are well defined only if thejs then closed. The contribution % to I'\ is small as long
sharp cutoff is viewed as a limit of increasingly sharp smoothyg 1A g sufficiently small, becausEQ is initially (at Ag)
cutoff functions. The suppression of frequencies below scalggrg and is generated only from terms of third ordeFint’
A affects all Green and vertex functions of the interactingp comparison of the RG results to exact DMRG results and
system, which become thus functions/ofThe original sys-  exact scaling properties shows that the truncation error is
tem is recovered in the limiA — 0. often surprisingly small even for rather large interactiéhs.

The first two equations in the exact hierarchy of flow The explicit form of the truncated flow equation for the two-
equations for the one-particle irreducibieparticle vertex  particle vertex reads

functions are depicted graphically in Figs. 1 and 2. The first

d 1w o
—3M1, 1) === de0'sN2,2)TN 1,21, 2),
A 5

J 1
—AFA(l’,z';l,Z) ==> > G\3,3)S'(4,4)
A J 33 44

STt = ]].i:( x [TA(1',2/;3,4T(3,4':1,2)

-TAN1,4;1,31(3,2";4,2)

oA
-(83+-4,3 4"
st +TA(2',4;1,3I'"(3",1';4,2
+ ri +(3+4,3 < 4)]. (14
The various contributions are shown diagrammatically in
FIG. 2. Flow equation for the two-particle vert&X. Fig. 3.

075102-3



S. ANDERGASSENet al. PHYSICAL REVIEW B 70, 075102(2004)

1
oA _ :.j( 8¢~ MO (x~ A)] — &x = A) f fodt,  (19)
L = 0

where §,=0_. Note that the functional form od, for finite
e does not affect the result in the limét— 0.

2
1 r Instead of writing down the frequency-integrated flow
equations in full generality, we first implement our second
approximation: the frequency dependent flow of the renor-
_ malized two-particle verteX® is replaced by its value at
vanishing(externa) frequencies, such thdt* remains fre-
quency independent. As a consequence, also the self-energy

becomes frequency independent. Since the bare interaction is
2z frequency independent, neglecting the frequency dependence
leads to errors only at second ordén the interaction
strength for the self-energy, and at third order for the vertex
function at zero frequency. In addition to the quantitative
errors we miss qualitative properties related to the frequency
dependence of the self-energy, such as the suppression of the
one-particle spectral weight in the bulk of a pure Luttinger
liquid. On the other hand, a comparison with exact numerical
results and asymptotic analytical results shows that the im-
purity effects are not qualitatively affected by the frequency
FIG. 3. Flow equation for the two-particle vertex at one-loop dependence G, at least for weak interactions.

level with particle-particle and particle-hole channels written Carrying out the freq“e”c}’ integration in the ﬂO\_N equa-
explicitly. tion for the self-energy, and inserting a frequency indepen-

dent two-particle vertex, one obtains

For a sharp frequency cutoff the frequency sums on the
right-hand side of the flow equations can be carried out ana- 9 E = 1 E E g0 GA ,(iw)FA, / (16)
lytically in the zero-temperature limit, where the Matsubara aA 27 iny 22 vz
sums become integrals. At this point one has to deal with
products of delta functioné(|w|—A) and expressions involv- where the lower indices 1, 2, etc., label single-particle states
ing step function® (|w|-A). These at first sight ambiguous (not frequenciesand
expressions are well defined and unique if the sharp cutoff is _
implemented as a limit of increasingly sharp broadened cut- GMiw) = [G{)l(iw) ] 17
off functions ®, with the broadening parametetending to
zero. The expressions can then be conveniently evaluated Note thatG* has no jump afw|=A, in contrast toG*. The
using the following relatiort® valid for arbitrary continuous frequency integrated flow equation for the two-particle ver-
functionsf: tex, evaluated at vanishing external frequencies, has the form

l} gl
2 2
1 2’ 1
+ E g
2 1

J NN . A A ZA i NRA A A
aAFl' 211,27 EA 22> [ 3,3'("")G4,4'(_ 1)y 513430 41121 G390 (10)Gy 4 (1) (=174 41g 30 5140
T o=t 3,3 4,4
A A
+ 1“2',4f;1,3r3f,1f;4,2)}- (18

The flow is determined uniquely by the differential flow energy atA=o is given by the bare one-particle potential,
equations and the initial conditions At=o. For A=« the that is by those one-particle terms which are not included
vertex functions are given by the bare interactions of thealready inG,. We choose to include the translationally in-
system. In particular, the flow of the two-particle vertex variant bulk kinetic energy and the chemical potentiaGig)
starts from the antisymmetrized bare two-particle interactiorwhile the impurity(site or hopping potentialV is assigned to
while m-particle vertices of higher order vanish &t, in  the initial condition of the self-energy. In a numerical solu-
the absence ofm-body interactions withm>2. The self- tion the flow starts at some large finite initial cutdff. Here
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one has to take into account that, due to the slow decay gioints, such that the right-hand side of the flow equation is
the right-hand side of the flow equation ff at largeA, the  determined by momentum components of the vertex
integration of the flow fromA =% to A=A, yields a contri- T2 with ky,kp, ki, k5= +ke. Due to the antisymmetry

. . N . k1 k)ikg ko
bution which does not vanish in the limi; — =, but rather of the vertex, there is only one such component which is

tends to a finite constant. Sinfégz,(iw)aézyzrl(iw) for  nonzero:
|w|=A — 0, this constant is easily determined as

A —TA
A S 9 _Fka‘kF?ka‘kI:' (22)
1 0 gt 02,2 1 -
-5 lim f dA > > o ~o lr2ne® 52 l17212  In the low-energy limit the momentum dependence of the
MAg=>d w=xA 2 of @ 2 vertex away from ¥ is irrelevant. There are therefore many

(19)  possible choices for the functional form Bf, Kk ko which
172"

where I, 1, is the bare antisymmetrized interaction. In &ll 1ead to the correct low-energy asymptotics. For a model
summary, the initial conditions for the self-energy and theV_V"Fh a bar_e ngarest-nelghbo_r mteractidr_\a natural a_nd ef-
two-particle vertex at\=A,— o are ficient choice is to parametrize the flowing vertex simply by

a renormalized nearest-neighbor interactidh which leads

1 to a real space vertex of the form
A
El,?l_’ :Vl,l/ + EE |1112;1'2, (20) R R
2 = s 10 i — O 10 it
Fjilié:ilyjz_U11,12(5J1v115J2112 511,12 Jz,Jl) (23
A
I0a2= 2 (21

with U} =UN(S; ;. 1+6, j .1). This yields the following

. . . . 142 112 12

where V; y is the bare impurity potential. For the flow at

A<Aqthe factoré“® in Eq. (16) can be discarded. . )
structure in momentum space:

— ’ ’ 21)
=2Ucogk] - k;) — cogk) — kl)]éf(1+k2,ki+ké’

