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We improve the recently developed functional renormalization group(fRG) for impurities and boundaries in
Luttinger liquids by including renormalization of the two-particle interaction, in addition to renormalization of
the impurity potential. Explicit flow equations are derived for spinless lattice fermions with nearest-neighbor
interaction at zero temperature, and a fast algorithm for solving these equations for very large systems is
presented. We compute spectral properties of single-particle excitations, and the oscillations in the density
profile induced by impurities or boundaries for chains with up to 106 lattice sites. The expected asymptotic
power laws at low energy or long distance are fully captured by the fRG. Results on the relevant energy scales
and crossover phenomena at intermediate scales are also obtained. A comparison with numerical density matrix
renormalization results for systems with up to 1000 sites shows that the fRG with the inclusion of vertex
renormalization is remarkably accurate even for intermediate interaction strengths.
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I. INTRODUCTION

Low-dimensional electron systems exhibit a rich variety
of surprising effects which are due to the cooperative inter-
play of impurities and interactions. In one dimension even
clean metallic systems are always strongly affected by inter-
actions: at low-energy scales physical properties obey
anomalous power laws, known as Luttinger-liquid behavior,
which is very different from the conventional Fermi-liquid
behavior describing most higher-dimensional metals.1,2 In
Luttinger liquids with repulsive interactions already a single
static impurity is known to affect the low-energy properties
drastically.3–9 The impurity potential in a repulsive Luttinger
liquid becomes dressed by long-range oscillations which
suppress the spectral weight for single-particle excitations
near the impurity and also the conductance through the im-
purity down to zero in the low-energy limit.

Theasymptoticlow-energy properties of Luttinger liquids
with a single impurity are rather well understood. Universal
power laws and scaling functions have been obtained by
bosonization, conformal field theory, and exact solutions for
the low-energy asymptotics in special integrable cases.10

What remains to be developed, however, is a many-body
method formicroscopicmodels of interacting fermions with
impurities, which does not only capture correctly the univer-
sal low-energy asymptotics, but allows one to compute ob-
servables on all energy scales, providing thus alsononuni-
versal properties, and in particular an answer to the
important question at whatscale the ultimate asymptotics
sets in. That scale can indeed be surprisingly low, and the
properties above it very different from the asymptotic behav-
ior. Some of the nonuniversal properties can be computed
numerically by the density matrix renormalization group
(DMRG),11 but this method is limited to lattice systems with
about 1000 sites, and only a restricted set of observables can
be evaluated with affordable computational effort.

In the last few years it has been realized that the func-
tional renormalization group(fRG) is a source of powerful

new computation tools for interacting Fermi systems, espe-
cially for low-dimensional systems with competing instabili-
ties and entangled infrared singularities. The starting point of
this approach is an exact hierarchy of differential flow equa-
tions for the Green or vertex functions of the system, which
is obtained by taking derivatives with respect to an infrared
cutoff L.12 Approximations are then constructed by truncat-
ing the hierarchy and parametrizing the vertex functions with
a manageable set of variables or functions.13

A relatively simple fRG approximation for impurities in
spinless Luttinger liquids has been developed recently by
some of us.14 The scheme starts from an fRG hierarchy for
one-particle irreducible vertex functions, as first derived in a
field theoretical context by Wetterich15 and Morris,16 and for
interacting Fermi systems by Salmhofer and Honerkamp.17 A
Matsubara frequency cutoff is used as the flow parameter.
The hierarchy is then truncated already at first order, such
that the two-particle vertex remains unrenormalized, and the
flow of the self-energy, which describes the renormalized
impurity potential, is determined by the bare two-particle
interaction. No simplified parametrization of the self-energy
is necessary such that the full spatial dependence of the
renormalized impurity potential can be obtained for very
large lattice systems. In spite of the striking simplicity of this
scheme it was shown that the effects of a single static impu-
rity in a spinless Luttinger liquid are fully captured qualita-
tively, and in the weak coupling limit also quantitatively.14 In
particular, one obtains that impurity potentials in repulsive
Luttinger liquids become effectively stronger at lower energy
scales, and act ultimately as a weak link between two other-
wise separate wires, as predicted by Kane and Fisher.7 The
fRG also correctly yields the universal low-energy power
laws with exponents that do not depend on the bare impurity
strength. In addition, it was shown that the asymptotic be-
havior holds typically only at very low-energy scales and for
very large systems, except for very strong bare impurities.14

The fRG approach to impurities in Luttinger liquids was
originally developed and tested for spectral densities of
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single-particle excitations, but has been applied very recently
also to transport problems, such as persistent currents in me-
soscopic rings18,19 and the conductance of interacting wires
connected to noninteracting leads.19,20 The full power of the
fRG with its ability to deal naturally also with complex
crossover phenomena emerges most convincingly in the mul-
tiscale problem posed by the transport through a resonant
double barrier.21

In the present work we further develop the fRG approach
for impurities in Luttinger liquids by including two-particle
vertex renormalization, that is we go one step further in the
hierarchy of flow equations than previously.22 For spinless
fermions this extension does not matter qualitatively, as the
lowest order is already qualitatively correct, but the quanti-
tative accuracy of the results improves considerably in par-
ticular at intermediate interaction strengths. For spin-1

2 sys-
tems, which we will treat in a subsequent work,23 vertex
renormalization is necessary to take into account that back-
scattering of particles with opposite spins at opposite Fermi
points scales to zero in the low-energy limit. A crucial point
is to devise an efficient parametrization of the vertex by a
managable number of variables. Here we focus on spinless
lattice fermions with nearest neighbor interaction as a proto-
type model. The bulk model is supplemented by site or hop-
ping impurities. We also analyze the influence of boundaries,
which can be viewed as infinite barriers or infinitesimal weak
links. We choose to parametrize the vertex by a renormalized
nearest-neighbor interaction, which allows us to capture vari-
ous advantageous features: the low-energy flow of the vertex
at kF in the pure system is obtained correctly to second order
in the renormalized couplings; the nonuniversal contribu-
tions at finite energy scales are correct to second order in the
bare interaction; the algorithm for the flow of the self-energy
remains as fast as in the absence of vertex renormalization,
such that one can easily deal with up to 106 lattice sites. We
compute spectral properties of single-particle excitations
near an impurity and the oscillations in the density profile
induced by an impurity, or by a boundary. The accuracy of
the calculation is checked by comparing with DMRG results
for systems with up to 1000 lattice sites and with exact re-
sults for the asymptotic behavior, which can be obtained
from the Bethe ansatz and bosonization.

The article is structured as follows. In Sec. II we intro-
duce the microscopic model and various types of impurities.
The fRG formalism is developed in Sec. III, and worked out
explicitly for the spinless fermion model with nearest-
neighbor interaction. Section IV is dedicated to results for
the renormalized impurity potential, spectral properties, and
the density profile. We finally conclude in Sec. V with an
outline of promising extensions of the present work.

II. MICROSCOPIC MODEL

We consider the spinless fermion lattice model with near-
est neighbor interaction and various types of impurity poten-
tials. The Hamiltonian has the form

H = H0 + HI + Himp, s1d

where the kinetic energy

H0 = − to
j

scj+1
† cj + cj

†cj+1d s2d

is given by nearest-neighbor hopping with an amplitudet and

HI = Uo
j

njnj+1 s3d

is a nearest-neighbor interaction of strengthU. We use stan-
dard second quantization notation, wherecj

† and cj are cre-
ation and annihilation operators on sitej , respectively, and
nj =cj

†cj is the local density operator. The impurity is repre-
sented by

Himp = o
j ,j8

Vj8 jcj8
† cj , s4d

whereVj8 j is a static potential. For “site impurities”

Vj8 j = Vjd j j 8 s5d

this potential is local. For the important special case of a
single site impurity

Vj = Vd j j 0
s6d

the potential acts only on one sitej0. We also consider “hop-
ping impurities” described by the nonlocal potential

Vj8 j = Vjj 8 = − tj ,j+1d j8,j+1. s7d

For the special case of a single hopping impurity

tj ,j+1 = st8 − tdd j j 0
, s8d

the hopping amplitudet is replaced byt8 on the bond linking
the sitesj0 and j0+1. In the following we will set the bulk
hopping amplitudet equal to one, that is all energies are
given in units oft.

The clean spinless fermion modelH0+HI is exactly solv-
able via the Bethe ansatz.24 The system is a Luttinger liquid
for all particle densitiesn and any interaction strength except
at half filling for uUu.2. For U.2 a charge density wave
with wave vectorp forms, forU,−2 the system undergoes
phase separation. The Luttinger-liquid parameterKr, which
determines all the critical exponents of the liquid, can be
computed exactly from the Bethe ansatz solution.25 At half
filling Kr is related toU by the simple explicit formula

Kr
−1 =

2

p
arccosS−

U

2
D s9d

for uUuø2.
We will compute physical properties for the above models

on finite chains with open boundary conditions. The fRG
equations can be solved easily for chains with up to 106 sites,
the DMRG can be applied for up to 103 sites. To avoid os-
cillations emerging from the ends of the chain we will some-
times attach noninteracting semi-infinite leads to the finite
interacting chain, with a smoothly decaying interaction at the
contact.

III. FUNCTIONAL RENORMALIZATION GROUP

This section is dedicated to a detailed presentation of the
fRG equations for one-dimensional Fermi systems with im-
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purities, including vertex renormalization, at zero tempera-
ture. We use the one-particle irreducible version of the func-
tional RG.15,16 The starting point is an exact hierarchy of
flow equations for the irreducible vertex functions, which is
obtained by cutting off the infrared part of the free propaga-
tor on a scaleL, and differentiating the generating functional
for the vertex functions with respect to this scale.17

A. Cutoff and flow equations

The cutoff can be imposed in many different ways. The
only requirement is that the infrared singularities must be
regularized such that the flow equations allow for a regular
perturbation expansion in powers of the renormalized two-
particle vertex. For our purposes a sharp Matsubara fre-
quency cutoff is the most efficient choice. A momentum cut-
off is less suitable here since the impurity spoils momentum
conservation. The cutoff is imposed by excluding modes
with frequencies below scaleL from the functional integral
representation of the system, or equivalently, by introducing
a regularized bare propagator

G0
Lsivd = Qsuvu − LdG0sivd. s10d

HereG0 is the bare propagator of the pure system, involving
neither interactions nor impurities. Instead of the sharp cutoff
imposed by the step functionQ one may also choose a
smooth cutoff function, but the sharp cutoff has the advan-
tage that it reduces the number of integration variables on the
right hand side of the flow equations. Note that we will fre-
quently write expressions which are well defined only if the
sharp cutoff is viewed as a limit of increasingly sharp smooth
cutoff functions. The suppression of frequencies below scale
L affects all Green and vertex functions of the interacting
system, which become thus functions ofL. The original sys-
tem is recovered in the limitL→0.

The first two equations in the exact hierarchy of flow
equations for the one-particle irreduciblem-particle vertex
functions are depicted graphically in Figs. 1 and 2. The first

equation yields the flow of the self-energy, which is related
to the interacting propagator by the usual Dyson equation

GL = fsG0
Ld−1 − SLg−1. s11d

Here and belowGL, SL, etc., are operators, which do not
refer to any particular single-particle basis, unless we write
matrix indices explicitly. The right hand side of the flow
equation involves the two-particle vertexGL, and the so-
called single scale propagatorSL defined as

SL = GLf]LsG0
Ld−1gGL = −

1

1 − G0
LSL

] G0
L

] L

1

1 − SLG0
L .

s12d

Note thatSL has support only on a single frequency scale
uvu=L. The precise flow equation for the self-energy
(sketched graphically in Fig. 1) reads

]

] L
SLs18,1d = −

1

b
o
2,28

eiv20+
SLs2,28dGLs18,28;1,2d,

s13d

whereb is the inverse temperature. The numbers 1, 2, etc.,
are a shorthand for Matsubara frequencies and labels for
single-particle states such as site and spin indices. Note that
v1=v18 and v2=v28 due to Matsubara frequency conserva-
tion. The exponential factor in the above equation is irrel-
evant at any finiteL, but is necessary to define the initial
conditions of the flow atL=L0→` (see below).

The right hand side of the flow equation for the two-
particle vertexGL, shown in Fig. 2, involvesGL itself, but
also the three-particle vertexG3

L. The latter could be com-
puted from a flow equation involving the four-particle vertex
G4

L, and so on. To avoid this unmanagable proliferation of
vertex functions we make our first approximation: we ne-
glect the contribution of the three-particle vertex to the flow
of GL. The coupled system of flow equations forGL andSL

is then closed. The contribution ofG3
L to GL is small as long

as GL is sufficiently small, becauseG3
L is initially (at L0)

zero and is generated only from terms of third order inGL.17

A comparison of the RG results to exact DMRG results and
exact scaling properties shows that the truncation error is
often surprisingly small even for rather large interactions.14

The explicit form of the truncated flow equation for the two-
particle vertex reads

]

] L
GLs18,28;1,2d =

1

b
o
3,38

o
4,48

GLs3,38dSLs4,48d

3 fGLs18,28;3,4dGLs38,48;1,2d

− GLs18,48;1,3dGLs38,28;4,2d

− s3 ↔ 4,38 ↔ 48d

+ GLs28,48;1,3dGLs38,18;4,2d

+ s3 ↔ 4,38 ↔ 48dg. s14d

The various contributions are shown diagrammatically in
Fig. 3.

FIG. 1. Flow equation for the self-energySL.

FIG. 2. Flow equation for the two-particle vertexGL.
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For a sharp frequency cutoff the frequency sums on the
right-hand side of the flow equations can be carried out ana-
lytically in the zero-temperature limit, where the Matsubara
sums become integrals. At this point one has to deal with
products of delta functionsdsuvu−Ld and expressions involv-
ing step functionsQsuvu−Ld. These at first sight ambiguous
expressions are well defined and unique if the sharp cutoff is
implemented as a limit of increasingly sharp broadened cut-
off functionsQe, with the broadening parametere tending to
zero. The expressions can then be conveniently evaluated by
using the following relation,16 valid for arbitrary continuous
functions f:

desx − LdffQesx − Ldg → dsx − LdE
0

1

fstddt, s15d

wherede=Qe8. Note that the functional form ofQe for finite
e does not affect the result in the limite→0.

Instead of writing down the frequency-integrated flow
equations in full generality, we first implement our second
approximation: the frequency dependent flow of the renor-
malized two-particle vertexGL is replaced by its value at
vanishing(external) frequencies, such thatGL remains fre-
quency independent. As a consequence, also the self-energy
becomes frequency independent. Since the bare interaction is
frequency independent, neglecting the frequency dependence
leads to errors only at second order(in the interaction
strength) for the self-energy, and at third order for the vertex
function at zero frequency. In addition to the quantitative
errors we miss qualitative properties related to the frequency
dependence of the self-energy, such as the suppression of the
one-particle spectral weight in the bulk of a pure Luttinger
liquid. On the other hand, a comparison with exact numerical
results and asymptotic analytical results shows that the im-
purity effects are not qualitatively affected by the frequency
dependence ofS, at least for weak interactions.