B. Parametrization of two-particle vertex (24)

A
r..
K] Kpiky ko

For a finite lattice system witl. sites the flow of the where the Kronecker delta implements momentum conserva-
two-particle vertexT'}, ,, . , involves O(L3) independent tion (modulo 2r). The flowing coupling constant* is
flowing variables, if translation invariance is assumed, andinked to the value of the vertex at the Fermi points by the
O(L*# variables, if the influence of the impurity on the flow relation
of the two-particle vertex is taken into account. For a treat- g" = 2U7[1 - cog2ko)]. (25)
ment of large systems it is therefore necessary to reduce the
number of variables by a suitable approximate parametrizafhe flow equation fog" becomes
tion of the vertex. In the low-energy limismall A) the flow Jad 1 d
is dominated by a very small number of variables anyway, 99 _ = > —p(pp+ PH+ PH’) (26)
the others being irrelevant according to standard RG AN 2w p ) 2w
arguments. In particular, the frequency dependence of the

vertex, discarded already above, is irrelevant for the flow oIW'th the particle-particle and particle-hole contributions

I'* at smallA. For largerA one can use perturbation theory 1. 0 . A N

as a guide for a simple but efficient parametrizatior 6f PP= EGp(Iw)G—p(_ To)Tk —ecp-pl p-pike. ke
We neglect the feedback of the self-energy into the flow

of I'* and replac&s” by Gy in Eq. (18). The renormalization PH=-— [Gg(lw)]zrjk\,:,p;kp,pri)\,—k,:;p,—kF’

of I'M includes thus only bulk, not impurity, contributions,

such thatl™ remains translation invariant. While this turns 0 0 e N

out to be sufficient for capturing the effects of isolated im- PH’ =Gy (i0)Gpu (1)1 b ke pkel ok kieiprie, ke

purities in otherwise pure systems, it is known that impurity (27)

contributions to vertex renormalization become important in

macroscopically disordered systeffiszor a more concrete whereI™* on the right-hand side of the flow equation is given

treatment of the vertex renormalization, we have to focus oy Eq.(24). Using Eq.(25) to replaced, g by d,U" on the

a specific model. In this article we restrict ourselves to thdeft-hand side of E¢(26), one obtains a flow equation fart

spinless fermion model with nearest-neighbor interactionof the simple form

leaving an extension to spin-systems with more general A A2

interac?tions for subsequen‘t)%]vo"i}%(. ’ IpU" = h(A)(UTY. (28)
For spinless fermions the two-particle vertex and the self-

energy are fully characterized by either site or momentunThe functionh(A) depends only on the cutofk and the

variables. In the low-energy limit, the flow of the vertex is Fermi momentunkz. An explicit formula forh(A) can be

dominated by contributions with momenta close to the Fermbbtained by carrying out the momentum integral in E2f)
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using the residue theorem, as sketched in Appendix A. For A U
finite systems the momentum integral should be replaced by - TH(A)
a discrete momentum sum; however, this leads to sizable

corrections only for very small systems. The flow equationwhere H(A) is the primitive function ofh(A) with H(A)

(29)

(28) can be —0 for A — . Integratingh(A) one obtains
|
A1 4 - pd)A% = 2ipuo(2 - ud)A + g — 6us+8 i A-i
H(A)= - — + —Re (4 - po) . Kol ﬁ.’*o) o 2,“0 _ ﬂsinh_l Ho
2w 2(4 = p)NA? = 2i oA + 4 - g 2 2
4 2,
4+ uf+iueA
+ Moz Fatant 2. = : : (30
2(4 = up) V(4 + ug+ipgh)? + 4(A = 2i )
[

where uo=-2 coskg, while sinfi* and tanh! denote the 9 Ut -~
main branch of the inverse of the complex functions sinh and [?_AZJA,jtl = o _EA GJA,jtl(lw)- (32

tanh, respectively. At half filling, corresponding ke=1/2,
the functionh(A) is particularly simple(see Appendix A  Note that the self-energy also enters the right-hand side of

A ; ; =
such that alsdJ* has a relatively simple form these equations, VﬁA:(Gal_EA)—l_ SinceSA andeal are
U both tridiagonal in real space, the matrix inversion required
Ut= 2+ A2 (31 to compute the diagonal and first off-diagonal elements of
1+ (A - ,m)UI(Zﬂ-) G* from XA can be carried out very efficiently, and thus for
\‘J

very large systems. In Appendix C we describe an algorithm
In Fig. 4 we show results for the renormalized nearestfor the numerical solution of the flow equation farwhich
neighbor interactiorJ as obtained from the flow equation Scales only linearly with the size of the system.

at various densitien, for a bare interactiotd =1. While the

renormalization does not follow any simple rule at interme- C. Observables

diate scales\, all curves saturate at a finite vallg in the In the next section we will present results for spectral
limit A— 0, corresponding to a finitg’, as expected for a properties of single-particle excitations near an impurity or
Luttinger-liquid fixed poing boundary, and for the density profile. Here we describe how

The above simplified flow equation yields not only the the relevant observables are computed from the solution of
correct low-energy asymptotics to second order in the renotthe flow equations.
malized vertex, but also contains abnuniversalsecond-
order corrections to the vertex akgtat higher energy scales. 1. Single-particle excitations
Hence the resulting fixed point couplirg, from which the Integrating the flow equation for the self-eneff$ down
Luttinger-liquid parameteK, can be computed, is obtained to A=0 yields the physicaicutoff-free) self-energys, and
correctly to second order ib. The calculation oK, pre-
sented in Appendix B, illustrates how Luttinger-liquid pa- —

rameters can be related to the fixed point couplings obtained 12F .

from the fRG. A comparison of the RG result fér, with n=1/2

exact results from the Bethe ansatz solution of the spinless |0 ) R .

fermion model shows that the vertex renormalization scheme n=3/8

described above is not only very simple, but also surprisingly 1F S T

accurate. 5 Rt

Parametrizind™® by a renormalized nearest-neighbor in- 0.9 '—"";:‘174‘ -------- — P .

teraction has the enormous advantage that the self-energy, as L

determined by the flow equatigi6), is a tridiagonal matrix 08 .

in real space, that is, only the matrix elemebfs and%,, |77 n—1/s -

are nonzero. Inserting® from Eq. (23) into (16), one ob- 0.7r . . . . . 7

tains the followmg simple cou_pled flow equations for the 0001 00l 01 1 10 1001000

diagonal and off-diagonal matrix elements: A
J o, UA ~y . . : .
—SA = — E 2 G, in(io), FIG. 4. Flow of the renormalized nearest-neighbor interaction
A P4 gy — o UA for the spinless fermion model, faf=1 and various densities
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. _ . - _1_ -1
the single partlc!e propagatﬁ? (Gp ) . Frpm the latter o a0(¢h) =5
spectral properties of single-particle excitations can be ex- j ¢, ¢-o,