Carrying out the frequency integration in the flow equa-
tion for the self-energy, and inserting a frequency indepen-
dent two-particle vertex, one obtains

]

] L
S18,1

L = −
1

2p
o

v=±L
o
2,28

eiv0+
G̃2,28

L sivdG18,28;1,2
L , s16d

where the lower indices 1, 2, etc., label single-particle states
(not frequencies) and

G̃Lsivd = fG0
−1sivd − SLg−1. s17d

Note thatG̃L has no jump atuvu=L, in contrast toGL. The
frequency integrated flow equation for the two-particle ver-
tex, evaluated at vanishing external frequencies, has the form

]

] L
G18,28;1,2

L =
1

2p
o

v=±L
o
3,38

o
4,48

F1

2
G̃3,38

L sivdG̃4,48
L s− ivdG18,28;3,4

L
G38,48;1,2

L + G̃3,38
L sivdG̃4,48

L sivds− G18,48;1,3
L

G38,28;4,2
L

+ G28,48;1,3
L

G38,18;4,2
L dG . s18d

The flow is determined uniquely by the differential flow
equations and the initial conditions atL=`. For L=` the
vertex functions are given by the bare interactions of the
system. In particular, the flow of the two-particle vertex
starts from the antisymmetrized bare two-particle interaction
while m-particle vertices of higher order vanish atL=`, in
the absence ofm-body interactions withm.2. The self-

energy atL=` is given by the bare one-particle potential,
that is by those one-particle terms which are not included
already inG0. We choose to include the translationally in-
variant bulk kinetic energy and the chemical potential inG0,
while the impurity(site or hopping) potentialV is assigned to
the initial condition of the self-energy. In a numerical solu-
tion the flow starts at some large finite initial cutoffL0. Here

FIG. 3. Flow equation for the two-particle vertex at one-loop
level with particle-particle and particle-hole channels written
explicitly.
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one has to take into account that, due to the slow decay of
the right-hand side of the flow equation forSL at largeL, the
integration of the flow fromL=` to L=L0 yields a contri-
bution which does not vanish in the limitL0→`, but rather

tends to a finite constant. SinceG̃2,28
L sivd→d2,28 / sivd for

uvu=L→`, this constant is easily determined as

−
1

2p
lim

L0→`
ÈL0

dL o
v=±L

o
2,28

eiv0+d2,28

iv
I18,28;1,2=

1

2o
2

I18,2;1,2,

s19d

where I18,28;1,2 is the bare antisymmetrized interaction. In
summary, the initial conditions for the self-energy and the
two-particle vertex atL=L0→` are

S1,18
L0 = V1,18 +

1

2o
2

I18,2;1,2, s20d

G18,28;1,2
L0 = I18,28;1,2, s21d

where V1,18 is the bare impurity potential. For the flow at
L,L0 the factoreiv0+

in Eq. (16) can be discarded.

B. Parametrization of two-particle vertex

For a finite lattice system withL sites the flow of the
two-particle vertex G18,28;1,2

L involves OsL3d independent
flowing variables, if translation invariance is assumed, and
OsL4d variables, if the influence of the impurity on the flow
of the two-particle vertex is taken into account. For a treat-
ment of large systems it is therefore necessary to reduce the
number of variables by a suitable approximate parametriza-
tion of the vertex. In the low-energy limit(smallL) the flow
is dominated by a very small number of variables anyway,
the others being irrelevant according to standard RG
arguments.2 In particular, the frequency dependence of the
vertex, discarded already above, is irrelevant for the flow of
GL at smallL. For largerL one can use perturbation theory
as a guide for a simple but efficient parametrization ofGL.

We neglect the feedback of the self-energy into the flow

of GL and replaceG̃L by G0 in Eq. (18). The renormalization
of GL includes thus only bulk, not impurity, contributions,
such thatGL remains translation invariant. While this turns
out to be sufficient for capturing the effects of isolated im-
purities in otherwise pure systems, it is known that impurity
contributions to vertex renormalization become important in
macroscopically disordered systems.26 For a more concrete
treatment of the vertex renormalization, we have to focus on
a specific model. In this article we restrict ourselves to the
spinless fermion model with nearest-neighbor interaction,
leaving an extension to spin-1

2 systems with more general
interactions for subsequent work.23

For spinless fermions the two-particle vertex and the self-
energy are fully characterized by either site or momentum
variables. In the low-energy limit, the flow of the vertex is
dominated by contributions with momenta close to the Fermi

points, such that the right-hand side of the flow equation is
determined by momentum components of the vertex
Gk18,k28;k1,k2

L with k1,k2,k18 ,k28= ±kF. Due to the antisymmetry

of the vertex, there is only one such component which is
nonzero:

gL = GkF,−kF;kF,−kF

L . s22d

In the low-energy limit the momentum dependence of the
vertex away from ±kF is irrelevant. There are therefore many
possible choices for the functional form ofGk18,k28;k1,k2

L , which

all lead to the correct low-energy asymptotics. For a model
with a bare nearest-neighbor interactionU, a natural and ef-
ficient choice is to parametrize the flowing vertex simply by
a renormalized nearest-neighbor interactionUL, which leads
to a real space vertex of the form

G j18,j28; j1,j2

L = Uj1,j2
L sd j1,j18

d j2,j28
− d j1,j28

d j2,j18
d s23d

with Uj1,j2
L =ULsd j1,j2−1+d j1,j2+1d. This yields the following

structure in momentum space:

Gk18,k28;k1,k2

L = 2ULfcossk18 − k1d − cossk28 − k1dgdk1+k2,k18+k28
s2pd ,

s24d

where the Kronecker delta implements momentum conserva-
tion (modulo 2p). The flowing coupling constantUL is
linked to the value of the vertex at the Fermi points by the
relation

gL = 2ULf1 − coss2kFdg. s25d

The flow equation forgL becomes

] gL

] L
=

1

2p
o

v=±L
E dp

2p
sPP+ PH + PH8d s26d

with the particle-particle and particle-hole contributions

PP=
1

2
Gp

0sivdG−p
0 s− ivdGkF,−kF;p,−p

L Gp,−p;kF,−kF

L ,

PH = − fGp
0sivdg2GkF,p;kF,p

L Gp,−kF;p,−kF

L ,

PH8 = Gp−kF

0 sivdGp+kF

0 sivdG−kF,p+kF;kF,p−kF

L Gp−kF,kF;p+kF,−kF

L ,

s27d

whereGL on the right-hand side of the flow equation is given
by Eq. (24). Using Eq.(25) to replace]LgL by ]LUL on the
left-hand side of Eq.(26), one obtains a flow equation forUL

of the simple form

]LUL = hsLdsULd2. s28d

The functionhsLd depends only on the cutoffL and the
Fermi momentumkF. An explicit formula for hsLd can be
obtained by carrying out the momentum integral in Eq.(26)
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using the residue theorem, as sketched in Appendix A. For
finite systems the momentum integral should be replaced by
a discrete momentum sum; however, this leads to sizable
corrections only for very small systems. The flow equation
(28) can be

UL =
U

1 − UHsLd
, s29d

where HsLd is the primitive function ofhsLd with HsLd
→0 for L→`. IntegratinghsLd one obtains

HsLd = −
L

2p
+

1

p
ReF s4 − m0

2dL2 − 2im0s2 − m0
2dL + m0

4 − 6m0
2 + 8

2s4 − m0
2dÎL2 − 2im0L + 4 −m0

2
−

im0

2
sinh−1L − im0

2

+
m0

4

2s4 − m0
2d3/2tanh−1 4 + m0

2 + im0L

Îs4 + m0
2 + im0Ld2 + 4sL − 2im0d2G , s30d

where m0=−2 coskF, while sinh−1 and tanh−1 denote the
main branch of the inverse of the complex functions sinh and
tanh, respectively. At half filling, corresponding tokF=p /2,
the functionhsLd is particularly simple(see Appendix A),
such that alsoUL has a relatively simple form

UL =
U

1 +SL −
2 + L2

Î4 + L2DU/s2pd
. s31d

In Fig. 4 we show results for the renormalized nearest-
neighbor interactionUL as obtained from the flow equation
at various densitiesn, for a bare interactionU=1. While the
renormalization does not follow any simple rule at interme-
diate scalesL, all curves saturate at a finite valueU* in the
limit L→0, corresponding to a finiteg* , as expected for a
Luttinger-liquid fixed point.2

The above simplified flow equation yields not only the
correct low-energy asymptotics to second order in the renor-
malized vertex, but also contains allnonuniversalsecond-
order corrections to the vertex at ±kF at higher energy scales.
Hence the resulting fixed point couplingg* , from which the
Luttinger-liquid parameterKr can be computed, is obtained
correctly to second order inU. The calculation ofKr, pre-
sented in Appendix B, illustrates how Luttinger-liquid pa-
rameters can be related to the fixed point couplings obtained
from the fRG. A comparison of the RG result forKr with
exact results from the Bethe ansatz solution of the spinless
fermion model shows that the vertex renormalization scheme
described above is not only very simple, but also surprisingly
accurate.

ParametrizingGL by a renormalized nearest-neighbor in-
teraction has the enormous advantage that the self-energy, as
determined by the flow equation(16), is a tridiagonal matrix
in real space, that is, only the matrix elementsS j ,j

L andS j ,j±1
L

are nonzero. InsertingGL from Eq. (23) into (16), one ob-
tains the following simple coupled flow equations for the
diagonal and off-diagonal matrix elements:

]

] L
S j ,j

L = −
UL

2p
o

v=±L
o
r=±1

G̃j+r,j+r
L sivd,

]

] L
S j ,j±1

L =
UL

2p
o

v=±L

G̃j ,j±1
L sivd. s32d

Note that the self-energy also enters the right-hand side of

these equations, viaG̃L=sG0
−1−SLd−1. SinceSL andG0

−1 are
both tridiagonal in real space, the matrix inversion required
to compute the diagonal and first off-diagonal elements of

G̃L from SL can be carried out very efficiently, and thus for
very large systems. In Appendix C we describe an algorithm
for the numerical solution of the flow equation forS which
scales only linearly with the size of the system.

C. Observables

In the next section we will present results for spectral
properties of single-particle excitations near an impurity or
boundary, and for the density profile. Here we describe how
the relevant observables are computed from the solution of
the flow equations.

1. Single-particle excitations

Integrating the flow equation for the self-energySL down
to L=0 yields the physical(cutoff-free) self-energyS, and

FIG. 4. Flow of the renormalized nearest-neighbor interaction
UL for the spinless fermion model, forU=1 and various densitiesn.

S. ANDERGASSENet al. PHYSICAL REVIEW B 70, 075102(2004)

075102-6



the single-particle propagatorG=sG0
−1−Sd−1. From the latter

spectral properties of single-particle excitations can be ex-
tracted. We focus on local spectral properties, which are de-
scribed by thelocal spectral function

r jsvd = −
1

p
ImGjjsv + i0+d, s33d

whereGjjsv+ i0+d is the local propagator, analytically con-
tinued to the real frequency axis from above.

In our approximation the self-energy is frequency inde-
pendent and can therefore be viewed as an effective single-
particle potential. The propagatorG is thus the Green func-
tion of an effective single-particle Hamiltonian. In real space
representation this Hamiltonian is given by the tridiagonal
matrix heff=h0+S, where the matrix elements ofh0 are the
hopping amplitudes inH0, Eq. (2). For a lattice withL sites
this matrix hasL (including possible multiplicities) eigenval-
uesel and an orthonormal set of corresponding eigenvectors
cl. For the spectral functionr jsvd one thus obtains a sum of
d functions

r jsvd = o
l

wl jdsv − jld, s34d

wherejl=el−m and thespectral weight wl j is the squared
modulus of the amplitude ofcl on site j . For largeL the
level spacing between neighboring eigenvalues is usually of
order L−1, except for one or a few levels outside the band
edges which correspond to bound states.

Due to even-odd effects, etc., the spectral weightwl j gen-
erally varies quickly from one eigenvalue to the next one. A
smooth function ofv which suppresses these usually irrel-
evant finite-size details can be obtained by averaging over
neighboring eigenvalues. In addition it is useful to divide by
the level spacing between eigenvalues to obtain the conven-
tional localdensity of states, which we denote byDjsvd.

2. Density profile

Boundaries or impurities induce a density profile with
long-range Friedel oscillations, which are expected to decay
with a power law at long distances.28 The expectation value
of the local densitynj could be computed from the local
one-particle propagatorGjj , if G was known exactly. How-
ever, the approximate flow equations forS can be expected
to describe the asymptotic behavior ofG correctly only at
long distances between creation and annihilation operator in
time and/or space, while in the local density operator time
and space variables coincide. In the standard RG terminol-
ogy nj is a composite operator, which has to be renormalized
separately.29

To derive a flow equation fornj, we follow the usual
procedure for the renormalization of correlation functions in-
volving composite operators: we add a termf jnj with a
small fieldf j to the Hamiltonian, and take derivatives with
respect tof j in the flow equations. The local density is given
by

nj =U ] Vsf jd
] f j

U
f j=0

, s35d

whereVsf jd is the grand canonical potential of the system in
the presence of the fieldf j. Note that we use the same sym-
bol nj for the density operator and its expectation value. In
the presence of a cutoffL the grand canonical potential
obeys the exact flow equation

]

] L
VL =

1

b
o
v

trheiv0+
f]LG0

Lsivd−1gfGLsivd − G0
Lsivdgj

s36d

in a short-hand matrix notation. This flow-equation follows
from the functional flow equation for the generating func-
tional for vertex functions17 and the relation between the
grand canonical potential and the zero-particle vertex. At
zero temperature the Matsubara frequency sum becomes an
integral which, for the sharp frequency cutoff(10), can be
carried out analytically. This yields

]

] L
VL =

1

2p
o

v=±L

trheiv0+
lnf1 − G0sivdSLsivdgj. s37d

We attributef j to the “interaction” part of the Hamiltonian,
not toH0, such thatG0 remains independent off j. The self-
energy is modified via the additional local and frequency-
independent contributionf jd j j 8 to its initial value S j j 8

L0 at
scaleL0.

The density profile can be obtained from the above equa-
tions and the flow equation forSL by computing the shift of
V generated by a small finite perturbationf j, that is by nu-
merical differentiation. Alternatively one may carry out the
f j derivative analytically in the flow equations, which yields
a flow equation for the density in terms of the density re-
sponse vertex. Taking thef j derivative in Eq.(37) yields

]

] L
nj

L = −
1

2p
o

v=±L

trfeiv0+
G̃LsivdRj

Lsivdg s38d

with the density response vertex

Rj
Lsivd = U ] SLsivd

] f j
U

f j=0
, s39d

where the propagatorG̃L is computed as previously, that is in
the absence off j. We compute the self-energySL in the
presence off j within the same approximation as previously.
It is thus determined from the flow equation(16) with a
frequency-independent two-particle vertexGL. Taking a de-
rivative of that equation with respect tof j at f j =0 yields the
flow equation for the response vertex
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]

] L
Rj ;18,1

L = −
1

2p

3 o
v=±L

o
2,28

o
3,38

G̃2,38
L sivdRj ;38,3

L G̃3,28
L sivdG18,28;1,2

L .

s40d

Note thatRj
L is frequency independent in our approximation

and that there is no contribution from thef j derivative ofGL,
since we neglect self-energy contributions in the flow of the
two-particle vertex.