=

tracted. We focus on local spectral properties, which are de-
scribed by thdocal spectral function
where()(¢) is the grand canonical potential of the system in
1 the presence of the field;. Note that we use the same sym-
pi(®) == —ImG;jj(w +i0%), (33)  bol n; for the density operator and its expectation value. In
™ the presence of a cutofA the grand canonical potential
obeys the exact flow equation
where Gjj(w+i0") is the local propagator, analytically con-
tinued to the real frequency axis from above. 9
In our approximation the self-energy is frequency inde- —
pendent and can therefore be viewed as an effective single- JA
particle potential. The propagat&® is thus the Green func- (36)
tion of an effective single-particle Hamiltonian. In real space

representation this Hamiltonian is given by the tridiagonal. . . . .
mgtrix heg=ho+3, Where the matrixgelemen){s of are tf?e in a short-hand matrix notation. This flow-equation follows
eff 110 ’

hopping amplitudes iy, Eq. (2). For a lattice withL_ sites from the functional flow equation for the generating func-

this matrix had_ (including possible multiplicitieseigenval- tional for vertex functionS and the relation between the

uese, and an orthonormal set of corresponding eigenvectorgr?ndt fﬁnorn'f‘il r;ﬁtemlatl agdr thff zer?]—partlcrlr? l;/erten>1<. Al N
. For the spectral functiop;(w) one thus obtains a sum of : ero temperature the Matsubara frequency su ecomes a
S functions integral which, for the sharp frequency cut@ff0), can be

carried out analytically. This yields

Qh = %2 tr{€ %" [9, G (i) M[GM(iw) - GY(iw) T}

pi(w) =2 Wy = &), (34) 9 1 -
R 00 = S (e[ -Gyl iw)]}. (37)
Ww:i
where ¢, =€, —u and thespectral weight w is the squared .

modulus of the amplitude of, on sitej. For largeL the
level spacing between neighboring eigenvalues is usually ofVe attributed; to the “interaction” part of the Hamiltonian,
order L%, except for one or a few levels outside the bandnot toHo, such thaiG, remains independent ef;. The self-
edges which correspond to bound states. energy is modified via the additional local and frequency-
Due to even-odd effects, etc., the spectral We\'g)htgen- independent contributiorqu&”, to its initial value 239 at
erally varies quickly from one eigenvalue to the next one. AscaleA,.
smooth function ofw which suppresses these usually irrel-  The density profile can be obtained from the above equa-
evant finite-size details can be obtained by averaging oveions and the flow equation fa&* by computing the shift of
neighboring eigenvalues. In addition it is useful to divide by () generated by a small finite perturbatign that is by nu-
the level spacing between eigenvalues to obtain the convemerical differentiation. Alternatively one may carry out the
tional localdensity of statgswhich we denote byD;(w). ¢; derivative analytically in the flow equations, which yields
a flow equation for the density in terms of the density re-
2. Density profile sponse vertex. Taking the; derivative in Eq.(37) yields
Boundaries or impurities induce a density profile with J 1 5
long-range Friedel oscillations, which are expected to decay —nJ-A = > tr[e“"°+GA(iw)Rf‘(iw)] (38)
with a power law at long distancé$The expectation value dA 2 =i
of the local densityn; could be computed from the local
one-particle propagatdg;;, if G was known exactly. How-
ever, the approximate flow equations frcan be expected
to describe the asymptotic behavior @f correctly only at v
long distances between creation and annihilation operator in RMiw) = 3N iw)
time and/or space, while in the local density operator time ) b |4=0
and space variables coincide. In the standard RG terminol- !
ogy n; is a composite operator, which has to be renormalized ~
separately? where the propagat@” is computed as previously, that is in
To derive a flow equation fon;, we follow the usual the absence ot);. We compute the self-energy® in the
procedure for the renormalization of correlation functions in-presence ofp; within the same approximation as previously.
volving composite operators: we add a tewsn; with a It is thus determined from the flow equatiga6) with a
small field ¢; to the Hamiltonian, and take derivatives with frequency-independent two-particle vertB%. Taking a de-
respect tag; in the flow equations. The local density is given rivative of that equation with respect t at ¢;=0 yields the
by flow equation for the response vertex

with the density response vertex

: (39
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(9 RA l 05 T T
GA BIT T o WY
S SSE (wRY .G (o) ) 7
X Go 3 (10)R 5 3Gz (10)), 511y o
w=tAp '3 3
(40) 03 | | 1
. . . . . -0.12 T T T
Note thatRJA is frequency independent in our approximation ¥
and that there is no contribution from tkte derivative ofl™A, | Zin it _
. oo . -0.16 wRiAjiiRm
since we neglect self-energy contributions in the flow of the gttt Tyl foTolase ity tasasndsshgh
two-particle vertex. 09l “uye ]
For spinless fermions with grenormalizegl nearest- I ! il
neighbor interaction, the matrl%-A is tridiagonal, that is only -75 -50 25 0 25
the componentRjA;H a”de\;Lm are nonzero, and their flow is J—J
given by FIG. 5. Self-energy near a site impurity of strenytk 1.5 for
A the spinless fermion model at quarter filling and interaction strength
i A :_U_ U=1; the impurity is situated at the center of a chain with
aA Tt 27 =1025 sites.
~A . ~A .
X2 22 2 GhyioRY, 1,,Gh (i), IV. RESULTS

w=tA |1 r=£l, '=0,+1 . L
' We now present and discuss explicit results for the self-
energy, spectral properties near the impurity or boundary,

iRA _ U_A and the density profile, as obtained from the fRG. A com-
gA THELT 5 parison with exact DMRG results is made for the spectral
_ _ weight at the Fermi level and for the density profile. Some
X2 > > GlAJ,(iw)RjA;V",H,G,A,H/’,ﬂ(iw). fRG results for the self-energy and spectral properties of the

@ZEA |7 112041 spinless fermion model have been published alréAdbyt

(417  only for half filling and without any vertex renormalization.
Here we present results also away from half filling and dem-

The right-hand sides involve only one unrestricted latticeOnstrate the quantitative improvement of accuracy obtained

dix C). The initial condition for the response vertex is fRG results for the density profile. Using a faster algorithm

R_/}Iollzéjl &+. The initial condition for the density iglto=1 (see Appendlx_ Cthan previously we are now able to solve
I the flow equations for much larger systems.

i T2
for any filling, due to the slow convergence of the flow equa- : : s
) . . ) . . The typical shape of the self-energy in the vicinity of an
tion (38) at I_arge frequencies, which yields a f|n|te_con_tr|bu- impurityycpan be sgen in Fig. 5 Whergeywe plot the d);agonal
tion to the integrated flow from\ = to Ao for arbitrarily oo yentes and the off—diagon:al elemenk ;,, near a site
large flnlte_AO, as in the case of the self-energy discussed "]mpurity o{"JstrengthV:l.S added to the é]p)inless fermion
more detail above. model with interaction strengtd=1 at quarter filling. Recall

that the self-energy is tridiagonal in real space and frequency

To avoid the interference of Friedel oscillations emerging
from the impurity or one boundary with those coming from independent within our treatment. The diagonal elements can

the (othe) boundaries of our systems we suppress t_h_e !n.ﬂu'be interpreted as a local effective potential, the off-diagonal
ence of the latter by coupling the finite chain to semi-infinite

noninteracting leads, with a smooth decay of the interaction, lements as a nonlocal effective potential which renormal-

at the contacts. The presence of leads modifies the selff®> the hopping amplitudes. At long distances from the im-

energy in the interacting region only via a boundary term. inPurnY Poth2;; and 2., tend to a constant. The former
"9y g reg yvia Y . describes just a bulk shift of the chemical potential, the latter
particular, a lead coupled to the first site of the interactin

) . ; S . % bulk renormalization of the hopping amplitude toward
r?(glgg tr\:'eaag%ﬁgi;?gl?ﬂﬁﬁg[ﬂ?oonpp'm‘y'th amplitudet=1) larger values. The oscillations around the bulk shifts are gen-
y erated by the impurity. The wave number of the oscillations

, is 2kg=1/2, wherekg is the Fermi wave vector of the bulk
lead;; | _ o+ pol, _ _ 4 Yy system at quarter filling. The amplitude of the oscillations of
zjj,"(m) 1 1-— 5|88 (42) . ; ; :
: 2 (iw+ ug) >, decays slower than the inverse distance from the impurity
at intermediate length scales, but approaches a decay propor-
to the first diagonal element of self-energy matrix in realtional to 1/4j—jo| for |j—jo|—c. This can be seen most
space® Note that this term is frequency dependent and inclearly by plotting an effective exponep; for the decay of
dependent ofA. A lead coupled to the last site yields an the oscillations, defined as the negative logarithmic deriva-
analogous contribution to the last diagonal element of theive of the oscillation amplitude with respect to the distance
self-energy. li—jol. In Fig. 6 we show the effective exponent resulting
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FIG. 6. Effective exponent for the decay of oscillationsgf as
a function of the distance from a site impurity of strengiis FIG. 7. Local density of states on the site next to a site impurity
=0.01, 0.1, 0.3, 1, 10from bottom to top, for the spinless fermion  of strengthV=1.5 for spinless fermions at half filling andi=1; the
model at half filling and interaction strength=1; the impurity is  impurity is situated at the center of a chain witk 1025 sites; the
situated at the center of a chain with28+1 sites. noninteracting case=0 is shown for comparison.

from the oscillations ok ; as a function of the distance from -kc. Indeed the singularity is situated at €k~ Mo where
a site impurity, foru=1 and half filling. The impurity is ¢, is the renormalizedbulk) dispersion. In the half-filled
situated at the center of a long chain witk 28+ 1 sites. To  case only one singularity is seen simply becausek-=kg
avoid interferences with oscillations from the boundaries wefor k.= 7/2.
have attached semi-infinite noninteracting leads to the ends The spectral weight at the Fermi level is expected to van-
of the interacting chain, as described in the last paragraph géh asymptotically as a power lalw 8 with increasing sys-
Sec. I C 2. Only for relatively large impurity strengths the tem size, whereng=K -1 is the boundary exponende-
asymptotic regime corresponding 8=1 is reached before scribing the power-law suppression of the density of states at
finite size effects set in. For small one can see thaB;  the boundary of a semi-infinite chairThat exponent de-
increases from values below one, but the asymptotic longpends only on the bulk parameters of the model, not on the
distance behavior is cut off by the boundaries of the interactimpurity strength. For the spinless fermion model it can be
ing region. For very smaV (for exampleV=0.01 in Fig. 8  computed exactly from the Bethe ansatz solufionVe
we observe a plateau if; for intermediate distances from therefore analyze the asymptotic behavior of the spectral
the impurity site. In this regimg; is close toK, which can  weight at the Fermi level by defining an effective exponent
be understood by analytically solving our flow equations foru(L) as the negative logarithmic derivative of the spectral
small V.14 o weight with respect to the system size, such idt) tends
The long-range & oscillations of the self-energy lead to {5 g (positive) constant in case of a power-law suppression.
a marked suppression of the spectral weight for singlei, Fig. 9 we show results for(L) as obtained from the fRG
particle excitations at the Fermi level, thatis«at0. In Fig. o the spinless fermion model at quarter filling with up to
7 we show the local density of statBg(w) on the site next  jpout 16 sites, for a weakU=0.5 and intermediatgU

to a site impurity of strengtv=1.5 for the spinless fermion -1 5 jnteraction parameter. The spectral weight has been
model at half filling. The result for the interacting system at

U=1 is compared to the noninteracting case. Even-odd ef- 05 ——r
fects have been eliminated by averaging over neighboring .

eigenvalues(see Sec. lllC L é-peaks outside the band 04 b — Zi ;ﬁ i
edges corresponding to bound states are not plotted. The in- A

teraction leads to a global broadening of the band, which is ) |

due to an enhancement of the bulk hopping amplitude, and - 051

also to a strong suppression Bf(w) at low frequencies &

which is not present in the noninteracting system. For a finite 0.2 ’

system(hereL=1025 the spectral weight at the Fermi level

remains finite, but tends to zero with increasing system size. 0.1

In Fig. 8 we show results for the density of states choosing

the same parameters as in Fig. 7, but now for densities away 03 '3

from half filling: n=1/4 andn=3/4. In addition to the dip
nearo=0 a second singularity appears at a finite frequency.
This effect is due to the fact that a long-range potential with  FIG. 8. Local density of states on the site next to a site impurity
a wave number 2- does not only strongly scatter states with as in Fig. 7(same parametexsbut now for densitiesi=1/4 and
momenta neakg, but also those with momenta close 40 n=3/4.
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FIG. 10. Logarithmic derivative of the spectral weight at the
Fermi level near a boundargsolid line) or near a site impurity
(dashed linesas a function of system side for spinless fermions
at quarter filling and interaction strendth=1. In the boundary case
the spectral weight has been taken on the first site of a homoge-
neous chain, in the impurity case on the site next to a site impurity
of strengthV in the center of the chain. The horizontal line repre-
sents the exact boundary exponent br 1.

Arg how the asymptotic regime shifts rapidly toward larger sys-
B T T T R tems as the bare impurity strength decreases.
I We finally discuss results for the density profitg.