For spinless fermions with a(renormalized) nearest-
neighbor interaction, the matrixRj

L is tridiagonal, that is only
the componentsRj ;l,l

L andRj ;l,l±1
L are nonzero, and their flow is

given by

]

] L
Rj ;l,l

L = −
UL

2p

3 o
v=±L

o
l8

o
r=±1

o
r8=0,±1

G̃l+r,l8
L sivdRj ;l8,l8+r8

L G̃l8+r8,l+r
L sivd,

]

] L
Rj ;l,l±1

L =
UL

2p

3 o
v=±L

o
l8

o
r8=0,±1

G̃l,l8
L sivdRj ;l8,l8+r8

L G̃l8+r8,l±1
L sivd.

s41d

The right-hand sides involve only one unrestricted lattice
summation, and can be computed inOsLd time (see Appen-
dix C). The initial condition for the response vertex is
Rj ;l,l8

L0 =d jldll8. The initial condition for the density isnj
L0= 1

2,
for any filling, due to the slow convergence of the flow equa-
tion (38) at large frequencies, which yields a finite contribu-
tion to the integrated flow fromL=` to L0 for arbitrarily
large finiteL0, as in the case of the self-energy discussed in
more detail above.

To avoid the interference of Friedel oscillations emerging
from the impurity or one boundary with those coming from
the (other) boundaries of our systems we suppress the influ-
ence of the latter by coupling the finite chain to semi-infinite
noninteracting leads, with a smooth decay of the interaction
at the contacts. The presence of leads modifies the self-
energy in the interacting region only via a boundary term. In
particular, a lead coupled to the first site of the interacting
region via nearest-neighbor hopping(with amplitude t=1)
yields the additional contribution

S j ,j8
leadsivd =

iv + m0

2
S1 −Î1 −

4

siv + m0d2Dd1jd j j 8 s42d

to the first diagonal element of self-energy matrix in real
space.30 Note that this term is frequency dependent and in-
dependent ofL. A lead coupled to the last site yields an
analogous contribution to the last diagonal element of the
self-energy.

IV. RESULTS

We now present and discuss explicit results for the self-
energy, spectral properties near the impurity or boundary,
and the density profile, as obtained from the fRG. A com-
parison with exact DMRG results is made for the spectral
weight at the Fermi level and for the density profile. Some
fRG results for the self-energy and spectral properties of the
spinless fermion model have been published already,14 but
only for half filling and without any vertex renormalization.
Here we present results also away from half filling and dem-
onstrate the quantitative improvement of accuracy obtained
by including vertex renormalization. In addition we present
fRG results for the density profile. Using a faster algorithm
(see Appendix C) than previously we are now able to solve
the flow equations for much larger systems.

The typical shape of the self-energy in the vicinity of an
impurity can be seen in Fig. 5, where we plot the diagonal
elementsS j ,j and the off-diagonal elementsS j ,j+1 near a site
impurity of strengthV=1.5 added to the spinless fermion
model with interaction strengthU=1 at quarter filling. Recall
that the self-energy is tridiagonal in real space and frequency
independent within our treatment. The diagonal elements can
be interpreted as a local effective potential, the off-diagonal
elements as a nonlocal effective potential which renormal-
izes the hopping amplitudes. At long distances from the im-
purity both S j ,j and S j ,j+1 tend to a constant. The former
describes just a bulk shift of the chemical potential, the latter
a bulk renormalization of the hopping amplitude toward
larger values. The oscillations around the bulk shifts are gen-
erated by the impurity. The wave number of the oscillations
is 2kF=p /2, wherekF is the Fermi wave vector of the bulk
system at quarter filling. The amplitude of the oscillations of
S decays slower than the inverse distance from the impurity
at intermediate length scales, but approaches a decay propor-
tional to 1/u j − j0u for u j − j0u→`. This can be seen most
clearly by plotting an effective exponentb j for the decay of
the oscillations, defined as the negative logarithmic deriva-
tive of the oscillation amplitude with respect to the distance
u j − j0u. In Fig. 6 we show the effective exponent resulting

FIG. 5. Self-energy near a site impurity of strengthV=1.5 for
the spinless fermion model at quarter filling and interaction strength
U=1; the impurity is situated at the center of a chain withL
=1025 sites.
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from the oscillations ofS j ,j as a function of the distance from
a site impurity, forU=1 and half filling. The impurity is
situated at the center of a long chain withL=218+1 sites. To
avoid interferences with oscillations from the boundaries we
have attached semi-infinite noninteracting leads to the ends
of the interacting chain, as described in the last paragraph of
Sec. III C 2. Only for relatively large impurity strengths the
asymptotic regime corresponding tob j =1 is reached before
finite size effects set in. For smallV one can see thatb j
increases from values below one, but the asymptotic long-
distance behavior is cut off by the boundaries of the interact-
ing region. For very smallV (for exampleV=0.01 in Fig. 6)
we observe a plateau inb j for intermediate distances from
the impurity site. In this regimeb j is close toKr which can
be understood by analytically solving our flow equations for
small V.14

The long-range 2kF oscillations of the self-energy lead to
a marked suppression of the spectral weight for single-
particle excitations at the Fermi level, that is, atv=0. In Fig.
7 we show the local density of statesDjsvd on the site next
to a site impurity of strengthV=1.5 for the spinless fermion
model at half filling. The result for the interacting system at
U=1 is compared to the noninteracting case. Even-odd ef-
fects have been eliminated by averaging over neighboring
eigenvalues(see Sec. III C 1). d-peaks outside the band
edges corresponding to bound states are not plotted. The in-
teraction leads to a global broadening of the band, which is
due to an enhancement of the bulk hopping amplitude, and
also to a strong suppression ofDjsvd at low frequencies
which is not present in the noninteracting system. For a finite
system(hereL=1025) the spectral weight at the Fermi level
remains finite, but tends to zero with increasing system size.
In Fig. 8 we show results for the density of states choosing
the same parameters as in Fig. 7, but now for densities away
from half filling: n=1/4 andn=3/4. In addition to the dip
nearv=0 a second singularity appears at a finite frequency.
This effect is due to the fact that a long-range potential with
a wave number 2kF does not only strongly scatter states with
momenta nearkF, but also those with momenta close top

−kF. Indeed the singularity is situated atv=ep−kF
−m, where

ek is the renormalized(bulk) dispersion. In the half-filled
case only one singularity is seen simply becausep−kF=kF
for kF=p /2.

The spectral weight at the Fermi level is expected to van-
ish asymptotically as a power lawL−aB with increasing sys-
tem size, whereaB=Kr

−1−1 is the boundary exponentde-
scribing the power-law suppression of the density of states at
the boundary of a semi-infinite chain.7 That exponent de-
pends only on the bulk parameters of the model, not on the
impurity strength. For the spinless fermion model it can be
computed exactly from the Bethe ansatz solution.25 We
therefore analyze the asymptotic behavior of the spectral
weight at the Fermi level by defining an effective exponent
asLd as the negative logarithmic derivative of the spectral
weight with respect to the system size, such thatasLd tends
to a (positive) constant in case of a power-law suppression.
In Fig. 9 we show results forasLd as obtained from the fRG
for the spinless fermion model at quarter filling with up to
about 106 sites, for a weaksU=0.5d and intermediatesU
=1.5d interaction parameter. The spectral weight has been

FIG. 6. Effective exponent for the decay of oscillations ofS j ,j as
a function of the distance from a site impurity of strengthsV
=0.01, 0.1, 0.3, 1, 10(from bottom to top), for the spinless fermion
model at half filling and interaction strengthU=1; the impurity is
situated at the center of a chain withL=218+1 sites.

FIG. 7. Local density of states on the site next to a site impurity
of strengthV=1.5 for spinless fermions at half filling andU=1; the
impurity is situated at the center of a chain withL=1025 sites; the
noninteracting caseU=0 is shown for comparison.