Boundaries and impurities induce Friedel oscillations of the
FIG. 9. Logarithmic derivative of the spectral weight at the local density with a wave vectork2. In a noninteracting
Fermi level near a boundargsolid lines or hopping impurity  system these oscillations decay proportionally to the inverse
(dashed linegas a function of system sidg for spinless fermions  distance from the boundary or impurity. In an interacting
at quarter filling and interaction strengti=0.5 (circles or U | uttinger-liquid the Friedel oscillations are expected to de-
=1.5(squarey upper panel: without vertex renormalization, lower cay as|j-jo| ™ at long distance$j—jo|. For a very weak
panel: with vertex renormalization; the open SymbOlS are fRG, thqmpurlty one expects a Slower decay proportlonal |IO
filled symbols DMRG results; the horizontal lines represent the ex-_jo|1—z<,) at intermediate distances, and a crossover to the
act boundary exponents fdd=0.5 andU=1.5. In the boundary asymptotic power law with exponenk, at very long
case(solid lineg the spectral weight has been taken on the first sitejiciance® At intermediate distances the response of the
g; ?hgi:/nvggs?tneesorﬁxﬂ?r; Lnoth?n'mﬁ;’”L{ifﬁdgssh;dtugefggtgpif density to a weak impurity can be treated in linear response
the chain PpIng imp ' theory, such Fhat the density mgdulatlon is determined by the
' density-density response function a-2which leads to the

) o ) ower-law decay with exponen2-1. In Fig. 11 we show
computed either at a boundary, or near a hopping impurity o}rs and DMRG results for the density profite for a spin-

strengtht’=0.5. Results obtained from the RG withaup-  |ess fermion chain with 128 sites and interaction strength
per panel and with(lower pane) vertex renormalization are

compared to exact DMRG resulgfor up to 512 sitesand 0.7 T T T T T T
the exact boundary exponenisg, plotted as horizontal lines.

The fRG results follow a power law for large, with the _c,’_ I]ZZIRG
same asymptotic exponent for the boundary and impurity 0.6t

case, confirming thus the expected universality. However, the
asymptotic regime is reached only for fairly large systems,

even for the intermediate interaction strendgdl=1.5. The 0.5
comparison with the exact DMRG results and exact expo-

nents shows that the fRG is also quantitatively rather accu-

rate, and that the inclusion of vertex renormalization leads to 0.4
a substantial improvement at intermediate coupling strength. . . . . . .

Results for the effective exponeant in the case of a site 0 20 40 60 8 100 120
impurity are shown in Fig. 10, at quarter filling and for an J

interaction strengttU=1. The comparison of the different  FIG. 11. Density profilen; for a spinless fermion chain with 128
curves obtained for different impurity strengths confirmssites and interaction strengtth=1 at half filling; fRG results are
once again the expected asymptotic universality, and alscompared to exact DMRG results.

N CCCCCrrrro,
R XN R R A
DR s

s

N
g
O pt ,'o ‘
s
o
Quo
®
@

075102-10



FUNCTIONAL RENORMALIZATION GROUP FOR..

PHYSICAL REVIEW B 70, 075102(2004)

0.1¢ ML LI | UL | 10’1:6- T T T T
L L3 2o ]
102 ba BB 300 ]
[ A\A\A‘E‘E‘B "9~.°_0L~e- |
-3 LG, ~A, ~EL - i
0.01F 0 e T By e ]
. -3 o Bea Bg "oy
= 2 10t &\&n . Bag 3
2 A ~82. |
L £ 10°F Seg au 9
= o001F S i AN ]
10¢F -e- U=01 ®e. -:
[ -4 U=05 e ]
107F -8 U=10 “e;
- U=15
0.0001 F 10-8L Ll Ll Ll L1
10t 102 108 104 10°
10 . J
J
T T T T
FIG. 12. Density modulatiofn;—n| as a function of the distance S ]
from a boundary, for spinless fermions with interaction strength
U=1 and(averaggdensityn=0.393 on a chain with 8192 sites; the 0.9+ e
broken straight line is a power-law fit to the envelope of the oscil- = A A A A AT AT R A AR R A e
lation amplitudes. s 08r A
R, ‘]
- . I g B-8-g-g-5-5-8-8- I ——
U=1 at half filing. The Friedel oscillations emerge from RO A i
both boundaries and interfere in the center of the chain. The
accuracy of the RG results is excellent for pllFor incom- 0-6T0-._ oo |
mensurate filling factors the density profile looks more com- A 5 L 5
plicated. This can be seen in Fig. 12, where functional RG 10! 10 10 10* 10°

results are shown for the density modulatjop-n| near the
boundary of a system with an average density0.393 and
8192 sites. For long distances from the boundary the oscil- FIG. 13. Amplitude (envelopg of oscillations of the density
lation amplitude has a well-defined envelope which fits to aprofile n; induced by a boundary as a function of the distance from
power law as a function of. We now analyze the long- the boundary, for spinless fermions with various interaction
distance behavior of the amplitudes more closely for thestrengthsl at half filling; the interacting chain with®+1 sites is
half-filled case, and compare to exact results for thé:oupled to a semi-infinite noninteracting lead at one @uposite
asymptotic exponents. In Fig. 13 we show fRG results forto the bound.ar),( upper panel: log-log plot of the amplitude, lower .
the amplitude of density oscillations emerging from an Operpanelz effective exponent_s for the decay, and the exact asymptotic
boundary, for a very long spinless fermion chain wittf 2 €XPonents as horizontal lines.

+1 sites and various interaction strengttisat half filling.

The other end of the chaimpposite to the open boundaiig

smoothly connected to a noninteracting lead. In a log-log

plot (upper panel of Fig. J3the amplitude follows a straight

line for almost allj, corresponding to a power law depen- L L L Jé'ﬂ
dence. Deviations from a perfect power law can be seen NP g ,",'
more neatly by plotting the effective exponeyt defined as 0.7 p7-%-9-9= _'_&_e-o-g" ) P
the negative logarithmic derivative of the amplitude with re- ‘_0—0"9 g,ﬁ"g ,/A,"
spect toj (see the lower panel of Fig. 13The effective B o /gﬁ" A
exponent is almost constant except at very short distances or “g 06 2,»?’ A,,A’ i
whenj approaches the opposite end of the interacting chain, § g s IZ]/’
which is not surprising. From a comparison with the exact ey " s
exponent(horizontal lines in the figujeone can assess the 0.5 ¢ e /Er' .
guantitative accuracy of the fRG results. Effective exponents aoaaa a -t

describing the decay of Friedel oscillations generated by site G-@--5--8--e -8 87

impurities of various strengths are shown in Fig. 14, for a 0-4101 1(')2 — ""'1'(')3 — 1(')4 BT
half-filled spinless fermion chain with'2+1 sites and inter- i

actionU=1. Both ends of the interacting chains are coupled
to noninteracting leads to suppress oscillations coming from g|G. 14. Effective exponent for the decay of density oscillations
the boundaries. For strong impurities the results are close tgs a function of the distance from a site impurity of strengths
the boundary resultsee Fig. 13 as expected. For weaker =0.01, 0.1, 0.3, 1, 3, 1(from bottom to top; the impurity is situ-
impurities the oscillations decay more slowly, that is with aated at the center of a spinless fermion chain with+a sites and
smaller exponent, and approach the boundary behavior oniyiteraction strengtiJ=1 at half filling; the interacting chain is
asymptotically at large distancébeyond the range of our coupled to semi-infinite noninteracting leads at both ends.
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irrelevant for the asymptotic low-energy or long-distance be-
18F pm-geEeS-A-EE-B-E-S.5 havior, although it may contribute quantitatively at interme-
diate scales. In the case of disordered systems with a finite

i o
N Fal ’g,—v’ﬁ impurity density the influence of the latter on the two-
S L6R/ Pt particle vertex is crucial and must be taken into accéti.
§ q,g“a principle this is possible by computing the vertex flow with

full propagators, which contain the renormalized impurity
potential via the self-energy.
Finite temperature The fRG approach can be extended
. . without major complications to finite temperature. This is
LA 102 10° particularly useful for studying the temperature dependence
J—Jo of transport propertie¥)
Transport In the absence of inelastic processé® >
FIG. 15. Effective exponent for the decay of density oscillations— 0) the conductance of the interacting wire can be computed
as a function of the distance from a site impurity of str_ength_s from the one-particle Green function in the presence of
=0.1, 1, 10, 100, 100drom top to bottom for the same chain as in 54630 Several results have already been presented in short
Fig. 14 but now with arattractiveinteractionU=-1. articlesl9-21
Inelastic processednelastic processes appear at second
chain forvV<1). For very weak impuritiegV=0.01 in Fig.  order in the interaction and can be included in the flow equa-
14) the oscillation amplitude follows a power law corre- tions by inserting the second order vertex into the flow equa-
sponding to the linear response behavior with exponenfion for the self-energy without neglecting its frequency de-
2K,-1 at intermediate distances. We finally present som@endence. This procedure would also capture the anomalous

results for the effective exponent of the density OSCi”ationdimension of the bulk System' which is missing in the
decay in the case of aattractiveinteractionU=-1, see Fig.  present work.

15. In that case the effective impurity strength should scale

to zero at low energies and long distanédsdeed, for weak

and moderate bare impurity potentials the effective exponent ACKNOWLEDGMENT
in Fig. 15 approaches the linear density response exponent
2K,—1. Only for very strong impurities the density oscilla-
tions decay with the smaller boundary exponent over sever
length scales.
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V. CONCLUSION

In summary, we have shown that the fRG provides an  APPENDIX A: EVALUATION OF VERTEX FLOW
ideal tool for computing the intriguing properties of ) ) .
Luttinger-liquids with static impurities. The method yields Here we sketch some details concerning the explicit
ab initio results for microscopic model systems at all energyevaluation of the flow equations for the two-particle vertex.
scales from the Fermi energy to the ultimate low-energynserting the momentum St”_JCtUXe Ef‘,AEq. (24), into the
limit. We have demonstrated the power of the method bylOW equation(26) and replacingg™ by U” on the left-hand

computing spectral properties of single-particle excitationsSide yields

as well as the oscillations in the density profile induced by gur (UM)? 2 dp
impurities or boundaries for a spinless fermion model with —_— f —f(p,w), (A1)
nearest-neighbor interaction. With the inclusion of vertex I 2msike Sy Jo 27
renormalization, in addition to the renormalization of the ef'where
fective impurity potential, our results agree remarkably well
with exact asymptotic results and numerical DMRG data 2 sirfkesin’p (coskg — cosp)?
even for intermediate interaction strength. P,w)= (iw-E)(-iw-&) - (iw- &2

There is a broad range of interesting further applications P P P
and extensions of the fRG for impurities in Luttinger liquids [cog2kg) - cosp]? (A2)
beyond the scope of the present article. (- fg—kF)(iw— §g+kF).

Spin% fermions The inclusion of spin degrees of freedom
requires a parametrization of the two-particle vertex withHerefﬁz—Z cosk— ug With ug=-2 coskg is the bare disper-
several coupling constants. We have already derived flowion relation relative to the bare Fermi level. Sirfép, )
equations for the&extendegl Hubbard model, with an effec- can be written as a rational function of cpsnd sinp, thep
tive vertex parametrized by local and nearest-neighbomtegral can be carried out analytically using the substitution
interactions’® z=€P and the residue theorem. After a lengthy but straight-

Feedback of impurities on vertekor isolated impurities forward calculation one obtains the following result for the
the influence of impurities on the vertex renormalization iscoefficienth(A) in Eq. (28):
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1 i _ 4 Biug— 10uA — 12 p3(A%+ 1) + 6A3ug+ 18A ug + BIAZ +iA*
h(A) == o=~ Rel S(ug+iA) /1 - ———— =00 . VI . (A3)
27 2 (mo+iA) (2o +1A)(4 = g+ A== 21 A po)

At half filling (ug=0), this reduces to forward scattering limit of the vertex function is unique,
since the ambiguity in the particle-hole propagator is due to
1 6+ A2 the infrared pole of the single-particle propagator. Hence
h(A)=--—11 _A(4+—A2)3’2 : (A4 T¢ i« is well defined. However . and also

its limit for A— 0 depend on the choice for the cutoff func-
tion. For a momentum cutoff, which excludes states with
APPENDIX B: CALCULATION OF K, exci.tation energ_ies. belovx_t/\ around the Fermi points,
particle-hole excitations with small momentum transfgrs
In this appendix we show how the Luttinger-liquid param- are impossible. Hence particle-hole propagators with infini-
eterK,,, which determines the critical exponents of Luttinger-tesimalq do not contribute to the vertex at afy>0, such
quuic_Js, can be computed from the fixed point couplings aihatrf?p—kp:kp—kp converges to the dynamical forward scatter-
obtained from the RG. A comparison of the RG resulthgr  ing limit, which is simply given by the bare coupling con-
with the exact Bethe ansatz result for the bulk magéth-  stantg in the Luttinger model. For a frequency cutoff the

out impurity) serves also as a check for the accuracy of ouparticle-hole propagators with vanishing momentum and fre-
vertex renormalization. A relation between the fixed pointguency transfer yield a finite contribution at>0, which

couplings anK, can be established via the exact solution oftends to the static limit foh — 0. This can be seen directly
the fixed point Hamiltonian of Luttinger liquids, the Lut- py integratinng:iAfdp[Gg(iw)]2 over A from infinity to
tinger model. _ _ _ _ zero. Hence the vertel?ﬁp_kF;kF,_kF obtained from our fre-
moI(:erI Zglrlzrisestggg%n:’(% IsS determined by the Luttinger quency cutoff RG tends to the statip forward scatterilng Iimit.
F For the Luttinger model, the static forward scattering limit
of the vertex can be obtained from the dynamical effective

1-gl(2mvp) interaction between left and right moveigq,iv), which is
Ko=\lT—7""—— (B1) defined as the sum of particle-hole chains

P 1+9/(2mvg)’
D(q,iv) =g +gl%(q,in)gl(a,iv)g+ -
whereg is the interaction between left and right movers and 9
v the effective Fermi velocity of the model, that is the slope = T pa—" wa—
of the (linear) dispersion relation, with a possible shift due to 1-g7T(q.inIl(a,iv)
interactions between particles moving in the same directiogyhere
(94 coupling already included.We therefore need to extract
g anduvg from the RG flow in the limitA —0. In order to M%(q,iv) = + 1 a (B3)
obtainK, correctly to ordetU?, it is sufficient to obtairg = 27iv ¥ veQ
correctly to linear order itJ.