FIG. 8. Local density of states on the site next to a site impurity
as in Fig. 7(same parameters), but now for densitiesn=1/4 and
n=3/4.
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computed either at a boundary, or near a hopping impurity of
strengtht8=0.5. Results obtained from the RG without(up-
per panel) and with(lower panel) vertex renormalization are
compared to exact DMRG results(for up to 512 sites) and
the exact boundary exponentsaB, plotted as horizontal lines.
The fRG results follow a power law for largeL, with the
same asymptotic exponent for the boundary and impurity
case, confirming thus the expected universality. However, the
asymptotic regime is reached only for fairly large systems,
even for the intermediate interaction strengthU=1.5. The
comparison with the exact DMRG results and exact expo-
nents shows that the fRG is also quantitatively rather accu-
rate, and that the inclusion of vertex renormalization leads to
a substantial improvement at intermediate coupling strength.
Results for the effective exponenta in the case of a site
impurity are shown in Fig. 10, at quarter filling and for an
interaction strengthU=1. The comparison of the different
curves obtained for different impurity strengths confirms
once again the expected asymptotic universality, and also

how the asymptotic regime shifts rapidly toward larger sys-
tems as the bare impurity strength decreases.

We finally discuss results for the density profilenj.
Boundaries and impurities induce Friedel oscillations of the
local density with a wave vector 2kF. In a noninteracting
system these oscillations decay proportionally to the inverse
distance from the boundary or impurity. In an interacting
Luttinger-liquid the Friedel oscillations are expected to de-
cay asu j − j0u−Kr at long distancesu j − j0u. For a very weak
impurity one expects a slower decay proportional tou j
− j0u1−2Kr at intermediate distances, and a crossover to the
asymptotic power law with exponentKr at very long
distances.28 At intermediate distances the response of the
density to a weak impurity can be treated in linear response
theory, such that the density modulation is determined by the
density-density response function at 2kF, which leads to the
power-law decay with exponent 2Kr−1. In Fig. 11 we show
fRG and DMRG results for the density profilenj for a spin-
less fermion chain with 128 sites and interaction strength

FIG. 9. Logarithmic derivative of the spectral weight at the
Fermi level near a boundary(solid lines) or hopping impurity
(dashed lines) as a function of system sizeL, for spinless fermions
at quarter filling and interaction strengthU=0.5 (circles) or U
=1.5 (squares); upper panel: without vertex renormalization, lower
panel: with vertex renormalization; the open symbols are fRG, the
filled symbols DMRG results; the horizontal lines represent the ex-
act boundary exponents forU=0.5 andU=1.5. In the boundary
case(solid lines) the spectral weight has been taken on the first site
of a homogeneous chain, in the impurity case(dashed lines) on one
of the two sites next to a hopping impurityt8=0.5 in the center of
the chain.

FIG. 10. Logarithmic derivative of the spectral weight at the
Fermi level near a boundary(solid line) or near a site impurity
(dashed lines) as a function of system sizeL, for spinless fermions
at quarter filling and interaction strengthU=1. In the boundary case
the spectral weight has been taken on the first site of a homoge-
neous chain, in the impurity case on the site next to a site impurity
of strengthV in the center of the chain. The horizontal line repre-
sents the exact boundary exponent forU=1.

FIG. 11. Density profilenj for a spinless fermion chain with 128
sites and interaction strengthU=1 at half filling; fRG results are
compared to exact DMRG results.
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U=1 at half filling. The Friedel oscillations emerge from
both boundaries and interfere in the center of the chain. The
accuracy of the RG results is excellent for allj . For incom-
mensurate filling factors the density profile looks more com-
plicated. This can be seen in Fig. 12, where functional RG
results are shown for the density modulationunj −nu near the
boundary of a system with an average densityn=0.393 and
8192 sites. For long distances from the boundary the oscil-
lation amplitude has a well-defined envelope which fits to a
power law as a function ofj . We now analyze the long-
distance behavior of the amplitudes more closely for the
half-filled case, and compare to exact results for the
asymptotic exponents. In Fig. 13 we show fRG results for
the amplitude of density oscillations emerging from an open
boundary, for a very long spinless fermion chain with 219

+1 sites and various interaction strengthsU at half filling.
The other end of the chain(opposite to the open boundary) is
smoothly connected to a noninteracting lead. In a log-log
plot (upper panel of Fig. 13) the amplitude follows a straight
line for almost all j , corresponding to a power law depen-
dence. Deviations from a perfect power law can be seen
more neatly by plotting the effective exponenta j, defined as
the negative logarithmic derivative of the amplitude with re-
spect to j (see the lower panel of Fig. 13). The effective
exponent is almost constant except at very short distances or
when j approaches the opposite end of the interacting chain,
which is not surprising. From a comparison with the exact
exponent(horizontal lines in the figure) one can assess the
quantitative accuracy of the fRG results. Effective exponents
describing the decay of Friedel oscillations generated by site
impurities of various strengths are shown in Fig. 14, for a
half-filled spinless fermion chain with 218+1 sites and inter-
actionU=1. Both ends of the interacting chains are coupled
to noninteracting leads to suppress oscillations coming from
the boundaries. For strong impurities the results are close to
the boundary result(see Fig. 13), as expected. For weaker
impurities the oscillations decay more slowly, that is with a
smaller exponent, and approach the boundary behavior only
asymptotically at large distances(beyond the range of our

FIG. 12. Density modulationunj −nu as a function of the distance
from a boundary, for spinless fermions with interaction strength
U=1 and(average) densityn=0.393 on a chain with 8192 sites; the
broken straight line is a power-law fit to the envelope of the oscil-
lation amplitudes.

FIG. 13. Amplitude(envelope) of oscillations of the density
profile nj induced by a boundary as a function of the distance from
the boundary, for spinless fermions with various interaction
strengthsU at half filling; the interacting chain with 219+1 sites is
coupled to a semi-infinite noninteracting lead at one end(opposite
to the boundary); upper panel: log-log plot of the amplitude, lower
panel: effective exponents for the decay, and the exact asymptotic
exponents as horizontal lines.

FIG. 14. Effective exponent for the decay of density oscillations
as a function of the distance from a site impurity of strengthsV
=0.01, 0.1, 0.3, 1, 3, 10(from bottom to top); the impurity is situ-
ated at the center of a spinless fermion chain with 218+1 sites and
interaction strengthU=1 at half filling; the interacting chain is
coupled to semi-infinite noninteracting leads at both ends.
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chain for V,1). For very weak impurities(V=0.01 in Fig.
14) the oscillation amplitude follows a power law corre-
sponding to the linear response behavior with exponent
2Kr−1 at intermediate distances. We finally present some
results for the effective exponent of the density oscillation
decay in the case of anattractive interactionU=−1, see Fig.
15. In that case the effective impurity strength should scale
to zero at low energies and long distances.7 Indeed, for weak
and moderate bare impurity potentials the effective exponent
in Fig. 15 approaches the linear density response exponent
2Kr−1. Only for very strong impurities the density oscilla-
tions decay with the smaller boundary exponent over several
length scales.

V. CONCLUSION

In summary, we have shown that the fRG provides an
ideal tool for computing the intriguing properties of
Luttinger-liquids with static impurities. The method yields
ab initio results for microscopic model systems at all energy
scales from the Fermi energy to the ultimate low-energy
limit. We have demonstrated the power of the method by
computing spectral properties of single-particle excitations
as well as the oscillations in the density profile induced by
impurities or boundaries for a spinless fermion model with
nearest-neighbor interaction. With the inclusion of vertex
renormalization, in addition to the renormalization of the ef-
fective impurity potential, our results agree remarkably well
with exact asymptotic results and numerical DMRG data
even for intermediate interaction strength.

There is a broad range of interesting further applications
and extensions of the fRG for impurities in Luttinger liquids
beyond the scope of the present article.