The Luttinger model interactiog and the fixed point cou-
A—0

(B2)

is the bare particle-hole bubble for riglt) and left (-)

lina o =T _ from the RG are not simply identical, MOVers: Note thgt only odd powers gfcontrlbute to the
b g% t"tF"kF'r':F'EkF ot naivel It TF') yf.l p thl rycEffective interaction between left and right movers. This ef-
ih contrast to what oné might naively expect. 1o ind e Wu&g e interaction appears naturally in the exact solution of

relation betweery andg’, one has to take into account that Luttinger model via Ward identiti€3.For the static limit
the forward scattering limit of the dynamical two-particle one obtains

vertex is generally not unigugn the absence of cutoffsand

depends on whether momentum or frequency transfers tend lim D(q,0) = g

to zero first. Th|s ambiguity is \_/veII_ known in Ferml—!lqwc_i 0 1-[g/(2mve)
theory, where it leads to the distinction between quasiparticle ) ) ) ] ) o,
interactions and scattering amplituddsput is equally Which we identify with our fixed point coupling as ob-
present in Luttinger liquids, for the same reason in all cased@ined from the RG with frequency cutoff. Inverting this re-
the ambiguity of the small momentum, small frequency limit |ation betweerg andg" we obtain

of particle-hole propagators contributing to the vertex func- 27vE e —

tion. In the dynamical limit, where the momentum transfer 9=~ [~ e +\(mvp)® + (9. (B5)
vanishes first, the singular particle-hole propagators do not g

contribute. In Fermi liquids this limit yields the quasiparticle For spinless fermions the difference betwegmand g* ap-
interaction. In the opposite static limit the frequency transferpears only at third order in the coupling, but for models with
v vanishes first and particle-hole propagators yield a finitespin the distinction becomes important already at second or-
contribution. In the presence of an infrared cutaff>0 the  der.

(B4)
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The Fermi velocityvg can be computed from théfre- 1.6
quency independenself-energy in momentum space as
1.4F
v,:=vg+ ﬁkzkh(':, (B6)
Wherevg:&kek|kF is the bare Fermi velocity. The self-energy 12
is computed from the flow equatiai32), which can be re- =
written in momentum space as 1
d uA dp1-cogk-—
—AEA =-— f _P%ili)’ (B7) 0.8
d T =t ) 2T l0—§— 3
where&,=€,— . The chemical potentigk has to be fixed by 0.6 N 05 5 0'5 1 ' 5
the final conditionng+EkF=0, whereke=7n depends only ) e U :

on the density, not the interaction. From the tridiagonal struc-
ture of, in real space, but also from the above expression it G, 16. Luttinger-liquid parametek,, as a function ofU at
follows that S} has the form3, =a*+b*cosk. The func-  various densitiegas in Fig. 4 for the spinless fermion model; the
tional flow equation forz yields a coupled set of ordinary inset shows the difference between the RG result and the exact
flow equations for the coefficients® and b*, with initial Bethe ansatz result fdt,.

conditionsa’o=U andb*0=0. The momentum integrals can

be evaluated analytically via the residue theorem, such thalys|ain how this is done and then present the resulting algo-
thf remaining set of two coupled differential equationsh ity that can directly be incorporated into a computer pro-
U™ as inpuj can be easily solved numerically. The result for 45m

ve IS correct at least to first order ld, but not necessarily to Under certain assumptiorisee below; a matrix can be
second order, since our simplified parametrization capturel§nique|y factorized into a lower unit triangular matiix a

the two-particle vertex correctly to second order only at thediagonal matrixD, and an upper unit triangular matriy

Fermi points. _ _ (“LDU factorization’): T=LDU.%? For a tridiagonal matrix
Insertingg andue into the Luttinger model formuléBl)  he ynit triangular matricels andU are in fact unit bidiago-

we can now comput&, as a function ol and density for 5. their matrix elements are one on the diagonal, and only

the microscopic spinless fermion model. In Fig. 16 we showg first off-diagonal is nonzero. Since dlits symmetric we
results fork ,(U) for various fixed densities, which are com- avel =UT. Thus we obtain a factorization of the form

pared to the exact result from the Bethe ansatz solfftion

the inset. The RG results are indeed correct to otdfefor 1 D}
smallU, as expected, and they are surprisingly accurate also . ! .
for larger values olJ. T=U"D'U* = up 1 D,
u; 1 D3
APPENDIX C: NUMERICAL SOLUTION OF 3 FLOW ’
For A < Ay< the flow equation for the self-energy6) 1 U;
can be written as 1 U3

d A 1 A ~A
(;_Azrf - Z%,Fl'z”l’zz R4G,,(iA)].  (CY

In order to compute its right-hand side, one needs to inverivhere the label “+” distinguishes this factorization from an-

the tridiagonal matrix other one used below. The prescription to compute the ele-
i A mentsD;” and U;" is well known and can be found, for ex-
T=Gy (i) -2%, (C2 ample, in Ref. 32. Starting in the upper left corner one

whereT is complex symmetri¢not hermitean with diagonal ~ Proceeds to increasing row and column numbers until one

elementsa;: =iA+u-31, i=1,... L, and first off-diagonal ~arrives at the lower right corner gt

elements b =t-38,,, i=1,...L-1. Note that Inta) . . . .

=A >0 such thafT is nonsingular and its inverse well de- Dii=a;, Uji=b/D;, Djyi=a;~ by

fined. ~ (i=1,...L-1). (C3)
The inverseG*(iA)=T"!is not tridiagonal but a full ma-

trix which can be computed by standard method©ih.?) This works well since in our case [id;")= A >0, such that

time. However, for an interaction that does not extend beone never divides by zero.

yond nearest neighbors on the lattice, only the tridiagonal 1o compute the invers&=T"1, one could directly calcu-

part of G is required, which can be computed@iL) time, late (U*)"%D*)~}U*")™L It is, however, easier and more ac-

such that much larger lattices can be treated. We shall firgturate to find the inverse by solving the linear system of
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equationsTG=1, where 1 is the identity matrix, by “back T=UDL =UDUT, (C6)
Eubstltugon. To be specific, consider thtt column vector where the matrix elements are obtained as
G...,i of G:

B 5 5 Di:=a, U:=b/Dy,; Dii=a-bUy (i=L
§=TG ;=U'I(D'U'G ;) =U"Tg, U'G_;=(D")"g, -1,...,). (C7

(CH

whereeg is theith unit vector. The first step is to solve the

We proceed as for the LDU factorization above and get

linear systemU*Tg;=g for g;, and the second step to solve
U*G, ;=(D*)g, for G_ ;. To solve a tridiagonal linear sys-

tem for one vector take®(L) time, so solving for the full
inverse matrixG takesO(L?) time.