Spin-1
2 fermions. The inclusion of spin degrees of freedom

requires a parametrization of the two-particle vertex with
several coupling constants. We have already derived flow
equations for the(extended) Hubbard model, with an effec-
tive vertex parametrized by local and nearest-neighbor
interactions.23

Feedback of impurities on vertex. For isolated impurities
the influence of impurities on the vertex renormalization is

irrelevant for the asymptotic low-energy or long-distance be-
havior, although it may contribute quantitatively at interme-
diate scales. In the case of disordered systems with a finite
impurity density the influence of the latter on the two-
particle vertex is crucial and must be taken into account.26 In
principle this is possible by computing the vertex flow with
full propagators, which contain the renormalized impurity
potential via the self-energy.

Finite temperature. The fRG approach can be extended
without major complications to finite temperature. This is
particularly useful for studying the temperature dependence
of transport properties.30

Transport. In the absence of inelastic processessIm S
=0d the conductance of the interacting wire can be computed
from the one-particle Green function in the presence of
leads.30 Several results have already been presented in short
articles.19–21

Inelastic processes. Inelastic processes appear at second
order in the interaction and can be included in the flow equa-
tions by inserting the second order vertex into the flow equa-
tion for the self-energy without neglecting its frequency de-
pendence. This procedure would also capture the anomalous
dimension of the bulk system, which is missing in the
present work.

ACKNOWLEDGMENT

We are grateful to Manfred Salmhofer for useful discus-
sions. This work benefitted from the workshop “Realistic
theories of correlated electron materials” in fall 2002 at ITP-
UCSB. V.M. thanks the Bundesministerium für Bildung und
Forschung for financial support.

APPENDIX A: EVALUATION OF VERTEX FLOW

Here we sketch some details concerning the explicit
evaluation of the flow equations for the two-particle vertex.
Inserting the momentum structure ofGL, Eq. (24), into the
flow equation(26) and replacinggL by UL on the left-hand
side yields

] UL

] L
=

sULd2

2psin2kF
o

v=±L
E

0

2p dp

2p
fsp,vd, sA1d

where

fsp,vd =
2 sin2kFsin2p

siv − jp
0ds− iv − j−p

0 d
−

scoskF − cospd2

siv − jp
0d2

+
fcoss2kFd − cospg2

siv − jp−kF

0 dsiv − jp+kF

0 d
. sA2d

Herejk
0=−2 cosk−m0 with m0=−2 coskF is the bare disper-

sion relation relative to the bare Fermi level. Sincefsp,vd
can be written as a rational function of cosp and sinp, thep
integral can be carried out analytically using the substitution
z=eip and the residue theorem. After a lengthy but straight-
forward calculation one obtains the following result for the
coefficienthsLd in Eq. (28):

FIG. 15. Effective exponent for the decay of density oscillations
as a function of the distance from a site impurity of strengthsV
=0.1, 1, 10, 100, 1000(from top to bottom) for the same chain as in
Fig. 14 but now with anattractive interactionU=−1.
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hsLd = −
1

2p
− ReF i

2
sm0 + iLdÎ1 −

4

sm0 + iLd2

3im0
4 − 10m0

3L − 12im0
2sL2 + 1d + 6L3m0 + 18Lm0 + 6iL2 + iL4

ps2m0 + iLds4 − m0
2 + L2 − 2iLm0d2 G . sA3d

At half filling sm0=0d, this reduces to

hsLd = −
1

2p
F1 − L

6 + L2

s4 + L2d3/2G . sA4d

APPENDIX B: CALCULATION OF Kr

In this appendix we show how the Luttinger-liquid param-
eterKr, which determines the critical exponents of Luttinger-
liquids, can be computed from the fixed point couplings as
obtained from the RG. A comparison of the RG result forKr

with the exact Bethe ansatz result for the bulk model(with-
out impurity) serves also as a check for the accuracy of our
vertex renormalization. A relation between the fixed point
couplings andKr can be established via the exact solution of
the fixed point Hamiltonian of Luttinger liquids, the Lut-
tinger model.

For spinless fermions,Kr is determined by the Luttinger
model parametersg andvF as

Kr =Î1 − g/s2pvFd
1 + g/s2pvFd

, sB1d

whereg is the interaction between left and right movers and
vF the effective Fermi velocity of the model, that is the slope
of the(linear) dispersion relation, with a possible shift due to
interactions between particles moving in the same direction
(g4 coupling) already included.2 We therefore need to extract
g and vF from the RG flow in the limitL→0. In order to
obtain Kr correctly to orderU2, it is sufficient to obtainvF
correctly to linear order inU.

The Luttinger model interactiong and the fixed point cou-
pling g* =GkF,−kF;kF,−kF

L→0 from the RG are not simply identical,
in contrast to what one might naively expect. To find the true
relation betweeng andg* , one has to take into account that
the forward scattering limit of the dynamical two-particle
vertex is generally not unique(in the absence of cutoffs), and
depends on whether momentum or frequency transfers tend
to zero first. This ambiguity is well known in Fermi-liquid
theory, where it leads to the distinction between quasiparticle
interactions and scattering amplitudes,27 but is equally
present in Luttinger liquids, for the same reason in all cases:
the ambiguity of the small momentum, small frequency limit
of particle-hole propagators contributing to the vertex func-
tion. In the dynamical limit, where the momentum transferq
vanishes first, the singular particle-hole propagators do not
contribute. In Fermi liquids this limit yields the quasiparticle
interaction. In the opposite static limit the frequency transfer
n vanishes first and particle-hole propagators yield a finite
contribution. In the presence of an infrared cutoffL.0 the

forward scattering limit of the vertex function is unique,
since the ambiguity in the particle-hole propagator is due to
the infrared pole of the single-particle propagator. Hence
GkF,−kF;kF,−kF

L is well defined. However,GkF,−kF;kF,−kF

L and also
its limit for L→0 depend on the choice for the cutoff func-
tion. For a momentum cutoff, which excludes states with
excitation energies belowL around the Fermi points,
particle-hole excitations with small momentum transfersq
are impossible. Hence particle-hole propagators with infini-
tesimalq do not contribute to the vertex at anyL.0, such
thatGkF,−kF;kF,−kF

L converges to the dynamical forward scatter-
ing limit, which is simply given by the bare coupling con-
stant g in the Luttinger model. For a frequency cutoff the
particle-hole propagators with vanishing momentum and fre-
quency transfer yield a finite contribution atL.0, which
tends to the static limit forL→0. This can be seen directly
by integratingov=±LedpfGp

0sivdg2 over L from infinity to
zero. Hence the vertexGkF,−kF;kF,−kF

L obtained from our fre-
quency cutoff RG tends to the static forward scattering limit.

For the Luttinger model, the static forward scattering limit
of the vertex can be obtained from the dynamical effective
interaction between left and right moversDsq, ind, which is
defined as the sum of particle-hole chains

Dsq,ind = g + gP−
0sq,indgP+

0sq,indg + ¯

=
g

1 − g2P−
0sq,indP+

0sq,ind
, sB2d

where

P±
0sq,ind = ±

1

2p

q

in 7 vFq
sB3d

is the bare particle-hole bubble for rights+d and left s−d
movers. Note that only odd powers ofg contribute to the
effective interaction between left and right movers. This ef-
fective interaction appears naturally in the exact solution of
the Luttinger model via Ward identities.31 For the static limit
one obtains

lim
q→0

Dsq,0d =
g

1 − fg/s2pvFdg2 . sB4d

which we identify with our fixed point couplingg* as ob-
tained from the RG with frequency cutoff. Inverting this re-
lation betweeng andg* we obtain

g =
2pvF

g* f− pvF + ÎspvFd2 + sg*d2g. sB5d

For spinless fermions the difference betweeng and g* ap-
pears only at third order in the coupling, but for models with
spin the distinction becomes important already at second or-
der.
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The Fermi velocityvF can be computed from the(fre-
quency independent) self-energy in momentum space as

vF = vF
0 +u]kSkukF

, sB6d

wherevF
0 =]kekukF

is the bare Fermi velocity. The self-energy
is computed from the flow equation(32), which can be re-
written in momentum space as

]

] L
Sk

L = −
UL

p
o

v=±L
E dp

2p

1 − cossk − pd
iv − jp − Sp

L , sB7d

wherejp=ep−m. The chemical potentialm has to be fixed by
the final conditionjkF

+SkF
=0, wherekF=pn depends only

on the density, not the interaction. From the tridiagonal struc-
ture ofS in real space, but also from the above expression it
follows that Sk

L has the formSk
L=aL+bLcosk. The func-

tional flow equation forSk
L yields a coupled set of ordinary

flow equations for the coefficientsaL and bL, with initial
conditionsaL0=U andbL0=0. The momentum integrals can
be evaluated analytically via the residue theorem, such that
the remaining set of two coupled differential equations(with
UL as input) can be easily solved numerically. The result for
vF is correct at least to first order inU, but not necessarily to
second order, since our simplified parametrization captures
the two-particle vertex correctly to second order only at the
Fermi points.