Gy .= 1/D7, (C9

Giis1=-U;Gy;. (C9)

We can combine EqYC5) and (C9) to relate consecutive

Now we shall derive an algorithm to compute the ele'diagonal elements

ments ofg; and é, Begin with the last columri=L:

U*Tg, =e_ can be solved from the first to the last row and
givesg, =e_. NextU*G =(D*)"%e_can be solved starting
from the last row,GL'LzllD[. From there one can work

upwards by back substitutioéjy,_:—U}'éjﬂ,,_ (j=1,...L

Giigj+1=~ éi,i+1/Ui+ = éi,iui_/UiJr = éi,iDr/Di_ﬂ-
(C10

Thus we start with Eq¢C8) and use théJ"D"L~ decompo-
sition to go one matrix element to the right in the inverse

- 1) For the other columni< L, one cannot take the short- matriX, from the diagona| to the first oﬁ-diagor’(ﬂg), while

cut and has to solve both linear systemsgpandé__,i. But

the L*D*U* decomposition allows one to go down by one,

it is now important to realize that for any column vector back to the next diagonal elemgi@5). There is no need to
G .y, if we somehow know the diagonal elemegt,; ., ~ COMPute the full inverse matrix. _ _

the next element above the diagonal is ' (_)ne_ can |mp_lement the algorithm without knowing the
derivation by using EqY.C3) and(C7)—C10). One can fur-
ther eliminate thelJ'’s using Egs(C3) and(C7) and imple-
ment the algorithm such that only the input vectars; and
the output vectors5;;, Gj;.; enter the temporary storage.
This double factorization is numerically accurate to more
follows from the symmetry oT, we get the first off-diagonal than ten significant digitgusing double precisioreven for
element one column to the leftithoutsolving the two linear large lattices(10° siteg and almost singular matrices with
systems in Eq(C4). So it is possible to compute directly the |a|~ 1071 which appear at the end of the flow for half fill-
tridiagonal part of the inverse. However, there is anotheing. The right-hand side of the flow equatio(l) for the
algorithm which is much more accurate for near-singular madensity response verte®* can be computed i®(L) time
trices at the end of the RG flow: the double factorizafi®i.  using the fact that the upper triangular part of the inverse of

does not rely on the symmetry &fbut uses the complemen- a tridiagonal matrix(hereé) is the upper triangular part of

Giis1=-UGyjer (i=1,...L-1). (C5)

Thus we have a prescription how to go up one rowGn
Together with the symmetry @, that isG; j.;=Gj.1;, which

tary “UDL” factorization

the outer product of two vectopd:3*

1T. Giamarchi,Quantum Physics in One Dimensi@@xford Uni-
versity Press, New York, 2003

2For a review on Luttinger-liquids, see J. Voit, Rep. Prog. Phys.

58, 977(1995.
SA. Luther and I. Peschel, Phys. Rev. 8 2911(1974.
4D. C. Mattis, J. Math. Phys15, 609 (1974).
SW. Apel and T. M. Rice, Phys. Rev. B6, 7063(1982.
6T. Giamarchi and H. J. Schulz, Phys. Rev.38, 325(19889).
7C. L. Kane and M. P.A. Fisher, Phys. Rev. 45, 15233(1992.
8S. Eggert and . Affleck, Phys. Rev. B6, 10866(1992.
°D. Yue, L. I. Glazman, and K. A. Matveev, Phys. Rev. 49,
1966 (1994).

10For a review on isolated impurities in Luttinger liquids, see Ref.

1, Chap. 10.

12M. salmhofer,Renormalizatior(Springer, Berlin, 1998

13 First computational applications of the fRG to Fermi systems
were performed for the 2D Hubbard model, see D. Zanchi and
H. J. Schulz, Phys. Rev. B1, 13609(2000; C. J. Halboth and
W. Metzner,ibid. 61, 7364 (2000; C. Honerkamp, M. Salm-
hofer, N. Furukawa, and T. M. Ricéyid. 63, 035109(2001).

14 V. Meden, W. Metzner, U. Schollwéck, and K. Schénhammer,
Phys. Rev. B65, 045318(2002; J. Low Temp. Phys126, 1147
(2002.

15C. Wetterich, Phys. Lett. B301, 90 (1993.

16T, R. Morris, Int. J. Mod. Phys. A9, 2411(1994.

17For generic interacting Fermi systems, a concise derivation of the
full hierarchy of flow equations is presented by M. Salmhofer
and C. Honerkamp, Prog. Theor. Phy05 1 (200D.

For a recent comprehensive review of the DMRG, see U. Scholl*8V, Meden and U. Schollwdck, Phys. Rev. &7, 035106(2003.

wock, Rev. Mod. Phys(to be publishey

19y, Meden and U. Schollwéck, Phys. Rev. &, 193303(2003.

075102-15



S. ANDERGASSENet al. PHYSICAL REVIEW B 70, 075102(2004)

20y, Meden, S. Andergassen, W. Metzner, U. Schollwéck, and K.2°See, for example, J. Zinn-JustiQuantum Field Theory and

Schonhammer, Europhys. Le#4, 769 (2003). Critical Phenomena(Oxford University Press, New York,
21V, Meden, T. Enss, S. Andergassen, W. Metzner, and K. Schon- 1994,
hammer, cond-mat/040363Gnpublisheql 30The derivation will be given in an upcoming paper containing a

22\/ertex renormalization has already been applied in two letters on detailed discussion of transport properties, see T. Enss, S. An-
transport properties, Refs. 20 and 21, but without any derivation ' '

of the method. dergassen, V. Meden, W. Metzner, and K. Schénham(ue+

23S. Andergassen, T. Enss, V. Meden, W. Metzner, U. Schollwock,, published. o _ _
and K. Schonhammeunpublishedl I. E. Dzyaloshinskii and A. I. Larkin, Zh. Eksp. Teor. FiBb5,
24 C. N. Yang and C. P. Yang, Phys. Rel50, 321 (1966, 150, 411 (1973 [Sov. Phys. JETRBS, 202(1974]; W. Metzner and
327 (1966. C. Di Castro, Phys. Rev. Bl7, 16107(1993.
25F D.M. Haldane, Phys. Rev. Lett5, 1358(1980). 8235ee, for example, W. H. Press, S. A. Teukolsky, W. T. Vetterling,
265ee, for example, T. Giamarchi, and H. Maurey,dorrelated and B. P. FlanneryNumerical Recipes in Fortran 7{Cam-
Fermions and Transport in Mesoscopic Systeetited by T. bridge University Press, Cambridge, 1986
Martin, G. Montambaux, and J. Tran Thanh \@ditions Fron- 33For a pedagogical review on the inverse of symmetric tridiagonal
tieres, Paris, 1997 matrices, see G. Meurant, SIAM J. Matrix Anal. Apd3, 707
273, W. Negele and OrlandQuantum Many-Particle Systems  (1992.
(Addison-Wesley, Reading, 1987 S4For more details, see T. Enss, Ph.D. thesis, University of
28R. Egger and H. Grabert, Phys. Rev. Lel6, 3505(1995. Stuttgart, 2004unpublishegl

075102-16