Insertingg andvF into the Luttinger model formula(B1)
we can now computeKr as a function ofU and density for
the microscopic spinless fermion model. In Fig. 16 we show
results forKrsUd for various fixed densities, which are com-
pared to the exact result from the Bethe ansatz solution25 in
the inset. The RG results are indeed correct to orderU2 for
smallU, as expected, and they are surprisingly accurate also
for larger values ofU.

APPENDIX C: NUMERICAL SOLUTION OF S FLOW

For L,L0,` the flow equation for the self-energy(16)
can be written as

]

] L
S18,1

L = −
1

2p
o
2,28

G18,28;1,2
L 2 RefG̃2,28

L siLdg. sC1d

In order to compute its right-hand side, one needs to invert
the tridiagonal matrix

T = G0
−1siLd − SL, sC2d

whereT is complex symmetric(not hermitean) with diagonal
elementsai : = iL+m−Si,i

L , i =1, . . . ,L, and first off-diagonal
elements bi : = t−Si,i+1

L , i =1, . . . ,L−1. Note that Imsaid
=L.0 such thatT is nonsingular and its inverse well de-
fined.

The inverseG̃LsiLd=T−1 is not tridiagonal but a full ma-
trix which can be computed by standard methods inOsL2d
time. However, for an interaction that does not extend be-
yond nearest neighbors on the lattice, only the tridiagonal

part of G̃ is required, which can be computed inOsLd time,
such that much larger lattices can be treated. We shall first

explain how this is done and then present the resulting algo-
rithm that can directly be incorporated into a computer pro-
gram.

Under certain assumptions(see below), a matrix can be
uniquely factorized into a lower unit triangular matrixL, a
diagonal matrixD, and an upper unit triangular matrixU
(“LDU factorization”): T=LDU.32 For a tridiagonal matrixT
the unit triangular matricesL andU are in fact unit bidiago-
nal: their matrix elements are one on the diagonal, and only
the first off-diagonal is nonzero. Since ourT is symmetric we
haveL=UT. Thus we obtain a factorization of the form

T = U+TD+U+ =1
1

U1
+ 1

U2
+ 1

� �

21
D1

+

D2
+

D3
+

�

2
31

1 U1
+

1 U2
+

1 �

�

2 ,

where the label “+” distinguishes this factorization from an-
other one used below. The prescription to compute the ele-
mentsDi

+ and Ui
+ is well known and can be found, for ex-

ample, in Ref. 32. Starting in the upper left corner one
proceeds to increasing row and column numbers until one
arrives at the lower right corner ofT:

D1
+: = a1, Ui

+: = bi/Di
+, Di+1

+ : = ai+1 − biUi
+

si = 1, . . . ,L − 1d. sC3d

This works well since in our case ImsDi
+dùL.0, such that

one never divides by zero.

To compute the inverseG̃=T−1, one could directly calcu-
late sU+d−1sD+d−1sU+Td−1. It is, however, easier and more ac-
curate to find the inverse by solving the linear system of

FIG. 16. Luttinger-liquid parameterKr as a function ofU at
various densities(as in Fig. 4) for the spinless fermion model; the
inset shows the difference between the RG result and the exact
Bethe ansatz result forKr.
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equationsTG̃=1, where 1 is the identity matrix, by “back
substitution.” To be specific, consider theith column vector

G̃. . .,i of G̃:

ei = TG̃. . .,i = U+TsD+U+G̃. . .,id = U+Tgi, U+G̃. . .,i = sD+d−1gi ,

sC4d

whereei is the ith unit vector. The first step is to solve the
linear systemU+Tgi =ei for gi, and the second step to solve

U+G̃. . .,i =sD+d−1gi for G̃. . .,i. To solve a tridiagonal linear sys-
tem for one vector takesOsLd time, so solving for the full

inverse matrixG̃ takesOsL2d time.
Now we shall derive an algorithm to compute the ele-

ments of gi and G̃. . .,i. Begin with the last columni =L:
U+TgL=eL can be solved from the first to the last row and

givesgL=eL. Next U+G̃. . .,L=sD+d−1eL can be solved starting

from the last row,G̃L,L=1/DL
+. From there one can work

upwards by back substitutionG̃j ,L=−Uj
+G̃j+1,L s j =1, . . . ,L

−1d. For the other columnsi ,L, one cannot take the short-

cut and has to solve both linear systems forgi andG̃. . .,i. But
it is now important to realize that for any column vector

G̃. . .,i+1, if we somehow know the diagonal elementG̃i+1,i+1,
the next element above the diagonal is

G̃i,i+1 = − Ui
+G̃i+1,i+1 si = 1, . . . ,L − 1d. sC5d

Thus we have a prescription how to go up one row inG̃.

Together with the symmetry ofG̃, that isG̃i,i+1=G̃i+1,i, which
follows from the symmetry ofT, we get the first off-diagonal
element one column to the leftwithoutsolving the two linear
systems in Eq.(C4). So it is possible to compute directly the
tridiagonal part of the inverse. However, there is another
algorithm which is much more accurate for near-singular ma-
trices at the end of the RG flow: the double factorization.33 It

does not rely on the symmetry ofG̃ but uses the complemen-
tary “UDL” factorization

T = U−D−L− = U−D−U−T, sC6d

where the matrix elements are obtained as

DL
−: = aL, Ui

−: = bi/Di+1
− , Di

−: = ai − biUi
− si = L

− 1, . . . ,1d. sC7d

We proceed as for the LDU factorization above and get

G̃1,1= 1/D1
−, sC8d

G̃i,i+1 = − Ui
−G̃i,i . sC9d

We can combine Eqs.(C5) and (C9) to relate consecutive
diagonal elements

G̃i+1,i+1 = − G̃i,i+1/Ui
+ = G̃i,iUi

−/Ui
+ = G̃i,iDi

+/Di+1
− .

sC10d

Thus we start with Eq.(C8) and use theU−D−L− decompo-
sition to go one matrix element to the right in the inverse
matrix, from the diagonal to the first off-diagonal(C9), while
the L+D+U+ decomposition allows one to go down by one,
back to the next diagonal element(C5). There is no need to
compute the full inverse matrix.

One can implement the algorithm without knowing the
derivation by using Eqs.(C3) and(C7)–(C10). One can fur-
ther eliminate theU’s using Eqs.(C3) and (C7) and imple-
ment the algorithm such that only the input vectorsai, bi and

the output vectorsG̃i,i, G̃i,i+1 enter the temporary storage.
This double factorization is numerically accurate to more
than ten significant digits(using double precision) even for
large lattices(106 sites) and almost singular matrices with
uaiu,10−15 which appear at the end of the flow for half fill-
ing. The right-hand side of the flow equations(41) for the
density response vertexRL can be computed inOsLd time
using the fact that the upper triangular part of the inverse of

a tridiagonal matrix(hereG̃) is the upper triangular part of
the outer product of two vectors.33,34
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